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Abstract

This paper deals with a stabilization technique for the finite element modelling of contact-impact problems

of elastic bars via bi-penalty method. We employ the finite element method with explicit time integration

and the penalty method for enforcement of contact constraints. The bi-penalty method is a modification of

the classical penalty method adding a new mass penalized term which is able to maintain the critical time

step of the contact-free problem. To suppress spurious oscillations in the contact forces and increase the

overall stability of the contact-impact algorithm, it is proposed to combine the bi-penalty method with a

predictor-corrector stabilized explicit time integration scheme. Moreover, these oscillations are attenuated

for a wide range of the stiffness penalty parameter, provided that the optimal bi-penalty ratio is preserved.

For time integration, the standard central difference method, its stabilized version and Park time scheme

are employed. Also, different mass matrices are tested with an optimal setting given by the ratio of mass

and stiffness penalized matrices. It is shown that this optimal ratio can be set with respect to the maximum

eigen-frequency of finite elements in contact constraints. The methodology is tested for one-dimensional

contact-impact problems – the Signorini problem and impact of two elastic bars with different length.

Keywords: Finite element method, explicit integration, contact-impact problems, penalty method,

bi-penalty method, stability analysis

1. Introduction

Obtaining fast, stable and accurate solutions of contact-impact problems remain at the forefront of

computational mechanics research. Applications in this field appear in real-world problems from mechanical

and civil engineering, bio-mechanics, ballistics, or aviation and aerospace engineering. In this paper, we
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focus on the finite element modelling of contact-impact problems of elastic bars under the linear deformation

theory without damping. In the space discretization, linear finite elements and the consistent, lumped, and

averaged mass matrices are employed. Attention is paid only to the explicit time integration with a constant

time step and its stability. For contact constraints enforcement, the classical stiffness penalty method and

the bi-penalty modification are considered.

Most frequently, penalty methods, Lagrange multipliers method, its localized variant and augmented

Lagrangian methods are applied for modelling dynamic contact problems in the context of the finite element

analysis, e.g. see [1, 2, 3, 4]. In explicit finite element analysis, the penalty method is preferred due to

its implementation simplicity and fast evaluation of contact forces [1] which, in comparison to Lagrange

Multipliers method, does not increase the number of unknowns. It is also needed to mention the works

related to efficient active set approaches in contact problems as [5, 6]. On the other hand, the main

disadvantage of the penalty method in elastodynamics is the fact that the stability limit of the explicit time

integration scheme is destroyed by a large value of the numerical stiffness penalty parameter used for contact

constraints enforcement [1]. The stable time step size rapidly decreases with increasing value of the penalty

stiffness parameter as is depicted in Fig. 1.

Figure 1: Characteristic dependence of the stable time step size for the penalty and bi-penalty methods with optimal setting.

In the penalty method, the stable time step size is strongly affected by the penalty stiffness parameter βs while bi-penalty with

optimal setting remains unaffected.

A complete review of time integration strategies for contact-impact/dynamic contact problems in finite

element modelling can be found in [7]. In general, one can use implicit or explicit time integration schemes.

In this paper, we focus only on explicit time integration. For examples, the implicit time schemes have been

applied in impact-contact problems in [8, 9, 4, 10, 11, 12]. On the other hands, the explicit time schemes for

the contact-impact problems have been employed in [13, 14, 1, 2, 15, 16]. The explicit-implicit time scheme

in contact-impact problems has been adopted in [17]. The explicit predictor-corrector algorithm has been
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designed for dynamic contact with smooth and non-smooth surface geometries in [18].

Moreover, it is well known that the results of contact problems modelled via the penalty-like methods

depend on the used value of the penalty parameter. The principle of the penalty method implies that

impenetrability conditions are always met only approximately. With a higher value of the penalty param-

eter, more precise fulfilment of the impenetrability conditions occurs. We know that penalty methods are

generally not consistent [7] within the variational formulation of the problem and the final matrix form is

ill-conditioned. Often, the solution of the contact problem depends on the penalty parameters and the con-

vergence to the correct solution is not guaranteed [7]. A direct consequence of only approximate fulfilment

of the contact constraints is a non-zero penetration, which causes the contact term to produce non-physical

energy corresponding to the contact interfaces. A good solution to the oscillations on contact forces is the

application of time schemes based on predictor and corrector phases for evaluating kinematical quantities.

The regularization of the penalty approach in the finite element method of the impact of elastic bars is

presented in Otto’s work [19] and extension to the spectral 3D finite element method with NURBS contact

tying for contact surfaces is published in [20]. In these works, the nonlinear penalty stiffness parameter is

employed with explicit Runge-Kutta time integration of order 4. In this field, it is also important to mention

the works of C. Felippa [21, 22, 23].

Also, during the convergence process, final penetration is not exactly zero as corresponds to contact

non-penetration condition. As a consequence, there is lost energy included in the penalty contact term,

which is not a physical one and it is a product of numerical behaviour of the method. One way to eliminate

this undesired numerical effect is to use the bi-penalty method [24]. In Fig. 1, the effect on the stability

limit of the penalty method is shown, as well as the optimal setting for the bi-penalty method, for details

see [24, 25].

In the bi-penalty method, an extra mass term is added into the mass distribution corresponding to

a contact domain of interest with a stiffness term at the same time as in the classical penalty method.

This modification of the penalty method is known from Asano [26] and later from Armero [10]. Excellent

progress and different applications to several problems have been made by Hetherington [27, 28, 24]. The

penalty based method in multibody dynamics is also a well-known technique for stabilization of constraints,

for example, see the Park’s method [29] and Baumgarte’s method [30]. In this area, the bi-penalty or tri-

penalty modification is a common technique used for stabilization of oscillations in the constraints connecting

the bodies. In numerical analysis, the bi-penalty method is known as the consistent penalty method, see [31].

Another important problem in the numerical modelling of contact-impact problems comes from spurious

oscillations of contact forces, often caused by activation and deactivation (zig-zag effect) of contact con-

straints during the solution process. A lot of numerical techniques and strategies have been proposed in the

literature for elimination and stabilization of spurious oscillations in the contact forces. One can mention the

work of Doyen [32], the stabilized implicit Newmark method for non-smooth dynamics and contacts [17, 33],
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mass redistribution techniques [34], singular mass techniques [35, 36] or the stabilized explicit scheme with

the penalty method [37]. The last mentioned technique can be also applied in connection with the bi-penalty

method for stabilization of spurious oscillations of contact forces.

In this paper, we present an explicit time integration scheme for finite element solution of contact-

impact problems based on the central difference method [38], in particular, its stabilized version using the

predictor-corrector approach [7, 37] and Park explicit time scheme with predictor-corrector stabilization of

contact forces [39] in combination with the bi-penalty formulation [25]. Superior behaviour of the presented

method for modelling contact-impact problems is demonstrated using the impact problem of elastic bars

and the Signorini problem. The obtained results are compared with the standard time integration scheme

used in explicit finite element procedures for impact-contact problems, the central difference method [38].

It is observed, the standard explicit central difference method is not able to integrate accurately in time

the wave propagation problem with a time step size smaller than the stability limit. It is known that only

the combination in explicit time integration via the central difference method on the uniform linear finite

element mesh, with lumped mass matrix and time step corresponding to the critical time step size in a

uniform gives exact results of wave propagation. Otherwise, the results are polluted by spurious stress

oscillations, provided that the time step size is smaller than the stability limit. Park explicit time scheme

[39] is able to track a wavefront eliminating the effect of time step size on accuracy so it is a suitable tool

for modelling contact-impact problems.

The paper is organized as follows. In Section 2, the governing equations for impact of elastic bars with

the definition of the gap function for contact interfaces are presented and introduced with strong and weak

forms. In Section 3, the finite element discretized equations for the motion of elastic bars with the bi-penalty

method are derived. The explicit time integration of contact-impact problems in the finite element method

is presented in Section 4 together with the stability limit. Also, the optimal setting for the penalty mass

matrix is derived. Results for numerical tests in one-dimensional case – the Signorini and Huněk tests – are

presented in Section 5 with comments on the behaviour and superior properties of the proposed methodology.

The paper closes with the conclusions in Section 6.

2. Formulation of the contact problem and governing equations

In this section, we define the strong and weak formulations of the impact-contact problem for elastic bars,

including the definition of a gap function to enforce the contact constraints with the bi-penalty method. In

the following, we assume that the elastic bars in contact are homogeneous with the same constant cross-

section A, Young modulus E and mass density ρ. The lengths are different for each bar as well as their

initial velocities of vi0.

2.1. Strong formulation of contact initial-boundary value problem in 1D
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The correct mathematical formulation of the dynamic contact problems including the impenetrability

condition as well as the persistency condition is presented in [8]. The one-dimensional contact-impact

problem for linear isotropic homogeneous bars is governed by the following constrained initial-boundary

value problem (IBVP) [7]: 

Eu′′ = ρü in I × T

u(x, 0) = u0(x) in Ī

u̇(x, 0) = v0(x) in Ī

u(x, t) = ū(x) on Γu

Eu′(x, t) = σ̄(x) on Γσ

g(t) ≤ 0 on Γc × T

pc ≥ 0 on Γc × T

g(t)pc = 0 on Γc × T

ġ(t) ≤ 0 on Γc × T

ġ(t)pc = 0 on Γc × T

(1)

where I =
⋃
i Ii = (x`i , x

r
i ); i = 1, 2 is the union of intervals of spatial points xi ∈ Ii ⊂ R defining the

contacting bodies (see Figure 2), and T = (0, tend); tend ∈ R is the time interval. For one-bar contact

problem with a rigid obstacle only one body is considered and I = I1. In the first Eq. (1), which governs

the balance of the linear momentum, u(x, t) : I ×T 7→ R is the unknown displacement function, E ∈ R+ is

Young’s elasticity modulus, and ρ ∈ R+ is the mass density. The eighth condition in Eq. (1) is the classical

KKT complementarity condition between gap g(t)and pressure pc, requiring that surface forces exist only

during actual contact (g = 0). The penultimate condition in Eq. (1) is termed the persistency condition.

Note that for the sake of simplicity, the second partial derivative with respect to x is denoted by double

prime, (•)′′, whereas the second partial derivative with respect to t by superimposed dots, ¨(•).

xr2xl1 xl2

x
t = 0

t > 0

g0

u(xr1, t)

t = 0

t > 0

g0
x

u(xl1 , t)

xl1 xr1xr1

u(xl2 , t) gg

(a) two-bar contact (b) 1D Signorini problem
Figure 2: Definition of domains of interest, their boundaries and the gap function.
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The governing equation (1)1 is complement with the initial conditions (1)2,3, Dirichlet and Neumann

boundary conditions (1)4,5, contact conditions (1)6−8 and persistency condition (1)9−10, where g(t) and

ġ(t) is the gap function and its rate defined in the following section and pc(t) is the contact pressure. In

the initial conditions, u0(x) : Ī 7→ R is the initial displacement function and v0(x) : Ī 7→ R is the initial

velocity function; both prescribed at time t = 0. Similarly for the boundary conditions, ū(x) : Γu 7→ R is

the displacement function and σ̄(x) : Γσ 7→ R is the traction function; both constant in time. Γu and Γσ

are sets of boundary points where displacements and stresses are prescribed.

2.2. Definition of the gap function

Finally the contact constraints are prescribed by the Signorini-Hertz-Moreau conditions (1)6−8, with

the aid of the gap function, g, and contact pressure, pc, on the set Γc = {xr
2, x

`
1}. The contact pressure

pc(x, t) : T̄ 7→ R is equal to −Eu′, assuming Hooke’s law, and the gap function g(t) : T̄ 7→ R for the two-bar

contact is defined as

g(t) = −
[
u(x`1, t)− u(xr

2, t) + g0

]
(2)

where g0 denotes the initial gap, cf. Figure 2. For the one-bar contact the gap function can be considered

as the special case of (4), assuming xr
2 = 0 and u(xr

2, t) = 0

g(t) = −
[
u(x`1, t) + g0

]
(3)

According to this definition, the gap function has a positive sign in the case of penetration. Therefore, the

inequality (1)6 is called the impenetrability condition.

In the contact-impact problems, constraints on the normal components of the velocities of points in the

contact are needed to include in the formulation. This condition is called the persistency condition. For 1D

cases, the persistency condition can be prescribed via the gap rate as

ġ(t) = −
[
u̇(x`1, t)− u̇(xr

2, t)
]

(4)

which should fulfill the condition (1)9.

Note, that it was assumed that the first body is on the right and therefore its contact interface forms

the left boundary point, x`1. Analogously for the second body. For the one-bar contact Γc reduces to

single-element set Γc = {x`1}. All three sets Γu,Γσ, and Γc disjointly cover the boundaries of intervals Ii.

2.3. Weak form of contact-impact problem via bi-penalty method

In this section, we introduce the weak form of the contact-impact problems via the bi-penalty method,

for details see [25]. The Lagrangian functional, L(u, u̇) of the problem of interest corresponding to Eq. (1)

is given as

L (u, u̇) = T (u̇)− (U (u)−W (u)) +Wc (u, u̇) , (5)
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where

T (u̇) =

∫
I

1

2
ρAu̇2 dx (6)

U (u) =

∫
I

1

2
EAu′

2
dx (7)

W (u) =

∫
I

ubAdx+
∑
x∈Γσ

uAσ̄ (8)

are the kinetic energy, the strain energy, and the work of external forces, respectively. Note, that the

cross-section area is marked by A.

Bi-penalty method adds the penalization term to the (strain) energy (7) to enforce the zero-gap on the

contact boundary [7] and at the same time, an extra term to the (kinetic) energy (6) to enforce the zero-

velocity-gap on the contact boundary. This way, we define a penalization term associated to the contact

interface as

Wc (u, u̇) = −1

2
εsA〈g〉2 +

1

2
εmA〈ġ〉2, (9)

where the operator 〈•〉 are the so-called Macaulay’s brackets defined as 〈•〉 = |•|+•
2 . The parameters εs

[kg m−2 s−2] and εm [kg m−2] are the stiffness and mass penalty parameters, respectively.

The standard procedure for the stationary solution of (5), defined as δ
∫
T
Lp (u, u̇) dt = 0, gives us∫

I

δuρüdx+

∫
I

δu′EAu′ dx+H(g)A [δg(εsg + εmg̈)] =

∫
I

δuAbdx+
∑
x∈Γσ

δuAσ̄ (10)

which is the framework for the finite element discretized equation of motion including the contact constraints

by the bi-penalty method. Note the identity 〈g〉 = gH(g), where H(g) is the Heaviside step function which

ensures that the penalization term is active only in the case of penetration.

It is known that the standard/classical (stiffness) penalty method is not consistent [7], because it allows

non-zero penetration at the contact interface. On the other hand, the zero-gap velocity condition represents

a geometric condition of velocities equality at the contact interface. This geometric condition is required by

the true solution. It is often enforced using the so-called persistence condition [12], where the product of

the normal traction component and the gap velocity is required to be equal to zero. Although the bipenalty

method in the derivation penalizes the gap velocity through the term which can be interpreted as kinetic

energy in (9), however, after the application of Hamilton’s variational principle, one gets a residual term

that contains the second time derivative of the gap functions. Geometric condition of velocity equality at

the contact interface thus is imposed indirectly by penalizing the second time derivative, which ultimately

leads to smaller oscillations of the gap function and its velocity – stabilization of contact problem.
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3. Bi-penalty method in finite element method for contact-impact problems

In the finite element procedures [38] for elastodynamic problems with contact constraints, the equations

of motion yield the following system of nonlinear ordinary differential equations

Mü + Ku = r(t)− rc(u, ü) (11)

where M is the mass matrix, K is the stiffness matrix, u and ü are nodal displacements and accelerations,

r is the vector of external loading with time dependency, rc is the vector of contact forces. For a detailed

derivation of the discretized equation of motion eq. (11) for the finite element method with the bi-penalty

method see the work [25].

The linear FEM is applied in the rest of the paper for one-dimensional problems. The fully integrated

elemental stiffness is assumed as

K̂ =
EA

he

 1 −1

−1 1

 (12)

The averaged mass matrix M̂ as a linear combination of the consistent mass matrix

M̂C =
ρheA

6

 2 1

1 2

 (13)

and the lumped mass matrix

M̂L =
ρheA

2

 1 0

0 1

 (14)

is given as

M̂ = (1− γ)M̂C + γM̂L =
ρheA

6

 2 + γ 1− γ

1− γ 2 + γ

 . (15)

In the previous text, it was assumed that cross-section area A, Young’s modulus E, and density ρ are

constant. he is the length of the finite element. As it is known the lumped mass matrices are preferred in

explicit finite element analysis, but in this paper, we study the effect of contact oscillations due to the choice

of the mass matrix.

In the bi-penalty formulation [25], the global contact residual vector, rc, is assembled from the local

counterparts r̂c as the contribution of stiffness and mass terms to the contact residual vector which can be

written as

r̂c(û, ¨̂u) = M̂p
¨̂u + K̂pû + f̂p (16)

where

M̂p =

∫
Γc

εmH(g)ZZT dS K̂p =

∫
Γc

εsH(g)ZZT dS f̂p =

∫
Γc

εsH(g)Zg0 dS (17)

Here, M̂p is the additional (penalized) elemental mass matrix due to inertia penalty, K̂p is the additional

(penalized) elemental stiffness matrix due to stiffness penalty, and f̂p is the part of the elemental contact
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force due to the initial gap g0; g is the gap function; H(g) is the Heaviside step function for prescribing

active or inactive contact constraints; εm and εs are mass and stiffness penalty parameters; Γc is one of the

contact surfaces, usually called slave, on which the contact terms are evaluated; the matrix Z represents an

operator from the displacement field u to the gap function g in the contact

g = ZTu + g0 (18)

Remark. Note that the gap function g is positive in separation and the Heaviside function H(g) is one for

g > 0. This means that the penalty matrices are acting only during separation. This is solved by defining

g ≥ 0 as the penetration.

The particular form of matrix Z follows from the considered contact discretization. A comprehensive

overview can be found e.g., in the textbook [7]. For the 1D case, see the definition of the gap function in

(4), the corresponding representation of the gap function g takes the form

g = ZTu + g0 =
[

1 −1
] ul

rr

+ g0 (19)

as well as for the Signorini problem (3)

g = ZTu + g0 =
[

1
] [

ul

]
+ g0 (20)

where ul and ur are the displacements of the contacted nodes in the contact pair.

For the particular case of two bodies in contact, integration of (17) results in the following additional

stiffness and mass matrices

K̂p = H(g)
βsEA

he

 1 −1

−1 1

 , M̂p = H(g)
βmρheA

2

 1 −1

−1 1

 (21)

and for the Signorini problem

K̂p = H(g)
βsEA

he

[
1
]
, M̂p = H(g)βmρheA

[
1
]
. (22)

Here we have defined dimensionless stiffness and mass penalty parameters for the one-dimensional case as

βm and βs, as follows

βs =
he
EA

εs, βm =
2

ρheA
εm (23)

and their dimensionless penalty ratio

r =
1 + 2γ

6

βs
βm

. (24)

In the following, the necessary condition for the parameter r will be shown so that the stability limit for

several types of mass matrix is not affected.

Remark. The penalized mass matrix M̂p is singular and the corresponding total mass included in this mass

matrix is zero. This is very a good physical behavior of M̂p.

9



4. Explicit time integration schemes for contact-impact problems

We now consider the time integration of the semi-discretized system (11) respecting the bi-penalty

terms (16) in the framework of the central difference method in time [38] as

(Mt + Mt
p)

ut+∆t − 2ut + ut−∆t

∆t2
+ (Kt + Kt

p)ut − f tp − rt = 0. (25)

Assuming that displacements are known at times t −∆t and t, one can resolve unknown displacements at

time t+ ∆t, where ∆t denotes the time step size. Note, that the matrices Mt
p and Kt

p are time-dependent

because they are associated with active contact constraints. In the following text, we mention the stability

behaviour of the bi-penalized system and explicit time integration of the equation (25).

4.1. Stability limit of the bi-penalty method

It is known that the standard penalty method [1], where an additional stiffness term corresponding to

contact boundary conditions is applied, significantly attacks the stability limit (the critical time step size

∆tcr) of the finite element model. Note, the stability limit for explicit time integration by the central

difference method [40] is given as ∆tcr = 2/ωmax, where ωmax is the maximum eigenfrequency of the

discretized model.

For the averaged mass matrix with arbitrary γ, the maximum eigen-frequency of the separated finite

element is given as

ωmax =

√
12

1 + 2γ

c0
he
, (26)

therefore the stability limit is computed as

∆tcr = 2/ωmax =

√
1 + 2γ

3

he
c0
. (27)

where c0 =
√
E/ρ is the wave speed in a bar and he is the length of finite element.

The Courant number, let’s define as

C =
∆t

∆tcr
(28)

where ∆t is the time step size using in wave propagation simulations and thus ∆t = C∆tcr.

Generally, the critical time step size ∆tcr rapidly decreases with increasing penalty stiffness [1]. On the

other hand, this numerical effect can be eliminated by a particular choice of additional mass penalty term

[24]. The stability limit for the bi-penalty method has been studied in work of Kopačka [25], where the

optimal ratio of stiffness and mass penalty parameters as r = 1 were found for one-dimensional problems

with the lumped mass matrix. The general problem with respect to the stability of bi-penalized terms has

been studied in the work of Hetherington [28]. The critical time step size ∆tcr associated with contact-free

bodies are preserved for this optimal setting of mass penalty parameter with respect to the stiffness penalty

parameter. Thus stability limit for the contact problem is not attacked by the stiffness penalty term. In
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principle, one can integrate contact-impact problems by an arbitrary stable time step size ∆t < ∆tcr. In

Figs. 3, one can see the stability graphs for the Signorini and two element contact symmetric problems,

where the dimensionless critical Courant number Cr is computed as Cr = c0∆tcr/he for the lumped mass

matrix. For details of the stability analysis see work [25], where numerical tests have verified this stability

analysis for the central difference method for direct time integration.

0 1 2 3 4 5 6 7 8 9 10
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Figure 3: Stability limits for the bi-penalty method for the bi-penalized Signorini problem (on the left) and the symmetric

contact problem (on the right): Dependence of the critical Courant number Cr on the dimensionless stiffness penalty βs for

selected dimensionless penalty ratios r with the lumped mass matrix. For details see work [25].

4.2. Optimal setting of the penalized mass matrix

From a general point of view, mass and stiffness penalty matrices present the same structure, see Eq. (17),

where only the constants εm and εs are different. This means that there exists a linear relationship between

M̂p and K̂p. Let us then analyze the frequency content of the mass penalty matrix expressed in the form

M̂p = αK̂p (29)

where α is a free parameter [1/s2]. Now, Let us find an ”optimal” value of the parameter α, see [28] so that

the maximum eigen-frequency of the penalized dynamic system ωmax defined as

[−ω2
max(M + Mp) + (K + Kp)]Φmax = 0 (30)

has the same maximum eigen-frequency ωmax and corresponding mode shape Φmax as the contact-free

dynamic system expressed as

[−ω2
maxM + K]Φmax = 0. (31)

We assume that ωmax is nonzero and the previous relationships need to satisfy the following relationship

M̂p =
1

ω2
max

K̂p (32)
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thus α = 1/ω2
max, which is in an agreement with [28]. This is a very simple formula that can be used for the

evaluation of the mass penalized matrix with arbitrary stiffness penalty parameters. Based on comparison

of (21), (24), (26) and (32), the optimal setting of dimensionless penalty ratio is found to be r = 1.

It is needed to mention that ωmax is the maximum eigen-frequency of the finite element mesh in contact

and it will be computed from

(−ω2M̂ + K̂)Φ̂ = 0 (33)

and ωmax for the 1D case studied in this paper is given by (26). It means that there is a strong coupling of the

dynamic behaviour of finite elements in contact constraints and dynamic behaviour of the bi-penalty terms

corresponding to contact constraints. The coupling of dynamics of contacted bodies and bi-penalty contact

terms is through the maximum eigen-frequency ωmax of the finite elements in the contact constraints. The

condition shown in (32) is a sufficient condition for the keeping of the same stability limit of a contact-free

problem and bi-penalized contact problem. For that reason, one can estimate the stable time step size

of contact-impact problems without a knowledge of contact constraints of bodies where the condition for

penalized matrices (32) is valid. This evaluation of penalized stiffness and mass matrices for the bi-penalty

method is given on elemental level, and the global matrices are assembled in a standard finite element

process.

4.3. Central difference scheme for contact-impact problems

In this paper, we use the following form of the central difference (CD) scheme for explicit direct time

integration of elastodynamic problems with contact constraints based on the bi-penalty method with the

flowchart [38] as:

• Given ut, u̇t−∆t/2 satisfying Dirichlet boundary conditions, and computed external force rt

• Contact search for given ut, compute gap vector g and contact forces f tp = −Kt
put − f0

p

• Compute accelerations üt = (Mt + Mt
p)−1(rt −Ktut + f tp)

• Mid-point velocities u̇t+∆t/2 = u̇t−∆t/2 + ∆tüt

• New displacements ut+∆t = ut + ∆tu̇t+∆t/2

• t→ t+ ∆t

Here, we used the lumped version of the mass matrix M by the row-summing. In general, the bi-penalized

mass matrix Mt
p is a symmetrical block diagonal matrix with terms corresponding to nodes in contacts, thus

the inversion of total mass (Mt + Mt
p)−1 is a trivial numerical issue. For an efficient implementation of this

approach, the partitioned analysis of the contact-impact problems via the localized Lagrangian multipliers

[3] can be adopted.
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4.4. Stabilized explicit predictor-corrector scheme for contact-impact problems

In the works [37], characteristics of the fully explicit time integration scheme with a stabilized technique

for contact-impact problems were analyzed. For the predictor-corrector time scheme [41], it is needed to split

the accelerations corresponding to the external/internal forces and accelerations corresponding to the contact

forces as mentioned in [7]. After that, the time integration of each acceleration field is integrated in time

separately. In essence, it is a predictor-corrector form for accelerations of corresponding external/internal

forces and contact forces as, see [7],

ü = üpred (bulk) + ücorr (contact) (34)

where the predictor acceleration vector üpred corresponds to external/internal forces (rt −Kut) and the

corrector acceleration vector üpred corresponds to the contact forces rtc.

The mentioned time integration scheme takes the following flowchart with splitting of bulk (contact-free

problem) üpred and contact accelerations ütcorr:

• Given ut, u̇t−∆t/2, rt

• Compute accelerations of predictor phase ütpred = M−1(rt −Kut)

• Mid-point velocities of predictor phase u̇
t+∆t/2
pred = u̇t−∆t/2 + ∆tütpred

• Displacements of predictor phase ut+∆t
pred = ut + ∆tu̇

t+∆t/2
pred

• Contact search for given ut+∆t
pred , compute gap vector g and contact forces fp pred = −Kput+∆t

pred − f0
p

• Compute accelerations of corrector phase ütcorr = (M + Mp)−1(fp pred)

• Compute total accelerations üt = ütpred + ütcorr

• Mid-point velocities of corrector phase u̇t+∆t/2 = u̇
t+∆t/2
pred + ∆tütcorr

• New displacements of corrector phase ut+∆t = ut + ∆tu̇t+∆t/2

• Contact search for given ut+∆t, compute gap vector g and contact forces f t+∆t
p = −Kput+∆t −

Mpüt+∆t − f0
p

• t→ t+ ∆t

In this two-time step scheme, bulk accelerations in the predictor phase ütpred are computed due to

internal and external forces as a contact-free problem. It is calculated with the standard mass matrix M.

After updating of velocities and displacements, contact constraints are analyzed and contact forces fp pred are

evaluated. For these contact forces, contact accelerations in the corrector phase ütcorr are computed with the

additional penalized mass matrix together with the mass matrix (M+Mp) which needs inversion of this total

mass matrix. After, the velocities and displacements are updated concerning these corrected accelerations

taking into account contact constraints. Finally, the contact forces are evaluated in the consistent way, see

the Asano’s paper [26].
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Remark. In the corrector phase, the contact nodal forces fp pred correspond to the nodes in the contact;

thus, the force vector is sparse. For that reason, the mass matrix M + Mp can be evaluated only for nodes

in the contact and inverse of the total mass matrix (M + Mp)−1 can be computed easily, because the matrix

is blocked diagonal and the dimension of this matrix is small.

Remark. It can also be used a diagonalized version of the penalized mass matrix Mp composed as a row-

summing of absolute values and the inversion of (M + Mp)
−1 becomes a trivial operation. In this case, the

extra penalty masses are added only into the contact interfaces and the total mass is not preserved like in

the consistent definition of the penalty mass matrix given by the definition (17).

It is well known that the central difference method in time and linear finite element in space with the

lumped mass matrix is a good choice of temporal-spatial discretization due to dispersion behaviour [42]. If

one uses the time step size as a stability limit for regular mesh, the dispersion errors are eliminated and we

are able to obtain an exact solution of elastic wave propagation in the bar. On the other hand, when we

integrate using a time step size smaller than the stability limit, we obtain the stress distribution with stress

spurious oscillations which are an outcome of the temporal-spatial discretizations.

4.5. Stabilized Park time integration scheme for contact-impact problems

For the correct solution of the impact contact problem, it is also needed to eliminate the stress spurious

oscillations. An example of the time scheme, which is to able be to eliminate these numerical errors, is

the Park time scheme [39]. This scheme is based on front-shock and pullback integration, where the wave

speed is preserved and the numerical dispersion errors can be eliminated [43]. The time scheme has been

presented in the work of Park [39] for the 1D case, and for multi-dimensional cases for separate integration

of longitudinal and shear waves see [44, 42, 45]. Next, we plan to extend the Park time integration scheme to

contact-impact problems in predictor-corrector explicit time sense for elimination stress wave propagation

inside the elastic bars and contact forces at the same time.

The algorithm adopted for linear wave propagation problems uses the following steps:

• Given ut, u̇t, üt, rt

• Front-shock displacement ut+∆tc
fs = ut + ∆tcu̇

t +
∆t2c

2 üt for given ∆tc

• Front-shock acceleration üt+∆tc
fs = M−1[rt+∆tc −Kut+∆tc

fs ]

• Pullback interpolation ut+∆t
fs = ut + ∆tu̇t + ∆tc

2β1(α)üt + ∆tc
2β2(α)üt+∆tc

fs with α = ∆t
∆tc

, β1(α) =

1
6α
(
1 + 3α− α2

)
, β2(α) = 1

6α
(
α2 − 1

)
• Pushforward displacement ut+∆t

cd = ut + ∆tu̇t + ∆t2

2 üt

• Averaged displacement as predictor phase ut+∆t
pred = θut+∆t

fs + (1− θ)ut+∆t
cd for given θ

• Acceleration for predictor phase üt+∆t
pred = M−1

[
rt+∆t −Kut+∆t

pred

]
• Velocity for predictor phase u̇t+∆t

pred = u̇t + ∆t
2

(
üt + üt+∆t

pred

)
• Contact search for given ut+∆t

pred , compute gap vector g and contact forces fp pred = −Kput+∆t
pred − f0

p
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• Compute accelerations of corrector phase üt+∆t
corr = (M + Mp)−1(fp pred)

• Compute total accelerations üt+∆t = üt+∆t
pred + üt+∆t

corr

• Compute total velocities u̇t+∆ = u̇t+∆t
pred + ∆t

2 üt+∆t
corr

• Total displacement ut+∆t = ut+∆t
pred

• Search contact for given ut+∆t, compute gap vector g and contact forces f t+∆t
p = −Kput+∆t −

Mpüt+∆t − f0
p

• t→ t+ ∆t

The stabilized Park time integration scheme can be characterized as the three-time step scheme with

two steps for the wave propagation problem without including contact constraints, for details see [39]. The

first step uses the critical time step size ∆tcr and the second one the complete time step size ∆t which

is smaller than ∆tcr. The last step includes the contact constraints into the response without producing

spurious oscillations in the stress distribution along the bars. The scheme produces excellent results with

the lumped mass matrix due to temporal-spatial dispersion errors in the numerical model. We choice the

time step size as ∆t = 0.5∆tcr and averaged parameter as θ = 0.5 which is based on numerical tests in [39].

5. Numerical tests — impact of elastic bars

In this section, we present two tests for analysis of the behaviour of the suggested approach for finite

element modelling of contact-impact problems — the Signorini (impact of a bar on a rigid wall) and Huněk

problems (impact of two elastic bars).

5.1. Numerical test I — Signorini problem

In the first example, we study an one-dimensional impact problem of an elastic bar against a rigid wall.

This one-dimensional test is well known as the Signorini problem.

5.1.1. Problem definition

A scheme of this test is depicted in Figure 4. The bar is moving to the right side with the constant

velocity v01 = 0.1 [m/s]. The geometrical, material and numerical parameters were set up as: the length

L = 10 [m], the Young’s modulus E = 100 [Pa], the mass density ρ = 0.01 [kg ·m−3], the cross-sectional area

A = 1 [m2]. The initial contact gap is g0 = 0 [m] and the duration time is T = 0.3 [s]. The value of the

contact force from the analytical prediction is F0 = Aρc0v0 = −0.1 [N] for t = 0 . . . 0.2 [s] and zero otherwise,

see [46], where wave speed in a bar c0 =
√
E/ρ = 100 [m/s].
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Figure 4: A scheme of one-dimensional impact problem of an elastic bar against a rigid wall - the Signorini problem.

5.1.2. Numerical parameters

For numerical verification of the methodology for this test, we set βs as follows βs = {1e0; 1e4; 1e8; 1.e12}

and βm is set with respect to optimal value given by Eq. (24) with r = 1 or equivalently via (32). The

number of finite linear elements for the bar, n = 100, thus the uniform finite element lengths are set up as

he = 0.1 [m].

The time step size is chosen as ∆t = C∆tcr, where Courant dimensionless number is used C = 0.5. The

critical time step size is set with respect to (27) for given γ. This time step size is stable for all value of βs

with optimal setting of βm. We present results of the contact-impact problem in the form of the time history

of kinetic and strain energies and work of contact forces, the time history of dimensionless gap function g/he

and the time history of contact force. Results for the consistent (γ = 0), averaged (γ = 0.5) and lumped

(γ = 1) mass matrices are presented.

5.1.3. Results for CD method

In Fig. 5, one can see the results of the test obtained by the central difference method for the penalty

stiffness parameter βs = 1e0 and corresponding optimal βm. All three type of mass matrices were taken

into account. The histories of the contact forces show spurious oscillations. The consistent mass matrix

produces a higher level of spurious oscillation which is given by spurious oscillations of stress during wave

processes in the bar. This effect is not so evident for the lumped mass and averaged mass matrix due to

better dispersion behaviour of FEM in wave propagation. The relative gap is g/he = −1e− 3. For βs = 1e0

the results are physically correct, where the penalty stiffness has the same of order as the stiffness of finite

elements in the contact. One can also see that the contact energy comes to zero for βs = 1e0.

In Fig. 6, the results for the CD scheme, βs = 1e4 and the lumped mass matrix are presented. The

results show a stable solution but the spurious oscillations of gap function and contact forces are observed.

Based on numerical observation, there is a zig−zag effect in contact constraint where contact is switched-on

and switched-off. It is a product of a large value of penalty stiffness parameter. Naturally, one can see this

behaviour for a large value of βs independently of mass matrix type. The stress distributions in the bar for

all three types of the mass matrix are depicted in Fig. 7. In contact, the oscillations of stress occur. This

behaviour relating to spurious oscillations of contact forces was explained in [2] and it is an outcome of a

one-time step scheme. Therefore, we employ in the next text the stabilized predictor-corrector scheme and
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Park schemes, where the integration of bulk and contact accelerations are split.

5.1.4. Results for the stabilized predictor-corrector scheme

In Figs. 8, we present the results obtained by the the stabilized predictor-corrector scheme for βs = 1e4.

One can see the results of time histories of contact forces, gap functions and energy balance. The results

are shown for all three mass matrix types. One can see superior results for the lumped mass matrix.

Based on several tests for different values of βs = {1e0, 1e4, 1e8, 1e12}, the results are not influenced of

the choice of the stiffness penalty parameter βs with condition of the optimal setting of βm. The same

results can be detected for the averaged mass matrix. On the other hand, the consistent mass matrix

produces the spurious oscillations at the end of the time history of active contact force which is an outcome

of spurious oscillations of stresses along the bar as a product of dispersion behaviour of FEM. This effect

is depicted in Fig. 9 as stress distribution along the bar for all three types of the mass matrix. It is

needed to mention that the stress oscillations on the contacted side were eliminated by using the stabilized

predictor-corrector time scheme. We can speak about the stabilization effect of this time scheme on the

stress and contact force results. The corresponding of the dimensionless gap values with respect to the βs

are g/he = {−1e− 4, 1e− 7, 1e− 10, 1e− 15} for all three mass matrix type. The convergence properties of

this predictor-corrector time scheme with the bi-penalty method is observed.

5.1.5. Results for Park method

The Park non-spurious time scheme with connection with the linear finite element and lumped mass

matrix has been analyzed as a suitable approach for eliminating of stress spurious oscillations [39]. Therefore,

we adopted this scheme in the predictor-corrector form for contact-impact problems. We have to mention

that this scheme produces superior results of stress distributions for the lumped mass matrix and we apply

only this mass matrix for the computations in this part.

In Fig.10, the results of the Park scheme with stabilization for contact-impact problems are presented

for βs = 1e4 with the optimal setting of βm. The computation gives excellent results for a time history of

contact forces. But only the oscillations can be seen at the initial time of contact activation. The same

results are found for the different values of βs and we could say that the results do not depend on βs. In

Fig. 11, the stress distribution along the bar is shown. One can see the distribution without dominant

spurious oscillations inside the bar and also no spurious oscillations at the contact area. Based on that

results, the Park scheme with predictor-corrector explicit time scheme can eliminate spurious oscillation

effects of both, stress waves propagating along the bar, and contact forces.

5.2. Numerical test II — Impact of two bars with different lengths (Huněk problem)

In the second example, we study an one-dimensional contact-impact problem of two elastic bars with

different lengths prescribed in the work of Huněk [47].
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5.2.1. Problem definition

A scheme of this test is depicted in Figure 12. The left bar is moving to the right with the constant

velocity v01 = 0.1 [m/s]. The right bar with fixed right-hand side is at the rest. The geometrical, material

and numerical parameters were set up: the lengths L1 = 10 [m] and L2 = 20 [m], the Young’s modulus

E1 = E2 = 100 [Pa], the mass density ρ1 = ρ2 = 0.01 [kg ·m−3], the cross-sectional area A1 = A2 = 1 [m2],

the number of finite linear elements for each bar n1 = 50, n2 = 100, thus the finite element lengths are set

up as h1 = h2 = 0.2 [m], the initial contact gap g0 = 0 [m], the duration time T = 0.7 [s]. The value of the

contact force from the analytical prediction is F0 = 0.05 [N] for t = 0 . . . 0.2 [s] and t = 0.4 . . . 0.6 [s] and zero

otherwise, see [46].

5.2.2. Numerical parameters

In this test, we use the same definition of dimensionless stiffness and mass penalty parameters for the

bi-penalty method as in the previous case with r = 1. The mass matrix is of the lumped type. The

dimensionless stiffness penalty parameter was as follows: βs = {1e0; 1e4; 1e8; 1e12}. The time step size

was also the same as in the previous test.

5.2.3. Results

In Figure 13, one can see the time histories of contact forces between two elastic bars from Fig. 12

computed by the central difference method, the stabilized explicit predictor-corrector scheme and the Park

scheme with stabilization of contact forces. The value of βs = 1e4 was chosen, βm was set with respect to

the optimal stability limit as r = 1. For the CD method, the spurious oscillations occur as in the Signorini

problems. Against, the solutions for the stabilized explicit predictor-corrector scheme and Park schemes.

The stabilized predictor-corrector scheme gives the history of contact forces with the low level of spurious

oscillations, which is an outcome of the stress spurious oscillation inside the bar. The Park scheme gives the

more correct history of contact forces due to the elimination of stress spurious oscillations. One can observe

the same character of the time history of contact forces for all three time-schemes for different values of βs.

Conclusions

A numerical approach for one-dimensional contact-impact problems modelled by the finite element

method has been presented. The approach is based on the combination of the bi-penalty stabilization

method with time integration in a predictor-corrector form. Thanks to the bi-penalty method, we can re-

tain the stability limit of contact-free problems. We also have found evidence of the optimal setting of the

ratio of mass and stiffness penalty parameters for the bi-penalty term, that it depends on the maximum

eigen-frequency of the finite element meshes in contact. In time-stepping, a modification of the explicit

method with the splitting of bulk and contact accelerations has been used. In this case, we compare the
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results of the central difference method, its stabilized predictor-corrector version and the Park scheme with

predictor-corrector parts. Based on the results on numerical tests, one can see that the bi-penalty stabiliza-

tion works, and the predictor-corrector form of the time stepping is needed for elimination of contact force

oscillations.

Furthermore, we have proposed a method to eliminate spurious oscillations of contact forces in the impact

of elastic bars. The Park scheme gives us more accurate solutions concerning stress spurious oscillations and

contact forces, and it is preferred in the numerical modelling of contact-impact problems concerning contact

forces and stress propagation.

Based on the numerical tests, we can conclude that a motivated approach is an efficient tool for accurate

modelling of contact-impact problems with minimum pollution of contact force by spurious oscillations.

The results obtained by the stabilized explicit schemes in the connection with the bi-penalty method are

less sensitive to the choice of the penalty parameter in contrast to the standard penalty approach. The

gap function during the contact state converges correctly to zero for higher values of the penalty stiffness

parameter. This issue needs a mathematical proof as in future work.

As future work, we will focus on applications of the presented approach to multidimensional problems,

analyzing its performance, stability and accuracy with more complicated geometries and higher-order spatial

discretization [48]. An important task to solve in a correct way is contact-impact problems of heterogeneous

bodies with different mesh sizes, where the stability limits for each contacted bodies are different.
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Figure 5: Results of the Signorini problem obtained by the central difference method with C = 0.5, βs = 1e0, optimal setting

of βm, for lumped (above), averaged (middle) and consistent (below) mass matrix: Balance of energy in time (on the left), the

time history of gap function (in the middle), the time history of contact force (on the right).
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Figure 6: Results of the Signorini problem obtained by the central difference method with C = 0.5, βs = 1e4, optimal setting

of βm, for lumped mass matrix: Balance of energy in time (on the left), the time history of gap function (in the middle), the

time history of contact force (on the right) .
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Figure 7: Stress distributions at the time t = 0.5 [s] as results of the Signorini problem obtained by the central difference

method with C = 0.5, βs = 1e4, optimal setting of βm, lumped (left), averaged (middle) and consistent (right) mass matrices.

The analytical solution of wave propagation is attached.

25



0 0.1 0.2 0.3

time [s]

0

0.2

0.4

0.6

0.8

1

B
a

la
n

c
e

 o
f 

e
n

e
rg

y

T/T
0

U/T
0

W
con

/T
0

Total/T
0

0 0.1 0.2 0.3

time [s]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

C
o

n
ta

c
t 

g
a

p
/e

le
m

e
n

t 
le

n
g

th

10-7

0 0.1 0.2 0.3

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

C
o

n
ta

c
t 

fo
rc

e
/F

0

0 0.1 0.2 0.3

time [s]

0

0.2

0.4

0.6

0.8

1

B
a
la

n
c
e
 o

f 
e
n
e
rg

y

T/T
0

U/T
0

W
con

/T
0

Total/T
0

0 0.1 0.2 0.3

time [s]

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

C
o
n
ta

c
t 
g
a
p
/e

le
m

e
n
t 
le

n
g
th

10-7

0 0.1 0.2 0.3

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o
n
ta

c
t 
fo

rc
e
/F

0

0 0.1 0.2 0.3

time [s]

0

0.2

0.4

0.6

0.8

1

B
a
la

n
c
e
 o

f 
e
n
e
rg

y

T/T
0

U/T
0

W
con

/T
0

Total/T
0

0 0.1 0.2 0.3

time [s]

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

C
o
n
ta

c
t 
g
a
p
/e

le
m

e
n
t 
le

n
g
th

10-7

0 0.1 0.2 0.3

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
o
n
ta

c
t 
fo

rc
e
/F

0

Figure 8: Results of the Signorini problem obtained by the stabilized predictor-corrector method with C = 0.5, βs = 1e4,

optimal setting of βm, for lumped (above), averaged (middle) and consistent (below) mass matrix: Balance of energy in time

(on the left), the time history of gap function (in the middle), the time history of contact force (on the right).
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Figure 9: Stress distributions at the time t = 0.5 [s] as results of the Signorini problem obtained by the stabilized predictor-

corrector scheme with C = 0.5, βs = 1e4, optimal setting of βm, lumped (left), averaged (middle) and consistent (right) mass

matrices. The analytical solution of wave propagation is attached.
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Figure 10: Results of the Signorini problem obtained by the stabilized Park method with C = 0.5, βs = 1e4, optimal setting

of βm, for lumped mass matrix.
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Figure 11: Stress distribution at the time t = 0.5 [s] as results of the Signorini problem obtained by the stabilized Park method

with C = 0.5, βs = 1e4, optimal setting of βm, lumped mass matrix.

27



x
g0L1 L2

E1, A1, ρ1, E2, A2, ρ2,

v01 v02 = 0

Figure 12: A scheme of an one-dimensional impact of two bars with different lengths.
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Figure 13: Time history of contact force for impact of two bars with different lengths - CD (left), the stabilized predictor-

corrector scheme (middle) and Park (right) method with Courant number C = 0.5, βs = 1e4, optimal βm, lumped mass

matrix.
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