
Maximum Operating Frequency Self-Tuning System
on FPGAs Using Dynamic Reconfiguration

Carlos, Fernández-Garcı́a
Instituto de Microelectrónica de Sevilla

Seville, Spain
carlos@imse-cnm.csic.es

Aleksan Hakobyan
Universidad de Sevilla

Seville, Spain
alehak@us.es

Carlos J. Jiménez-Fernández
Insituto de Microelectrónica de Sevilla

Universidad de Sevilla - Escuela Politécnica Superior
Seville, Spain

cjesus@imse-cnm.csic.es

impact of these effects in these latest nanometer technologies,
providing very conservative results at maximum operating
frequencies in a way that guarantees performance. Thus being
an experimental approach a good alternative to detect the real
maximum operating frequency.

FPGA devices incorporate elements for the internal
generation of clock signals whose frequency, lower or higher
than the input clock frequency, is set when the circuit is
being designed. However, the latest FPGA device families
incorporate mechanisms for dynamic control of the output
clock frequency.

In this paper, we present an automatic and embedded
self-tuning mechanism to get a circuit implemented in an
FPGA to work at the maximum operating frequency. The
mechanism is based on the use of the Mixed-Mode Clock
Manager (MMCM) of a Xilinx 7-series FPGA [5] and on
the dynamic configuration of the frequency through the DRP
(Dynamic Reconfiguration Port) [6]. The tests have been
carried out on a Xilinx Artix-7 family device, so its use can
be extended to any device of this family.

This paper is organized as follows. Section II discusses the
main characteristics of the Xilinx 7-series MMCM and the pro-
posed mechanism to work at maximum frequency. Section III
presents a circuit developed to test the proposed mechanism,
Section IV explains how the circuit presented in III works and
Section V presents and compares the reports from the main
temporal analysis tools and experimental results. Finally in
Section VI, some conclusions are drawn.

II. XILINX 7 SERIES FPGA CLOCKING RESOURCES

FPGA devices have specific resources to handle clock
signals. The fundamental ones are the global lines and the
MMCM.

Global clock lines allow the clock signal to reach many
flip-flops with low jitter and low skew. MMCMs allow up to
6 clock signals to be generated from one clock, at both lower
and higher frequencies. To synthesize these frequencies, the
MMCM uses the basic blocks that make up a PLL as well as
clock dividers that allow the designer to select the frequency.

Abstract—This paper proposes the use of a dynamic clock 
frequency reconfiguration technique to optimize the performance 
of a circuit by changing its clock frequency to achieve the 
maximum operating frequency. The proposed technique uses 
an FPGA reconfigurable c lock g enerator c ircuit t hat changes 
the generated clock frequency for a circuit in real time. By 
systematically increasing the clock frequency and monitoring the 
response of the circuit, the real maximum operating frequency 
can be determined. The effectiveness of the proposed technique is 
demonstrated through simulation and experimental results with 
the development of an experimental system. The results show that 
it can accurately determine the maximum operating frequency 
of a circuit while maintaining its reliability and integrity.

Index Terms—Maximum operating frequency, Clock Man-
agers, FPGA, timing analysis

I. INTRODUCTION

The operating frequency of a circuit fundamentally 
affects two things: performance and power consumption. 
Dynamically modifying the operating frequency of a circuit 
can be a performance optimization tool, by raising the 
frequency to the maximum operating frequency when 
increased performance is required and lowering it when the 
circuit is not operating or high performance is not required, 
thus saving power consumption.

The timing analysis of the maximum operating frequency 
has been a long-standing issue that has been addressed by 
various proposed solutions for several years [1]. However, 
despite the common use of timing analysis tools such as static 
analysis and temporal simulation tools, the model’s accuracy 
is not too precise and often leads to conservative outcomes. 
As such, there have been recent proposals to enhance and 
refine t he current analysis methods [2] [3].

In nanometer technologies, the timing analysis problem 
becomes even more complicated, as the delay calculation of 
logic gates and bistables are compounded by the increasing 
influence o f i nterconnect d elays a nd a ll t he p roblems asso-
ciated with signal noise such as crosstalk [4]. The timing 
analysis tools included in commercial microelectronic design 
tools do not usually include precise methods to determine the



There are three dividers (D, O, and M), which are used to
generate the multiplication factor of the input MMCM clock
frequency, thus achieving a wide range of output frequencies.
The expression 1 shows the output frequency of the MMCM
as a function of the divisors already discussed.

fout = fin
M

D ·O
(1)

As mentioned in the previous section, the value of these
dividers can be configured dynamically using the DRP, the
configuration ports are highlighted in red in Figure 1 which
shows the block of an MMCM of the FPGA family 7 of the
manufacturer Xilinx in which only the main signals of the
module and the ports necessary for the dynamic configuration
are shown.

The DADDR signal consists of a 7-bit address bus that
allows access to the registers of the different configuration
groups of the MMCM. The input data bus consists of a
16-bit bus that allows the writing of the control registers of
the different groups, provided that WE (Write Enable) signal
indicates this with a logic ’1’. The DEN (Data Enable) input
is an enable input that must remain at ’1’ during write or
read operations. DCLK is the clock signal used for writing
or reading the DRP. There are also two output signals DO
and DRDY, which are used as a 16-bit output data bus for
reading the register indicated by the DADDR input and to
indicate the validity of this output data respectively.

Fig. 1. MMCM Block.

The DRP allows access to 6 configuration groups for
selecting the frequency of each of the outputs. These groups
are divided into 16-bit registers, grouped into Divider groups
used to select the dividers value, Phase groups for phase
configuration, and Fractional groups used to configure the
division using non-integer values. In addition, there are 3
independent groups called Lock group, Filter group, and Power

group. It should be noted that the Divider group is available
for both the input clock divider and the output clock divider.

III. DYNAMIC RECONFIGURATION TECHNIQUE

In order to determine the maximum operating frequency
of a digital circuit during operation, it is necessary to use, in
addition to the necessary MMCM modules, a control logic
that is responsible for the configuration of these modules, as
well as the detection of a correct/incorrect operation of the
digital circuit on which the frequency variation is applied.
The block diagram of the proposed scheme is shown in figure
2.

Fig. 2. System Block Diagram.

A. Clock Generation Block

Two MMCMs are used for clock generation as shown in
Figure 3. The first one is used to generate a main clock which
will be used by the controller block in Figure 2, while the
second MMCM will be used to vary the frequency of the
digital circuit by means of the dynamic reconfiguration ports
that will be stimulated by the controller.

Fig. 3. Clock Generation Scheme.

B. Controller Block

As mentioned above, the controller is in charge of
frequency configuration and control of the digital circuit.

The logic of the controller consists of a state machine that
first of all takes care of the desired frequency configuration
of the digital circuit by writing the corresponding data in
the registers of the output clock divider group as well as the
input clock divider and feedback. Once the desired frequency
has been set, it is necessary to wait for the frequency to
stabilize, which is indicated by the LOCKED signal of the



second MMCM of the clock generation block, before the
digital circuit begins operation.

Once a clock frequency has been dynamically set, it
will perform a test run of the circuit under test (CUT). In
case the circuit works correctly, the clock frequency will
be reconfigured to be slightly increased. The process will
continue until a malfunction is detected in the CUT. In that
case, the frequency will be reconfigured to the last frequency
at which it had been operating correctly.

C. Circuit Under Test

The CUT shall have two operating modes: a normal mode
and a clock setup mode. In normal mode, the CUT receives as
input signals the signals coming from the system in which it
is inserted, but in clock setup mode, the CUT’s input signals
shall come from the control block. Only in this operating
mode will the CUT checks if the outputs are as expected and
decides whether to change the clock frequency or not.

IV. DYNAMIC RECONFIGURATION TECHNIQUE
APPLICATION EXAMPLE

In order to test the validity of the proposed mechanism,
a test design was carried out. In this application example, a
hardware implementation of the AES (Advanced Encryption
Standard) symmetric encryption standard using a 128-bit key
has been selected as CUT. The implemented design performs
each round of encryption in one clock cycle, so, counting
the load and output generation cycles, 11 clock cycles are
required to generate a valid output. The logical operations
to be performed in each round (SubBytes, ShitftRows,
MixColumns, and AddRoundKey) are combinational
operations and will predictably be the operations that limit
the maximum clock frequency. The control block of the
developed example dynamically configures the AES clock
frequency and performs the encryption of a default plaintext
using also a default key. It checks the result of the data
encrypted by the AES with the expected output also stored in
the control circuit itself.

Figure 4 shows a schematic of the operations performed
by the controller to correctly adjust the operating frequency
of the circuit.

The first necessary step is to configure the power group
using the dynamic reconfiguration ports. This group must
always be configured with the same value (0xFFFF) to ensure
the correct operation of the MMCM. Once this port has been
configured, wait for the ready indication (DRDY) of the
MMCM to continue with the frequency configuration. Note
that every time you write through the DRP in some of the
corresponding registers, you must wait for the DRDY signal
to be asserted high before continuing.

After the configuration of the power group, the output
signal and the feedback signal frequencies are set by writing
the divider group. This configuration requires the writing of
the two registers that make up the divider group, the first or
less significant one is used for the configuration of the divisor
value, while the second one is used, in this case, mainly so
that the generated signal has a duty cycle of 50%. In the case
of the divider group configuration of the input clock, only
the first and only available register is modified, which allows
the configuration of both the division and the duty cycle.

Note that the values with which the corresponding registers
are updated are stored in a ROM, and provide a 10 %
frequency increase in each iteration from an initial frequency
of 100 MHz. This is mainly because not all combinations of
the divisors D, O, and M are possible and it is easier to store
these values than to implement their calculation within the
control block.

Once the desired frequency is set, the MMCM waits for
the frequency to be generated correctly (indicated by the
LOCKED signal as depicted in the previous section), after
which the CUT operation is started.

V. RESULTS ANALYSIS AND COMPARISON

To evaluate the behavior of the developed application
example, the whole system has been implemented on a
Xilinx FPGA of the Artix-7 family, specifically on the
xc7a100tcsg324-1 device using the Xilinx ISE software and
the VHDL hardware description language to describe the auto-
tuning system as well as the AES used as the circuit under
test. In order to know the maximum operating frequency,
the ROM memory address containing the programming
coefficients of the output clock frequency has been set as the
output of the experimental system. This address value is only
updated in the case of a successful operation. In this way,
the maximum frequency obtained can be easily checked and
compared with the estimates of the time analysis tools.

Before performing any experimental analysis, the system
has been simulated to check its correct operation, and timing
analyses have been carried out to estimate the maximum
operating frequency. In order to obtain an estimated maximum
operating frequency we have performed post-route simulations
as a dynamic timing analysis tool, and we have revised the
static timing analysis reports for the static timing evaluation.
We then implemented our FPGA-based maximum operating
frequency detection system and check the maximum operating
frequency.

A. Simulation and Timing Analysis Results

The first analysis performed is that of the correct dynamic
configuration of the CUT clock frequency. In this case, a func-
tional simulation is appropriate. Table I shows a screenshot of



Fig. 4. Controller FSM.

the different frequencies synthesized by the MMCM for all
the ROM addresses where the values of the different dividers
are stored.

The second analysis performed is a post-route simulation in
which the CUT clock frequency is increased until a failure in
the AES operation is observed. Figure 5 shows a snapshot of
the simulation waveform. The o freqcnt signal is the one that
indicates the address of the ROM of dividers that has been
programmed in the MMCM and the o fail signal is the one
that indicates if there has been a failure in the operation of the
CUT. As can be seen in the snapshot, the failure occurs for
an address of ”0010” which means a frequency of 120 MHz.
The static timing analysis reports have also been reviewed,
examining the paths with the greatest delays within the AES.

TABLE I
FREQUENCIES SYNTHESIZED BY THE MMCM DEPENDING ON THE ROM

ADDRESSED BY THE CONTROL BLOCK

ROM Memory Address Frequency Generated Clock Waveform
0000 100 MHz

0001 110 MHz

0010 120 MHz

0011 130 MHz

0100 140 MHz

0101 150 MHz

0110 160 MHz

0111 170 MHz

1000 180 MHz

1001 190 MHz

For the AES core used as CUT, the static analysis tool
reported a minimum period of 8.868 ns which means a
maximum frequency of 112.765 MHz. It can be seen that the
maximum operating frequency results provided by the post-
route simulation and by the static analysis tool are similar and
consistent. In the post-route simulation, the correct operation
is verified at 110 MHz but not at 120 MHz, and in the static
analysis the estimated maximum frequency is 112 MHz.

B. Experimental Results

The complete system has been implemented in Digilent’s
Nexys-4 DDR (Figure 6) development board. In order to
observe the maximum operating frequency, the outputs
o freqcnt have been mapped to the four least significant
LEDs on the board. In this way, the maximum operating
frequency of the CUT can be observed in a very simple way.

The experimental results show a binary value of ”0111”
at the o freqcnt output, which corresponds to a maximum
operating frequency of 170 MHz. This maximum operating
frequency value is significantly higher than that estimated
by the temporal analysis. This discrepancy of values is not
strange, because as already commented in the introduction of
the article, the time analysis tools are not very accurate and
thus tend to give values quite conservative and thus guarantee
the correct operation at those frequencies.

VI. CONCLUSIONS

In this paper, we have presented a clock frequency
dynamic reconfiguration self-tuning technique for detecting
the maximum operating frequency of a circuit under test. The
developed system has been implemented in a Xilinx Series-7
FPGA using MMCM blocks in order to increase the CUT
clock frequency until a failure occurs, which in turn allows us
to identify the maximum operating frequency. The developed
system has, in addition to an MMCM to generate the clock
signal and the CUT, a control block that is dedicated to
perform the dynamic reconfiguration of the clock frequency



Fig. 5. Timing Violation in Post-Route Simulation Snapshot

Fig. 6. Picture of the demo running in the Nexys4-DDR board used for the
experimental test

and to analyze if the CUT operation is correct or not. The
developed system uses a hardware implementation of the
AES symmetric cipher as CUT. This circuit is a complex
enough to detect differences between the results given by the
timing analysis tools and the actual implementation of the
circuit in an FPGA.

Static timing analysis indicates a maximum operating
frequency of 110 MHz, while the experimental maximum
operating frequency obtained is 170 MHz. These results show
that the maximum frequency of the FPGA implementation
is higher than that predicted by simulation and static timing
analysis tools. This highlights the fact that the performance
of a circuit’s silicon implementation may actually be superior
to the performance estimated by the different synthesis and
place & route tools, and therefore this self-tuning technique
could be useful to reach the implemented circuit’s maximum
operating frequency in order to achieve the best possible
performance of the circuit.

Therefore changing the clock frequency by dynamic
reconfiguration in FPGA can be a powerful tool to optimize

circuit performance.

ACKNOWLEDGMENT

This work has been funded by SPIRS (Secure Platform for
ICT Systems Rooted at the Silicon Manufacturing Process)
Project with Grant Agreement No. 952622 under the European
Union’s Horizon 2020 research and innovation programme.
Authors want to thank Programa Operativo FEDER 2014-
2020 and Consejerı́a de Economı́a, Conocimiento, Empresas
y Universidad de la Junta de Andalucı́a under Project US-
1380823, and project Grant PID2020-116664RB-I00 funded
by MCIN/AEI/10.13039/501100011033.

REFERENCES

[1] R. B. Hitchcock, “Timing verification and the timing analysis program,”
in Papers on Twenty-Five Years of Electronic Design Automation, 1988,
p. 446–456.

[2] D. Garyfallou, I. Tsiokanos, N. Evmorfopoulos, G. Stamoulis, and
G. Karakonstantis, “Accurate estimation of dynamic timing slacks us-
ing event-driven simulation,” in 2020 21st International Symposium on
Quality Electronic Design (ISQED), 2020, pp. 225–230.

[3] M. Fathi, T. Martin, G. Grewal, and S. Areibi, “Using machine learning
to predict operating frequency during placement in fpga designs,” in 2021
International Conference on Microelectronics (ICM), 2021, pp. 53–56.

[4] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer De-
signs: A Practical Approach, 1st ed. Springer Publishing Company,
Incorporated, 2009.

[5] “7 Series FPGAs Clocking Resources User Guide,” https://docs.xilinx.
com/v/u/en-US/ug472 7Series Clocking, Jun 2018, accessed may 2023.

[6] “MMCM and PLL Dynamic Reconfiguration Application Note,” https://
docs.xilinx.com/v/u/en-US/xapp888 7Series DynamicRecon, Aug 2019,
accessed may 2023.


