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Abstract 

The finite element model (FE) updating is a calibration method that allows minimizing the 
discrepancies between the numerical and experimental modal parameters. As result, a more 
accurate FE model is obtained and the structural analysis can represent the real behaviour of the 
structure. However, it is a high computational cost process. To overcome this issue, alternative 
techniques have been developed. This study focuses on the use of the unscented Kalman filter 
(UKF), which is a local optimization algorithm based on statistical estimation of parameters taken 
into account the measurements. The dome of a real chapel is considered as benchmark structure. 
A FE model is updated applying two different algorithms: (i) the multi-objective genetic algorithm 
and (ii) a hybrid unscented Kalman filter-multi-objective genetic algorithm (UKF-MGA). Finally, a 
discussion of the results will be presented to compare the performance of both algorithms. 

Keywords: model updating; historical constructions; unscented Kalman filter; multi-objective 
genetic algorithm. 

 

 

1. Introduction 

The structural assessment of historical 
constructions is an increasingly relevant issue. The 
most usual approach for the assessment of their 
structural behaviour is to design a mathematical 
model (e.g. finite element model). To build the 
Finite Element (FE) model, the material and 
geometrical properties are assumed and the 
boundary conditions implemented may not be the 
proper. These facts may involve large 
discrepancies between the numerical results 
obtained from these mathematical models and 
the experimental results obtained from field 

vibration tests. The model updating may be 
formulated as an optimization procedure where 
these discrepancies are minimized. Friswell et al. 
[1] introduced in 1995 the main techniques which 
may be employed for FE model updating. The 
procedure consists in selecting one or several 
physical parameters of the numerical model and 
changing theirs values iteratively. For each 
iteration, the differences between numerical and 
experimental results (usually modal parameters) 
are evaluated. In this manner, viewed from the 
optimization perspective, the parameter 
identification solved as an inverse problem can be 
considered as a general minimization problem. 
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The objective is to find the physical parameters 
that minimizes the mean square error (objective 
function) between actual and simulated modal 
parameters. 

Due to the high nonlinearity intrinsic to structural 
models, the objective functions could present 
many local minima. To prevent the algorithm to 
converge to a local minimum, the use of global 
optimization algorithms must be considered. 
Genetic algorithm (GA) has been widely used to 
solve a parameter identification inverse problem. 
The high computational cost has led to the 
emergence of hybrid techniques that reduce the 
convergence time of global optimization 

algorithms. In this study, a hybrid unscented 
Kalman filter-multi-objective genetic 
algorithm (UKF-MGA) is considered. The 
unscented Kalman filter (UKF) [6] is an algorithm 
used to estimate the parameters of a nonlinear 
system subjected to white noise. The parameters 
updating is based on the estimation of the 
Gaussian means and covariances of the quantities 
being estimated, minimizing the variance of the 
estimation error. The Kalman filter finds the local 
minimum around the current estimate. 

This study focuses on the comparison of the 
results obtained using both the maximum 
likelihood approach and a hybrid UKF-MGA 
algorithm. As benchmark structure, the chapel of 
the Würzburg Residence (Germany) is considered. 
This building, whose construction dates from the 
early eighteenth century, was declared a World 
Heritage Site by UNESCO in 1981. The updating 
procedure is based on the actual modal 
parameters of the structure, obtained through the 
accelerations recorded during an ambient 
vibration test. Finally, the number of iterations, 
the computation time and the differences 
between the updated and experimental modal 
parameters are compared for both algorithms. 

2. FE Model Updating based on the 
maximum likelihood method 

2.1 Basics of FE Model Updating 

The FE model updating tool aims to design a 
numerical model which is more adequate to the 

real behaviour of the structure [1]. It is an iterative 
process in which the values of certain pre-selected 
physical parameters are changed until the optimal 
solution is reached. The updated FE model, under 
the maximum likelihood method, is obtained by 
minimizing the objective functions defined in 
terms of the relative differences between 
experimental and numerical modal parameters. 

Within the framework of multi-objective 
optimization, the problem to be solved consists in 
minimizing the objectives functions defined with 
regard to the residual of the natural frequencies 
and the residual of the vibration modes. The 
expressions to calculate both residuals are: 

𝑟𝑓,𝑗 =
𝑓𝑛𝑢𝑚,𝑗 − 𝑓𝑒𝑥𝑝,𝑗

𝑓𝑒𝑥𝑝,𝑗
,          𝑗 = 1, … , 𝑚𝑓 (1) 

𝑟𝑠,𝑗
2 =

(1 − √𝑀𝐴𝐶𝑗)
2

𝑀𝐴𝐶𝑗
,         𝑗 = 1, … , 𝑚𝑓 (2) 

where 𝑓𝑒𝑥𝑝,𝑗  is the experimental natural frequency 

𝑗, 𝑓𝑛𝑢𝑚,𝑗 is the numerical natural frequency 𝑗 and 

𝑀𝐴𝐶𝑗  is the Modal Assurance Criterion. The MAC 

is a parameter used to assess the correlation 
between the numerical and experimental natural 
frequency 𝑗 and is calculated by the following 
expression: 

𝑀𝐴𝐶𝑗 =
(𝜙𝑛𝑢𝑚,𝑗

𝑇 · 𝜙𝑒𝑥𝑝,𝑗)
2

(𝜙𝑛𝑢𝑚,𝑗
𝑇 · 𝜙𝑛𝑢𝑚,𝑗) · (𝜙𝑒𝑥𝑝,𝑗

𝑇 · 𝜙𝑒𝑥𝑝,𝑗)
 (3) 

being 𝜙𝑛𝑢𝑚 and 𝜙𝑒𝑥𝑝 the numerical and 

experimental vibration modes, respectively. Both 
residuals are used to define the objective 
functions. Therefore, the minimization problem 
may be defined as follows: 

min 𝑓1(𝜃) = min
1

2
[∑ 𝑟𝑓,𝑗

2 (𝜃)

𝑚𝑓

𝑗=1

]

1
2

 (4) 

min 𝑓2(𝜃) = min
1

2
[∑ 𝑟𝑠,𝑗

2 (𝜃)

𝑚𝑓

𝑗=1

]

1
2

 (5) 
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where 𝑓1(𝜃) and 𝑓2(𝜃) are the objective functions 
related to the natural frequencies and vibration 
modes, respectively, 𝜃 is the possible solution 
vector containing the updated physical 
parameters of the model and 𝑚𝑓 is the number of 

vibration modes considered. 

2.2 Multi-objective Genetic Algorithm 
(MGA) 

The multi-objective global optimization algorithm 
(MGA) employed in this study is the nature-
inspired NSGA-II (Non-Dominated Sorting Genetic 
Algorithm) algorithm [3]. This algorithm consists 
of the followings steps. First, the initialization 
consists in creating an initial random population 
(solutions) and the assessment of the objective 
functions. The value of the objective functions are 
then classified to distinguish between dominated 
and non-dominated (Pareto front) solutions. 
Second, the stochastic selection function selects 
several classified solutions and generate a new 
population by using the crossover and the 
mutation functions. The former allows creating a 
new solution from two previous ones and the 
latter is used to randomly modify the value of one 
parameter of the new solution in order to search 
on new areas of the domain. Finally, the objective 
functions are evaluated for the new generation 
and the non-dominated solutions are obtained. 
The two last steps are repeated until a stop 
criterion is reached. As result, the Pareto’s optimal 
front is build where each point represents a 
possible solution. 

3. FE Model Updating considering the 
hybrid UKF-MGA algorithm 

The Kalman filter [2] is an estimator that consists 
in estimating the unknown variables by 
considering the measurements which contain 
statistical white noise. The mathematical 
representation of a general parameter 
identification problem solved by using the Kalman 
filter is based on the state-space model: 

𝜽𝑘 = 𝜽𝑘−1 + 𝒘𝑘−1 (6) 

𝒛𝑘 = 𝒉(𝜽𝑘 , 𝒙𝑘) + 𝒗𝑘 (7) 

where 𝜽 is the vector containing the model 
parameters and 𝒛 extracts the modelling outputs 
of the modelling function 𝒉( ). The estimation 
process noise and the modelling uncertainty are 
taken into account in the vectors 𝒘 and 𝒗, 
respectively. Both terms are assumed to be white 
Gaussian noise with zero-mean and covariance 
matrices 𝑸 and 𝑹, respectively. The matrix 𝑹 is 
the sum of measurements noise and modelling 

noise: 𝑹 = 𝑹𝑚𝑒𝑎𝑠 + 𝑹𝑚𝑜𝑑𝑒𝑙  [4]. Nevertheless, the 
modelling uncertainty is neglected in this study as 
the same model is considered for each iteration of 
the simulation. 

An extension of the Kalman filter to nonlinear 
systems, the so-called extended Kalman filter 
(EKF) was developed [5]. The EKF requires 
linearization (Taylor series expansion) of Equation 
(7). In case 𝒉 is a numerical model, there is no 
analytical solution of the Jacobian of the function. 
Instead, a numerical method such as the finite 
difference algorithm must be used to approximate 
the Jacobian. 

To overcome this issue, the unscented Kalman 
filter (UKF) was proposed by Julier et al. [6]. The 
UKF is an estimator for nonlinear systems where 
no linearization of the modelling function 𝒉 is 
needed. This algorithm uses the unscented 
transform technique to select a group of sample 
points (sigma points) which are propagated 
through the nonlinear functions to calculate the 
mean and the covariance of the estimated 
parameters [7]. It implies that the second order 
Gaussian approximation of the estimates is 
preserved. In this study, the genetic algorithm 
hybridized with UKF is considered due to the 
advantages of this algorithm over the EKF. A 
detailed description of the algorithm for 
parameter estimation problems is given below. 

As a Kalman filter, the UKF consists of two steps: 
(i), the prediction and; (ii) the correction (or 
update). The former consists in assessing the 
sigma points and the prior estimation error, 
modelling error and the cross covariance. The 
latter involves computing Kalman's Gain matrix 
(𝑲) and correcting the prior estimates of the 
parameters and the covariance, based on the 

measurements 𝒛𝑜𝑏𝑠. 
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The sigma points are 2𝑛 + 1 distributed points in 
the vicinity of the current estimate. They are 
defined from the prior estimation error covariance 
[8]: 

𝓢 = 𝜂√𝑷𝑘−1 (8) 

(𝜒𝑘−1)0 = �̂�𝑘−1 (9) 

(𝜒𝑘−1)𝑖 = �̂�𝑘−1 + 𝓢𝑖 ,        𝑖 = 1, 2, … , 𝑛 (10) 

(𝜒𝑘−1)𝑖+𝑛 = �̂�𝑘−1 − 𝓢𝑖 ,   𝑖 = 1, 2, … , 𝑛 (11) 

being 𝑛 the number of parameters, 𝜂 is the scaling 

parameter computed as 𝜂 = √𝑛 + 𝜆, 𝑷 is the 
estimation error covariance and 𝝌 are the 2𝑛 + 1 
sigma points. The sigma points are multiplied by a 
weight, defined as: 

𝑊0 =
𝜆

𝑛 + 𝜆
 (12) 

𝑊𝑖 = 𝑊𝑖+𝑛 =
1

2(𝑛 + 𝜆)
,    𝑖 = 1, 2, … , 𝑛 (13) 

This algorithm is integrated into the MGA. 
Specifically, the UKF searches around the 
candidate values of the parameters proposed by 
the genetic algorithm. Once the value of the 

parameters �̂�𝑘|𝑘 are obtained, the objective 

functions are assessed by minimising the mean 
square error between numerical and experimental 
modal parameters. The genetic algorithm uses 
these values of the objective functions to propose 
a new possible solution (vector of parameters). 
The algorithm is shown below. 

 

Initial Step: 

�̂�0 = 𝜽𝑝𝑟𝑖𝑜𝑟  

𝑷0
𝑚 = 𝑷𝑝𝑟𝑖𝑜𝑟  

Main loop: 𝑓𝑜𝑟 𝑘 = 1: 𝑁𝑈𝐾𝐹  (number of iterations of the UKF) 

Prediction step: 

(𝜒𝑘−1)𝑖 

(𝜒𝑘|𝑘−1)
𝑖

= (𝜒𝑘−1)𝑖 

�̂�𝑘|𝑘−1 = ∑ 𝑊𝑖 · (𝜒𝑘|𝑘−1)
𝑖

2𝑛

0

 

𝑷𝑘|𝑘−1
𝜃 = ∑ (𝑊𝑖 [(𝜒𝑘|𝑘−1)

𝑖
− �̂�𝑘|𝑘−1] · [(𝜒𝑘|𝑘−1)

𝑖
− �̂�𝑘|𝑘−1]

𝑇
)

2𝑛

0

+ 𝑸 

(𝓏𝑘|𝑘−1)
𝑖

= 𝒉 ((𝜒𝑘|𝑘−1)
𝑖
) 

�̂�𝑘|𝑘−1 = ∑ 𝑊𝑖 · (𝓏𝑘|𝑘−1)
𝑖

2𝑛

0

 

𝑷𝑘|𝑘−1
𝑧 = ∑ (𝑊𝑖 [(𝓏𝑘|𝑘−1)

𝑖
− �̂�𝑘|𝑘−1] · [(𝓏𝑘|𝑘−1)

𝑖
− �̂�𝑘|𝑘−1]

𝑇
)

2𝑛

0

+ 𝑹 

𝑷𝑘|𝑘−1
𝜃𝑧 = ∑ (𝑊𝑖 [(𝜒𝑘|𝑘−1)

𝑖
− �̂�𝑘|𝑘−1] · [(𝓏𝑘|𝑘−1)

𝑖
− �̂�𝑘|𝑘−1]

𝑇
)

2𝑛

0

 

Correction (update) step: 
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𝑲𝑘 = 𝑷𝑘|𝑘−1
𝜃𝑧 (𝑷𝑘|𝑘−1

𝑧 )
−1

 

�̂�𝒌 = �̂�𝑘|𝑘−1 + 𝑲𝑘(𝒛𝑜𝑏𝑠 − �̂�𝑘|𝑘−1) 

𝑷𝑘
𝑚 = 𝑷𝑘|𝑘−1

𝑚 − 𝑲𝑘𝑷𝑘|𝑘−1
𝑧 𝑲𝑘

𝑇  

𝑒𝑛𝑑 

 

4. Model updating of a real historical 
construction 

As benchmark structure, the domes of the chapel 
integrated in the Würzburg Residence (Germany) 
is considered. The domes are masonry surfaces of 
bricks grown in a single lawyer. The bricks are 30 
cm thick, and at the base of the dome, they are 
reinforced by increasing the thickness until 45 cm. 
The reinforcement is also presented in the radial 
ribs reaching a section of 45x45 cm. In the 
construction process of the domes, the nerves are 
built alongside the rest of the sheet. 

a)   

b)   

Figure 1. a) Interior of the chapel and b) exterior of 
the dome of the chapel of the Würzburg Residence 

4.1 Preliminary Numerical Model 

The preliminary FE model was built using the 
Ansys software [9]. The structural model of the 

dome was defined by considering 3D shell 
elements (SHELL63) which have 4 nodes per 
element. The effect of the lateral walls of the 
chapel on the dome was established, in a 
simplified manner, by means of two 1D spring 
elements (COMBIN14) whose stiffness represents 
the bending rigidity of the wall in the direction 
under consideration. The following mechanical 
properties of the material have been considered: 
Young’s modulus, E (GPa) = 2; Poisson’s ratio, 𝜈 = 
0.2; density, 𝜌 (kg/m3) = 1700 and horizontal 
stiffness of the walls, 𝑘ℎ = 1000 kN/m. The latter 
was determined by considering that these 
elements were made with the same material than 
the rest and assimilating their behaviour to a 
cantilever. To adequately model the behaviour of 
the walls, four different zones were assumed (a 
wall for each lateral dome and two walls for the 
main dome) (see Figure 2). The numerical modal 
analysis led to the three natural frequencies 
shown in Table 1. 

 

Figure 2. FE model of the dome of the chapel 

4.2 Ambient Vibration Test and 
Operational Modal Analysis 

An ambient vibration test was performed in order 
to experimentally identify the modal parameters 
of the structure. To this effect, the accelerations 



IABSE Symposium 2019 Guimarães: Towards a Resilient Built Environment - Risk and Asset Management 
March 27-29, 2019, Guimarães, Portugal 

6 

were recorded during 10 minutes by eight uniaxial 
accelerometers at 51 instrumented points. The 
signals were processed using the time domain SSI 
algorithm [10], implemented in the software 
ARTeMIS Modal [11]. This whole procedure has 
been detailed in [12]. The three identified natural 
frequencies are shown in Table 1. Besides, the 
relative difference between the numerical and 
experimental natural frequencies and the MAC 
are calculated for each vibration mode. 

Table 1. Numerical and experimental natural 
frequencies 

Vibration 
Mode 

𝒇𝒏𝒖𝒎 
[Hz] 

𝒇𝒆𝒙𝒑 

[Hz] 
𝚫𝒇 
[%] 

MAC 

1  
(lateral) 

3.362 2.764 21.635 0.809 

2  
(longitudinal) 

3.431 3.231 6.190 0.877 

3  
(lateral) 

3.988 4.015 -0.672 0.648 

 
From the results in Table 1, it can be noticed that 
despite the use of a very detailed FE model, the 
natural and experimental mode shapes are not in 
good agreement as the errors between them are 
high. A FE model updating process must be 
conducted to guarantee that the numerical model 
represents more accurately the actual behaviour 
of the dome. 

4.3 Finite Element Model Updating 

This process was implemented in the software 
programme MATLAB [13]. As global optimization 
algorithm, the MGA was used. This study focuses 
on the comparison of the two previous described 
techniques to find the global minimum of the 
objective functions: (i), the maximum likelihood 
method (MLM) based on MGA and; (ii), the hybrid 
UKF-MGA algorithm. 

The parameters selected for the model updating 
process are the same for both problems. A 
sensitivity study was performed to select the 
physical parameters that influence more the 
dynamic behaviour. This influence was taken into 
account on the basis of the modal strain energy. 
The seven parameters chosen were the 
followings: the Young’s modulus of the dome, the 
Young’s modulus of the ribs, the Young’s modulus 

of the starting wall, the longitudinal stiffness of 
the walls 1 and 4, the lateral stiffness of the walls 
2 and 3, the lateral stiffness of the walls 1 and 4 
and the longitudinal stiffness of the walls 2 and 3. 
The search range of the parameters were: (i) for 
the Young’s moduli, [1–4] GPa and; (ii) for the 
stiffness, [200-2200] kN/m. 

The objective functions were defined as expressed 
in Equations (4) and (5). 

4.3.1 MLM-MGA method 

The value of the updated parameters is shown in 
Table 2. 

Table 2. Updated physical parameters (MLM-
MGA) 

Parameter 
Updated 

value 

𝑬 dome [Pa] 1.164E+9 

𝑬 ribs[Pa] 1.468E+9 

𝑬 starting wall [Pa] 1.319E+9 

𝒌𝒙 walls 1 and 4 [N/m] 7.531E+5 

𝒌𝒚 walls 2 and 3 [N/m] 3.941E+5 

𝒌𝒚 walls 1 and 4 [N/m] 1.729E+6 

𝒌𝒙 walls 2 and 3 [N/m] 9.793E+5 

 
The modal analysis of the updated FE model led to 
the three natural frequencies given in Table 3. The 
improvement of the relative differences between 
natural frequencies (except the third vibration 
mode) and the increase of MAC ratios exhibit the 
good performance of the updating procedure. 

Table 3. Natural frequencies of the updated FE 
model (MLM-MGA) 

Vibration 
Mode 

𝒇𝒏𝒖𝒎,𝒖𝒑 

[Hz] 

𝒇𝒆𝒙𝒑 

[Hz] 
𝚫𝒇 
[%] 

MAC 

1 2.725 2.764 -1.411 0.861 

2 3.237 3.231 -0.186 0.921 

3 4.188 4.015 4.299 0.728 
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4.3.2 Hybrid UKF-MGA algorithm 

In the implementation of the UKF-MGA the 
following parameters were chosen [14]: initial 
estimation error covariance, 𝑷0

𝑚 =

𝑑𝑖𝑎𝑔 ((
𝑢𝑏−𝑙𝑏

100
)

2
); covariance matrix of process 

noise, 𝑸 = 0.005𝑷0; the covariance matrix of 
measurements noise is taken from the OMA, 𝑹 =
0.001 · 𝐈(𝑟, 𝑟), with 𝐈(𝑟, 𝑟) the identity matrix 
having dimensions equal to the size of the 
measurements data, 𝑟 and 𝜆 = 0.0001. The 

measurements vector, 𝒛𝑜𝑏𝑠, was defined taking 
into account both the experimental natural 
frequencies and the mode shapes. The latter was 
implemented in terms of the MAC, considering 
the unit for the three vibration modes. In this 

manner, the difference 𝒛𝑜𝑏𝑠 − �̂� represent the 
error between observed and numerical modal 
parameters. The updating process gave as a result 
the model parameters presented in Table 4. 

Table 4. Updated physical parameters (UKF-MGA) 

Parameter 
Updated 

value 

𝑬 dome [Pa] 2.848E+9 

𝑬 ribs[Pa] 3.424E+9 

𝑬 starting wall [Pa] 2.778E+9 

𝒌𝒙 walls 1 and 4 [N/m] 6.418E+5 

𝒌𝒚 walls 2 and 3 [N/m] 2.371E+5 

𝒌𝒚 walls 1 and 4 [N/m] 1.862E+6 

𝒌𝒙 walls 2 and 3 [N/m] 9.728E+5 

 
The natural frequencies obtained after this 
optimization are shown in Table 5. This algorithm 
also conducts to a good adjustment of the 
numerical and experimental modal parameters. 

Table 5. Natural frequencies of the updated FE 
model (UKF-MGA) 

Vibration 
Mode 

𝒇𝒏𝒖𝒎,𝒖𝒑 

[Hz] 

𝒇𝒆𝒙𝒑 

[Hz] 
𝚫𝒇 
[%] 

MAC 

1 2.741 2.764 -0.832 0.859 

2 3.207 3.231 -0.743 0.928 

3 4.423 4.015 10.161 0.695 

4.4 Discussion of the results 

A discussion of the performance of both 
algorithms, GA and GA-UKF, is presented. The 
comparison is developed in terms of two key 
criteria: regarding the relative differences 
between numerical and experimental natural 
frequencies and MAC ratios and with respect to 
the number of iterations and computation time. 

First, from Table 3 and Table 5, it can be observed 
that the relative differences, Δ𝑓, are smaller for 
the MLM-GA (except the first vibration mode). In 
addition, the MAC ratios are larger for this 
algorithm (except for the second vibration mode). 

Second, the number of iterations and the 
computational cost is compared (see Table 6). The 
algorithms were run in a 3.60 GHz processor with 
a 29.3 RAM. For the MLM-GA, the number of 
iterations of the multi-objective genetic algorithm 
was established in 100 and a population of 200 
solutions (vector of possible parameters) was 
considered. The time to complete the procedure 
was around 47000 seconds. However, for the UKF-
MGA, the number of iterations of the multi-
objective genetic algorithm was set to 20, the 
initial population was made up of 10 vectors and 5 
iterations of the unscented Kalman filter were 
considered. The reduced number of iterations and 
population of the genetic algorithm is due to the 
multiple (2𝑛 + 1, being 𝑛 the number of 
parameters) evaluations of the objective functions 
for each iteration of the UKF. The duration of the 
UKF-MGA is around 16000 seconds. This is 34% 
less than the time of the GA. 

Based on the two criteria, the UKF-MGA 
represents a useful tool to perform a model 
updating process, as the computational cost is 
considerably reduced and the results, although 
worst, are similar to those obtained with the 
MLM-MGA. 

Table 6. Comparison of the MLM-MGA and UKF-
MGA algorithms 

 𝑵 (MGA) Pop. 𝑵 (UKF) Time [s] 

MLM-MGA 100 200 - 47710 

UKF-MGA 20 10 5 16068 
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5. Conclusions 

The usual way of conducting a FE model updating 
is to carry out an optimization process. To this 
effect, optimization algorithms are used, being the 
evolutive algorithms, such as the GA, the most 
common. The high computational cost of the GA 
has guided to authors to employ alternative 
techniques. A multi-objective GA hybridized with 
UKF algorithm is proposed in this study. In order 
to analyse the performance of both algorithms, a 
comparative study has been carried out. It has 
been elaborated via the FE model updating of a 
real chapel, placed in Würzburg (Germany). The 
results of the comparison have shown that UKF-
MGA is able to obtain similar results to those of 
the MLM-MGA. Moreover, the UKF-MGA lasted 
around 16000 seconds while the MLM-MGA 
completed the process in around 47000 seconds. 
The hybridized tool used in this study can be 
considered as an efficient technique to conduct a 
FE model updating to obtain a more accurate 
numerical model of the real structure. 
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