Este archivo ha sido creado el 10-1-2024 por Mª Carmen Alfaro Rodríguez GENERAL INFORMATION ------------------ 1. Dataset title: Dataset utilizados para la preparación del artículo Relation between HLB number and predominant destabilization process for microfluidized nanoemulsions formulated with lemon essential oil 2. Authorship: Name:Jenifer Santos Institution: Universidad Loyola Andalucía Email:jsgarcia@uloyola.es ORCID: Name:Mª Carmen Alfaro Institution: Universidad de Sevilla Email:alfaro@us.es ORCID:0000-0002-0110-2290 Name:Lili Vega Institution: Universidad de Sevilla Email:lilivegab2@gmail.com ORCID: Name:José Muñoz Institution: Universidad de Sevilla Email:jmunoz@us.es ORCID:0000-0002-1709-722X DESCRIPTION ---------- 1. Dataset language: Inglés 2. Abstract: Lemon essential oil (LEO) is associated with a multitude of health benefits due to its anticancer, antioxidant, antiviral, anti-inflammatory and bactericidal properties. Its drawback is that it is very sensitive to oxidation by heat. For this reason, researchers are increasingly investigating the use of LEO in nanoemulsions. In this work, we used laser diffraction, rheology and multiple light scattering techniques to study the effects of different HLB numbers (indicating different mixtures of Tween 80 and Span 20) on the physical stability of nanoemulsions formulated with LEO. We found that different HLB numbers induced different destabilization mechanisms in these emulsions. An HLB number lower than 12 resulted in an Ostwald ripening effect; an HLB number higher than 12 resulted in coalescence. In addition, all the developed nanoemulsions exhibited Newtonian behavior, which could favor the mechanism of creaming. All emulsions exhibited not only a growth in droplet size, but also a creaming with aging time. These findings highlight the importance of selecting the right surfactant to stabilize nanoemulsions, with potential applications in the food industry 3. Keywords: Microfluidización; aceite esencial de limón; número HLB; emulsiones alimentarias Microfluidization; lemon essential oil; HLB number; food emulsions 4. Date of data collection (fecha única o rango de fechas):18-1-2022 hasta 17-03-2022 5. Publication Date: [ Obligatorio si es aplicable. Fecha de depósito en el repositorio | Formato DD-MM-YYYY] 6. Grant information: Grant Agency:FEDER/Consejería de Transformación Económica, Industria, Conocimiento, y Universidades de la Junta de Andalucía (Programa Operativo FEDER 2014-2020) Grant Number: Proyecto US-1380760 ACCESS INFORMATION ------------------------ 1. Creative Commons License of the dataset: CC BY-NC-ND 2. Dataset DOI: https://doi.org/10.12795/11441/153620 [ Obligatorio] 3. Related publication: Santos, J., Alfaro-Rodríguez, M. C., Vega, L., & Muñoz, J. (2023). Relationship between HLB Number and Predominant Destabilization Process in Microfluidized Nanoemulsions Formulated with Lemon Essential Oil. Applied Sciences,13(8), 5208.. Doi.org/10.3390/app13085208 VERSIONING AND PROVENANCE --------------- 1. Last modification date: [Recomendable si es aplicable | Formato DD-MM-YYYY] 2. Were data derived from another source?: No METHODOLOGICAL INFORMATION ----------------------- [Descripción de la metodología empleada para generar el conjunto de datos.] [No copie y pegue el texto de la sección de metodología de un documento que está pendiente de publicación, a no ser que te conste que está permitido: algunas editoriales podrían considerarlo como una publicación previa y no aceptar su manuscrito.] [Si ha de hacer referencia a un artículo no publicado, proporcione la máxima información de que dispone.] [Incluya el DOI en las referencias.] 1. Description of the methods used to collect and generate the data: 2.1. Materials Span 20 (Sorbitan laurate; density: 1.032 g/mL), which is a 100% bio-based non-ionic surfactant, and Tween 80 (Polyethylene glycol sorbitan monooleate; density: 1.07–1.09 g/mL) were used as emulsifiers. These were supplied by Sigma Aldrich. Pure lemon essential oil was purchased from Bidah Chaumel. Every material was used as received. 2.2. Methods 2.2.1. Development of Nanoemulsions The formulation used was 0.5 wt.% of emulsifier(s), 5 wt.% of lemon essential oil, and deionized water. Different ratios of Tween 80/Span 20 were studied, with resulting HLB numbers of 11, 12, 13, 14 and 15. The HLB number was calculated as follows: HLB = 15 XTween80 + 8.6 (1 − XTween80) where XTween80 is the mole fraction of Tween 80. The coarse emulsion (250 g) was prepared as follows: Firstly, the emulsifiers Tween 80 (HLB 15) and Span 20 (HLB 8.6) were added to the deionized water. Next, the lemon essential oil was added to the aqueous phase using an Ultraturrax T-50 homogenizer at 2000 rpm for 40 s. Finally, the sample was homogenized using the same rotor–stator homogenizer (Ultraturrax T-50) at 4000 rpm for 90 s. Subsequently, the droplets formed were reduced using a microfluidization device (Microfluidizer M110P, Microfluidics, Westwood, MA, USA) at 25000 psi with a Y + Z configuration. The scheme of microfluidization was previously reported by Jafari, 2019 [15]. The Y + Z configuration consists of an interaction chamber F12Y (diameter: 75 µm) and an interaction chamber H30Z (diameter: 200 µm). Finally, the samples were kept under temperature-controlled equipment at 25 ◦C. 2.2.2. Laser Diffraction Results For the nanoemulsions containing lemon essential oil, a Malvern Mastersizer 2000 (Malvern, Worcestershire, UK) was used to characterize droplet size distribution and growth in droplet size with aging time. The limit of detection was 200 nm and the refraction index used for the lemon essential oil was 1.473. The Sauter mean diameter (D3,2) was used to characterize the nanoemulsions. The samples were diluted before the measurements. 2.2.3. Rheology All the samples were equilibrated in the selected measurement geometry for 5 min. There was no pre-stirring prior to testing. Flow curves were carried out using a Haake MARS II rheometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a sandblasted coaxial cylinder Z-20 (sample volume: 8.2 mL, Re/Ri = 1.085, Ri = 1 cm) to avoid slip effects. Flow curves were generated using a shear rate-controlled protocol from 0.05 to 150 s−1, with a maximum of 3 min per point. The temperature was fixed at 20 ◦C ± 0.1 ◦C using a Thermo Haake Phoenix C25P temperature controller. All measurements were taken on the same day that the emulsion was prepared, and all were carried out in duplicate. 2.2.4. Multiple Light Scattering The physical stability of the nanoemulsions was analyzed using the multiple light scattering technique (Turbiscan Lab Expert, Formulaction, Toulouse, France). The backscattering (BS) of the samples as a function of the height of the measuring cell was measured for one week at 25 ◦C. The influence of aging time on the BS is related to the kinetics of different destabilization processes such as creaming, flocculation, Ostwald ripening and coalescence. The Turbiscan Stability Index (TSI) is a parameter that is used to characterize and compare systems with different physical stabilities. TSI is a way to quantify the global destabilization process considering creaming, sedimentation and droplet size growth. 2.2.5. Statistical Analysis The results obtained by laser diffraction measurements and rheological tests were analyzed by means of a one-way analysis of variance (ANOVA) using Microsoft Excel. Every sample was measured in triplicate for the laser diffraction technique, and in duplicate for the rheological tests. All statistical calculations were carried out at a significance level of p =0.05. 2. Data processing methods: [Recomendado | Describir cómo se ha generado el conjunto de datos publicado a partir de los datos primarios recogidos.] Los datos originales obtenidos de los diferentes ensayos en los distintos equipos antes indicados se han exportado al programa Origin 8.0, se ha hecho el análisis estadístico y se han representado gráficamente los valores medios y sus desviaciones estándar. 3. Software or instruments needed to interpret the data: Microsoft Office 4. Information about instruments, calibration and standards: 5. Environmental or experimental conditions: Temperatura =20ºC 6. Quality-assurance procedures performed on the data: [Opcional] FILE OVERVIEW ---------------------- [Se han de mencionar todos los archivos incluidos en el conjunto de datos, con el nombre y la extensión (.csv, .pdf, etc.) de cada archivo. Incluya la estructura de directorios]. 1. Explain the file naming conversion, si es aplicable: Dataset of the manuscript published in Applied Science in 2023 whose doi is: doi.org/10.3390/app13085208 2. File list: [Obligatorio | Repita el esquema para cada archivo.] File name:DatasetApplied Science_HLB-2023.docx Description: The following results are shown: a) Droplet size distributions for emulsions formulated with 5 wt% lemon oil as a function of surfactants mixture HLBsthe particle size distributions (mean and standard deviation) of emulgels and emulsions with a pectin/CaCl2 ratio of 0.3 and 0.7 at 1 day of aging, b) Flow behavior of emulsions formulated with lemon oil as a function of surfactants mixture HLBs.d)Droplet size distributions for emulsions with HLB (a) 11, (b) 12, (c) 13, (d) 14 and (e) 15 as a function of aging time, d)Variation of BS with aging time as a function of height of the measuring cell for the nanoemulsion of HLB 11 e) Variation of TSI with aging time as a function of HLB number for emulsions formulated with lemon essential oil 3. Relationship between files: [ Obligatorio si es aplicable | Relación entre los archivos] 4. File format: .docx 5. If the dataset includes multiple files, specify the directory structure and relationships between the files: [ Obligatorio si es aplicable | Si el conjunto de datos incluye varios archivos, indique la estructura de directorios y las relaciones entre los archivos] SPECIFIC INFORMATION FOR TABULAR DATA ------------------------------------------- [Este apartado se debe repetir para cada archivo de datos que requiera la explicación de variables (habitualmente datos tabulados). Se describirán todas las variables, incluyendo las unidades de medida.] 1. Name file: [Opcional | Nombre del archivo] 2. Number of rows and columns: [Opcional |Número de filas y columnas] 3. Variables list: [Opcional | Repita la estructura para cada variable.] Variable name: Description: Units of measure or value labels | Unidades de medida o etiquetas de valor: 4. Codes or symbols for missing data: [Opcional | Repita la estructura para cada código o símbolo que faltan] Code or symbol:D Definition:particle diameter Code or symbol:Mean% Definition: mean of the %Volume Code or symbol:DBS% Definition:particle delta-backscattering Code or symbol:SD Definition:standard deviation Code or symbol:HLB Definition:hydrophilic-lipophilic balance Code or symbol:tau Definition:shear stress Code or symbol:mean ganma point(s-1) Definition:mean shear rate at 1 s-1 Code or symbol:TSI Definition:turbiscan stability index 5. Special formats or abbreviations used: [Opcional |Formatos especiales o abreviaturas utilizadas] MORE INFORMATION -------------- [Include any other information about the dataset that is not reflected in this template and that you consider relevant. Incluya cualquier otra información sobre el conjunto de datos que no haya quedado reflejada en esta plantilla y que considere relevante]