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Abstract

A method for measuring positional power in hierarchies is proposed. Inspired by models of cooper-
ative TU-games with restricted cooperation, such as permission structures, we model hierarchies by
means of a certain kind of set games, which we have called authorization operators. We then define
and characterize a value for authorization operators that allows us to quantify the power of each
agent. This power is decomposed into two terms: sovereignty and influence. Sovereignty describes
the autonomy of an agent. Influence indicates their capacity to block the actions of others.

Keywords: hierarchy, permission structure, cooperative game, Shapley-Shubik index,
power measure.

1. Introduction

Numerous studies have been carried out on positional power in relational structures.

Several of these studies are based on cooperative game theory. For instance, Molinero et al.

[9] used the Shapley-Shubik and Banzhaf indices to measure power in social networks. In this

paper, concepts of cooperative game theory will be employed to define a measure of power in

hierarchies. Our starting point is the model for games with restricted cooperation introduced

by Gilles et al. [6]. They introduced the concept of permission structure, which is a mapping

that assigns to each agent a subset of direct subordinates. We aim to quantify the positional

power of each agent in a permission structure. Since a permission structure is given by a

digraph, the use of a measure of power in digraphs, such as that introduced by Herings et al.

[7], could be contemplated. However, this measure would be unsuitable because, depending

on the interpretation of the superior-subordinate relationship, a permission structure can

represent different hierarchies. For instance, in the conjunctive approach, introduced by

Gilles et al. [6] and generalized by Gallardo et al. [5], it is assumed that all agents need

permission from all their superiors, whereas in the disjunctive approach, van den Brink

[2] assumes that all agents need permission from just one of their predecessors. Other

interpretations could also be considered. For instance, it could be assumed that all agents

Email address: ajlosada@us.es (J.M. Gallardo, N. Jiménez and A. Jiménez-Losada)
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need permission from the majority of their predecessors. It can therefore be concluded that

the same digraph can represent different hierarchical structures. That is, a digraph does not

fully describe a hierarchy. It was hence decided to model hierarchies by means of another

mathematical structure. To this end, we took into consideration that Gilles, Owen and

van den Brink defined a set function that assigns to each coalition the set of players that

are allowed to cooperate within that coalition. In fact, this set function fully describes the

hierarchical structure. Bearing this in mind, we decided to model hierarchies by using a

certain kind of set functions, called authorization operators, which are the crisp version of

the fuzzy authorization operators introduced by Gallardo et al. [4]. Our next goal was

to define a value for authorization operators. This value should hold information on the

positional power in the structure. Since set functions are being dealt with here, the theory

of set games introduced by Hoede [8] could be applied. A set game assigns to each coalition

a subset of a set U . In our case, U is the same set of agents. A value for set games assigns to

each player a subset of U . Aarts et al. [1] introduced a value for set games, which, within our

framework, assigns, to each agent, the set of agents that depend on this agent. However, this

value is not sensitive enough to distinguish how strongly an agent depends on another agent.

In order to quantify positional power, it was therefore necessary to take a different approach.

This led us to define a value for authorization structures as a correspondence that assigns, to

each authorization structure, a mapping from the set of agents to the set of fuzzy coalitions.

In this paper, a particular value for authorization structures is defined. It is shown that

this value can be used to analyze positional power in any hierarchical structure. Moreover,

this value allows us to evaluate the dependency relationships in these structures. This is

used to introduce the concepts of sovereignty and influence, which are the two components

of positional power.

The paper is organized as follows. In Section 2, several basic definitions and results

concerning cooperative games, permission structures and set games are recalled. In Section

3, authorization structures, the concept of value for authorization structures and a partic-

ular value called the Shapley authorization correspondence are introduced. The indices of

sovereignty and influence are also defined. In Section 4, the Shapley authorization corre-

spondence and the indices of sovereignty and influence are characterized. In Section 5, some

examples are provided. Finally, in Section 6, we draw conclusions and consider certain ideas

for future research.
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2. Preliminaries

2.1. Cooperative TU-games

A transferable utility cooperative game or TU-game is a pair (N, v) where N is a set of

cardinality n ∈ N and v : 2N → R is a function with v (∅) = 0. The elements of N are

called players, the subsets E ⊆ N are called coalitions and v (E) is the worth of E. For each

coalition E, the worth of E can be interpreted as the maximal gain or minimal cost that

players in this coalition can achieve by themselves. Often, a TU-game (N, v) is identified

with the function v. The family of all the games with set of players N is denoted by GN .

This set is a (2n− 1)-dimensional real vector space. A game v ∈ GN is said to be monotonic

if v(E) 6 v(F ) for every E ⊆ F ⊆ N . And v is superadditive if v(E) + v(F ) 6 v(E ∪F ) for

every E,F ⊆ N with E ∩ F = ∅.

A payoff vector for a game on the set of players N is a vector x ∈ RN . A value on GN is

a function ψ : GN −→ RN that assigns a payoff vector to each game. Numerous values have

been defined for several families of games in the literature. The Shapley value, introduced

in [10], is the most important of these values. The Shapley value Sh (v) ∈ RN of a game

v ∈ GN is a weighted average of the marginal contributions of each player to the coalitions.

It is defined as

Shi (v) =
∑

{E⊆N : i∈E}
pE (v (E)− v (E \ {i})) , for all i ∈ N, (1)

where pE =
(n− |E|)! (|E| − 1)!

n!
, for every E ⊆ N .

In this paper, cooperative games that only take the values 0 and 1 are often used: these

are called {0, 1}-games. A {0, 1}-game v ∈ GN is said to be a simple game if v(N) = 1 and

satisfies monotonicity. Shapley et al. [11] considered the Shapley value restricted to simple

games, which is called the Shapley-Shubik index. Dubey [3] proved that the Shapley-Shubik

index restricted to superadditive simple games is characterized by the following properties:

ANONYMITY. If v ∈ GN is a superadditive simple game, π is a permutation of N and i ∈ N ,

then φi(πv) = φπ(i)(v), where πv(E) = v(π(E)) for every E ⊆ N .

NULL PLAYER. If v ∈ GN is a superadditive simple game and i is a null player in v (i.e.,

v(E ∪ {i}) = v(E) for all E ⊆ N), then φi(v) = 0.

TRANSFER. If v, w ∈ GN are superadditive simple games, then φ(v)+φ(w) = φ(v∨w)+φ(v∧w),

where (v ∨ w)(E) = max(v(E), w(E)) and (v ∧ w)(E) = min(v(E), w(E)) for every E ⊆ N .

EFFICIENCY. If v ∈ GN is a superadditive simple game, then
∑
i∈N φi(v) = 1.
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2.2. Permission structures

A permission structure on a finite set of players N is a mapping S : N → 2N . Given

i ∈ N , the players in S(i) are called successors of i in S. The transitive closure of S is

denoted by Ŝ, that is, j ∈ Ŝ(i) if and only if there exists a sequence {ip}qp=0 such that i0 = i,

iq = j and ip ∈ S (ip−1) for all 1 ≤ p ≤ q. The set of predecessors of i in S is denoted by

PS (i) = {j ∈ N : i ∈ S(j)}. The set of superiors of i in S is P̂S (i) =
¶
j ∈ N : i ∈ Ŝ(j)

©
.

The collection of all permission structures on N is denoted by SN . A permission structure

on N can be identified with a directed graph whose vertex set is N and whose edge set is

{(i, j) ∈ N2 : j ∈ S (i)}.
A game with permission structure over N is a pair (v, S) where v ∈ GN and S ∈ SN .

Numerous assumptions can be made about how a permission structure affects the possibilities

of cooperation in a TU-game. Gilles et al. [6] considered the conjunctive approach, in which

it is assumed that all players need the permission from all their superiors (if they have any)

in the permission structure. The conjunctive sovereign part of a coalition E, denoted by

ASC(E), contains those players that are allowed to cooperate within coalition E if we assume

the conjunctive approach:

ASC (E) =
¶
i ∈ E : P̂S (i) ⊆ E

©
.

Van den Brink [2] considered the disjunctive approach, in which it is assumed that players

only need the permission from one of their predecessors (if they have any), as long as that

predecessor also has permission to cooperate (note that in both the conjunctive and the

disjunctive approach the authors assume transitivity in the dependence relationships). The

disjunctive sovereign part of a coalition E, denoted by ASD(E), contains all the players that

are allowed to cooperate within coalition E if the disjunctive approach is assumed:

ASD(E) = {i ∈ E : there exist i0, . . . , im ∈ E with i = i0,

PS(im) = ∅ and ik−1 ∈ S(ik) for all k = 1, . . . ,m} .

2.3. Set games

A set game is a triple (N, v,U) where U is a set, called universe, N is a finite set of players

and v is a mapping from 2N into 2U satisfying v(∅) = ∅. The worth v(S) of a coalition S ⊆ N

can be interpreted as the set of items that can be obtained by coalition S if its members

cooperate. A value for set games is a mapping from the collection of all set games intoÄ
2U
äN

. Aarts et al. [1] introduced a value for monotonic set games that can be considered
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as the analogue of the Shapley value for TU-games. It is defined as

ϕi(v) =
⋃

{E⊆N : i∈E}
(v(E) \ v(E \ {i})) , for all i ∈ N.

Note that this value assigns each element of the universe to every player that holds some

control over it.

3. Proposed methodology

We aim to introduce structures that model situations in which there are dependency

relationships among the agents. A value and several indices for those structures will be

defined.

Throughout this and the following section, N denotes a fixed set of cardinality n ∈ N.

The elements of N are called agents.

Whatever approach is assumed when dealing with a permission structure, the dependency

relationships are determined by the set function that assigns to each coalition the set of agents

that are allowed to cooperate within that coalition. By taking this into consideration, we

introduce a kind of set function which can model situations in which certain agents need the

authorization of others.

Definition 1. An authorization operator on N is a mapping A : 2N → 2N that satisfies the

following conditions:

1. A(E) ⊆ E for any E ⊆ N,

2. If E ⊂ F then A(E) ⊆ A(F ).

The pair (N,A) is called an authorization structure. The set of all authorization operators

on N is denoted by AN .

If A ∈ AN and E ⊆ N , then A(E) can be interpreted as the set of agents that are allowed

to act within coalition E. With this in mind, the two conditions considered in the definition

of an authorization operator seem to be reasonable.

Given A,B ∈ AN , then A∪B,A∩B ∈ AN can be defined in the following natural way:

(A ∪B)(E) = A(E) ∪B(E),

(A ∩B)(E) = A(E) ∩B(E),

for every E ⊆ N .

We aim to define a value for authorization structures. Notice that an authorization oper-

ator is specifically a monotonic set game. The value ϕ for monotonic set games, introduced
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by Aarts et al. [1], could therefore be considered. However, this value is not practical for

our purposes, as explained below.

Given A an authorization structure on N , ϕ(A) assigns, to each agent i ∈ N , the set ϕi(A)

of agents that need authorization from i to act within, at least, one coalition. Therefore, ϕ(A)

indicates whether an agent depends on another agent, but it fails to describe the strength of

the dependency relationships. This can be illustrated with the following example. Consider

the authorization operators B,C ∈ A{1,2,3} defined by

B(E) =

 E \ {1}, if E 6= {1, 2, 3},
{1, 2, 3}, if E = {1, 2, 3},

and C(E) =

 ∅, if E = {1},
E, if E 6= {1},

for every E ⊆ {1, 2, 3}. It is clear that agent 1 depends on agent 2 more strongly in

({1, 2, 3}, B) than in ({1, 2, 3}, C). However, it is verified that ϕ(B) = ϕ(C).

Since the quantification of positional power is required, a more sensitive value needs to

be defined. To this end, we propose to consider values that assign, to each authorization

operator A on N and each agent i ∈ N , a fuzzy subset of N . The levels of this fuzzy subset

are aimed to indicate how strongly each agent depends on i in (N,A). This leads to the

following definition.

Definition 2. A value for authorization structures is a mapping Ψ : AN →
Ä
[0, 1]N

äN
.

We proceed with the definition of a particular value for authorization structures. Suppose

A ∈ AN . For each j ∈ N , we can consider

Aj : 2N → {0, 1}
E → Aj(E) = |A(E) ∩ {j}| .

Notice that Aj is a superadditive {0, 1}-game. In order to evaluate how strongly agent j

depends on each agent in N , the Shapley value of the game Aj is calculated. The following

value for authorization structures can now be defined.

Definition 3. The Shapley authorization correspondence assigns, to each authorization op-

erator A ∈ AN , the mapping Φ(A) ∈
Ä
[0, 1]N

äN
defined as

Φi(A) = (Shi(Aj))j∈N , for every i ∈ N,

where Sh denotes the Shapley value.

Note that the number Φij(A) is greater than zero if and only if there exists a coalition E ⊆ N

such that j ∈ A(E) \ A(E \ {i}), that is, if j needs to be authorized by i within, at least,
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one coalition. In fact, by taking into account the meaning of the Shapley value, the number

Φij(A) indicates how strongly agent j depends on i in (N,A). This leads to the following

definitions.

Definition 4. Let A ∈ AN and i, j ∈ N with i 6= j. The number Φij(A) is called the

influence of i over j in (N,A).

Definition 5. Let A ∈ AN and i ∈ N . The sum of the influence of i over each of the

remaining agents is called the influence index of i in (N,A) and is denoted by infli(A), that

is,

infli(A) =
∑

j∈N\{i}
Φij(A).

Definition 6. Let A ∈ AN and i ∈ N . The number Φii(A) is called the sovereignty index

of i in (N,A) and is denoted by sovi(A).

Definition 7. Let A ∈ AN and i ∈ N . The addition of the influence and sovereignty indices

of i is called the power index of i in (N,A) and is denoted by powi(A), that is,

powi(A) = sovi(A) + infli(A).

4. Results

The value and the indices introduced in the previous section will now be characterized.

4.1. A characterization of the Shapley authorization correspondence

We aim to give a characterization of the Shapley authorization correspondence, but first

two concepts need to be introduced.

Definition 8. Let A ∈ AN and i, j ∈ N . Agent j has veto power over agent i in (N,A) if

i ∈ A(N) \ A(N \ {j}). Let us denote

Vi(A) = {j ∈ N : j has veto power over i in (N,A)} .

Definition 9. Let A ∈ AN and i, j ∈ N . Agent i depends partially on agent j in (N,A) if

there exists E ⊆ N such that i ∈ A(E) \ A(E \ {j}). Let us denote

Pi(A) = {j ∈ N : i depends partially on j in (N,A)} .

In order to characterize the Shapley authorization correspondence, the properties stated

below are considered. In the statement of these properties Ψ : AN →
Ä
[0, 1]N

äN
is a value

for authorization structures.
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The first property states that for each agent i that is allowed to act when coalition N is

formed, there is a unit of positional power to be distributed among all the agents.

Efficiency. If A ∈ AN , then ∑
k∈N

Ψk(A) = 1A(N)

where 1A(N) denotes the indicator vector of A(N), that is,Ä
1A(N)

ä
j

=

 1, if j ∈ A(N),

0, if j ∈ N \ A(N).

The following property states that if an agent j does not depend partially on an agent i,

then i receives no positional power from j.

Zero dependence. If A ∈ AN , then Ψij(A) = 0 for every i ∈ N \ Pj(A).

Suppose that we have an authorization structure on N , T ⊆ N and i ∈ T such that

coalition T cannot authorize agent i. Assume now that coalition T acquires the power to

authorize agent i. In this case, it is reasonable to presume that all the agents in T benefit

equally from that change. This is what the fairness property states.

Fairness. Let A ∈ AN , T ∈ 2N \ {∅} and i ∈ T . Consider AT,i ∈ AN defined by

AT,i : 2N → 2N

E → AT,i(E) =

 A(E), if T * E,

A(E) ∪ {i}, if T ⊆ E.

Then,

Ψji

Ä
AT,i

ä
−Ψji(A) = Ψki

Ä
AT,i

ä
−Ψki(A), for all j, k ∈ T.

The following result provides a characterization of the Shapley authorization correspon-

dence.

Theorem 1. A value for authorization structures is equal to the Shapley authorization corre-

spondence if and only if it satisfies the properties of efficiency, zero dependence and fairness.

Proof. Firstly, we will prove that the Shapley authorization correspondence satisfies the

three properties stated in the theorem.

Efficiency. Let A ∈ AN . For every j ∈ N it is verified thatÑ∑
k∈N

Φk(A)

é
j

=
∑
k∈N

Φkj(A) =
∑
k∈N

Shk(Aj) = Aj(N) = |A(N) ∩ {j}| =
Ä
1A(N)

ä
j
.
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Zero dependence. Let A ∈ AN and i, j ∈ N such that i /∈ Pj(A). Therefore,

Φij(A) = Shi(Aj) =
∑

{E⊆N : i∈E}
pE (Aj(E)− Aj(E \ {i}))

=
∑

{E⊆N : i∈E}
pE (|A(E) ∩ {j}| − |A(E \ {i}) ∩ {j}|)

=
∑

{E⊆N : i∈E}
pE |(A(E) \ A(E \ {i})) ∩ {j}| = 0.

Fairness. Let A ∈ AN , T ∈ 2N \ {∅} and i ∈ T . Take j ∈ T . Therefore,

Φji

Ä
AT,i

ä
− Φji(A) = Shj

Ä
AT,ii

ä
− Shj (Ai)

=
∑

{E⊆N : j∈E}
pE
Ä
AT,ii (E)− AT,ii (E \ {j})

ä
−

∑
{E⊆N : j∈E}

pE (Ai(E)− Ai(E \ {j})) .

By taking into consideration that if T * F ⊆ N then AT,i(F ) = A(F ), the difference above

is therefore equal to ∑
{E⊆N :T⊆E}

pE
Ä
AT,ii (E)− Ai(E)

ä
.

It suffices to notice that the number obtained does not depend on the agent j ∈ T chosen.

The uniqueness of the Shapley authorization correspondence will now be proved. Let

Ψ : AN →
Ä
[0, 1]N

äN
be a value for authorization structures that satisfies the properties of

efficiency, zero dependence and fairness. In order to show that

Ψ(A) = Φ(A), for every A ∈ AN , (2)

we first define

m(A) =
∑
F⊆N
|A(F )| , for every A ∈ AN .

Equation (2) will be proved by induction on m(A).

1. Base case. Let A ∈ AN be such that m(A) = 0. It is clear that for every i, j ∈ N ,

i /∈ Pj(A) holds. Through the property of zero dependence it can be concluded that

Ψij(A) = Φij(A) = 0 for every i, j ∈ N .

2. Inductive step. Let A ∈ AN be such that m(A) > 0. We must prove that Ψij(A) =

Φij(A) for every i, j ∈ N . Take j ∈ N . From the property of zero dependence, it is
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known that

Ψij(A) = 0, for every i ∈ N \ Pj(A), (3)

Φij(A) = 0, for every i ∈ N \ Pj(A). (4)

Suppose i ∈ Pj(A). There exists E ⊆ N such that j ∈ A(E) \A(E \ {i}). Take T ⊆ E

minimal with j ∈ A(T ). It is clear that i ∈ T . We define

B : 2N → 2N

S → B(S) =

 A(S), if S 6= T,

A(T ) \ {j}, if S = T.

It is straightforward to verify that B ∈ AN and BT,j = A. By using the fairness

property, the following is obtained:

Ψij(A)−Ψij(B) = Ψjj(A)−Ψjj(B),

Φij(A)− Φij(B) = Φjj(A)− Φjj(B).

Since m(B) = m(A)−1, it is known from the induction hypothesis that Ψ(B) = Φ(B).

From this fact and the two equalities above,

Ψij(A)− Φij(A) = Ψjj(A)− Φjj(A).

Therefore, it is proved that

Ψij(A)− Φij(A) = Ψjj(A)− Φjj(A), for every i ∈ Pj(A). (5)

By using the property of efficiency, (3), (4) and (5), it can be written that

0 =
∑
i∈N

Ψij(A)−
∑
i∈N

Φij(A) =
∑

i∈Pj(A)

(Ψij(A)− Φij(A)) = |Pj(A)|(Ψjj(A)− Φjj(A)).

Hence, either Pj(A) = ∅ or Ψjj(A) = Φjj(A). In any case, it is clear from (3), (4) and

(5) that

Ψij(A) = Φij(A), for every i ∈ N.

Since an arbitrary j ∈ N had been chosen, it has therefore been proved that Ψ(A) =

Φ(A).

2
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4.2. A characterization of the sovereignty index

In order to characterize the sovereignty index, the properties stated below are considered.

In the statement of these properties, ψ is a mapping from AN into RN .

Firstly, it is reasonable to think that if an agent is not authorized to act within any

coalition, then this agent has no sovereignty.

Inactive agent property. If A ∈ AN and i ∈ N \ A(N), then

ψi(A) = 0.

Given an authorization structure (N,A) and an agent i ∈ A(N), if our aim is to define

a number ψi(A) that measures the autonomy of i, perhaps the first values that would be

considered are
1

|Vi(A)|
and

1

|Pi(A)|
. Notice that both are extreme measures of autonomy,

in the sense that, with the first number, all the dependency relationships that are not

veto relationships would be ignored, whereas with the second number, all the dependency

relationships would be equally valued. The following property distinguishes the indices that

lie between these two values.

P − V bounds for sovereignty. If A ∈ AN and i ∈ A(N), then

1

|Pi(A)|
6 ψi(A) 6

1

|Vi(A)|
.

The following property, based on the transfer property of the Shapley-Shubik index,

distinguishes the indices that satisfy the condition that equal changes in the authorization

structures produce equal changes in the values of the index.

Transfer property. Let A, Â, B, B̂ ∈ AN be such that A(E) \ Â(E) = B(E) \ B̂(E) and

Â(E) \ A(E) = B̂(E) \B(E) for all E ⊆ N . Then,

ψ(A)− ψ(Â) = ψ(B)− ψ(B̂).

In the following theorem it is proved that these properties uniquely determine the sovereignty

index. The following well known result will be employed.

Lemma 2. If T ∈ 2N \ {∅}, then

∑
{E⊆N :T⊆E}

pE =
1

|T |
,

where the numbers pE are the coefficients of the Shapley value.
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Theorem 3. A mapping ψ : AN → RN is equal to the sovereignty index if and only if it

satisfies the properties of inactive agent, P − V bounds for sovereignty and transfer.

Proof. Firstly, it will be proved that the sovereignty index satisfies the properties stated in

the theorem.

Inactive agent property. It is trivial to check that if i /∈ A(N) then sovi(A) = 0.

P − V bounds for sovereignty. Let A ∈ AN and i ∈ A(N).

sovi(A) = Φii(A) = Shi(Ai) =
∑

{E⊆N : i∈E}
pE [Ai(E)− Ai(E \ {i})]

=
∑

{E⊆N : i∈E}
pE Ai(E) =

∑
{E⊆N : i∈A(E)}

pE. (6)

It will be first shown that
1

|Pi(A)|
6 sovi(A).

Suppose that j ∈ N \ Pi(A). It is clear that i ∈ A(N \ {j}). Now, if k ∈ N \ Pi(A), then

i ∈ A(N \ {j, k}). Through iteration, i ∈ A(Pi(A)), and hence {E ⊆ N : Pi(A) ⊆ E} ⊆
{E ⊆ N : i ∈ A(E)}. Therefore, the sum in (6) is greater or equal to

∑
{E⊆N : Pi(A)⊆E}

pE,

which, from Lemma 2, is equal to
1

|Pi(A)|
.

It will now be proved that sovi(A) 6
1

|Vi(A)|
.

It is clear that, for every E ⊆ N with i ∈ A(E), Vi(A) ⊆ E. Therefore, the sum in (6) is

less or equal to ∑
{E⊆N :Vi(A)⊆E}

pE,

which, from Lemma 2, is equal to
1

|Vi(A)|
.

Transfer property. Let A, Â, B, B̂ ∈ AN be such that A(E) \ Â(E) = B(E) \ B̂(E) and

Â(E)\A(E) = B̂(E)\B(E) for every E ⊆ N . Let i ∈ N . It is clear that Ai− Âi = Bi− B̂i.

Therefore,

sovi(A)− sovi(Â) = Shi(Ai)− Shi(Âi) = Shi(Ai − Âi)

= Shi(Bi − B̂i) = Shi(Bi)− Shi(B̂i)

= sovi(B)− sovi(B̂).
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It will now be shown that these properties uniquely determine the sovereignty index.

Suppose that ψ : AN → RN satisfies the properties of inactive agent, P − V bounds for

sovereignty and transfer. It must be proved that ψ is equal to the sovereignty index.

Let A ∈ AN . If A(N) = ∅, it is known, from the inactive agent property, that ψ(A) =

sov(A) = 0. Now suppose that A(N) 6= ∅. For every T ∈ 2N \ {∅} and i ∈ T we consider

CT,i : 2N → 2N

E → CT,i(E) =

 {i}, if T ⊆ E,

∅, if T * E.

It is clear that CT,i ∈ AN . It is easy to verify that

A =
⋃

{(T,i)∈2N×N : i∈A(T )}
CT,i.

Therefore, if we want to prove that ψ = sov, it is sufficient to show, for every m ∈ N,

T1, . . . , Tm ∈ 2N \ {∅} and i1, . . . , im ∈ N with ik ∈ Tk for all k = 1, . . . ,m, that

ψ

(
m⋃
k=1

CTk,ik

)
= sov

(
m⋃
k=1

CTk,ik

)
.

Let us prove this equality by strong induction on m.

1. Base case. Let T ∈ 2N \ {∅} and i ∈ T . From the inactive agent property,

ψj(CT,i) = 0, for all j ∈ N \ {i}. (7)

Note that Pi(CT,i) = Vi(CT,i) = T . From the property of P −V bounds for sovereignty

it follows that

ψi(CT,i) =
1

|T |
. (8)

From (7) and (8), ψ(CT,i) =
1

|T |
1{i}. Since the sovereignty index also satisfies the

properties used, it can be concluded that

ψ(CT,i) = sov(CT,i).

2. Inductive step. Take T1, . . . , Tm+1 ∈ 2N \ {∅} and i1, . . . , im+1 ∈ N with ik ∈ Tk for

13



all k = 1, . . . ,m+ 1. Let

A =
m+1⋃
k=1

CTk,ik , Â =
m⋃
k=1

CTk,ik ,

B = CTm+1,im+1 , B̂ =
m⋃
k=1

(CTk,ik ∩ CTm+1,im+1).

Since ψ and sov satisfy the transfer property, it follows that

ψ(A)− ψ(Â) = ψ(B)− ψ(B̂), (9)

sov(A)− sov(Â) = sov(B)− sov(B̂). (10)

It is already known that

ψ(B) = sov(B). (11)

By induction hypothesis, it is verified that

ψ(Â) = sov(Â). (12)

Observe that if ik 6= im+1, then CTk,ik∩CTm+1,im+1 can be eliminated from the expression

of B̂, and if ik = im+1 then CTk,ik ∩ CTm+1,im+1 = CTk∪Tm+1,ik . With this in mind, and

by induction hypothesis,

ψ(B̂) = sov(B̂). (13)

From (9), (10), (11), (12) and (13) it is concluded that

ψ

(
m+1⋃
k=1

CTk,ik

)
= sov

(
m+1⋃
k=1

CTk,ik

)
.

2

4.3. A characterization of the influence index

In order to characterize the influence index, we will consider the following property, where

ψ is a mapping from AN into RN .

Let i and j be two different agents in N . If i /∈ Pj(A) then the influence of i over j

in (N,A) should be zero. If i ∈ Pj(A), then the influence of i over j would be expected

to be positive and no greater than the sovereignty index of j. If i ∈ Vj(A), then the

influence of i over j would reasonably be greater or equal to the sovereignty index of j.

These considerations along with the P − V bounds of the sovereignty index lead us to

consider the following property.

14



P − V bounds for influence. If A ∈ AN and i ∈ N , then

∑
{j∈N\{i}: i∈Vj(A)}

1

|Pj(A)|
6 ψi(A) 6

∑
{j∈N\{i}: i∈Pj(A)}

1

|Vj(A)|
.

In the following theorem, this property together with the transfer property are shown to

uniquely determine the influence index. The following lemma will be used in the proof of

the theorem.

Lemma 4. If A ∈ AN , i ∈ N and j ∈ A(N), then

Φij(A) 6 sovj(A),

and the equality holds if and only if i has veto power over j in (N,A).

Proof. Let A ∈ AN , i ∈ N and j ∈ A(N). Therefore,

Φij(A) = Shi(Aj) =
∑

{E⊆N : i∈E}
pE [Aj(E)− Aj(E \ {i})]

=
∑

{E⊆N : j∈A(E)\A(E\{i})}
pE. (14)

and

sovj(A) = Φjj(A) = Shj(Aj) =
∑

{E⊆N : j∈E}
pE [Aj(E)− Aj(E \ {j})]

=
∑

{E⊆N : j∈A(E)}
pE. (15)

It is clear that the sum (14) is less than or equal to the sum (15). Moreover, the equality

holds if and only if {E ⊆ N : j ∈ A(E)} = {E ⊆ N : j ∈ A(E) \ A(E \ {i})}. However, by

taking into consideration that j ∈ A(N), this condition is equivalent to i ∈ Vj(A). 2

Theorem 5. A mapping ψ : AN → RN is equal to the influence index if and only if it

satisfies the properties of P − V bounds for influence and transfer.

Proof. It will first be proved that the influence index satisfies the properties mentioned in

the theorem.

P − V bounds for influence. Let A ∈ AN and i ∈ N . Therefore,

infli(A) =
∑

j∈N\{i}
Φij(A),
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which, taking into consideration that Φij(A) > 0 if and only if j depends partially on i in

(N,A), is equal to ∑
{j∈N\{i}: i∈Pj(A)}

Φij(A),

which, from Lemma 4, is less than or equal to

∑
{j∈N\{i}: i∈Pj(A)}

sovj(A),

which, from the P − V bounds for sovereignty, is less than or equal to

∑
{j∈N\{i}: i∈Pj(A)}

1

|Vj(A)|
.

Hence the right-hand inequality has been proved. Let us prove the other inequality. It is

known that

infli(A) =
∑

{j∈N\{i}: i∈Pj(A)}
Φij(A) >

∑
{j∈N\{i}: i∈Vj(A)}

Φij(A),

which, using the second statement of Lemma 4, is equal to

∑
{j∈N\{i}: i∈Vj(A)}

sovj(A),

which, from the P − V bounds for sovereignty, is greater than or equal to

∑
{j∈N\{i}: i∈Vj(A)}

1

|Pj(A)|
.

Transfer property. Let A, Â, B, B̂ ∈ AN be such that A(E) \ Â(E) = B(E) \ B̂(E) and

Â(E)\A(E) = B̂(E)\B(E) for every E ⊆ N . Let i ∈ N . It is clear that Aj− Âj = Bj− B̂j

for every j ∈ N . Therefore,

Φij(A)− Φij(Â) = Shi(Aj)− Shi(Âj) = Shi(Aj − Âj)

= Shi(Bj − B̂j) = Shi(Bj)− Shi(B̂j)

= Φij(B)− Φij(B̂).
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Finally, we attain

infli(A)− infli(Â) =
∑

j∈N\{i}

Ä
Φij(A)− Φij(Â)

ä
=

∑
j∈N\{i}

Ä
Φij(B)− Φij(B̂)

ä
= infli(B)− infli(B̂).

It will now be shown that these properties uniquely determine the influence index. The

reasoning is similar to that followed in the case of the sovereignty index. Suppose that

ψ : AN → RN satisfies the properties of P − V bounds for influence and transfer. It must

be proved that ψ is equal to the influence index.

Let A ∈ AN . If A(N) = ∅, then it is known from the P − V bounds for influence, that

ψ(A) = infl(A) = 0. If A(N) 6= ∅, then

A =
⋃

{(T,i)∈2N×N : i∈A(T )}
CT,i.

Therefore, if proof that ψ = infl is required, it is sufficient to show, for every m ∈ N,

T1, . . . , Tm ∈ 2N \ {∅} and i1, . . . , im ∈ N with ik ∈ Tk for all k = 1, . . . ,m, that

ψ

(
m⋃
k=1

CTk,ik

)
= infl

(
m⋃
k=1

CTk,ik

)
.

Let us prove this equality by strong induction on m.

1. Base case. Let T ∈ 2N \ {∅} and i ∈ T . We can derive, from the P − V bounds for

influence, that

ψj(CT,i) =


1

|T |
, if j ∈ T \ {i},

0, if j ∈ (N \ T ) ∪ {i}.

Since the influence index also satisfies the property used, it follows that

ψ(CT,i) = infl(CT,i).

2. Inductive step. The reasoning here is equal to that followed in the case of the

sovereignty index.

2
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5. Example

Let N = {1, 2, 3, 4, 5}. Three authorization operators A,B,C ∈ AN are now described

and Φ(A), Φ(B) and Φ(C) are calculated.

a) Suppose that agents 2 and 3 have veto power over 1 and agents 2, 3, 4 and 5 are

autonomous, that is, they need no authorization from any other agent within any

coalition. The diagram below provides an illustration:

1

3 42 5

conjunctive

This situation can be described by the authorization operator A ∈ AN given by

A(E) =

 E \ {1}, if {2, 3} * E,

E, otherwise.

If Φ(A) is calculated, then

Φ(A) =



1
3 0 0 0 0
1
3 1 0 0 0
1
3 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

Since 2 and 3 have veto power over 1, then the influence of 2 (or 3) over 1 must be

equal to the sovereignty index of 1. In addition, agent 1 does not depend partially on

either 4 or 5, and hence the influence of 4 (or 5) over 1 is equal to zero. Finally, agents

2, 3, 4 and 5 are autonomous, therefore they have the maximum possible sovereignty.

b) Starting from the situation described above, suppose that now agent 3 always needs

authorization from either 4 or 5. Let us illustrate the new situation:
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1

3

4

2

5

conjunctive

disjunctive

no transitivity

The expression “no transitivity” means that an agent does not need to be authorized to

cooperate within a coalition in order to give permission to other agents. For instance,

in the situation described, agent 3 is not authorized to cooperate within coalition

{1, 2, 3}, but agent 3 allows agent 1 to cooperate within that coalition. This situation

can be described by the authorization operator B ∈ AN , given by

B(E) =



E \ {1, 3}, if {2, 3} * E and {4, 5} ∩ E = ∅,
E \ {1}, if {2, 3} * E and {4, 5} ∩ E 6= ∅,
E \ {3}, if {2, 3} ⊆ E and {4, 5} ∩ E = ∅,
E, if {2, 3} ⊆ E and {4, 5} ∩ E 6= ∅.

If Φ(B) is calculated, then

Φ(B) =



1
3 0 0 0 0
1
3 1 0 0 0
1
3 0 2

3 0 0

0 0 1
6 1 0

0 0 1
6 0 1


.

Agents 4 and 5 have gained influence over 3. This influence is less than the sovereignty

index of 3, since none of them have veto power over 3.

c) Based on the above scenario, suppose now that there is transitivity in the dependence

relationships, that is, an agent needs to be authorized to cooperate within a coalition

in order to give permission to other agents in the coalition. In our situation this means
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that agent 3 cannot authorize 1 to cooperate within a coalition that does not contain

either 4 or 5.

1

3

4

2

5

conjunctive

disjunctive

transitivity

This situation can be described by the authorization operator C ∈ AN given by

C(E) =


E \ {1, 3}, if {4, 5} ∩ E = ∅,
E \ {1}, if {2, 3} * E and {4, 5} ∩ E 6= ∅,
E, if {2, 3} ⊆ E and {4, 5} ∩ E 6= ∅.

If Φ(C) is calculated, then

Φ(C) =



3
10 0 0 0 0
3
10 1 0 0 0
3
10 0 2

3 0 0
1
20 0 1

6 1 0
1
20 0 1

6 0 1


.

Since agent 3 cannot authorize 1 without being authorized by 4 or 5, these agents

have gained influence over 1.

6. Conclusions and remarks

We have introduced authorization structures, which can be used to model hierarchies. A

value for authorization structures has been defined and characterized. This value describes

the strength of the dependency relationships induced by the structure. This has enabled the

concepts of sovereignty and influence to be introduced.
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Although the concept of authorization structure was inspired by the set functions which,

given a permission structure, assign to each coalition the disjunctive or the conjunctive

sovereign part of the coalition, authorization structures can enjoy a much wider application.

In fact, authorization structures can be used to model hierarchies which are neither disjunc-

tive nor conjunctive, or hierarchies in which the dependency relationships are not transitive.

Moreover, they can also describe non-hierarchical structures. Therefore, the value that we

have studied can be applied to a great range of situations.

Other approaches could be considered for further research. Within our framework, the

dependency relationships mean that certain agents can block the actions of other agents.

However, other kinds of dependence could be considered. For instance, we could study

situations in which certain agents have coercive power over others, or situations in which

the dependency relationships are fuzzy, in the sense that the agents enjoy a certain degree

of freedom. Another possibility for future research would be to apply our value to the study

of centrality in digraphs. Each digraph can be assigned an authorization structure. The

Shapley authorization correspondence applied to that authorization structure could describe

how much each node of the digraph depends on other nodes for it to be connected.
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