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Abstract

The characteristic function of a cooperative game determines the payment that each coalition can
obtain when the players in the coalition cooperate. But there are cooperative situations in which the
players have only imprecise expectations about the profit that can be achieved by each coalition.
These situations are modeled through cooperative games with fuzzy characteristic function, in
which the payment of each coalition is a fuzzy quantity. A value for these games assigns to each
player in a game a fuzzy quantity that indicates the vaguely expected payoff for the player. There
is a Shapley value for games with fuzzy characteristic function, but no characterization of this value
has been given in the literature. In this paper a characterization of the Shapley value for games
with fuzzy characteristic function is presented.
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1. Introduction

A cooperative game is given by a characteristic function that determines the payment

that can be obtained by each subset of players. In this setting it is assumed that the players

know with precision the profit that can be achieved by each coalition. Nevertheless, in real

life this is not always realistic. Sometimes, the payment achievable by a coalition depends on

external circumstances which are not completely under control of the players in the coalition.

In these situations there are only have vague expectations about the payment that could be

obtained by each coalition. Game theorists have considered different approaches to deal with

these situations. Charnes and Granot [4] introduced cooperative games in which the payment

of each coalition is given by a random variable. Suijs et al. [13] extended this model when

they introduced cooperative games in which the players in a coalition may have different

kinds of behavior and a collection of random variables is assigned to each coalition. Later

on, Timmer [14] introduced stochastic cooperative games without deterministic transfer
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payments. A different approach was considered by Branzei et al. [2] when they handled

bankruptcy situations in which the claims are given by intervals of real numbers. This was

the origin of cooperative interval games, in which the players only know a lower and a upper

bound of the profit that can be obtained by each coalition. Cooperative interval games

have multiple applications in economics and operations research (see [3]). The present paper

is focused on the approach proposed by Mareš and Vlach [9], who introduced cooperative

games with fuzzy characteristic function. In these games the characteristic function assigns

to each coalition a fuzzy quantity that establishes imprecise expectations about the payment

that the coalition would obtain. Since fuzzy quantities form a family of fuzzy subsets of the

set of real numbers, the model introduced by Mareš and Vlach is another application of the

theory of fuzzy sets, introduced by Zadeh [17], to cooperative game theory. In principle, a

game with fuzzy characteristic function was associated with a crisp game which indicated the

modal values of each coalition (i.e., the values with maximum possibility degree). However,

the authors extended the model and considered games with fuzzy characteristic function

independently of crisp games [10]. As in the case of crisp cooperative games, the main

problem that arises when dealing with cooperative games with fuzzy characteristic function

is how to share the total profit obtained by the grand coalition. In this regard, it seems

plausible to think that the vagueness of the expected outcomes of the coalitions will cause

vagueness in the payoffs of the players, even in cases in which the gain of the grand coalition

is known with precision but the payments of other coalitions are not known accurately. This

means that, for any reasonable solution concept, the payoff of each player in a game should

be a fuzzy quantity. Several studies have been carried out in this line of research (see [1],

[16]). Mareš [8] introduced different solutions for games with fuzzy characteristic function by

considering a fuzzy version of the most usual solutions for deterministic games. In particular,

he defined a Shapley value for games with fuzzy characteristic function. He proved that this

value satisfies some good properties. However, no characterization has been given in the

literature for this value. In this paper a natural characterization of the Shapley value for

games with fuzzy characteristic function is presented.

The paper is organized as follows. In section 2 some concepts regarding cooperative

games, fuzzy quantities and cooperative games with fuzzy characteristic function are re-

called. In section 3 we present a characterization of the Shapley value for games with fuzzy

characteristic function.
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2. Preliminaries

2.1. Cooperative games

A cooperative game (with transferable utility) consists of a finite set of players N and a

characteristic function v : 2N → R which satisfies v (∅) = 0. The elements of N are called

players, and the subsets of N coalitions. Given a coalition E, v (E) is the worth of E, and it

is interpreted as the collective payment that the players of E would obtain if they cooperate.

Frequently, a cooperative game (N, v) is identified with the function v. The family of games

with set of players N is denoted by GN . This set is a (2|N |−1)-dimensional real vector space.

One basis of GN is the set
{
δE : E ∈ 2N \ {∅}

}
where for a nonempty coalition E the game

δE is defined by

δE (F ) =

{
1 if F = E,

0 otherwise.

Another basis of GN is the set
{
uE : E ∈ 2N \ {∅}

}
where for a nonempty coalition E the

unanimity game uE is defined by

uE (F ) =

{
1 if E ⊆ F,

0 otherwise.

Every game v ∈ GN can be written as

v =
∑

{E∈2N :E 6=∅}

4v (E) uE (1)

where (4v (E))E⊆N is the Möbius transform of v on the poset (2N ,⊆). The coefficient4v (E)

is called the dividend of the coalition E in the game v and is given by

4v (E) =
∑
F⊆E

(−1)|E|−|F |v(F ) (2)

for every E ∈ 2N \ {∅}.
A value on GN is a mapping ψ : GN → RN . If v ∈ GN and i ∈ N the real number ψi (v) is

the payoff of the player i in the game v. Multiple values have been defined in the literature.

The best-known of them is the Shapley value [11], which assigns to each player i ∈ N in a

game v ∈ GN a weighted average of the marginal contributions of i to the coalitions. It is

formally defined by

φi (v) =
∑

{E⊆N :i∈E}

pE (v (E)− v (E \ {i}))
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for every i ∈ N and every v ∈ GN , where

pE =
(|N | − |E|)! (|E| − 1)!

|N |!

for every E ∈ 2N \ {∅}.

Some desirable properties for a value ψ : GN → RN are the following:

Efficiency:
∑

i∈N ψi (v) = v (N) for all v ∈ GN .

Additivity: ψ (v1 + v2) = ψ (v1) + ψ (v2) for all v1, v2 ∈ GN .

Equal treatment: If v ∈ GN , i, j ∈ N and v(S ∪ {i}) = v(S ∪ {j}) for every S ⊆ N \ {i, j},
then ψi(v) = ψj(v).

Null player property: A player i ∈ N is a null player in v ∈ GN if v (E) = v(E \ {i}) for all

E ⊆ N. If i ∈ N is a null player in v ∈ GN then ψi (v) = 0.

Strong monotonicity: If v, w ∈ GN , i ∈ N and v(E ∪ {i})− v(E) > w(E ∪ {i})− w(E) for

every E ⊆ N \ {i} then ψi(v) > ψi(w).

The properties of efficiency, additivity, equal treatment and null player characterize the

Shapley value [11]. Young [15] proved that the Shapley value is characterized also by the

properties of efficiency, equal treatment and strong monotonicity.

2.2. Fuzzy quantities

Firstly we recall some definitions regarding fuzzy sets.

Given a set X, a fuzzy subset a of X is defined by its membership function µa : X → [0, 1].

For each x ∈ X the number µa(x) is the degree of membership of x in a. For each t ∈ (0, 1]

the t-cut of a is defined by

[a]t = {x ∈ X : µa(x) > t}

Notice that the family of t-cuts determine a. The core of a is defined by

core(a) = [a]1.

If a is a fuzzy subset of R, the 0-cut of a is defined by

[a]0 = {x ∈ R : µa(x) > 0}.

If a, b are fuzzy subsets of X, it is said that a is contained in b, and it is denoted by a ⊆ b,

if µa(x) 6 µb(x) for every x ∈ X.
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In this paper we will deal with a particular class of fuzzy subsets of R, the class of fuzzy

quantities. The term fuzzy quantity has been used in the literature with slightly different

meanings. We will use the concept of fuzzy quantity as defined in [12]. A fuzzy subset a of

R is a fuzzy quantity if it satisfies the following conditions:

i) core(a) 6= ∅.

ii) [a]t is a closed and bounded interval for every t ∈ [0, 1].

The set of fuzzy quantities will be denoted by F. If a ∈ F and t ∈ [0, 1] we denote

a+t = max[a]t and a−t = min[a]t.

In the remainder of this subsection we recall the basics of fuzzy arithmetic (see [5], [6],

[7], [12]).

Let a, b ∈ F.

� The sum a⊕ b ∈ F is defined by

µa⊕b(x) = sup{min{µa(y), µb(z)} : y, z ∈ R, y + z = x}

for every x ∈ R. Equivalently,

[a⊕ b]t = [a−t + b−t , a
+
t + b+t ]

for every t ∈ [0, 1].

� The difference a	 b ∈ F is defined by

µa	b(x) = sup{min{µa(y), µb(z)} : y, z ∈ R, y − z = x}

for every x ∈ R. Equivalently,

[a	 b]t = [a−t − b+t , a+t − b−t ]

for every t ∈ [0, 1].

� The product a� b ∈ F is defined by

µa�b(x) = sup {min {µa(y), µb (z)} : y, z ∈ R, yz = x}
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for every x ∈ R. Equivalently,

[a� b]t =
[
min{a−t b−t , a−t b+t , a+t b−t , a+t b+t },max{a−t b−t , a−t b+t , a+t b−t , a+t b+t }

]
for every t ∈ [0, 1].

Notice that the set of real numbers can be embedded into F. Indeed, we can identify

p ∈ R with the fuzzy quantity determined by the following membership function:

µp(x) =

{
1 if x = p,

0 otherwise.

With this identification we have that R ⊂ F. Note that the operations ⊕,	,� extend,

respectively, the sum, subtraction and product of real numbers.

Notice that if a ∈ F and p ∈ R, then

µp⊕a(x) = µa(x− p)

for every x ∈ R. Equivalently,

[p⊕ a]t = [p+ a−t , p+ a+t ]

for every t ∈ [0, 1]. And, if p ∈ R \ {0}, then

µp�a(x) = µa

Å
x

p

ã
for every x ∈ R. Equivalently,

[p� a]t =

{
[pa−t , pa

+
t ] if p > 0,[

pa+t , pa
−
t

]
if p < 0.

for every t ∈ [0, 1].

Given a, b ∈ F, it is said that a is greater than or equal to b, which is denoted by a > b,

if a−t > b−t and a+t > b+t for every t ∈ [0, 1].

A fuzzy quantity a ∈ F is said to be 0-symmetric if a−t = −a+t for every t ∈ [0, 1].

Let us recall some basic properties of the arithmetic operations in F. Let a, b, c, d ∈ F.
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a) a⊕ b = b⊕ a.

c) a⊕ (b⊕ c) = (a⊕ b)⊕ c.

e) a⊕ 0 = a.

g) a� 0 = 0.

b) a� b = b� a.

d) a� (b� c) = (a� b)� c.

f) a� 1 = a.

h) a	 b = a⊕ ((−1)� b).

The properties above will be used throughout this paper without referring to them. The

following properties, although equally simple, are more specific and they will be referred to

when applied.

i) If p ∈ R,

p� (a⊕ b) = (p� a)⊕ (p� b), (3)

p� (a	 b) = (p� a)	 (p� b). (4)

j) If b, c > 0 (or b, c 6 0),

a� (b⊕ c) = (a� b)⊕ (a� c). (5)

k) If a ⊆ c and b ⊆ d,

a⊕ b ⊆ c⊕ d, (6)

a	 b ⊆ c	 d, (7)

a� b ⊆ c� d. (8)

l) The equation x⊕ a = b either has no solution in F or has a unique solution in F.

m) If p ∈ R, then p� (a	 a) is 0-symmetric.

n) If a⊕ b ∈ R, then a, b ∈ R.

2.3. Cooperative games with fuzzy characteristic function

A cooperative game with fuzzy characteristic function consists of a finite and nonempty

set N and a characteristic function v : 2N → F that satisfies v(∅) = 0. The elements of N

are called players, and the subsets of N are called coalitions. For each coalition E, the fuzzy

quantity v(E) describes the expectations about the collective payment that can be obtained

by the players in E when they cooperate. A cooperative game with fuzzy characteristic

function (N, v) will be identified with the mapping v. The class of all cooperative games
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with fuzzy characteristic function and set of players N is denoted by FGN . Since R ⊂ F, we

have that GN ⊂ FGN . If v, w ∈ FGN and a ∈ F the games v ⊕ w, a� v ∈ FGN are defined

by

(v ⊕ w)(E) = v(E)⊕ w(E),

(a� v)(E) = a� v(E),

for every E ∈ 2N .

A value on FGN is a mapping Ψ: FGN → FN . If v ∈ FGN and i ∈ N the fuzzy quantity

Ψi (v) describes the expectations about the payoff of player i in the game v. Mareš [8]

introduced the Shapley value for cooperative games with fuzzy characteristic function, which

is defined by

Φi (v) =
⊕

{E⊆N : i∈E}

pE � (v (E)	 v (E \ {i}))

for every i ∈ N and every v ∈ FGN , where the (pE)E∈2N\{∅} are the coefficients of the

Shapley value on GN .

3. Characterization

Let us fix a finite and nonempty set N . We introduce some properties that a value

Ψ: FGN → FN may satisfy:

� ADDITIVITY. If v, w ∈ FGN then Ψ(v ⊕ w) = Ψ(v)⊕Ψ(w).

� EQUAL TREATMENT. If v ∈ FGN , i, j ∈ N and v(S ∪ {i}) = v(S ∪ {j}) for every

S ⊆ N \ {i, j}, then Ψi(v) = Ψj(v).

Notice that the first two properties considered are natural fuzzy extension of the prop-

erties of additivity and equal treatment used to characterize the Shapley value.

� CENTRAL EFFICIENCY. For every v ∈ FGN there exists dv ∈ F such that dv is 0-

symmetric and ⊕
i∈N

Ψi(v) = v(N)⊕ dv.

It would not be reasonable to require that the players’ payoffs sum up to v(N). Suppose

that v ∈ FGN \ GN and v(N) ∈ R. If a value Ψ on FGN satisfies efficiency then⊕
i∈N Ψi(v) = v(N) ∈ R and, consequently, by property n on page 7, Ψi(v) ∈ R for

every i ∈ N . Hence, this value would ignore the uncertainty in the payments of all

the coalitions different from N . Therefore, instead of efficiency, we require a weaker
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property, central efficiency. This property says, that, for any possibility level t ∈ (0, 1],

the t-cut of the sum of the players’ payoffs contains the t-cut of v(N) and both intervals

have the same center.

If v ∈ FGN , a player i ∈ N is said to be a null player in v if v(E ∪ {i}) = v(E) for

every E ∈ 2N .

� NULL PLAYER. If v ∈ FGN and i ∈ N is a null player in v, then Ψi(v) is 0-symmetric.

Notice that the equality v(E∪{i}) = v(E) does not imply that if coalitions E∪{i} and

E were actually formed then the profits obtained (in the game v) by them should be

equal. Instead, that equality means that the expectations on the payments achievable

by those coalitions are the same. Mathematically, this is expressed by the fact that

v(E ∪ {i}) = v(E) does not imply that v(E ∪ {i}) 	 v(E) = 0, but only that v(E ∪
{i}) 	 v(E) is 0-symmetric. Therefore, we must not require that a null player earn a

zero payoff. Instead, we look for values that assign a 0-symmetric fuzzy number to any

null player in a game with fuzzy characteristic function.

� EQUALLY SIGNED MARGINAL CONTRIBUTIONS. If v ∈ FGN , i ∈ N and v(E ∪ {i}) 	
v(E) > 0 (resp. v(E ∪ {i})	 v(E) 6 0) for every E ⊆ N \ {i}, then Ψi(v) > 0 (resp.

Ψi(v) 6 0).

Remember the property of strong monotonicity for a value ψ on GN introduced by

Young [15]. We could consider a weaker property stating that if v ∈ GN , i ∈ N and

v(E ∪ {i}) − v(E) > 0 (resp. v(E ∪ {i}) − v(E) 6 0) for every E ⊆ N \ {i}, then

ψi(v) > 0 (resp. ψi(v) 6 0). If we extend this to the fuzzy case, we obtain the property

of equally signed marginal contributions.

� ZERO SOLUTION. If v ∈ FGN and 0 ⊆ v(E) for every E ∈ 2N , then 0 ⊆ Ψi(v) for every

i ∈ N .

The zero solution property says that if it is possible (at the maximum possibility level)

that the payments of all the coalitions in a game are equal to zero, then it is possible

(at the maximum possibility level) that the payoffs of all the players in the game are

equal to zero.

Let us see that Φ satisfies the six properties above.

Theorem 1. The Shapley value for cooperative games with fuzzy characteristic function

satisfies the properties of additivity, equal treatment, central efficiency, null player, equally

signed marginal contributions and zero solution.
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Proof.

� Additivity

Let v, w ∈ FGN and let i ∈ N . Then,

Φi (v ⊕ w) =
⊕

{E⊆N : i∈E}

pE � ((v ⊕ w) (E)	 (v ⊕ w) (E \ {i})) ,

which, by basic arithmetic properties, (3) and (4), is equal to⊕
{E⊆N : i∈E}

pE � (v (E)	 v (E \ {i}))⊕
⊕

{E⊆N : i∈E}

pE � (w (E)	 w (E \ {i})) ,

which is, by definition, Φi(v)⊕ Φi(w).

� Equal treatment

Let v ∈ FGN and i, j ∈ N be such that v(S∪{i}) = v(S∪{j}) for every S ⊆ N \{i, j}.
Then,

Φi(v) =
⊕

{E⊆N : i∈E}

pE � (v (E)	 v (E \ {i}))

=
⊕

{E⊆N : i,j∈E}

pE � (v (E)	 v (E \ {i}))

⊕
⊕

{E⊆N : i∈E,j /∈E}

pE � (v (E)	 v (E \ {i}))

=
⊕

{E⊆N : i,j∈E}

pE � (v (E)	 v (E \ {j}))

⊕
⊕

{E⊆N : j∈E,i/∈E}

pE � (v (E)	 v (E \ {j}))

=
⊕

{E⊆N : j∈E}

pE � (v (E)	 v (E \ {j})) = Φj(v).

� Central efficiency

Let v ∈ FGN . Then,

⊕
i∈N

Φi(v) =
⊕
i∈N

Ñ ⊕
{E⊆N : i∈E}

pE � (v (E)	 v (E \ {i}))

é
,
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which, by basic arithmetic properties, (3), (4) and (5), is equal toÑ ⊕
E∈2N\{∅}

(⊕
i∈E

pE � v (E)

)é
	

Ñ ⊕
E∈2N\{∅}

(⊕
i∈E

pE � v (E \ {i})

)é
=

Ñ ⊕
E∈2N\{∅}

(⊕
i∈E

pE � v (E)

)é
	

Ñ ⊕
E∈2N\{N,∅}

Ñ⊕
i∈N\E

pE∪{i} � v (E)

éé
=

Ñ ⊕
E∈2N\{∅}

Å
|E|(|N | − |E|)! (|E| − 1)!

|N |!

ã
� v (E)

é
	

Ñ ⊕
E∈2N\{N,∅}

Å
(|N | − |E|)(|N | − |E| − 1)! |E|!

|N |!

ã
� v (E)

é
= v(N)⊕

Ñ ⊕
E∈2N\{N,∅}

Å
(|N | − |E|)! |E|!

|N |!

ã
� (v (E)	 v (E))

é
.

And it is sufficient to notice that

dv =
⊕

E∈2N\{N,∅}

Å
(|N | − |E|)! |E|!

|N |!

ã
� (v (E)	 v (E))

is 0-symmetric, since it is a sum of 0-symmetric fuzzy quantities (recall property m on

page 7).

� Null player

Let v ∈ FGN , i ∈ N be such that i is a null player in v. Then,

Φi(v) =
⊕

{E⊆N : i∈E}

pE � (v (E)	 v (E)) ,

which is 0-symmetric, since it is a sum of 0-symmetric fuzzy quantities.

� Equally signed marginal contributions

Let v ∈ FGN be such that v(E ∪ {i}) 	 v(E) > 0 for every E ⊆ N \ {i}. It is clear

that pE � (v(E)	 v(E \ {i}) > 0 for every E ∈ 2N with i ∈ E. If we take into account

that if a, b ∈ F and a, b > 0 then a⊕ b > 0, we conclude that Φi(v) > 0.

� Zero solution

Let v ∈ FGN be such that 0 ⊆ v(E) for every E ∈ 2N . Take i ∈ N . Then, by (6), (7)
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and (8),

0 ⊆
⊕

{E⊆N : i∈E}

pE � (v (E)	 v (E \ {i})) ,

that is, 0 ⊆ Φi(v).

Now we aim to prove that if a value on FGN satisfies the six properties stated in the

previous theorem then this value is equal to the Shapley value for cooperative games with

fuzzy characteristic function. Firstly we need to see two simple lemmas.

Lemma 2. Let a, b, c, d ∈ F be such that

i) a, c > 0 (resp. a, c 6 0),

ii) 0 ⊆ a, c,

iii) b, d are 0-symmetric,

iv) a⊕ b = c⊕ d.

Then, a = c and b = d.

Proof. We will prove only the version where a, c > 0.

Let t ∈ [0, 1]. From i) and ii), a−t = c−t = 0. By iii), b−t = −b+t and c−t = −c+t . We have

that

[a⊕ b]t = [a−t + b−t , a
+
t + b+t ] = [−b+t , a+t + b+t ] (9)

and

[c⊕ d]t = [c−t + d−t , c
+
t + d+t ] = [−d+t , c+t + d+t ]. (10)

From (9), (10) and iv) we obtain that b+t = d+t and a+t = c+t . It is clear that [a]t = [c]t and

[b]t = [d]t. Since these equalities hold for every t ∈ [0, 1], it follows that a = c and b = d.

Lemma 3. Let a, b ∈ F be such that

i) a > 0 (resp. a 6 0),

ii) 0 ⊆ a,

iii) a ⊆ b,

iv) b 6 a (resp. b > a),
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v) b is 0-symmetric,

Then, b = a	 a.

Proof. We will prove only the version where a > 0 and b 6 a.

Let x ∈ [0,+∞). Let us see that µb(x) 6 µa(x). Suppose that µb(x) > µa(x). If we

take t ∈ (µa(x), µb(x)), then x ∈ [b]t and x /∈ [a]t. From i) and ii), [a]t = [0, a+t ]. We have

that x ∈ [0,+∞), x ∈ [b−t , b
+
t ] and x /∈ [0, a+t ]. It follows that b+t > a+t , but this contradicts

condition iv). We have proved that µb(x) 6 µa(x) for every x ∈ [0,+∞). By iii), we know

that µb(x) > µa(x) for every x ∈ R. We conclude that µb(x) = µa(x) for every x ∈ [0,+∞).

From this and condition v) it follows that [b]t = [−a+t , a+t ] for every t ∈ [0, 1]. And it suffices

to notice that, by i) and ii), [a	 a]t = [−a+t , a+t ] for every t ∈ [0, 1].

Now we are in conditions to complete the characterization of the Shapley value for coop-

eratives games with fuzzy characteristic function.

Theorem 4. If a value Ψ on FGN satisfies the properties of additivity, equal treatment,

central efficiency, null player, equally signed marginal contributions and zero solution, then

Ψ is equal to the Shapley value for cooperative games with fuzzy characteristic function.

Proof. Suppose that Ψ: FGN → FN satisfies the properties stated in the theorem. Our goal

is to prove that Ψ = Φ. The proof will be done in several steps. In each step it will be shown

that Ψ(v) = Φ(v) for every v in a certain class of games in FGN .

Step 1 We aim to prove that

Ψ(v) = Φ(v) for every v ∈ GN . (11)

If 0 denotes the game that assigns zero to all coalitions E ∈ 2N , it is clear, from the

property of equally signed marginal contributions, that Ψi(0) = 0 for every i ∈ N . Let

v ∈ GN . By additivity,

Ψi(v)⊕Ψi(−v) = Ψi(0) = 0, (12)

for every i ∈ N . From (12) and property n on page 7 it follows that Ψi(v) ∈ R for

every i ∈ N . Therefore, the restriction of Ψ to GN , denoted by Ψ|GN , is a value on

GN . Taking into account that Ψ satisfies the properties of additivity, central efficiency,

null player and equal treatment for values on FGN and the fact that Ψ(v) ∈ RN for

every v ∈ GN , it can easily be verified that Ψ|GN satisfies the properties of additivity,

efficiency, null player and equal treatment for values on GN . Since these properties

13



characterize the Shapley value φ on GN , we conclude that Ψ|GN = φ. By the same

reasoning, Φ|GN = φ. We have proved (11).

Step 2 Our goal is to prove that

Ψ(a� uE) = Φ(a� uE) (13)

for every E ∈ 2N \ {∅} and for every a ∈ F with a > 0 and 0 ⊆ a.

Let a ∈ F be such that a > 0 and 0 ⊆ a. Let E ∈ 2N \ {∅}.

By the property of equal treatment, there exist b, c ∈ F such that

Ψi(a� uE) =

{
b if i ∈ E,
c if i ∈ N \ E.

(14)

If i ∈ E and F ⊆ N \ {i}, then (a� uE)(F ∪ {i})	 (a� uE)(F ) > 0. By the property

of equally signed marginal contributions, it follows that b > 0. Since 0 ⊆ (a� uE)(F )

for every F ∈ 2N , we obtain, by the property of zero solution, that 0 ⊆ Ψi(a� uE) for

every i ∈ N . In particular, 0 ⊆ b. Since the players in N \E are null players in a�uE,

we obtain, by the property of null player, that c is 0-symmetric. From (14),⊕
i∈N

Ψi(a� uE) = (|E| � b)⊕ (|N \ E| � c), (15)

By the property of central efficiency, there exists d ∈ F such that d is 0-symmetric and⊕
i∈N

Ψi(a� uE) = a⊕ d. (16)

From (15) and (16), (|E| � b)⊕ (|N \ E| � c) = a⊕ d.

Therefore, the following conditions hold:

i) |E| � b > 0, a > 0,

ii) 0 ⊆ |E| � b, 0 ⊆ a,

iii) |N \ E| � c and d are 0-symmetric,

iv) (|E| � b)⊕ (|N \ E| � c) = a⊕ d.

By applying Lemma 2 we obtain that |E| � b = a, whence it easily follows that

14



b =
1

|E|
� a. We have proved that

Ψi(a� uE) =
1

|E|
� a for every i ∈ E. (17)

Notice that if we consider the case E = N we have calculated Ψ(a�uN) and, since we

have used only the properties in the theorem, it is clear that Ψ(a� uN) = Φ(a� uN).

Suppose now that E 6= N . Take j ∈ N \ E. Similarly to (17), we have that

Ψi(a� uE∪{j}) =
1

|E|+ 1
� a for every i ∈ E ∪ {j}.

In particular,

Ψj(a� uE∪{j}) =
1

|E|+ 1
� a. (18)

Let w ∈ FGN defined by

w(F ) =

{
a if E ⊆ F and j /∈ F,
0 otherwise,

for every F ∈ 2N . We have that a� uE = (a� uE∪{j})⊕ w. By additivity,

Ψj(a� uE) = Ψj(a� uE∪{j})⊕Ψj(w). (19)

Since 0 ⊆ a, we have that 0 ⊆ w(F ) for every F ∈ 2N . By the property of zero solution,

0 ⊆ Ψj(w). (20)

From (6), (18), (19) and (20),

1

|E|+ 1
� a ⊆ Ψj(a� uE). (21)

Note that w(F ∪ {j})	 w(F ) 6 0 for every F ⊆ N \ {j}. By the property of equally

signed marginal contributions,

Ψj(w) 6 0. (22)

From (18), (19) and (22) it easily follows that

Ψj(a� uE) 6
1

|E|+ 1
� a. (23)
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Notice that j is a null player in a� uE. By the property of null player, Ψj(a� uE) is

0-symmetric. From this fact together with a > 0, 0 ⊆ a, (21) and (23) we obtain that

the following conditions hold:

i)
1

|E|+ 1
� a > 0,

ii) 0 ⊆ 1

|E|+ 1
� a,

iii)
1

|E|+ 1
� a ⊆ Ψj(a� uE),

iv) Ψj(a� uE) 6
1

|E|+ 1
� a,

v) Ψj(a� uE) is 0-symmetric.

By Lemma 3 and (4),

Ψj(a� uE) =
1

|E|+ 1
� (a	 a). (24)

From (14), (17) and (24),

Ψi(a� uE) =


1

|E|
� a if i ∈ E,

1

|E|+ 1
� (a	 a) if i ∈ N \ E.

Since we have used only the properties stated in the theorem, we have proved (13).

Step 3 We must see that

Ψ(a� uE) = Φ(a� uE) (25)

for every E ∈ 2N \ {∅} and for every a ∈ F with a 6 0 and 0 ⊆ a.

The proof is similar to that of (13). The only difference lies in the versions used of

Lemma 2, Lemma 3 and the property of equally signed marginal contributions.

Step 4 Let us prove that

Ψ(a� uE) = Φ(a� uE) (26)

for every E ∈ 2N \ {∅} and for every a ∈ F.

Let E ∈ 2N \ {∅} and let a ∈ F. Take z ∈ core(a). Let b, c ∈ F defined by

µb(x) =

{
µa(z + x) if x > 0,

0 if x < 0,
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µc(x) =

{
0 if x > 0,

µa(z + x) if x 6 0.

Notice that b > 0, c 6 0 and 0 ⊆ b, c. It can easily be verified that [b]t = [0, a+t − z]

and [c]t = [a−t − z, 0] for every t ∈ [0, 1]. It follows that a = z ⊕ b ⊕ c. Hence,

a � uE = (z uE) ⊕ (b � uE) ⊕ (c � uE). By additivity, (11), (13) and (25) we obtain

that

Ψ(a� uE) = Ψ(zuE)⊕Ψ(b� uE)⊕Ψ(c� uE)

= Φ(zuE)⊕ Φ(b� uE)⊕ Φ(c� uE) = Φ(a� uE).

We have proved (26).

Step 5 Our goal is to prove that

Ψ(a� δE) = Φ(a� δE) (27)

for every E ∈ 2N \ {∅} and for every a ∈ F.

Let E ∈ 2N \ {∅} and let a ∈ F. By (1) and (2),

δE =
∑

{F∈2N\{∅} : E⊆F}

(−1)|F |−|E|uF ,

whence

δE +
∑

{F∈2N\{∅} : E⊆F}

uF =
∑

{F∈2N\{∅} : E⊆F, |F |−|E|∈2Z}

2uF ,

that is,

δE(H) +
∑

{F∈2N\{∅} : E⊆F}

uF (H) =
∑

{F∈2N\{∅} : E⊆F, |F |−|E|∈2Z}

2uF (H),

for every H ⊆ N . If we multiply by a and apply (5) we obtain

(a� δE)(H)⊕
⊕

{F∈2N\{∅} : E⊆F}

(a�uF )(H) =
⊕

{F∈2N\{∅} : E⊆F, |F |−|E|∈2Z}

((2�a)�uF )(H),

for every H ⊆ N . Hence,

(a� δE)⊕
⊕

{F∈2N\{∅} : E⊆F}

(a� uF ) =
⊕

{F∈2N\{∅} : E⊆F, |F |−|E|∈2Z}

((2� a)� uF ).
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which, by additivity, leads to

Ψi(a�δE)⊕
⊕

{F∈2N\{∅} : E⊆F}

Ψi(a�uF ) =
⊕

{F∈2N\{∅} : E⊆F, |F |−|E|∈2Z}

Ψi((2�a)�uF ) (28)

and

Φi(a�δE)⊕
⊕

{F∈2N\{∅} : E⊆F}

Φi(a�uF ) =
⊕

{F∈2N\{∅} : E⊆F, |F |−|E|∈2Z}

Φi((2�a)�uF ) (29)

for every i ∈ N . From (26), (28), (29) and property l on page 7 it is concluded that

Ψi(a� δE) = Φi(a� δE) for every i ∈ N . We have proved (27).

Step 6 We aim to prove that

Ψ(v) = Φ(v)

for every v ∈ FGN .

Let v ∈ FGN . Notice that

v =
⊕

E∈2N\{∅}

(v(E)� δE).

By additivity and (27),

Ψ(v) =
⊕

E∈2N\{∅}

Ψ(v(E)� δE) =
⊕

E∈2N\{∅}

Φ(v(E)� δE) = Φ(v),

which completes the proof.

Logical independence

Finally, we will show that the properties used in the characterization of Φ are independent.

We need to introduce a notation. If y, z ∈ R and y 6 z then the fuzzy number [y, z] ∈ F is

defined by

µ[y,z](x) =

{
1 if y 6 x 6 z,

0 otherwise.

We require that |N | > 2.

(i) Fix j ∈ N . Let p ∈ FN defined by

pi =

{
[0, 2] if i = j,

0 if i ∈ N \ {j}.
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Let Ξ: FGN → FN defined by

Ξ(v) =

{
Φ(v) if v ∈ FGN \ {u{j}},
p if v = u{j}.

Then, Ξ satisfies equal treatment, central efficiency, null player, equally signed marginal

contributions and zero solution and it does not satisfy additivity.

(ii) Let n = |N | and N = {i1, . . . , in}. Consider Γ: FGN → FN defined by

Γik(v) =

{
v({i1}) if k = 1,

v({i1, . . . , ik})	 v({i1, . . . , ik−1}) if k ∈ {2, . . . , n},

for every v ∈ FGN .

Then, Γ satisfies additivity, central efficiency, null player, equally signed marginal

contributions and zero solution and it does not satisfy equal treatment.

(iii) Let Ψ: FGN → FN defined by

Ψi(v) = 0

for every v ∈ FGN and every i ∈ N .

Then, Ψ satisfies additivity, equal treatment, null player, equally signed marginal con-

tributions and zero solution and it does not satisfy central efficiency.

(iv) Let f, g : F→ F defined by

µf(a)(x) =

{
µa(x) if x 6 a+1 ,

0 if x > a+1 ,

µg(a)(x) =

{
0 if x < 0,

µa(a
+
1 + x) if x > 0,

for every a ∈ F.

Let Ω: FGN → FN defined by

Ωi(v) = Φi(f ◦ v)⊕ 1

|N |
� g(v(N)),

for every v ∈ FGN and every i ∈ N .

Then, Ω satisfies additivity, equal treatment, central efficiency, equally signed marginal

contributions and zero solution and it does not satisfy null player.

19



(v) Let Λ: FGN → FN defined by

Λi(v) = Φi(v)⊕ [v(N)−1 − v(N)+1 , v(N)+1 − v(N)−1 ],

for every v ∈ FGN and every i ∈ N .

Then, Λ satisfies additivity, equal treatment, central efficiency, null player and zero

solution and it does not satisfy equally signed marginal contributions.

(vi) Let h : F→ F defined by

µh(a)(x) =


µa

Å
x+

a+1 − a−1
2

ã
if x >

a+1 + a−1
2

,

µa

Å
x− a+1 − a−1

2

ã
if x <

a+1 + a−1
2

,

for every a ∈ F.

Let Θ: FGN → FN defined by

Θi(v) = Φi(h ◦ v)⊕
ï
v(N)−1 − v(N)+1

2|N |
,
v(N)+1 − v(N)−1

2|N |

ò
,

for every v ∈ FGN and every i ∈ N .

Then, Θ satisfies additivity, equal treatment, central efficiency, null player, equally

signed marginal contributions and it does not satisfy zero solution.
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