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Escuela Técnica Superior de Ingenieŕıa, Matemática Aplicada II, Universidad de Sevilla, Camino de los
Descubrimientos, 41092 Sevilla, Spain

Abstract

A cooperative game consists of a set of players and a characteristic function which determines
the maximal gain or minimal cost that every subset of players can achieve when they decide to
cooperate, regardless of the actions that the other players take. A permission structure over the set
of players describes a hierarchical organization where there are players who need permission from
certain other players before they are allowed to cooperate with others. Various assumptions can
be made about how a permission structure affects the cooperation possibilities. In the conjunctive
approach it is assumed that each player needs permission from all his superiors. This paper deals
with fuzzy permission structures in the conjunctive approach. In this model, players could depend
partially on other players, that is, they may have certain degree of autonomy. First, we define a
value for games with fuzzy permission structure that only takes into account the direct relations
among players and provide a characterization for this value. Finally, we study a value for games
with fuzzy permission structure which takes account of the indirect relations among players.

Keywords: cooperative games, Shapley value, fuzzy sets, fuzzy orders

1. Introduction

In a general way, game theory studies cooperation and conflict models, using mathematical

methods. This paper is about cooperative game theory. A cooperative game over a finite

set of players is defined as a function establishing the worth of each coalition. Given a co-

operative game, the main problem that arises is how to assign to each player a payoff in a

reasonable way. In this setting, it is often assumed that all players are socially identical.

However, there are situations in which some players have a direct or indirect influence on

other players. For instance, there might be a veto relationship between them. Following

this idea, Gilles et al. [7] modeled situations in which an authority structure is exogenously

given and puts some constraints on the behavior of the players in the game. They consider

an abstract authority structure in which certain players dominate some other players, in

the sense that the superiors have veto power over the activities undertaken by their subor-

dinates. In general, they deal with games with permission structure, consisting of a set of

players, a cooperative game and a mapping that assigns to every player a subset of direct

Email address: ajlosada@us.es (J.M. Gallardo, N. Jiménez, A. Jiménez-Losada and E. Lebrón)
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subordinates. In this respect, the power of a player over a subordinate can be of different

kinds. In the conjunctive approach it is assumed that every player needs the permission of

all his superiors, that is, every player has complete veto power over the actions undertaken

by his inferiors. Bearing this in mind, in order to obtain the payoff of each player they define

a new game that takes account the information given by the authority structure.

In the model proposed in [7], the subordinate relationships are total in the sense that

the whole capacity for action of a player is controlled by his superiors. Now we propose to

study situations in which the dependence between players can be partial, which means that

only a part of the resources of a player is controlled by his superiors. This is what we will

call games with fuzzy permission structure. The partial dependencies will be represented by

a fuzzy relation on the set of players. In the same way as in [7] we will define a new game

considering the constraints given by the structure. A critical issue arises at this point: in

order to define such new game we need to assign a worth to certain fuzzy coalitions. Fuzzy

coalitions were introduced by Aubin [1] to deal with situations where some agents cannot

fully participate within a coalition. If we think of certain production games, full participation

means to offer all of resources, whereas partial participation means to offer only a fraction

of them. So, because of the kind of dependency relationships we intend to deal with, we will

be faced with the problem of assigning a gain to a fuzzy coalition. Regarding this matter,

different approaches have been developed in literature. In his seminal paper, Aubin proposed

an optimal value, also studied in [9]. In [3], Butnariu, assuming that different players should

have the same membership grade in order to cooperate, provided a different way to assign

a gain to a fuzzy coalition. In [13], Tsurumi et al., by using the Choquet integral, come up

with a reasonable method to extend a crisp game to the set of fuzzy coalitions. Following

Tsurumi’s approach, we will use the Choquet integral to define a new auxiliary game that

will combine the information from the original game and from the fuzzy permission structure.

This new game will allow us to determine the payoff that each player should receive, derived

from certain reasonable basis that we will show in an axiomatic form.

The paper is organized as follows. In Section 2 we recall some basic definitions and

results about cooperative games, permission structures, fuzzy sets and the Choquet integral.

In section 3, we introduce fuzzy permission structures, which model fuzzy relationships

between players. An operator that determines the autonomous part of each coalition in a

fuzzy permission structure is also defined. Using this operator, we modify the characteristic

function of a game by getting payoffs in accordance with the fuzzy permission structure.

Then, we define a value for games on fuzzy permission structures. Finally in section 3,

indirect fuzzy relationships are dealt with. In Section 4, we characterize the values introduced

in the previous section. A numerical example is given as well. Finally, in Section 5 we give

some conclusions.
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2. Preliminaries

2.1. Cooperative TU-games

A transferable utility cooperative game or TU-game is a pair (N, v) where N is a finite

set and v : 2N → R is a function with v (∅) = 0. The elements of N = {1, ..., n} are called

players, the subsets E ⊆ N coalitions and v (E) is the worth of E. For each coalition E,

the worth of E can be interpreted as the maximal gain or minimal cost that players in this

coalition can achieve by themselves against the best offensive threat by the complementary

coalition. Often, a TU-game (N, v) is identified with the function v. The family of all the

games with set of players N is denoted by GN . This set is a (2n− 1)-dimensional real vector

space. One basis of this space is the collection {uF : F ⊆ N, F 6= ∅} where for a coalition

F ⊆ N, F 6= ∅, the unanimity game uF is given by

uF (E) =

{
1 if F ⊆ E,

0 otherwise.
(1)

These games are monotone games. A game v is monotone if for every F ⊆ E ⊆ N , it

holds that v (F ) ≤ v (E). A player i ∈ N is a null player in v ∈ GN if v (E) = v(E \ {i}) for

all E ⊆ N. A player i is a necessary player in v ∈ GN if v (E) = 0 for E ⊆ N \ {i}.

A payoff vector for a game on the set of players N is a vector x ∈ RN . A value on GN

is a function ψ : GN −→ RN that assigns to each game a payoff vector. Many values have

been defined for different families of games in literature. The Shapley value [12] is the most

important of them. The Shapley value Sh (v) ∈ RN of a game v ∈ GN is a weighted average

of the marginal contributions of each player to the coalitions and formally it is defined by

Shi (v) =
∑

{E⊆N :i∈E}

(n− |E|)! (|E| − 1)!

n!
(v (E)− v (E \ {i})) , for all i ∈ N, (2)

where |E| denotes the cardinality of E. The Shapley value is the unique value ψ : GN −→ RN

that satisfies the following five axioms:

Efficiency:
∑

i∈N ψi (v) = v (N) for all v ∈ GN .

Linearity: ψ (a1v1 + a2v2) = a1ψ (v1) + a2ψ (v2) for all a1, a2 ∈ R and v1, v2 ∈ GN .

Null player property: If i ∈ N is null player in v ∈ GN then ψi (v) = 0.

Positivity: ψ (v) ≥ 0 for every monotone game v ∈ GN .

Necessary player property: If i is a necessary player in a monotone game v ∈ GN , then

ψi (v) ≥ ψj (v) for all j ∈ N .
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The reader can use [6] or [8] to get more information about cooperative games.

2.2. Permission structures

A permission structure on N is represented by a mapping S : N → 2N where the players

in S(i) are the successors of player i ∈ N in the permission structure, that is, S(i) contains

all the agents that are dominated directly by agent i. By Ŝ is denoted the transitive closure

of S, i.e. j ∈ Ŝ(i) if and only if there exists a sequence {ip}qp=0 such that i0 = i, iq = j and

ip ∈ S (ip−1) for 1 ≤ p ≤ q. Thus, the players in Ŝ(i) \S(i) are all agents that are dominated

indirectly by i. The set of superiors of i in S is denoted by P̂S (i) =
¶
j ∈ N : i ∈ Ŝ(j)

©
.

The collection of all permission structures on N is denoted by SN . Graphically, the family

of permission structures on N can be identified with the set of directed graphs on N . The

vertex set is N and the pair (i, j) is a link if j ∈ S (i).

A pair (v, S) where v ∈ GN and S ∈ SN is called a game with permission structure

over N . A permission structure limits the possibilities of coalition formation in a TU-game.

Several assumptions can be made about how a permission structure affects the coopera-

tion possibilities. In the conjunctive approach [7], the authors assume that the players need

permission from all their superiors in the permission structure before they are allowed to

cooperate. So, the conjunctive sovereign part of a coalition E contains those players in E

whose superiors are all in E, that is, AS (E) =
¶
i ∈ E : P̂S (i) ⊆ E

©
.

In order to find reasonable payoff vectors for games with permission structure, it is

proposed in [7] to modify the characteristic function v ∈ GN taking account of the limited

possibilities of cooperation determined by the permission structure S ∈ SN . The conjunctive

restriction of v on S is defined as the game vS ∈ GN given by vS (E) = v
(
AS (E)

)
for

every coalition E ⊆ N. A value for games with permission structure on N is an application

ψ : GN × SN → RN . Particularly the conjunctive permission value is defined as the value

φconj : GN × SN → RN which assigns to every v ∈ GN and S ∈ SN the Shapley value of

the conjunctive restriction of v on S, that is, φconj (v, S) = Sh
(
vS
)
. A set of axioms that

uniquely determines the conjunctive permission value for games with permission structure

is provided. For a value ψ, these axioms are the following:

Efficiency:
∑

i∈N ψi (v, S) = v (N) , for all v ∈ GN and S ∈ SN .

Additivity: ψ (v1 + v2, S) = ψ (v1, S) + ψ (v2, S) for all v1, v2 ∈ GN and S ∈ SN .

Weakly inessential player property: ψi (v, S) = 0 for every v ∈ GN , S ∈ SN and i ∈ N such

that every player j ∈ Ŝ(i) ∪ {i} is a null player in v.

Necessary player property: ψi (v, S) ≥ ψj (v, S) for every monotone v ∈ GN , S ∈ SN , j ∈ N
and i ∈ N a necessary player in v.
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Structural monotonicity: ψi (v, S) ≥ ψj (v, S) for every monotone v ∈ GN , S ∈ SN and

i, j ∈ N such that j ∈ S(i).

For further information, see [2, 7].

2.3. Fuzzy sets

Fuzzy sets were described by Zadeh [14]. A fuzzy subset of N is a mapping e : N −→ [0, 1]

where e assigns to i ∈ N a degree of membership. A fuzzy subset of N is identified with

a vector in [0, 1]N . Given e ∈ [0, 1]N the support of e is the set supp (e) = {i ∈ N : ei > 0}
and the image of e is the set {ei : i ∈ N} \ {0}. We will denote im (e) = {sp}qp=1 considering

that its elements are written in increasing order, that is, s1 < · · · < sq. For all e, f ∈ [0, 1]N

and i ∈ N , internal operations meet and join are introduced. These operations are defined

as (e ∩ f)i = ei ∧ fi, (e ∪ f)i = ei ∨ fi, where ∧,∨ represent minimum and maximum

respectively. The fuzzy sets e, f ∈ [0, 1]N are called comonotone when (ei − ej) (fi − fj) ≥ 0

for all i, j ∈ N.
A fuzzy relation on N is a fuzzy subset in N ×N , so the notions of support, image and

comonotonicity can be applied.

In cooperative game theory, Aubin [1] defines a fuzzy coalition in N to be a fuzzy subset

of N where, for all i ∈ N, the number ei ∈ [0, 1] is regarded as the degree of participation of

player i in e. Every coalition E ⊆ N can be identified with the fuzzy coalition 1E ∈ [0, 1]N

defined by 1Ei = 1 if i ∈ E and 1Ei = 0 otherwise.

2.4. The Choquet integral

The Choquet integral [5] was introduced for capacities. Later on Schmeidler [11] studied

this integral for all the set functions. If v : 2N → R is a set function and e ∈ [0, 1]N , then

the Choquet integral of e with respect to v is∫
e dv =

q∑
p=1

(sp − sp−1) v ({i ∈ N : ei ≥ sp}) , (3)

where im (e) = {sp}qp=1 and s0 = 0. The following properties of the Choquet integral are

known:

(C1)
∫

1E dv = v (E), for all E ⊆ N.

(C2)
∫
te dv = t

∫
e dv, for t ∈ [0, 1] .

(C3)
∫
e dv ≤

∫
f dv, when e ≤ f and v is monotone.

(C4)
∫
e d (cv) = c

∫
e dv, for c ∈ R.

(C5)
∫
e d (v1 + v2) =

∫
e dv1 +

∫
e dv2.

(C6)
∫

(e+ f) dv =
∫
e dv +

∫
f dv, when e+ f ≤ 1N and e, f are comonotone.
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3. Proposed methodology

In [2], it is assumed that each player needs permission from all his superiors, so the

cooperation possibilities depend on the positions of the players in the hierarchical permission

structure. Moreover, the dependence among players is total. Now, we are going to introduce

a new model in which players could depend on other players but not totally, that is, they

may have certain degree of autonomy.

3.1. Fuzzy permission structures. The autonomous operator

Definition 1. A fuzzy permission structure over N is a reflexive fuzzy relation ρ on N , that

is, an application ρ : N × N → [0, 1] satisfying ρ (i, i) = 1 for all i ∈ N . The family of all

fuzzy permission structures over N is denoted by FSN .

Given ρ ∈ FSN and i, j ∈ N, the number ρ (i, j) ∈ [0, 1] is interpreted as the membership

level of player j which needs the permission of i.

In the following, we are going to study games with fuzzy permission structure in a con-

junctive approach. Therefore, we assume that all the dependency relationships must be

respected, that is, player i in a coalition E ⊆ N cannot use the membership level controlled

by players out of E, in the sense that if coalition E is formed the degree of participation of

player i within E cannot be greater than 1 − ρ (j, i) for any player j that is not in E. The

following operator determines the degree of autonomy which each player has at his disposal

when participating in a coalition.

Definition 2. Let ρ ∈ FSN be a fuzzy permission structure on N . The autonomous operator

associated to ρ is the function aρ : 2N → [0, 1]N defined, for each i ∈ N , by

aρi (E) = 1−
∨

j∈N\E

ρ(j, i), for all E ⊆ N. (4)

In this definition, it is understood that aρ (N) = 1N . For any coalition E, the fuzzy

coalition aρ (E) is called autonomous set of E. Now we show several properties of this

operator. First, recall that two fuzzy permission structures ρ, ρ′ ∈ FSN are comonotone

when for all i, j, k, l ∈ N it holds that (ρ (i, j)− ρ (k, l)) (ρ′ (i, j)− ρ′ (k, l)) ≥ 0.

Proposition 1. Let ρ, ρ′ ∈ FSN be fuzzy permission structures and E,F ⊆ N. It holds that

(A1) aρ (E) ≤ 1E.

(A2) aρ (F ) ≤ aρ (E) if F ⊆ E.

(A3) aρ (E ∩ F ) = aρ (E) ∩ aρ (F ) .

(A4) a(1−t)ρ+tρ
′
(E) = (1− t)aρ (E) + taρ

′
(E) for t ∈ [0, 1], where ρ, ρ′ are comonotone.
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Proof. (A1) and (A2) are evident. By (A2), aρ (E ∩ F ) ≤ aρ (E)∩aρ (F ), for all E,F ⊆ N .

Now, given i ∈ N , there exists k /∈ E (or k /∈ F ) such that aρi (E ∩ F ) = 1 − ρ (k, i).

Moreover,

ρ (k, i) =
∨

j∈N\E∩F

ρ (j, i) =
∨

j∈N\E

ρ (j, i) . (5)

So, aρi (E ∩ F ) = aρi (E) ≥ aρi (E) ∧ aρi (F ) and it proves (A3). It is easy to check (A4) since

(1− t)
∨

j∈N\E

ρ (j, i) + t
∨

j∈N\E

ρ′ (j, i) =
∨

j∈N\E

[(1− t)ρ (j, i) + tρ′ (j, i)] ,

for each i ∈ N and for all comonotone ρ, ρ′ ∈ FSN . 2

3.2. The restricted game

In order to incorporate the information from a fuzzy permission structure into a game,

we will define a new characteristic function. To do this we will follow the idea of Tsurumi

et al. [13] who used the Choquet integral to extend a game to the set of fuzzy coalitions.

Definition 3. Let v ∈ GN and ρ ∈ FSN . The restricted game of v by the fuzzy permission

structure ρ is the game vρ defined by

vρ (E) =

∫
aρ (E) dv, for all E ⊆ N. (6)

In general, given a fuzzy permission structure, the images of the autonomous sets of

different coalitions will be different. The next lemma allows us to write the restricted game

using the image set of the fuzzy permission structure. Therefore we can use the same set of

levels for all coalitions. For this, we consider, for each ρ ∈ FSN , the set

Aρt (E) = {i ∈ E : ρ (j, i) < t for all j ∈ N \ E} , (7)

where t ∈ (0, 1] and E ⊆ N. Note that Aρt (E) ⊆ Aρt (F ) when E ⊆ F .

Lemma 2. Let v ∈ GN , ρ ∈ FSN with im (ρ) = {tk}mk=1 and t0 = 0. It holds

vρ (E) =
m∑
k=1

(tk − tk−1) v
(
Aρtk (E)

)
, for all E ⊆ N. (8)

Proof. Let E ⊆ N be a coalition with im (aρ (E)) = {sp}qp=1 and s0 = 0. For each

p ∈ {0, ..., q} , there exits kp ∈ {0, ...,m} such that sp = 1 − tkp . For all p ∈ {1, ..., q},
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kp−1 ∈ {kp + 1, ...,m}. Then, for all k, with kp + 1 ≤ k ≤ kp−1 it holds

Aρtk (E) =

i ∈ E :
∨

j∈N\E

ρ (j, i) < tk

 =

i ∈ E : 1−
∨

j∈N\E

ρ (j, i) > 1− tk


= {i ∈ N : aρi (E) > 1− tk} = {i ∈ N : aρi (E) ≥ sp} , (9)

where the last equality is true by the fact that aρi (E) > 1−tk > sp−1 if and only if aρi (E) ≥ sp

for i ∈ N . Using (9) and the definition of the Choquet integral we can write

m∑
k=1

(tk − tk−1) v
(
Aρtk (E)

)
=

q∑
p=1

 kp−1∑
k=kp+1

(tk − tk−1)

 v ({i ∈ N : aρi (E) ≥ sp})

=

q∑
p=1

Ä
t
kp−1
− tkp

ä
v ({i ∈ N : aρi (E) ≥ sp})

=

q∑
p=1

(sp − sp−1) v ({i ∈ N : aρi (E) ≥ sp}) = vρ (E) . 2

3.3. A value for games with fuzzy permission structure

Now, we are going to answer the question of how to divide the gains among the players

in a reasonable way when we have a game and a fuzzy permission structure on the set of

players. A value for games with fuzzy permission structure is a function Ψ : GN×FSN → RN

that associates to each game v ∈ GN and each fuzzy permission structure ρ ∈ FSN a vector

Ψ (v, ρ) ∈ RN , where Ψi (v, ρ) represents the payoff to player i in (v, ρ) . Let us consider a

particular value taking into account the direct relations among players.

Definition 4. The direct conjunctive fuzzy permission value or DCF-value is defined as the

application Φ : GN ×FSN → RN where Φ (v, ρ) = Sh (vρ) , for all v ∈ GN and ρ ∈ FSN .

3.4. Transitive fuzzy relationships

In the model introduced in [7] the relations of dependence are transitive. In the rest of

this section we aim to deal with transitivity in the case of fuzzy relationships. This could

be done in different ways. Our approach is based on the concept of transitive fuzzy relation

introduced by Zadeh [15].

Let S ∈ SN be a permission structure. We can identify S with the fuzzy permission

structure ρS ∈ FSN defined, for all i, j ∈ N , by

ρS (i, j) =

{
1 if j ∈ S (i) ∪ {i} ,
0 otherwise.

(10)

8



However, in general, given v ∈ GN , the conjunctive permission value, φconj (v, S) does not

coincide with the DCF-value Φ (v, ρS). This is due to the fact that the latter only takes into

account the direct relations among players. Zadeh [15] defines a transitive fuzzy relation as a

mapping ρ : N ×N −→ [0, 1] satisfying ρ (i, j) ≥ ρ (i, k)∧ρ (k, j) for all i, j, k ∈ N . Now, we

introduce a value considering the indirect dependencies among players in a fuzzy permission

structure.

Definition 5. Let ρ ∈ FSN . The transitive closure of ρ is a fuzzy permission structure

ρ̂ ∈ FSN defined, for all i, j ∈ N, by

ρ̂ (i, j) =
∨

{ip}qp=0∈Pij

q∧
p=1

ρ (ip−1, ip) (11)

where Pij =
¶
{ip}qp=0 ⊆ N : q ∈ N, i0 = i, iq = j

©
.

The fuzzy permission structure ρ̂ is transitive. Moreover, if ρ is transitive then ρ̂ = ρ.

Definition 6. The conjunctive fuzzy permission value or CF-value is defined as the appli-

cation Φconj : GN ×FSN → RN where Φconj (v, ρ) = Φ (v, ρ̂) , for all v ∈ GN and ρ ∈ FSN .

The next proposition shows that the CF-value is an extension of the conjunctive permis-

sion value [7].

Proposition 3. If S ∈ SN then Φconj (v, ρS) = φconj (v, S) for each game v ∈ GN .

Proof. It is easy to check that A
ρ̂S
1 (E) = AS (E) for all E ⊆ N and thus vρ̂S = vS.

Therefore,

Φconj (v, ρS) = Φ (v, ρ̂S) = Sh
Ä
vρ̂S
ä

= φconj (v, S) . 2 (12)

4. Results

Firstly we will characterize the values introduced in the previous section. After that, a

practical example is provided.

4.1. A characterization of the DCF-value

Let Ψ : GN × FSN → RN be a value for games with fuzzy permission structure. We

consider the following properties:

Efficiency. If v ∈ GN and ρ ∈ FSN then∑
i∈N

Ψi (v, ρ) = v (N) . (13)
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Additivity. For all v1, v2 ∈ GN and ρ ∈ FSN , it holds

Ψ (v1 + v2, ρ) = Ψ (v1, ρ) + Ψ (v2, ρ) . (14)

Inessential player. A player i ∈ N is an inessential player in (v, ρ) ∈ GN ×FSN if every

player j ∈ N with ρ (i, j) > 0 is a null player in v. If i is inessential player in (v, ρ) then

Ψi (v, ρ) = 0.

Veto power over a necessary player. If i is a necessary player in a monotone v ∈ GN

and ρ ∈ FSN is a fuzzy permission structure, then Ψj (v, ρ) ≥ Ψk (v, ρ) for each j ∈ N with

ρ (j, i) = 1 and for all k ∈ N .

Comonotonicity. Let ρ, ρ′ ∈ FSN be comonotone fuzzy permission structures. For all

t ∈ [0, 1] , it holds that

Ψ (v, tρ+ (1− t) ρ′) = tΨ (v, ρ) + (1− t) Ψ (v, ρ′) . (15)

The next result provides a characterization of the DCF-value.

Theorem 4. A value Ψ : GN×FSN → RN is equal to the DCF-value if and only if it satisfies

the properties of additivity, efficiency, inessential player, veto power over a necessary player

and comonotonicity.

Proof. Firstly we will prove that Φ satisfies the properties in the theorem.

Additivity follows directly from the linearity of the Shapley value and (C5).

Efficiency is clear from the fact that the Shapley value is efficient and (C1). Given

(v, ρ) ∈ GN ×FSN ,

∑
i∈N

Φi (v, ρ) =
∑
i∈N

φi (v
ρ) = vρ (N) =

∫
aρ (N) dv =

∫
1N dv = v (N) . (16)

In order to prove that the DCF-value satisfies the property of inessential player, let

i ∈ N be an inessential player for (v, ρ). We must check that Φi (v, ρ) = 0. Taking into

consideration the null player property of the Shapley value, it suffices to show that player i

is a null player in vρ. If im (ρ) = {tk}mk=1, t0 = 0 and E ⊆ N is a coalition such that i ∈ E,
(8) implies that

vρ (E) =
m∑
k=1

(tk − tk−1) v
(
Aρtk (E)

)
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and

vρ (E \ {i}) =
m∑
k=1

(tk − tk−1) v
(
Aρtk (E \ {i})

)
.

Clearly, Aρtk (E \ {i}) ⊆ Aρtk (E) for k ∈ {1, ...,m} . If j ∈ Aρtk (E) \ Aρtk (E \ {i}) then

ρ (i, j) ≥ tk > 0 and therefore, j is a null player in v. So, v
(
Aρtk (E)

)
= v

(
Aρtk (E \ {i})

)
.

Now, let i ∈ N be a necessary player in a monotone v ∈ GN and j ∈ N a player with

ρ (j, i) = 1. Then, aρi (E) = 0 for all E ⊂ N with j /∈ E. If im (aρ (E)) = {sp}qp=1 then

i /∈ {k ∈ N : aρk (E) ≥ sp} for all p and so, v ({k ∈ N : aρk (E) ≥ sp}) = 0. Hence vρ (E) = 0

and j is a necessary player in vρ. Properties (A2) and (C3) imply vρ is also monotone. As

the Shapley value satisfies the necessary player property then, for all k ∈ N ,

Φj (v, ρ) = Shj (vρ) ≥ Shk (vρ) = Φk (v, ρ) .

To check that the DCF-value satisfies the property of comonotonicity, let ρ, ρ′ ∈ FSN

be comonotone fuzzy permission structures. First, we show that the fuzzy sets aρ (E) and

aρ
′
(E) are comonotone for all E ⊆ N. Indeed, if i, j ∈ N, it holds aρi (E) > aρj (E) if and

only if
∨
k∈N\E ρ (k, j) >

∨
k∈N\E ρ (k, i) . The last inequality is equivalent to writing that

for all k ∈ N \ E there exists k′ ∈ N \ E such that ρ (k′, j) > ρ (k, i). Moreover, since ρ, ρ′

are comonotone, for k ∈ N \ E, there exists k′ ∈ N \ E such that ρ′ (k′, j) ≥ ρ′ (k, i) or

equivalently aρ
′

i (E) ≥ aρ
′

j (E) . Clearly, if t ∈ [0, 1] , then taρ (E) and (1 − t)aρ′ (E) are also

comonotone and taρ (E) + (1− t) aρ′ (E) ≤ 1N . Then, by (A4), (C6) and (C2), for v ∈ GN

it holds that

vtρ+(1−t)ρ′ (E) =

∫
atρ+(1−t)ρ′ (E) dv =

∫ Ä
taρ (E) + (1− t) aρ′ (E)

ä
dv

= t

∫
aρ (E) dv + (1− t)

∫
aρ
′
(E) dv = tvρ (E) + (1− t) vρ′ (E) . (17)

Finally, from (17) and the linearity of the Shapley value it follows that

Φ (v, tρ+ (1− t) ρ′) = Sh
Ä
vtρ+(1−t)ρ′

ä
= Sh

Ä
tvρ + (1− t) vρ′

ä
= tSh (vρ) + (1− t)Sh

Ä
vρ
′ä

= tΦ (v, ρ) + (1− t) Φ (v, ρ′) .

It remains to prove uniqueness. For this, let us consider a value Ψ satisfying the five

properties and we show that Ψ = Φ.

First, let ρ ∈ FSN be a fuzzy permission value with im (ρ) = {1} and F ∈ 2N \ {∅}. Let

L = {k ∈ N : ρ (k, j) = 1 for some j ∈ F} and α ≥ 0. If i /∈ L then i is inessential player
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in (αuF , ρ). The property of inessential player implies that Ψi (αuF , ρ) = 0. If i ∈ L, then

there exists j ∈ F such that ρ (i, j) = 1. From the property the veto power over a necessary

player there is c ≥ 0 with Ψi (αuF , ρ) = c. From efficiency it follows that∑
i∈N

Ψi (αuF , ρ) = c |L| = α, (18)

and thus Ψ (αuF , ρ) = Φ (αuF , ρ). If α = 0 notice that all players are inessential in (0, ρ).

Applying the property of inessential player to both values, we obtain Ψ (0, ρ) = Φ (0, ρ) = 0.

From this and the property of additivity, if α < 0 then we can derive

Ψ (αuF , ρ) = −Ψ (−αuF , ρ) = −Φ (−αuF , ρ) = Φ (αuF , ρ) . (19)

Since v ∈ GN can be written as v =
∑

{F⊆N, F 6=∅}
αFuF , it is clear that Ψ (v, ρ) = Φ (v, ρ) for

all (v, ρ) ∈ GN ×FSN .
Following a recurrence argument, we assume that the equality Ψ (v, ρ) = Φ (v, ρ) is true

for all (v, ρ) ∈ GN ×FSN with |im (ρ)| = m− 1 and consider ρ ∈ FSN with |im (ρ)| = m.

Let ρ1, ρR ∈ FSN be the fuzzy permission structures defined, for all i, j ∈ N, by

ρ1 (i, j) =

{
1 if ρ (i, j) = 1,

0 otherwise,
ρR (i, j) =

 1 if ρ (i, j) = 1,
ρ (i, j)

tR
otherwise,

(20)

where tR = ∨ (im (ρ) \ {1}) . It is clear that |im (ρ1)| = 1 and |im (ρR)| = m− 1. Note that

ρ = (1− tR) ρ1 + tRρR. Moreover, (1− tR) ρ1 and tRρR are comonotone. From the property

of comonotonicity and the induction hypothesis we obtain

Ψ (v, ρ) = (1− tR) Ψ (v, ρ1) + tRΨ (v, ρR) = (1− tR) Φ (v, ρ1) + tRΦ (v, ρR) = Φ (v, ρ) . (21)

2

4.2. A characterization of the CF-value

Next we present some properties for Ψ : GN × FSN → RN that uniquely determine the

CF-value. We will consider the properties of additivity, efficiency, comonotonicity and the

following ones:

Transitive inessential player. A player i ∈ N is a transitive inessential player in (v, ρ) ∈
GN × FSN if j is a null player in v for all j ∈ N such that there exists a sequence {ip}qp=0

with i0 = i, iq = j and ρ (ip−1, ip) > 0 for all p = 1, . . . , q. If i is a transitive inessential

player in (v, ρ) then Ψi (v, ρ) = 0.

12



Transitive veto power over a necessary player. If i is a necessary player in a monotone

game v ∈ GN then Ψj (v, ρ) ≥ Ψk (v, ρ) for all k ∈ N for each j ∈ N such that there exists a

sequence {ip}qp=0 with i0 = j, iq = i and ρ (ip−1, ip) = 1 for all p = 1, . . . , q.

Theorem 5. A value Ψ : GN×FSN → RN is equal to the CF-value if and only if it satisfies

the properties of additivity, efficiency, transitive inessential player, transitive veto power over

a necessary player and comonotonicity.

Proof. Firstly we will prove that Φconj satisfies the five properties.

Additivity and efficiency of Φconj are evident.

The properties of transitive inessential player and transitive veto power over a necessary

player are easy to show. If i ∈ N is a transitive inessential player in (v, ρ), then i ∈ N is

an inessential player in (v, ρ̂) and hence Φi (v, ρ̂) = 0 = Φconj
i (v, ρ) . On the other hand, if

i ∈ N is a necessary player in a monotone game v and j ∈ N is a player such that there

exists a sequence {ip}qp=0 with i0 = j, iq = i and ρ (ip−1, ip) = 1, 1 ≤ p ≤ q, then it holds

that ρ̂ (j, i) = 1 and hence, Φconj
i (v, ρ) = Φi (v, ρ̂) ≥ Φk (v, ρ̂) = Φconj

k (v, ρ) for all k ∈ N.

In order to prove that Φconj satisfies the property of comonotonicity, let ρ, ρ′ ∈ FSN be

comonotone fuzzy permission structures and t ∈ [0, 1]. If τ = tρ + (1− t) ρ′ then we show

that τ̂ = tρ̂+ (1− t) ρ̂′, for t ∈ [0, 1] . Indeed, given i, j ∈ N, it holds that

τ̂ (i, j) =
∨

{ip}qp=0∈Pij

q∧
p=1

(tρ+ (1− t) ρ′) (ip−1, ip)

= t
∨

{ip}qp=0∈Pij

q∧
p=1

ρ (ip−1, ip) + (1− t)
∨

{ip}qp=0∈Pij

q∧
p=1

ρ′ (ip−1, ip)

= tρ̂ (i, j) + (1− t) ρ̂′ (i, j) . (22)

These equalities are true because ρ and ρ′ are comonotone and therefore the maximum is

obtained for the same sequence {ip}qp=0 and the corresponding minimum is attained at the

same (ip−1, ip). Moreover, it is easy to check that ρ̂ and ρ̂′ are also comonotone. From (22)

and the fact that Φ satisfies the property of comonotonicity, it follows that

Φconj (v, tρ+ (1− t) ρ′) = Φ (v, τ̂) = Φ
Ä
v, tρ̂+ (1− t) ρ̂′

ä
= tΦ (v, ρ̂) + (1− t) Φ

Ä
v, ρ̂′
ä

= tΦconj (v, ρ) + (1− t) Φconj (v, ρ′) .

Now suppose that Ψ : GN ×FSN → RN satisfies the five properties.

Let ρ ∈ FSN be a fuzzy permission structure with im (ρ) = {1} and F ∈ 2N \ {∅}. If

we consider L = {k ∈ N : ρ̂ (k, j) = 1 for some j ∈ F}, then by repeating the reasoning in

13



the proof of Theorem 4 we obtain that Ψ (v, ρ) = Φconj (v, ρ) for all (v, ρ) ∈ GN ×FSN with

im (ρ) = {1} . If we assume that the equality Ψ (v, ρ) = Φconj (v, ρ) is true for all v ∈ GN

and ρ ∈ FSN with |im (ρ)| = m− 1, and apply the induction hypothesis to the comonotone

fuzzy permission structures ρ1, ρR ∈ FSN defined, for all i, j ∈ N, by

ρ1 (i, j) =

{
1 if ρ (i, j) = 1,

0 otherwise,
ρR (i, j) =

 1 if ρ (i, j) = 1,
ρ (i, j)

tR
otherwise,

(23)

where tR = ∨ (im (ρ) \ {1}) , we obtain, by using the property of comonotonicity, that

Ψ (v, ρ) = Φconj (v, ρ) for all (v, ρ) ∈ GN ×FSN . 2

4.3. Example

Consider three factories 1, 2 and 3. Each one of them can produce, let us say, one million

units of a certain electronic component. For any factory i, the component manufactured by

i can be sold at a profit of i euros each. Besides, any two of the factories, i and j, can decide

to assemble their components (one unit for one unit) and produce a new component that

can be sold at a profit of 2(i + j) euros each. Finally, the three factories can agree to work

together and produce one million units of another more sophisticated component that can

be sold at a profit of 20 euros each. This situation can be modeled by a classical cooperative

game.

Now imagine the following. Factory 2 sues factory 1 for violation of patent rights and

factory 3 sues 2 for the same reason (suppose that both patent infringements are not related).

So, in the end, the situation is this: factory 1 cannot use or sell the component they make

without permission from factory 2, and the latter cannot use or sell their component without

permission from factory 3. Notice that this scenario cannot be modeled with the conjunctive

structures introduced in [7], since there is no transitivity in the dependency relationships.

Although our model can be applied to this situation, we prefer to focus on proper fuzzy

relationships. So we will consider the following sequence of events. The patent problem is

difficult to clear up and factory 3 is not confident of winning a possible lawsuit. They are

also afraid of the cost of litigation. So they decide to make a proposal to factory 2, according

to which the latter would not be able to make use of a 50% of the components they make

without the permission from factory 3. The managers of factory 2 are aware that they have

probably infringed a patent, so they accept. Then, a 50% of the operating capacity of player

2 ends up being dependent on the permission from player 3. Imagine that something similar

happens between 1 and 2. But in this case we will suppose that there are more doubts

regarding the possible infringement, so they finally sign an exclusivity agreement that only

affects a 30% of the production of factory 1.
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Now, we will apply our model to this last scenario. Let N = {1, 2, 3} be the set of players

(factories). The characteristic function indicating the profit (in millions) of each coalition

without taking into account the dependency relationships is given by

v ({1}) = 1, v ({2}) = 2, v ({3}) = 3,

v ({1, 2}) = 6, v ({1, 3}) = 8, v ({2, 3}) = 10, v (N) = 20.
(24)

The dependency relationships are the result of the agreements and can be represented by

the fuzzy permission structure ρ given by the matrix [ρ (i, j)]3

ρ =

 1 0 0

0.3 1 0

0 0.5 1

 . (25)

The autonomous operator (4) associated to ρ determines the fraction of resources that each

player can use within a coalition,

E {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
aρ (E) (0.7, 0, 0) (0, 0.5, 0) (0, 0, 1) (1, 0.5, 0) (0.7, 0, 1) (0, 1, 1) (1, 1, 1)

Table 1: The autonomous sets.

The Choquet integral with respect to v of the autonomous set of a coalition is the best

profit for that coalition. Hence we determine the restricted game (6):

vρ ({1}) = 0.7 v ({1}) = 0.7, vρ ({2}) = 0.5 v ({2}) = 1, vρ ({3}) = v ({3}) = 3,

vρ ({1, 2}) = 0.5 v ({1, 2}) + 0.5 v ({1}) = 3.5, vρ ({2, 3}) = v ({2, 3}) = 10,

vρ ({1, 3}) = 0.7 v ({1, 3}) + 0.3 v ({3}) = 6.5, vρ (N) = v (N) = 20,

(26)

Finally, a payoff vector for the factories is Φ (v, ρ) = (4.5667, 6.4667, 8.9667) .

Now, we suppose that both patent infringements are related. In that case we apply the

value introduced in Definition 6. The transitive closure (11) of ρ is given by the matrix

ρ̂ =

 1 0 0

0.3 1 0

0.3 0.5 1

 . (27)
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We apply formula (8) to obtain the restricted game. We use the sets in the following table:

tk Aρ̂tk ({1}) Aρ̂tk ({2}) Aρ̂tk ({3}) Aρ̂tk ({1, 2}) Aρ̂tk ({1, 3}) Aρ̂tk ({2, 3}) Aρ̂tk (N)

0.3 ∅ ∅ {3} ∅ {3} {2, 3} {1, 2, 3}
0.5 {1} ∅ {3} {1} {1, 3} {2, 3} {1, 2, 3}
1 {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

Table 2: Set Aρ̂tk (E) for E ⊆ N .

The restricted game of v by the fuzzy permission structure ρ̂ is,

vρ̂ ({1}) = 0.7, vρ̂ ({2}) = 1, vρ̂ ({3}) = 3,

vρ̂ ({1, 2}) = 3.2, vρ̂ ({1, 3}) = 6.5, vρ̂ ({2, 3}) = 10, vρ̂ (N) = 20,
(28)

and a payoff vector for the factories is Φconj (v, ρ) = (4.5167, 6.4167, 9.0667) .

5. Conclusions and remarks

We have defined and characterized a value for games with fuzzy permission structure.

This value extends the conjunctive value introduced in [7] in several ways. Firstly, it deals

with fuzzy relationships, allowing us to give reasonable payoffs in situations in which there

are players that depend partially on other players. In addition, this new value is applicable

not only to hierarchies, but to a wide range of dependency structures. Moreover, in this new

model dependency relations are not necessarily transitive.

We have also studied a value for games with fuzzy permission structure applicable to

situations in which indirect relations must be considered. A characterization of this value is

given as well.

Our model can be applied whenever we have a cooperative TU-game and a collection of

pairwise dependency relationships.

Different approaches could be considered for further research. For instance, we can think

of situations in which the dependence relationships do not have a pairwise pattern, that is,

situations in which a player may depend on a coalition but not necessarily on any player of

this coalition. Apart from that, we could consider different operations to deal with fuzzy

relationships. In this respect, our definition of the autonomous set of a coalition is inspired

by the standard intersection and union of fuzzy sets introduced by Zadeh [14]. Depending

on the nature of the relationships among the players, it might be convenient to consider

alternative fuzzy set operations, like those given by Butnariu and Klement [4] or others.

Moreover, in order to deal with transitive relationships we have considered the concept of

transitive relationship introduced by Zadeh [15], that makes use of the minimum t-norm.
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But in some situations it would be more appropriate to consider the transitivity with respect

to the product t-norm. This approach remains to be studied.
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