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Abstract A safe integration of UAVs into the airspace is fundamental to
unblock all the potential of drone applications. U-space is the drone traffic
management solution for Europe, intended to handle a large number of drones
into the airspace, especially at Very Low Level (VLL). This paper is focused on
conflict management for multiple unmanned aerial vehicles in the context of
the U-space under 4D trajectory based operations (4D-TBO). A novel method
for multi-UAV conflict management at tactical level for large-scale scenarios is
presented. The integration of 4D-TBO in this context has been implemented
with a four dimensional trajectory follower based on the carrot chasing al-
gorithm. This method minimizes, through the whole flight, the mean normal
distance to the defined trajectory and the mean difference with respect to the
defined arrival times. Finally, the integrated system has been implemented in a
software in the loop environment with a commercial autopilot. The simulation
results show better performance with respect to other classical approaches.

Keywords Multi UAV · Conflict management · 4D-trajectory follower

1 Introduction and related work

It is envisioned that in the following decade “very-low-level” (VLL) air traffic
will increase exponentially, mainly by the commercial use of drones. In order
to maintain the level of risk in aerial operations, as in the last two decades, it
will be necessary to develop a number of new services and specific procedures
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that conforms the so-called U-space (drone traffic management solution for
Europe). Due to the large number of drones that are expected to operate in
the next years, these services will require a high level of digitalization and
automation to facilitate not only a safe integration but also a secure and
efficient one. Therefore, the development of U-space is crucial to boost the
drone market and their public acceptance [1] in the following years. U-space
is currently defined as a set of services [2] and procedures to support safe,
efficient, and secure access to airspace for UAVs.

In this context, the concept of multi-UAV conflict management becomes a
key challenge that is considered at two levels: strategic (pre-flight approaches)
and tactical (in-flight approaches). On one hand, at strategic level most works
focus on studying the probability of conflicts between pairs of UAVs, as in [3]. A
quite relevant work, related to the strategic multi-trajectory conflict detection,
is [4]. They propose the sequential division of the airspace to get sub-spaces
containing an unique trajectory. However, its performance may decrease signif-
icantly for too dense scenarios. In [5], the authors incorporate intent informa-
tion from predefined trajectories to complement a Velocity Obstacle approach,
but focusing on the 2D problem. On the other hand, at tactical level conflict
detection is also a well studied problem in the literature. The conditions to
define a potential conflict between two UAVs, based on their tracked trajec-
tories, are stated in [6]. Authors in [7] pose a hierarchical approach, which
reduces the computation time to detect potential imminent conflicts by check-
ing the relative distance between pairs of UAVs in an asynchronous way. In
[8], they show how the intended flight plan may enhance the conflict detection
in a tactical phase. Another reactive approach rather spread is using the con-
cept of Velocity Obstacles [9]. These methods search a velocity space to assign
the vehicles velocities leading to collision-free trajectories in future. Another
geometric approach based on space-time prisms is proposed in [10].

Another related area is multi-vehicle path finding, which is known to
be NP-hard optimization problem [11] where a set of vehicles need to find
collision-free paths. Different optimization methods have been applied to solve
the problem in continuous [12] or discrete space [13]. Centralized constrained
optimization solvers have been proposed. For instance, [14] propose to model
the problem as a task allocation, and then compute optimal trajectories in
terms of traveled distance. In [15], linear programming in a velocity space is
used. Also, Sequential Convex Programming has been proposed to obtain so-
lutions in non-convex scenarios [16]. The main issue with these methods for
multi-vehicle path finding is that they do not scale well with the size of the
team.

Finally, the concept of 4D-trajectory Based Operations (4D-TBO) is an-
other relevant issue in this context. It consists in the integration of the tem-
poral dimension into the traditional flight plans, which included only the in-
tended three dimensions spatial trajectory. Therefore, any delay in the time
schedule should be assumed as a separation from the intended trajectory, just
as a vertical or horizontal deviation. This concept is specially relevant for U-
Space tactical services, such as monitoring and tactical deconfliction, where
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4D-TBO increase the aerial traffic predictability, maximizing the airspace ca-
pacity and improving the overall safety in the aerial traffic management (less
unexpected conflicts). Robust, efficient and precise autonomous following of
predefined trajectories is a requirement by the UAVs for all these applications.
The trajectory tracking problem for UAVs is well studied in the literature,
and there are different geometric or control methods. Pure pursuit [17], carrot
chasing [18], line-of-sight (LOS) [19] methods and vector field [20] are some
common geometric algorithms.

This paper presents a method for multi-UAV conflict management at tac-
tical level, based on the estimation of 4D UAV trajectories. The proposed
solution represents the scenario by means of a 4D grid and uses a geometric
approach to resolve conflicts in an iterative manner, minimizing the deviation
with respect to the initial estimated trajectory. In short, our main contribu-
tions are the following: (i) we propose a novel method for multi-UAV conflict
management at tactical level for large-scale scenarios within the U-space con-
cept; and (ii) the integration of 4D-TBO in this context with a four dimensional
trajectory follower based on the carrot chasing algorithm previously presented
by the authors [21].

The rest of the paper is structured as follows. First, Section 2 states the
conflict detection, tactical deconfliction and 4D-trajectory tracking problems.
In Section 3, a conflict detection and resolution system and a 4D-trajectory
follower are presented. Section 4, summarizes the set of simulation results used
to validate the proposed approach. Finally, Section 5 closes the paper with the
conclusions and future work.

2 Problem statement

We address conflict detection and resolution for multi-UAV systems from a tac-
tical point of view and based on 4D-trajectories. There are several challenges
and complementary issues to take into account to approach this problem.

2.1 Conflict definition

A conflict between two UAVs (so-called loss of minimum separation event,
according to U-space terminology) may be defined as a situation where they
approach below their safety distances. Depending on the type of vehicle, differ-
ent separations parameters for the lateral, longitudinal and vertical dimensions
may be considered and different shapes around the vehicle may be considered
as their safety zones: a elliptical cylinder, an ellipsoid or a sphere.

Hereafter, we will consider multi-rotor UAVs, since they are the most usual
drone type in very low level airspace. Thus, considering that the motion of a
multirotor may be assimilated as holonomic under certain conditions, a spher-
ical safety zone and a single safety distance parameter δ is applied, as it is
shown in Figure 1. A conflict between two UAVs will happen at time t if and
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only if |pi(t)−pj(t)| ≤ δ, being pi(t) and pj(t) the positions at time t of UAVs
Ai and Aj , respectively.

δ

Fig. 1 Conflict situation between two multi-rotors. Gray lines indicate the trajectories of
the UAVs and the dotted circles bounds up their safety zones. It is assumed that both UAVs
are flying at the same altitude.

From a tactical point of view, the conflicts can not be detected at the cur-
rent time t, but predicted with the enough time-span to decide and execute
the most proper actions to avoid the potential conflict, i.e. following an alter-
native flight plan. Therefore, in order to handle the conflict detection problem
it is required to have the estimated UAV poses along time for a given time
horizon, i.e. the 4D-trajectories of the UAVs.

Let assume a 4D-trajectory as an ordered set of waypoints, being it defined
by an expected 3D-position and its estimated arrival time. Let us also con-
sider that every pair of consecutive waypoints are equally time-spaced by the
same inter-waypoint period τ for any trajectory. Therefore, a potential conflict
between a pair of trajectories will happen if there exist a pair of waypoints of
both trajectories with a time difference below the inter-waypoint period and
distance below the safety distance, see Figure 2.

2.2 Tactical deconfliction problem

Let us consider a set of 4D-trajectories for UAVs sharing a common airspace
defined within a given time horizon. The conflict detection and resolution prob-
lem implies not only to detect potential conflicts according to the definitions
of the trajectories presented in Section 2.1, but also to propose an alternative
set of 4D-trajectories which ensure no potential conflicts among them.

There are infinite possible solutions to the posed problem. In order to assess
relevant solutions, it will be assumed that the initial trajectories are the desired
ones from an operational point of view, since they come from the flight plans
provided by the UAV operators. Therefore, the mean distance deviation from
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δ

Fig. 2 Conflict between a pair of waypoints of two different trajectories. Black points
indicate the waypoints. It is assumed that both trajectories have been coordinated to share
the same altitude and longitudinal position. Therefore, the difference in the lateral position
corresponds to the distance between them.

Fig. 3 Estimated trajectories within a given time horizon of several UAVs sharing a common
airspace. Each waypoint is marked as a colored circle.

the initial trajectories to the alternative ones will be chosen as a minimization
criteria. This distance deviation may be calculated as the 3D-distance between
a pair of waypoints with the same estimated arrival time from the alternative
and initial trajectories.

It is interesting to take into account the priorities associated to the different
UAVs to solve the problem. A potential conflict between two UAVs with dif-
ferent priorities should be solved varying only the trajectory of the UAV with
lower priority. Therefore, the optimization criteria should consider to weight
the trajectory deviations according to these priorities.

On the other hand, since this problem should be solved in-flight and the
alternative trajectories have to be submitted, accepted and executed by the
UAVs, the required processing time to obtain a suitable solution has to be
minimized.
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2.3 4D-Trajectory tracking problem

The problem described in Section 2.2 is based on the accurate tracking of
4D-trajectories by the involved UAVs: each UAV has to follow its assigned
waypoints matching each associated arrival time. Delays or advances with
respect to the estimated arrival time may cause unexpected conflicts and re-
quires to update the estimation of the trajectories, to detect new conflicts and
to generate alternative trajectories continuously.

However, commercial autonomous navigation systems for UAVs do not
usually manage 4D-trajectories, and sets a cruise flight speed to follow a given
3D-path. The 4D-trajectory could hardly be tracked using these systems, even
when the arrival times associated to each waypoint had been properly chosen
according to the UAV cruise speed. Moreover, matching the specified arrival
times manually is not an easy task.

Let us assume that a UAV can be directly controlled through 3D-velocity
commands. Known the intended 4D-trajectory of the UAV, the objective is to
implement a system which tracks accurately the positions and the associated
arrival times based on velocity commands. The maximum flight speed should
be also considered for the UAV.

Formally, the criteria to minimize are two: the mean minimum distance
between the actual travelled trajectory and the estimated one; and the mean
difference between the actual and the estimated arrival times to every way-
point.

3 Solution adopted

The proposed solution is based on the assumption that the updated versions
of the estimated 4D-trajectories for all the UAVs which share the controlled
airspace are continuously available within a given time horizon T . These tra-
jectories are defined as a ordered set of 4D-waypoints, equally time-spaced by
τ seconds.

Conflict detection and resolution software is executed on a central ground
station, which receives information from all the UAVs. It detects potential loss
of separation events between UAVs and provides alternative plans to avoid
them. On the other hand, for each UAV, its on-board computer executes a
trajectory following algorithm. It receives the alternative plans provided by
the ground segment and commands the UAV to match the 4D-trajectories as
close as possible (not only in the space, but also in time). Figure 4 shows this
software architecture.

3.1 Conflict detection and resolution based on 4D-grids

It is based on two interconnected services: monitoring and tactical deconflic-
tion. Monitoring is in charge of detecting potential loss of separation events
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Fig. 4 Interactions between air (UAV) and ground (UTM) software modules. Shaded boxes
are out of the scope of this paper.

and reporting to the tactical deconfliction algorithm which computes alterna-
tive trajectories for the involved UAVs. In turn, the alternative trajectories
generated by the deconfliction service will be executed by the UAVs and reg-
istered by the monitoring service. Therefore, if the new trajectories cause new
conflicts, they will be reported again from the monitoring to the deconfliction
node, generating an iterative process.

3.1.1 Monitoring service

It is based on modeling the considered scenario as a 4D-grid. The whole
controlled airspace within a time horizon T is divided into 4D-cells of size
dX × dY × dZ × τ , being τ the length associated to the time dimension, see
Figure 5. Each cell stores a list with the waypoints from the received set of
4D-trajectories which are into its associated 4D-space.

Periodically (each τ seconds), the monitoring service updates the 4D-grid
using the estimated trajectories of the UAVs. Conflict evaluation is made only
between waypoints which are in the same or neighboring cells. Therefore, when
an updated waypoint is stored into its associated cell, the neighboring cells
are checked to find potential conflicts, see Figure 6. This approach reduces
dramatically the total amount of required checks with respect to other methods
based on an exhaustive search approach, specially for large-scale scenarios.

After each iteration, the monitoring service provides a list of potential
conflicts between pairs of waypoints of different trajectories, including their
information.

Since the grid has to be stored in the computer, its size is directly related
to the memory storage requirements and algorithm efficiency. Let us consider a
controlled airspace of size dX×dY ×dZ and a time horizon of T seconds. Then,
the dimensions of the required grid would be dX/dXe × dY/dY e × dZ/dZe ×
dT/τe, being de defined as the ceiling function.
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Fig. 5 Airspace shared by two trajectories divided into a grid. The altitude is not shown
for the sake of clarity. Black circles represent the waypoints and the associated number its
arrival time.

T=2 T=3 T=4

Fig. 6 Conflict detection process associated to the third waypoint from the blue trajectory
in the scenario represented in Figure 5. This waypoint is stored into its cell and its neighbor-
ing cells (dashed cells in the figure) are checked to look for waypoints from other trajectories
(green trajectory, in this case). The analyzed waypoint has to be validated against the third
and four waypoint from the green trajectory, as it is shown in the example.

Another issue to consider is the lower limit of the cell size. On one hand,
since conflicts are checked only between neighboring cells, the size of the cells
cannot be less than the safety distance δ. In other case, a potential conflict
could exist between two waypoints which are not in the neighboring cells.
Therefore, dX, dY, dZ ≥ δ.

On the other hand, the cell size has to be bounded down by the speed of the
involved UAVs. The UAVs cannot fly fast enough to go through two cells in
a single period τ because potential loss of separation events could be ignored.
Therefore, defining vmax as the maximum speed of the fastest UAV involved in
the scenario, the size of the cell cannot be less than τvmax: dX, dY, dZ ≥ τvmax.

The relation between the safety distance and the 4D-cell dimensions in-
fluences the system efficiency. On one hand, the lower the value of the safety
distance, the bigger the 4D-grid size, memory requirements and time to cre-
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ate the grid, but lower processing time since the number of checks between
waypoints in neighboring cells will be minimized. On the other hand, as larger
these dimensions are, the conflict detection algorithm will look more like an
exhaustive search.

3.1.2 Tactical deconfliction

This algorithm is based on a geometric approach to solve sequentially each
conflict between pairs of waypoints. The idea is separating each pair of con-
flicting waypoints independently and taking advantage of the periodic checks
performed by the monitoring service to solve iteratively more complex situa-
tions (with more than two UAVs involved).

For each conflict received, it computes a new pair of waypoints separated
enough to match the safety distance, as it is shown in Figure 7. These new
waypoints are calculated modifying the 3D-position, but not the arrival time,
generating an estimated variation of the nominal speed of the UAV with re-
spect to the original one. Then, they are fused with the associated trajectories
and reported to the corresponding UAVs.

Conflicting waypoints
Safety distance

Fig. 7 On the left two trajectories with a pair of waypoints in conflict. On the right, the
alternative trajectories provided by separating the conflicting waypoint to match the safety
distance.

In order to calculate the new waypoints, different issues have to be consid-
ered. First, UAVs operations may be assigned with different priorities. We keep
without variation the trajectories associated to UAVs with higher priorities,
proposing alternative trajectories for the UAVs with lower priorities.

In addition, waypoints separation may be performed following different
directions: the direction which join both waypoints, vertically or horizontally.
The first option seems to be the more efficient from an airspace capacity point
of view and according to the conditions specified in Section 2.2. However, the
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latter options are safer since they are more predictable for the rest of manned
and unmanned aircrafts.

It should be noticed that the proposed approach requires that UAVs can
adapt their flight velocities to properly follow the generated trajectories. Al-
though initial flight plans could have been chosen to fly at a single nominal
speed, alternative trajectories do not respect this principle.

Although each conflict is solved independently, i.e. not considering the rest
of the trajectories, the monitoring service runs periodically and generates an
iterative process which is illustrated in Figure 8.

...

´Safety distance

´Safety distance

Fig. 8 Separation between three trajectories (waypoints) based on several iterations (from
left to right).

Finally, it has to be checked if the UAVs can follow the alternative trajec-
tory, matching the arrival time requirements according to its speed capabilities.
In summary, this one may be assured always the required cruise speed of the
UAV to perform the initial plan is lower than the half of its maximum speed.
In case this condition is not met, different strategies may be adopted: modify-
ing also the previous and/or next waypoint to the conflicting one; or assigning
a different separation weight to each conflicting waypoint depending on the
difference between the original cruise speed and the maximum speed.

3.2 4D-trajectory follower based on the ’Carrot chasing’ algorithm

It endows the generator and the follower algorithms as it is shown in Figure 9.
The generator algorithm creates a much more dense list of waypoints based

on the ordered list of waypoints received and it can be approximated to a
continuous curve. To follow a 4D-trajectory, it should interpolate the initial list
of times matching the amount of waypoints of the more dense list. The follower
algorithm minimizes the distance between the actual travelled trajectory and
the estimated one; and the mean difference between the actual and estimated
arrival times to the waypoints. It receives the generated 4D-trajectory, the
look ahead distance, the maximum speed and, continuously, the UAV pose and
the actual time. The follower algorithm calculates the velocity command as
follows: First, the point on the trajectory that matches the minimum distance
between the UAV and the trajectory should be obtained. The look ahead
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Fig. 9 The trajectory follower design allows to use it by simply configuring the initial
4D waypoint list. It also provides more configuration options to suit the user needs. The
generator is called by the follower and runs once to generate a discrete curve with the desired
time on each point of the curve.

distance is added to get the virtual target pose on the trajectory. To fix the
actual time error, the method should calculate the cruising speed subtracting
the actual time to the arrival time of the target waypoint and dividing it by
the look ahead distance. If the UAV is ahead of schedule, the cruising speed
will be reduced, and otherwise the method will increase the cruising speed to
fix the actual time error. The last step is to obtain the unitary vector between
the UAV pose and the virtual target pose and multiply it by the cruising
speed previously calculated. Figure 10 shows a graphical representation of the
method.

UAV

Normal
distance

Look ahead distance

Virtual target

Velocity command

Fig. 10 Top view of the four dimensional trajectory follower based on the carrot chasing
algorithm without taking into account the orientation error.
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4 Validation results

This section details the different simulation tests carried out in order to vali-
date the approaches proposed in this paper. Large scale simulations based on
MATLAB are provided to analyze the scalability of the conflict detection and
resolution approach and ROS-Gazebo based tests are performed to validate
the whole system integration running in-flight.

4.1 Scalability analysis

More than 500 MATLAB simulations for large-scale scenarios have been car-
ried out on an Intel i7@2.2GHz (RAM 8 GB) CPU, in order to analyse the
scalability of the developed conflict detection and resolution system. For this
analysis, no priorities are considered. Let us consider a controlled airspace
volume of dimensions 5000 × 5000 × 200 meters and a safety distance of 50
meters between each pair of UAVs. It is assumed that the monitoring service
receives the updated estimated trajectories of the UAVs as ordered lists of
4D-waypoints equally time-spaced by 5 seconds. Assuming a maximum flight
speed limited to 20 m/s for all the UAVs, the initial UAV trajectories are
randomly generated following a straight line and matching the speed require-
ments defined in Section 3.1.2 (the half of the maximum speed, it means 10
m/s).

Time-based algorithms are a traditional solution for air traffic management
conflicts. Thus the proposed solution is compared against a conflict resolution
approach based on the recursive time shift algorithm [22]. It proposes to shift
the trajectories in time, starting at the conflicting waypoints, to find the suc-
cessful trajectories. Regarding to the conflict detection approach, a detailed
comparison with respect to the traditional exhaustive search approach was
presented in [23].

A first element which can influence the optimization criteria described in
Section 2.2 is the number of involved UAVs. Therefore, a test battery increas-
ing the number of UAVs and setting the time horizon to 100 seconds and
the 4D-cell dimensions to 100 × 100 × 100 meters was carried out. Figure 11
shows the processing time and the mean deviation with respect to the original
trajectories using the proposed and the alternative approaches.

The time horizon is another interesting element whose impact in the system
efficiency should be analyzed. A large time horizon may be necessary in order
to match the U-space requirements, allowing the UAV operators to receive,
analyze and execute the proper commands to avoid the potential conflicts.
Therefore, a second test battery increasing the time horizon and setting the
number of involved UAVs to 30 and the 4D-cell dimensions to 100× 100× 100
meters has been performed. Processing time and mean deviation with respect
to the original trajectories are shown in Figure 12.

The results show that the proposed solution requires much less processing
time and gets much less deviation with respect to the original trajectories than
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Fig. 11 Summary of the test battery increasing the number of UAVs and comparing the
proposed solution against the time shift based approach: (a) Mean processing time by test to
detect and resolve all the conflicts. (b) Mean deviation by waypoint between the generated
and the original trajectories.

the more traditional recursive time shift algorithm. These improvements are
highly related to the number of involved trajectories and the considered time
horizon. The proposed solution exploits the assumption of tracking accurately
the trajectory both in time and space to modify only the conflicting waypoint.
However, shifting a trajectory in time implies to modify every waypoint in
the trajectory, generating new conflicts which have to be detected and solved
again.
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Fig. 12 Summary of the test battery increasing the time horizon and comparing the pro-
posed solution against the time shift based approach: (a) Mean processing time by test to
detect and resolve all the conflicts. (b) Mean deviation by waypoint between the generated
and the original trajectories.

4.2 In-flight tests

The proposed solution was tested on the Robotic Operating System 1 (ROS)
framework [24] (Kinetic distribution) under the Ubuntu 16.04 operating sys-
tem using GAZEBO [25], the PX4 v1.7.3 Software In The Loop (SITL) [26]
functionality to simulate the autopilot and the UAV Abstraction Layer (UAL)
v3.0 [27] to interact with the simulated UAVs. This simulation environment
allows to run and try different tests without flying a real UAV using the same
software. The previous section presented a scalability analysis running test
involving 100 UAVs, this section is focused on the behaviour of UAVs on the
simulation framework, thus the in-flight tests use 3 UAVs to clarify the results.

1 https://www.ros.org/
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The following tests use multiple UAVs with flight plans that have the same
characteristics, such as the longitude (100 meters), the arrival time of the last
waypoint (37.5 seconds) and the cruising speed (2.7 m/s), but they differ in
the origin and arrival poses. The conflict detection and resolution system has
a safety distance δ of 10 meters and an inter-waypoint distance τ of 5 seconds.
For each multi-UAV test, two plots are provided: 3D visualization of the UAVs
travelling along their flight plans and the distance between the UAVs involved
in the test.

Figure 13 shows an example of these flight plans in detail, with a trajectory
that can be followed for the simulated UAV which has a maximum velocity
of 4 m/s. Figure 13a has different scales on axes to better visualize the error
between trajectories. Figure 13b shows how the trajectory follower cap the
commanded velocity to the maximum velocity in the first seconds. Figure 13d
shows the difference between the UAV actual time and the desired time: if
it is negative the UAV is behind of schedule, otherwise the UAV is ahead of
schedule. The 4D-trajectory follower always tries to make the time difference
equal to zero. It also tries to minimize the normal distance between the UAV
and the trajectory. The space and time errors that the 4D-trajectory follower
tries to minimize are shown in Table 1.

(a) (b)

(c) (d)

Fig. 13 Simulation results. (a) Three dimensional view of the initial waypoints, the refer-
ence trajectory generated and the actual trajectory flown. (b) Desired velocity and current
velocity of the UAV. (c) Normal distance between the UAV and the generated trajectory.
(d) Difference between the desired time and the current time.
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Table 1 Simulated test errors

Min Mean Max Std Var

Space Error (m) 0.002 0.036 0.129 0.030 0.001
Time Error (s) 0.000 0.196 1.047 0.311 0.097

The first in-flight test presents a conflict after 15 seconds between two UAVs
that start their flight plans at the same time. UAVs 0 and 1 have priorities
0 and 1 respectively. The conflict detection and resolution module decides to
leave one flight plan as it is and modifies the other flight plan due to the
UAVs priorities to solve the conflict. Despite the increment of the flight plan
longitude, the UAV manages to fly through the trajectory in time because it
uses the 4D-trajectory follower, which minimizes its time and space errors.
UAV 0 finishes its flight in 37.46 seconds even modifying its flight plan and
UAV 1 finishes in 37.51 seconds. Figure 14b shows the distance between UAVs
which never goes below the limit which is 10 meters. A 3D visualization of the
trajectories can be seen in Figure 14a.
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Fig. 14 (a) 3D Visualization of the traveled trajectories. (b) Distances between UAVs. UAV
0 has a conflict with UAV 1 but the solution of the conflict detection and resolution module
keeps the distance above the limit.

The second in-flight test presents three UAVs flying with flight plans similar
to the ones used in the previous simulations except for UAV 2 which has a
flight plan that lasts 7.5 seconds more. The conflict between UAV 1 and UAV 2
is found in the same position and time that happened in the previous test. As
priorities do not change, the conflict detection and resolution module calculates
the same solution. The solution of the conflict between UAV 0 and UAV 1 does
not create another conflict between UAVs 0 and 2, and they fly through the
same waypoint at different times so the minimum distance between UAVs is
not violated (UAV 0 went through the waypoint at 30 seconds and UAV 2 at
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37.5 seconds). Figure 15b shows the distances between the UAVs which never
goes below the limit. UAV 0 finishes its flight in 38.14 seconds even modifying
its flight plan, UAV 1 finishes in 37.44 seconds and UAV 2 in 44.94 seconds.
A 3D visualization of the trajectories can be seen in Figure 15a and a video
of the simulation is available at https://youtu.be/0U42krj1MTM.
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Fig. 15 (a) 3D Visualization of the traveled trajectories. (b) Distances between UAVs. UAV
0 has a conflict with UAV 1 but the solution of the conflict detection and resolution module
keeps the distance above the limit. UAV 0 is using the 4D-trajectory follower.

The third in-flight test presents the relevance of using a 4D-trajectory
follower. The conflict detection and resolution module gives its solution to the
UAV 0 which follows the new trajectory using a cruising speed of 2.7 m/s to
match the mean of the velocity of the last test. The new trajectory is longer
than the initial flight plan, so while going along the modified trajectory to
avoid UAV 1, UAV 0 is delayed. This causes a conflict between UAVs 0 and
2 where their flight plans cross at 37.5 seconds which did not appear in the
previous test and the distance between UAVs 0 and 2 goes below the limit,
see Figure 16b. The new trajectory causes a new conflict, it will be reported
again from the monitoring to the deconfliction node, generating an iterative
process to solve the conflict, but in this in-flight test, the conflict will not be
solved to emphasize that the distance between UAVs goes below the limit. A
3D visualization of the trajectories can be seen in Figure 16a and a video of
the simulation is available at https://youtu.be/8oKwk7tL-dI.

5 Conclusions and future work

The use of UAVs will be increased in the next decades, being the air traffic
management much more complex. In this context the concept of 4D-trajectory
becomes a key element to increase the flight safety and to maximize the shared
airspace usage. This paper faces this challenge, presenting a conflict detection
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Fig. 16 (a) 3D Visualization of the traveled trajectories. (b) Distances between UAVs.
UAV 0 has a conflict with UAV 1 but the solution of the conflict detection and resolution
module keeps the distance above the limit. UAV 0 is not using the 4D-trajectory follower,
and it causes a conflict with UAV 2, lowering their distance below the limit.

and resolution module for multiple UAVs and a 4D-trajectory follower with
low deviation in distance and time.

The proposed approach to detect and solve loss of separation events takes
advantage of the assumption that UAVs may track accurately the trajectories
in time and space. Based on this, the resolution approach only modifies the
conflicting waypoints positions (not their arrival times), requiring the veloc-
ity adaptation from the UAV. The results are significantly better than other
accepted approaches as the recursive time shift approach with respect to the
required processing time and the mean deviation from the original trajectory.

The developed UAV 4D-trajectory follower can fix the space and time
errors while tracking a given trajectory. It minimizes at every time the mean
minimum distance between the actual travelled trajectory and the estimated
one, and the mean difference between actual and estimated arrival times to
every waypoint.

Future developments will be directed to test the conflict management sys-
tem for long distance missions in outdoors experiments using different com-
mercial GNSS receivers to validate the scalability of the solution. In addition,
the proposed system will be integrated in a framework for the development
and testing of UTM functionalities, including pre-flight and in-flight U-Space
services.
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