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Abstract. In this work we consider two classical mathematical models of wine
fermentation. The first model describes the wine-making process that is used
to produce dry wine. The second model is obtained by introducing a term in
the equation of the dynamics of the yeast. Thanks to this change it will be
possible to inhibit the fermentation of the sugar and as a consequence a sweet
wine will be obtained. We first prove the existence, uniqueness, positiveness
and boundedness of solutions for both models. Then we pass to analyse the
the long-time dynamics. For the second model we also provide estimates for
the concentration of ethanol, nitrogen and sugar at the end of the process.
Moreover, several numerical simulations are provided to support the theoretical
results.

1. Introduction. Fermentation processes are present in nature and have been ob-
served and used by people belonging to different cultures around the world since
many centuries ago. In particular, it was well known that wine could be produced
by leaving fruits and grains in tanks for a long time. We refer the interested readers
to [2] where some historical facts involving the evolution of the achievements of the
fermentation are explained.

There is a large literature dedicated to derive mathematical models of wine fer-
mentation (see for instance [1, 3, 4, 5, 6, 7, 8, 9] and all their references) but most
of the studies focus on making simulations and comparing their results with real
data and few works are dedicated to the mathematical analysis of the models. Mo-
tivated by this, we consider two different models of wine-making describing the
fermentation process that takes place to obtain dry and sweet wine respectively.
We will rigorously analyse the dynamics of both models focusing on qualitative and
quantitative behaviour of the solutions.
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Fermentation is defined as the bio-chemical process by means of which sugar
present in the grape juice is transformed into alcohol or ethanol in the presence
of some nutrients such as nitrogen. This transformation is possible thanks to the
presence of the yeast in the must which allows to degrade the sugar into ethanol. In
the case in which the initial amount of sugar is almost completely transformed into
ethanol the so-called dry wine will be obtained. If some quantity of sugar persists
at the end of the process then the so-called sweet wine will be produced. There are
several ways to interrupt the fermentation of sugar in wine-making processes and
we will follow the idea proposed in [8]. The authors consider that yeast activity
is inhibited when the concentration of ethanol is greater than some fixed quantity
which may depend on the grapes used in the fermentation process.

The biological device used in wine-making is a bioreactor. It is worth mentioning
that there are different types of bioreactors:

• the chemostat, which is a bioreactor where the substrate or nutrient is pro-
vided to the culture vessel in continuous time and the excess is also removed
from the culture vessel in continuous time;

• the fed-batch, which is a bioreactor where the substrate is provided to the
culture vessel in continuous time but there is no material removed from there;

• the batch, which is a bioreactor where the substrate is provided at the begin-
ning of the experiment and nothing is removed before the end of the biological
processes taking place there.

In this work we will focus on the batch since it is the most used by wine producers.
In the following lines we will mathematically describe the fermentation process that
is used to produce dry wine.

We consider a first reaction scheme where the microbial biomass or yeast grows
on the presence of nitrogen, the limiting nutrient in the fermentation process, and
sugar is transformed into alcohol or ethanol. More precisely, these reactions can be
given by

k1n
x−→ x,

k2s
x−→ e + CO2,

where n, x, s and e are the nitrogen, microbial biomass, sugar and ethanol con-
centrations respectively. The quantities k1 and k2 denote the yield coefficients
associated to nitrogen and sugar concentrations. For simplicity, and without loss
of generality, we set k1 = k2 = 1. From the previous scheme and thanks to Gay-
Lussac-like relations, Malherbe et al (see [10]) proposed that the concentration of
sugar and ethanol can be deduced from the quantity of carbon dioxide while con-
sidering that the initial concentration of ethanol and carbon dioxide are zero. The
following model has been proposed in [9] in order to describe the kinetics of the
above process:

dx

dt
= µ(n)x, (1)

dn

dt
= −µ(n)x, (2)

de

dt
= β(s)γ(e)x, (3)

ds

dt
= −β(s)γ(e)x, (4)
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where x = x(t) denotes the total microbial biomass or yeast concentration in
grammes per liter, n = n(t) is the nitrogen concentration in milligrammes per
liter, e = e(t) is the ethanol concentration in grammes per liter and s = s(t) is the
sugar concentration in grammes per liter.

Moreover µ(n) is the following Monod consumption function

µ(n) = µmaxn

kn + n
, (5)

which represents the specific growth rate for cell mass where µmax is the maximum
specific growth rate of the active biomass and kn is the Monod constant for nitrogen
limited growth.

Moreover, the Monod consumption function

β(s) = βmaxs

ks + s
,

describes the rate of sugar utilisation per cell where βmax is the maximum specific
rate of sugar utilisation and ks is the Michaelis-Menten-type constant for sugar
transport across the cell membrane.

Finally, the function

γ(e) = ke

ke + e
,

describes the inhibition of the consumption of sugar when levels of ethanol are high
and ke is the ethanol inhibition.

In order to produce sweet wine it is necessary that the action of the microbial
biomass is inhibited before transforming the whole concentration of sugar; a model
describing this case is suggested in [8]:

dx

dt
= x [µ(n) − kd(e)] , (6)

dn

dt
= −µ(n)x, (7)

de

dt
= β(s)γ(e)x, (8)

ds

dt
= −β(s)γ(e)x, (9)

where the function
kd(e) = ke,

describes the rate of cell inactivation where k is a parameter that describes the sen-
sitivity of yeast to ethanol. This simple innovation let to control the concentration
of sugar at the end of the process.

This work is organised as follows: in Section 2 we analyse the mathematical
model (1)-(4) whereas in Section 3 we consider the mathematical model (6)- (9). In
both cases, we first study the existence, uniqueness, positiveness and boundedness
of solutions and then we analyse in detail their asymptotic behaviour. We refer
the reader to [11, 12] where the main required tools from the theory of ordinary
differential equations can be read. For the second model we also prove that the
nitrogen and sugar concentration remain bounded away from zero. Moreover, we
provide a lower and upper bound for the limit value of the ethanol concentration
and an upper bound for the limit value of nitrogen concentration. At the end of
both sections we present some numerical simulations which support the theoretical
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results. Finally, in Section 4 we compare both models and provide some final
comments.

2. Modeling fermentation of dry wine. In this section we consider the differ-
ential system (1)-(4). We observe that, from (1)-(2) we have

dx

dt
+ dn

dt
= 0,

then

x(t) + n(t) = x(0) + n(0) := γ > 0, (10)

that is, the sum of microbial biomass and nitrogen concentration remains constant.
Moreover, from (3)-(4), we obtain

de

dt
+ ds

dt
= 0,

from which we have that the sum of the ethanol and sugar concentration remains
constant:

e(t) + s(t) = s(0) + e(0) = s(0) := λ, (11)

where we have set that the initial ethanol concentration is zero.
From (10) and (11), we can rewrite system (1)-(4) as a two dimensional one de-
pending on (x, e) as follows

dx

dt
=µmax(γ − x)

kn + γ − x
x, (12)

de

dt
=βmax(λ − e)

ks + λ − e

ke

ke + e
x. (13)

Hence, we will study the reduced system (12)-(13).

Theorem 2.1. For any initial value (x0, e0) ∈ [0, γ] × [0, λ], system (12)-(13) pos-
sesses a unique global solution which is, in addition, positive and bounded. More-
over, as long as (x0, e0) ∈ (0, γ] × [0, λ], the solutions of system (12)-(13) approach
the fixed point P = (γ, λ) as t goes to infinity. As a consequence, solutions of system
(1)-(4) converge to (γ, 0, λ, 0).

Proof. By classical theory of ODE’s it is easy to obtain local existence and unique-
ness of the solutions of system (12)-(13). Moreover, we observe that the positive
cone X = {(x, e), x ≥ 0, e ≥ 0} is positively invariant since x = 0 is an invariant
plane and on e = 0 we have

de

dt

∣∣∣∣
e=0

= βmaxλ

ks + λ
x ≥ 0.

From the previous argument we obtain the positiveness of solutions. Now, we prove
that the set B := [0, γ] × [0, λ] (see Figure 1) is a positively invariant set for the
solutions of system (12)-(13).
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Figure 1. Set B := [0, γ] × [0, λ]

To this end, we show that the vector field on ∂B is tangent or point inside B.
We consider the four sides of ∂B separately.

• Side L1: in this case we have e = 0 and x ∈ (0, γ). The vector field on L1
points inside B since

dx

dt
> 0 and de

dt
> 0.

• Side L2: in this case x = γ and e ∈ [0, λ). The set x = γ is invariant and

de

dt
> 0, for e ∈ [0, λ),

whence we deduce that every solution of system (12)-(13) with initial value
on L2 converges to P . We notice that the case e = λ corresponds to the point
P which is a fixed point.

• Side L3: in this case e = λ and x ∈ (0, γ). The set e = λ is invariant while

dx

dt
> 0, for x ∈ (0, γ).

Then, we have that solutions with initial value on L3 converges to P .
• Side L4: in this case x = 0 and e ∈ [0, λ). This side consists of a segment of

fixed points which are unstable. In fact, for any initial value (ε, e) with ε > 0
small and e ∈ [0, λ], we have dx

dt > 0 and then solutions move away from the
line L4 (see Figure 2).
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Figure 2. Vector field of system (12)-(13) with -γ = 1 and λ = 3.

Then, we conclude that the set B is positively invariant. Solutions starting on B
are positive, bounded and defined for all t ≥ 0.

Now, we analyse the asymptotic behaviour of solutions starting on B. Since
dx
dt > 0 for x ∈ (0, γ) there are no periodic orbits in B. As a consequence, the
interesting invariant sets on B are the unstable fixed points on the side L4 and
the fixed point P . In order to study the stability character of P we compute the
eigenvalues of the Jacobian matrix:

λ1 = − γ

kn
, λ2 = − βmax

ks(ke + λ) ,

whence, since λ1 and λ2 are both negative, we conclude that the fixed point P
is locally stable. Finally, every solution of system (12)-(13) with initial value in
(0, γ] × [0, λ] converges to P and, using (1) and (11), we have that every solution of
system (1)-(4) converge to (γ, 0, λ, 0).

Remark 1. We note that the thesis of Theorem 2.1 is consistent with the real
fermentation process. In this case a dry wine is obtained, the sum of the sugar
and ethanol concentrations s(t) + e(t) = s(0) remains constant and the total sugar
quantity is transformed into ethanol since e(t) → s(0) while s(t) → 0. Moreover, the
sum of the microbial biomass and nitrogen concentrations x + n remains constant
with n(t) → 0 and x(t) → n(0) + x(0).
2.1. Numerical simulations. In this section we provide some numerical simula-
tions for the solutions of system (1)- (4). In the first numerical experiment (see
figure 3) the initial values have been set as follows:

x0 = 4, n0 = 4, e0 = 0, s0 = 10, (14)
while the parameters are

µmax = 0.1, kn = 1, βmax = 0.4, ks = 2, ke = 4. (15)
We observe that the total quantity of sugar concentration λ = s(0) is transformed
into ethanol, as proved in (11), hence the wine obtained by this process is dry.
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Moreover, the nitrogen concentration is decreasing and the microbial biomass con-
centration is increasing for every time. As a result, the total quantity of nitrogen
n(0) is transformed into yeast, as proved in (1). In the second numerical experi-

time
0 5 10 15 20 25 30 35 40

x
(t

;0
,x

0
)

4

4.5

5

5.5

6

6.5

7

7.5

8
Microbial biomass

time
0 5 10 15 20 25 30 35 40

n
(t

;0
,n

0
)

0

0.5

1

1.5

2

2.5

3

3.5

4
Nitrogen

time
0 5 10 15 20 25 30 35 40

e
(t

;0
,e

0
)

1

2

3

4

5

6

7

8

9

10
Ethanol

time
0 5 10 15 20 25 30 35 40

s
(t

;0
,s

0
)

0

1

2

3

4

5

6

7

8

9

10
Sugar

Figure 3. The time series of microbial mass, nitrogen, ethanol and
sugar concentrations with initial data as in (14) and parameters
values as in (15).

ment (see figure 4) we consider the same initial data as in (14) while the values of
parameters have been set as follows:

µmax = 1.5, kn = 2, βmax = 0.4, ks = 1.2, ke = 2. (16)
In the second experiment we have increased the maximum specific growth rate
of the active biomass µmax and the Monod constant for nitrogen limited growth
kn. As a result, the nitrogen is consumed by the biomass faster then the nitrogen
concentration becomes almost null faster. Then, one can expect a faster convergence
of the microbial biomass and nitrogen concentrations to their limit values, as we
observe in Figure 4.

3. Modeling fermentation of sweet wine. In this section we are interested in
studying the mathematical model (6)-(9) which describes the fermentation model
used to produce sweet wine. As we explained previously, this model takes into
account an extra term in the equation for the microbial biomass concentration with
respect to the system considered in Section 2. We will see that it will be possible
to control the fermentation process in order to preserve some quantity of the sugar
obtaining sweet wine.

From (8) and (9) we deduce that the sum of the ethanol and sugar concentration
remains constant for every time

de

dt
+ ds

dt
= 0,
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Figure 4. The dynamics of microbial mass, nitrogen, ethanol and
sugar concentrations with initial data as in (14) and parameters
values as in (16).

whence
e(t) + s(t) = s(0) := λ. (17)

We can rewrite the state variable describing the sugar concentration as s = λ − e,
then system (6)-(9) can be reduced to

dx

dt
=x

[
µmaxn

kn + n
− ke

]
, (18)

dn

dt
= − µmaxn

kn + n
x, (19)

de

dt
=βmax(λ − e)

ks + λ − e

ke

ke + e
x. (20)

From now on we will denote by X = {(x, n, e) ∈ R3 : x ≥ 0, n ≥ 0, e ≥ 0}, the
positive cone.

Theorem 3.1. All solutions of system (18)-(20) with initial data in

C := [0, +∞) × [0, +∞) × [0, λ),

are defined for all t ∈ [0, +∞). Moreover, they are positive and bounded.

Proof. By classical theory of ODE’s we obtain local existence and uniqueness of
solutions. We first prove that the set C is positively invariant; this provides the
positiveness of solutions. We observe that x = 0, n = 0 and e = λ are invariant
planes while on e = 0 the vector field points inside C. From this argument we also
have that e(t) is bounded and defined for all t ≥ 0. By equation (19) we have that
n(t) is decreasing, then if n0 ∈ C we conclude that n(t) is bounded. Moreover, from
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(18), we have
dx

dt
≤ µmaxn

kn + n
x ≤ µmaxn(0)

kn + n(0)x =: ρx, (21)

where the last inequality follows from the fact that µ(n(t)) is decreasing with respect
to t. Using (21) we can write

x(t) ≤ x(0)eρt, for t ≥ 0,

from which we have that x(t) is defined for all t ∈ [0, +∞). As a consequence the
three state variables are defined for all t ≥ 0. It remains to prove the boundedness
of x(t). Suppose by contradiction that

lim
t→+∞

x(t) = +∞, and lim
t→+∞

n(t) = n∗ > 0,

then from (19) we have

lim
t→+∞

dn

dt
= −∞,

which is a contradiction.
Now suppose that

lim
t→+∞

x(t) = +∞, and lim
t→+∞

n(t) = 0. (22)

We recall that the nitrogen concentration n is decreasing and the ethanol concen-
tration e is increasing. Thus, from (22), we have

lim
t→+∞

µ(n(t)) = 0.

Hence, there exists T > 0 such that
µ(n(T )) − ke(T ) = 0.

We define the function S(t) := µ(n(t)) − ke(t), by monotonicity of S(t) and from
(18) we conclude that

dx

dt
≤ 0, for all t > T.

This contradicts (22) and as a consequence we conclude that the biomass concen-
tration x is bounded and defined for all t ≥ 0.

Corollary 1. For any initial value x0 > 0, there exists T > 0 such that the biomass
concentration x(t) is increasing for every t ∈ [0, T ]. Then, it attains its maximum
at t = T and it is decreasing for every t > T .

Proof. The proof follows trivially from the last part of the proof of Theorem 3.1.

Remark 2. From Theorem 3.1 and Corollary 1, we have that there exists T > 0
such that

e(T ) = 1
k

µ(n(T )).

The previous expression clarifies the crucial effect that the inhibition constant k has
on the dynamics. The ethanol concentration e(t) reaches the value (1/k)µ(n(T ))
slower if k is small and as a consequence the yeast concentration x remains increasing
for a larger time.

Theorem 3.2. The set
A := {(x, n, e) ∈ C : λ1(n, e) := µ(n) − ke < 0},

is positively invariant.
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Proof. We first parametrise the surface λ1(n, e) in the following way

π(x, n) =
(

x, n,
µ(n)

k

)
.

The tangent vectors are

πx(x, n) = (1, 0, 0), and πn(x, n) =
(

0, 1,
µ′(n)

k

)
,

while the normal vector is

N(x, n) = πx(x, n) × πn(x, n) =
(

0, −µ′(n)
k

, 1
)

.

In order to check if the vector field at λ1(n, e) = 0 points inside A we compute the
following scalar product (

dx

dt
,

dn

dt
,

de

dt

)
· N(x, n) = −dn

dt

µ′(n)
k

+ de

dt

=
{

µ(n)
k

µmaxkn

(kn + n)2 + βmax(λ − e)ke

(ks + λ − e)(ke + e)

}
x. (23)

We observe that the previous quantity is positive for every x > 0. Then, we conclude
the proof by recalling that the set C is positively invariant.

The previous result will be useful to prove the following theorem concerning the
asymptotic behaviour of solutions.

Theorem 3.3. Every solution of system (18)-(20) with initial value in C \ {x = 0}
converges to a fixed point in the plane x = 0.

Proof. We first note that there are no periodic orbits since both n(t) and e(t) are
monotonic. Suppose that there exists a strictly positive constant L > 0 such that

lim
t→+∞

x(t) = L > 0.

From (18), we have

lim
t→∞

dx

dt
= L(µ(n∗) − ke∗) < 0, (24)

where n∗ and e∗ denote the limit values of the nitrogen and ethanol concentrations
respectively. Such limits satisfy

0 ≤ n∗ ≤ n(0), and 0 < e∗ ≤ λ.

From Theorem 3.2, we have that the limit points are in A and as a consequence the
right hand side of (24) is negative. Thus, we conclude that

lim
t→+∞

x(t) = 0. (25)

As a result, every solution of system (18)-(20) with initial value in C \ {x = 0}
converges to a fixed point in the plane x = 0.

More details on the asymptotic behaviour are given by the following result.

Theorem 3.4. The nitrogen concentration is not completely consumed at the end
of the process, i.e.,

lim
t→+∞

n(t) > 0.
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Proof. Assume by contradiction that

lim
t→+∞

n(t) := n∞ = 0.

Since the nitrogen concentration n remains positive and decreasing for t ≥ 0, it
is possible to define a diffeomorphism from [0, +∞) to (n∞, n0], where n0 = n(0).
Then, the microbial biomass concentration x can be expressed as a function of n:

dx

dn
= x(µ(n) − ke)

−µ(n)x = −1 + ke

µ(n) .

Hence, for n < n(T ) with T > 0, we have

dx

dn
> −1 + ke(T )

µ(n) . (26)

We observe that the consumption function µ satisfies

µ(n) ≤ µmax

kn
n,

that is
1

µ(n) ≥ kn

µmax

1
n

.

Hence, from (26) we have

dx

dn
> −1 + ke(T ) kn

µmax

1
n

:= −1 + σ

n
,

where σ > 0. Finally, by integrating the last inequality between n∞ and n we
obtain

x(n) > x(n∞) − n + n∞ + σ(log n − log n∞).
Then, if n∞ = 0 we have that x > ∞ which is a contradiction since x is bounded
and this concludes the proof.

Remark 3. In order to analyse in more detail the dynamics we have to study the
asymptotic behaviour of concentrations n(t) and e(t). By the above discussion we
deduce that the limit points on the (n, e)−plane are in the set delimitated by the
e−axis, the line e = λ, the vertical line n = n(0) and the function e = 1

k µ(n) (see
figure 5).

In the following result we obtain an equation involving the nitrogen and ethanol
concentrations.

Theorem 3.5. Let F : C → R be the function defined as

F (e, n) := −ks(ke + λ) log
(

λ − e

λ

)
+ (ke − ks)e + 1

2e2 + νkn log
(

n

n0

)
+ ν(n − n0),

where

ν := βmax
ke

µmax
. (27)

Then, the ethanol and nitrogen concentrations satisfy

F (e, n) = 0. (28)



12 R. COLUCCI AND J. LÓPEZ-DE-LA-CRUZ

e(n)

(n(T),e(T))

n(0)

Figure 5. Case λ > µmax. In yellow we represent the positive
invariant region. The region between the e−axis, the vertical line
n = n(0), the horizontal line e = λ and the curve e = 1

k µ(n) is also
positively invariant. In violet we have represented the function e(n)
(see Theorem 3.5). Note that de

dn < 0 as observed in the proof of
Theorem 3.5.

Proof. From the second and third equations of system (18)-(20), it is possible to
express the ethanol concentration as a function of nitrogen concentration (see also
figure 5)

de

dn
= −ν

(λ − e)
(ks + λ − e)(ke + e)

kn + n

n
, (29)

From (29), we can easily conclude that the derivate of the ethanol concentration
respect to the nitrogen concentration, de/dn, is always negative. By integrating the
previous expression we have∫ e

0

(ks + λ − e)(ke + e)
(λ − e) de = −ν

∫ n

n0

kn + n

n
dn,

from which we obtain the implicit equation (28).

As a corollary of the previous theorem, we obtain the following important result.

Theorem 3.6. The ethanol concentration e(t) does not tend to the initial sugar
concentration λ.

Proof. Suppose that e(t) → λ then, by Theorem 3.5, we conclude that n(t) → 0.
However, this contradicts Theorem 3.4. Hence, some quantity of sugar remains in
the culture vessel of the batch at the end of the process and as a consequence sweet
wine is produced.

Remark 4. Now, from (28) we can find the values (ē, n̄) = (e(T ), n(T )) at which
the trajectories cross the curve e = 1

k µ(n). More precisely, the value of n̄ is given
solving the following equation

F

(
1
k

µ(n), n

)
= 0,
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while ē = 1
k µ(n̄). The previous equation can be solved numerically; the values ē

and n̄ may serve as a lower bound for the limit value of e and as an upper bound
for the limit value of n respectively.

It is natural to expect that an upper bound for the limit value of the ethanol
concentration would be more useful for practitioners in order to control the quality
of the sweet wine. The next result represents a useful tool for the estimation of the
concentrations of ethanol and sugar at the end of the fermentation process.

Theorem 3.7. Suppose that ρ := µmaxn(0)
kn+n(0) < kλ. Then the unique positive solution

of the following equation provide an upper bound for the limit value of the ethanol
concentration

− δx(0) = α3e3 + α2e2 + α1e + α log
(

λ − e

λ

)
, (30)

where

δ =βmaxke

k
, α3 = −1

3 , α2 = 1
2

(ρ

k
− ke + ks

)
,

α1 =ks

(
λ − ρ

k

)
+ ke

(
ks + ρ

k

)
, α = ks

(
λ − ρ

k

)
(ke + λ).

Proof. We recall that the Monod consumption function µ = µ(n) is increasing
respect to the nitrogen concentration n while n(t) is decreasing with respect to
time. As a consequence µ(n(t)) ≤ ρ for all t ≥ 0. Since the ethanol concentration
e(t) is increasing for all t ≥ 0, it is possible to define a diffeomorphism from [0, λ]
to [0, +∞). Then we can express x as a function of e

dx

de
= µ(n) − ke

R(e) ≤ ρ − ke

R(e) ,

where
R(e) = βmax(λ − e)ke

(ks + λ − e)(ke + e) .

Now, we introduce the following system (see figure 6)
dy

dt
= y(ρ − ke), (31)

de

dt
= βmax(λ − e)

ks + λ − e

ke

ke + e
y. (32)

and
dy

de
= ρ − ke

R(e) . (33)

Since we are interested in finding an upper bound for the limit values of e we
consider only the case in which λ > ρ

k . From the previous reasoning we conclude
that

dx

de
≤ dy

de
,

and as a consequence x(e) ≤ y(e). By integrating (33) between zero and y we obtain
βmaxke

k

∫ y

0
du =

∫ e

0

(ρ/k − z) (ks + λ − z)(ke + z)
λ − z

dz,

and
δ[y − y(0)] = α3e3 + α2e2 + α1e + α log

(
λ − e

λ

)
,
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0 5

0

3

0 5

0

3

y

e

Figure 6. The vector field of the system (31),(32) with ks = 1,
ke = 2, k = 2; ρ = 2, λ = 3 and βmax = 1. It is easy to see that
solutions starting on the set {(y, e) : y > 0, e ∈ [0, λ)} converges
to a fixed point (0, e∗) with e∗ ∈ ( ρ

k , λ).

where δ, α3, α2, α1, α have been defined before. Using that limt→+∞ y(t) = 0 (see
figure 6), we have

− δy(0) = α3(e∗)3 + α2(e∗)2 + α1e∗ + α log
(

λ − e∗

λ

)
, (34)

where e∗ is the limit value of e(t). It remains to prove that the previous equation
admits a solution in (0, λ). We first observe that since λ > ρ

k then α, α1 > 0.
Consider the following function

g(z) := α log
(

λ − z

λ

)
,

it is decreasing in [0, λ) with g(0) = 0 and limz→λ g(z) = −∞. The function

f(z) := 1
3z3 − α2z2 − α1z − δy(0),

is bounded in [0, λ] with f(0) = −δy(0) and f(λ) ∈ R with sign depending on the
choice of the parameters. Then, from continuity of f(z) and g(z) and from the
above argument, there exists a unique z∗ ∈ (0, λ) such that f(z∗) = g(z∗). This
proves that there exists a unique solution e∗ ∈ (0, λ) of equation (34) (see also figure
6).

3.1. Numerical simulations. In this section we provide some numerical simula-
tions of the solutions of system (6)-(9). For all presented numerical experiment we
consider the following values of the parameters

µmax = 0.1, kn = 1, βmax = 0.4, ks = 2, ke = 4, (35)
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while the initial data are set as follows
x0 = 4, n0 = 4, e0 = 0, s0 = 10. (36)

Since the key parameter, as proved before, is the sensitivity of yeast to ethanol, we
will just change this parameter to observe its effect.

In the first numerical experiment (see figure 7) we have set k = 0.05. We observe

time
0 5 10 15 20 25 30 35 40
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7

8
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Figure 7. The dynamics of Microbial biomass, nitrogen, ethanol
and sugar concentrations respectively with values of parameters as
in (35) and initial data as in (36) and k = 0.05

that the concentration of microbial biomass is increasing, it reaches its maximum
and then it decreases to zero, as proved in Corollary 1. Moreover, the ethanol
concentration remains below the initial quantity of sugar due to the effect caused
by the sensitivity of yeast to ethanol. From (30), we obtain e∗ = 6.29 < λ = 10
as upper bound for the limit of the ethanol concentration. The limit value in the
numerical simulation is e∗ = 6.15.

In the second experiment (see figure 8) we increase the sensitivity of yeast to
ethanol by taking k = 0.25. In this case the maximum of the microbial biomass is
reached faster. Moreover, since the sensitivity of yeast is larger than the one used
in the previous experiment, the fermentation process stops before and then the
limit value of the sugar concentration is larger. In addition, from (30), we obtain
e∗ = 3.19 < λ = 10 as upper bound for the limit value of the ethanol concentration.
The limit value in the numerical simulation is e∗ = 2.92. In the third numerical
experiment (see figure 9) we consider a much larger value of the sensitivity of yeast
to ethanol, that is k = 2.5. In this case, since the sensitivity of yeast is considerably
larger, the inhibition of the fermentation process acts quickly. The increasing period
of the biomass x is much shorter and the ethanol concentration approaches its limit
value before. As a consequence the final concentration of sugar is larger. In addition,
from (30) we obtain e∗ = 1.07 < λ = 10 as upper bound for the limit of the ethanol
concentration. The limit value in the numerical simulation is e∗ = 0.98. In the last
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Figure 8. The dynamics of Microbial biomass, nitrogen, ethanol
and sugar concentrations respectively with values of parameters
and initial data as figure 7 and k = 0.05.
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Figure 9. Same parameters and initial data as in figure 7 and k = 2.5

experiment (see figure 10) we have set k = 0. Since there is no sensitivity of yeast
in this case, the fermentation process takes place until the sugar concentration is
close to zero. Then, the wine produced in this case is dry.

4. Comparison between both models. In this section we compare the results
of both models analysed in Sections 2 and 3. We recall that the two systems differ
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Figure 10. Same parameters and initial data as in figure 7 and
k = 0

for a term in the equation describing the dynamics of the microbial biomass which
let to control the sugar and ethanol concentrations.

The possibility to control the fermentation process has been a challenge, from
mathematical and biological point of view, for researchers from different areas. This
is one of the reasons that encouraged us to study the models considered in this work.
In the following lines we provide several simulations in order to compare the two
models.

In the first numerical experiment (see figure 11) we consider the following values
of the parameters:

µmax = 0.1, kn = 1, βmax = 0.4, ks = 2, ke = 4, (37)

while initial data are set as follows

x0 = 8, n0 = 2, e0 = 0, s0 = 10. (38)

In the next figures, the curves in blue are the solutions of system (1)-(4) whereas
two different solutions of system (6)-(9) are plotted in yellow (with k = 0.05) and
in orange (with k = 0.25) respectively. We notice that the biomass concentration
is increasing for all the time in the case of solutions of system (1)-(4) while, in
the rest of cases, it becomes decreasing after some time, as proved in Section 3.
Moreover, for system (1)-(4), the nitrogen is almost completely consumed while the
total quantity of sugar is processed into ethanol. In the case of solutions of system
(6)-(9) the presence of the sensitivity of yeast k > 0 makes the sugar concentration
remain positive.

In the second numerical experiments (see figure 12) the parameters are set as in
(37) while initial data are set as follows

x0 = 4, n0 = 4, e0 = 0, s0 = 10. (39)
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Figure 11. The solutions of system (1)-(4) are in blue while solu-
tions of system (6)-(9) are in yellow for k = 0.05 and in orange for
k = 0.25 respectively. The values of parameters and initial data
are as in (37) and (38) respectively.
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Figure 12. The solutions of system (1)-(4) are in blue while
solutions of system (6)-(9) are in yellow for k = 0.05 and in orange
for k = 0.25 respectively. The values of parameters and initial data
are as in (37) and (39) respectively.

In this case we observe a slower convergence, with respect to the previous exper-
iment, of the variables to their limit values.

5. Conclusion. In this work we have rigorously analysed two models for wine pro-
duction. We have proved existence, uniqueness, boundedness and positiveness of
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solutions of both systems. Moreover, we have studied in details the asymptotic
behaviour of solutions. However, the results of this work not only clarify the dy-
namics of the model but provide useful tools for practitioners in order to control
the fermentation process and to produce wine with the desired sugar and ethanol
concentrations. In particular, the bounds for the limit values of the variables and
the analysis of the effects of the choice of the parameters will serve as a practical
guide for wine producers.

Figure 13. Prof. T. Caraballo tasting a good dry wine.
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