
FUNCTIONAL AND PERFORMANCE

TESTING OF FEATURE MODEL

ANALYSIS TOOLS
###

EXTENDING THE FAMA ECOSYSTEM

SERGIO SEGURA RUEDA

UNIVERSIDAD DE SEVILLA

EUROPEAN DOCTORAL DISSERTATION

ADVISED BY

DR. DAVID BENAVIDES CUEVAS

AND

DR. ANTONIO RUIZ CORTÉS

First published in December 2010 by
The Department of Computer Languages and Systems
ETSI Informática
Avda. de la Reina Mercedes s/n
Sevilla, 41012. SPAIN

Copyright c© MMX Sergio Segura Rueda
http://www.lsi.us.es/
sergiosegura@us.es

Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright statements are included with all reproductions
and derivative works.

Classification (ACM 1998):

Categories and subject descriptors: D.2.13 [Software Engineering]: Reusable Software: Do-
main Engineering; D.2.5 [Software Engineering]: Testing and Debugging;

General Terms: Algorithms, Design, Performance, Verification.

Additional Key Words and Phrases: software product lines, feature models, automated analy-
sis, software testing, test data generation.

Support: This work has been partially supported by the European Commission (FEDER) and
Spanish Government under CICYT project Web-Factories (TIN2006-00472) and SETI (TIN2009-
07366) and by the Andalusian Government under project ISABEL (TIC-2533).

Don David Benavides Cuevas y Don Antonio Ruiz Cortés, profesores Titulares del
Área de Lenguajes y Sistemas Informáticos de la Universidad de Sevilla,

HACEN CONSTAR

que Don Sergio Segura Rueda, Ingeniero en Informática por la Universidad de Sevilla,
ha realizado bajo nuestra supervisión el trabajo de investigación titulado

Functional and Performance Testing of Feature
Model Analysis Tools. Extending the FaMa

Ecosystem

Una vez revisado, autorizamos el comienzo de los trámites para su presentación
como Tesis Doctoral al tribunal que ha de juzgarlo.

Fdo. Dr. David Benavides Cuevas y Dr. Antonio Ruiz Cortés
Área de Lenguajes y Sistemas Informáticos

Universidad de Sevilla
Sevilla, Diciembre de 2010

Yo, Sergio Segura Rueda, con DNI número 28.807.980-C,

DECLARO

Ser el autor del trabajo que se presenta en la memoria de esta tesis doctoral que tiene
por título:

Functional and Performance Testing of Feature
Model Analysis Tools. Extending the FaMa

Ecosystem

Lo cual firmo en Sevilla, Diciembre de 2010.

Fdo. Sergio Segura Rueda

De acuerdo a la normativa de la Universidad de Sevilla y el Departamento de
Lenguajes y Sistemas Informáticos, el presente documento de tesis cumple los requisi-
tos para la modalidad de compendio de publicaciones relevantes y mención europea.
No obstante, la redacción final presentada sigue un esquema tradicional para una mejor
comprensión de las contribuciones del candidato.

In addition to the committee in charge of evaluating this dissertation and the two
supervisors of the thesis, it has been reviewed by the following researchers:

• Dr. Arnaud Gotlieb (INRIA, France)

• Dr. Robert M. Hierons (University of Brunel, UK)

UNIVERSIDAD DE SEVILLA

The committee in charge of evaluating the dissertation presented by Ser-
gio Segura Rueda in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Computer Engineering, hereby recommends

of this dissertation and awards the author the grade
.

D. M iguel Toro Bonilla

Catedrático de Universidad

Univ. de Sevilla

D. José Javier D olado Cosı́n

Catedrático de Universidad

Univ. del Páıs Vasco

D. José C ristóbal R iquelm e Santos

Catedrático de Universidad

Univ. de Sevilla

D. Javier Tuya Gonzalez

Titular de Universidad

Univ. de Oviedo

D. Andreas M etzger

Assistant Professor

Univ. de Duisburg-Essen Paluno

To put record where necessary, we sign minutes in ,
.

To my family
To Isabel

Contents

Acknowledgements . xi

Abstract . xiii

Resumen . xv

I Preface

1 Introduction . 3
1.1 Research context . 4

1.1.1 Software product lines . 4
1.1.2 Automated analysis of feature models . 6
1.1.3 Testing of feature model analysis tools . 7

1.2 Contributions . 8
1.2.1 Summary of contributions . 8
1.2.2 Publications in chronological order . 11
1.2.3 Citations . 16
1.2.4 Developed tools . 16
1.2.5 Research visits . 17

1.3 Structure of this dissertation . 17

II Background Information

2 Feature models . 21
2.1 Introduction . 22
2.2 Basic feature models . 22

2.2.1 FODA feature models . 22
2.2.2 Feature-RSEB feature models . 24
2.2.3 Some examples . 24

2.3 Cardinality-based feature models . 26
2.4 Extended feature models . 27

ii Contents

2.5 Summary . 29

3 Automated analysis of feature models . 31
3.1 Introduction . 32
3.2 Analysis operations on feature models . 33

3.2.1 Void feature model . 33
3.2.2 Valid product . 34
3.2.3 All products . 35
3.2.4 Number of products . 35
3.2.5 Optimization . 35
3.2.6 Filter . 36
3.2.7 Anomalies detection . 36
3.2.8 Explanations . 37
3.2.9 Commonality . 37
3.2.10 Variability factor . 38

3.3 Automated support . 38
3.3.1 Propositional logic based analyses . 39
3.3.2 Constraint programming based analyses . 41
3.3.3 Description logic based analyses . 42
3.3.4 Other studies . 44

3.4 Summary . 44

4 Software testing . 47
4.1 Introduction . 48
4.2 The testing procedure . 48
4.3 Functional testing . 49

4.3.1 Test cases design . 50
4.3.2 Test cases evaluation . 52

4.4 Performance testing . 54
4.4.1 Evolutionary testing . 54

4.5 Summary . 57

III Our Contribution

5 Motivation . 61
5.1 Introduction . 62
5.2 Problems . 62
5.3 Analysis of current solutions . 63
5.4 Discussion . 65
5.5 Summary . 67

Contents iii

6 A test suite for the analyses of feature models 69
6.1 Introduction . 70
6.2 Test suite design . 71

6.2.1 Identification of inputs and outputs . 71
6.2.2 Inputs selection . 72
6.2.3 Inputs combination . 76
6.2.4 Test cases report . 76

6.3 Test suite evaluation and refinement . 77
6.3.1 Evaluation using mutation testing . 77
6.3.2 Evaluation using real faults . 80

6.4 Test suite summary and discussion . 81
6.5 Summary . 82

7 A test data generator for the analysis of feature models 85
7.1 Introduction . 86
7.2 Automated metamorphic testing on the analysis of feature models 87

7.2.1 Metamorphic relations on feature models . 87
7.2.2 Automated test data generation . 89
7.2.3 A test data generator . 91

7.3 Evaluation . 92
7.3.1 Evaluation using mutation testing . 92
7.3.2 Evaluation using real faults . 96
7.3.3 Comparison with a manual test suite . 98

7.4 Refinement . 99
7.5 Threats to validity . 101
7.6 Related works on metamorphic testing . 102
7.7 Summary . 104

8 Automated generation of hard feature models 105
8.1 Introduction . 106
8.2 Automated generation of hard feature models . 107

8.2.1 An evolutionary algorithm for feature models . 107
8.2.2 Instantiation of the algorithm . 110

8.3 Evaluation . 112
8.3.1 Experiment #1: Maximizing execution time . 112
8.3.2 Experiment #2: Maximizing memory consumption . 116
8.3.3 Additional results and discussion . 117

8.4 Threats to validity . 120
8.5 Summary . 121

iv Contents

IV Final Remarks

9 Conclusions and future work . 125
9.1 Conclusions . 125
9.2 Discussion, limitations and extensions . 126
9.3 Other future work . 126

V Appendices

A BeTTy Framework . 131
A.1 General overview . 132
A.2 Architecture . 133
A.3 Code examples . 134
A.4 Related tools . 137
A.5 Summary . 137

B Mutation operators . 139
B.1 Traditional mutation operators . 139
B.2 Class–level mutation operators . 140

C Mutation testing report . 141
C.1 Introduction . 142
C.2 FaMa framework . 143
C.3 Experimental setup . 144

C.3.1 Mutation tool . 144
C.3.2 Mutation operators . 145
C.3.3 Experimental data . 145
C.3.4 Test data generator . 146
C.3.5 Mutants execution . 146
C.3.6 Experimental procedure . 148

C.4 Analysis of results . 149
C.4.1 Analysis of results with traditional mutants . 150
C.4.2 Analysis of results with class mutants . 151
C.4.3 Equivalent mutants . 154

C.5 Real faults . 155
C.5.1 A motivating fault found in the literature . 155
C.5.2 FaMa Framework . 156
C.5.3 SPLOT . 156

C.6 Discussion and lessons learned . 157
C.7 Threats to validity . 160
C.8 Related studies . 160
C.9 Conclusions . 162

Contents v

D Statistical analysis data . 163

E Acronyms . 169

Bibliography . 171

vi Contents

List of Figures

1.1 Some pictures illustrating mass production . 4
1.2 Example illustrating mass customization in the mobile phone industry 5
1.3 Mobile phone feature model . 6
1.4 The FaMa Ecosystem . 9
1.5 Summary of publications grouped by topic and year . 15

2.1 Feature relationships . 23
2.2 Cross-tree constraints . 24
2.3 Or relationship . 24
2.4 Mobile phone feature model (without cross-tree constraints) . 25
2.5 Mobile phone feature model (with cross-tree constraints) . 25
2.6 E-shop feature model . 25
2.7 Set relationship with group cardinality . 26
2.8 Feature cardinality . 27
2.9 Cardinality-based feature model . 28
2.10 Extended feature model . 28

3.1 Process for the automated analysis of feature models . 32
3.2 Mobile phone feature model . 34
3.3 A void feature model . 34
3.4 Common cases of dead features . 36
3.5 Some examples of false optional features . 37
3.6 Sample explanation . 37
3.7 Sample feature model with three optional features . 38
3.8 Mapping from a feature model to propositional logic . 40
3.9 Mapping from a feature model to CSP . 43

4.1 Classification of testing techniques used in this dissertation . 48
4.2 Basic testing procedure . 49
4.3 Equivalence partitioning example . 50
4.4 An example of program mutation . 53
4.5 General working scheme of an evolutionary algorithm . 55
4.6 Crossover and mutation in the search of an optimal car design . 57

5.1 Type and maximum size of the feature models used in performance testing 66

viii List of Figures

6.1 Equivalence partitions on feature models . 73
6.2 Some possible combinations of mandatory and optional relationships 73
6.3 Input feature models with dead features . 74
6.4 Input products selection using partition equivalence and boundary analysis 75
6.5 Input features selection using partition equivalence and boundary analysis 76
6.6 Wrong set of products obtained with the faulty reasoner . 81

7.1 Some examples of neighbour feature models . 87
7.2 An example of random feature model generation using metamorphic relations 90
7.3 Sample input feature model generated with our tool . 91
7.4 Size of the feature models killing mutants in the operation VoidFM 95
7.5 Algorithm for the generation of test cases using a starting manual test suite 100

8.1 Encoding of a feature model . 108
8.2 Example of one-point crossover in our algorithm . 109
8.3 Examples of infeasible individuals and repairs . 110
8.4 Effectiveness of the evolutionary algorithm . 113
8.5 Comparison of random models and our evolutionary algorithm for the search of the high-

est number of backtracks . 115
8.6 Distribution of fitness values for random and evolutionary search 118

A.1 BeTTy Web Site (http://www.isa.us.es/betty) . 133
A.2 BeTTy framework architecture . 134

C.1 FaMa Architecture . 144
C.2 Class-level vs. component-level testing . 147
C.3 Partial class diagram of Sat4jReasoner . 147
C.4 Example of mutation in reusable classes . 149

List of Tables

1.1 Summary of publications grouped by place of publication . 15
1.2 Summary of citations . 16

3.1 Propositional logic based tools used for the analysis of feature models 40
3.2 CSP based tools used for the analysis of feature models . 42

4.1 Test values for a sample program processing a date . 51

5.1 Summary of the related works . 67

6.1 Analysis operations addressed in the suite . 71
6.2 Three of the test cases included in the suite . 77
6.3 Size statistics of the three subject reasoners . 78
6.4 Mutants generation results . 79
6.5 Mutants execution results . 80
6.6 General overview of the FaMa Test Suite . 82

7.1 Analysis operations tested . 90
7.2 Mutants generation results . 93
7.3 Test data generation results in Sat4jReasoner . 94
7.4 Test data generation results in JavaBDDReasoner . 94
7.5 Test data generation results in JaCoPReasoner . 94
7.6 Evaluation results using a motivating fault reported in the literature 96
7.7 Evaluation results with FaMa . 97
7.8 Evaluation results with SPLOT . 97
7.9 Mutants execution results of the manual test suite . 98
7.10 Real faults detected by our test data generator and the manual suite 99
7.11 Mutants execution results of our refined automated test data generator 101
7.12 Evaluation results of our refined generator using real faults . 102

8.1 Algorithm configuration . 111
8.2 Evaluation results on the generation of feature models maximizing execution time . . 114
8.3 Maximum execution times produced by random and evolutionary search 114
8.4 BDD size and computation time of the hardest feature models found using random tech-

niques and our evolutionary program . 117

x List of Tables

8.5 Statistics of the hardest feature models found in our experiments 119

B.1 Traditional mutation operators . 139
B.2 Class-level mutation operators . 140

C.1 Size statistics of the three subject reasoners . 145
C.2 Analysis operations tested . 146
C.3 Traditional mutants for FaMa classes . 150
C.4 Test data generation results using traditional operators in Sat4jReasoner 151
C.5 Test data generation results using traditional operators in JavaBDDReasoner 152
C.6 Test data generation results using traditional operators in JaCoPReasoner 152
C.7 Class mutants for FaMa classes . 153
C.8 Test data generation results using class-level operators in Sat4jReasoner 153
C.9 Test data generation results using class-level operators in JavaBDDReasoner 154
C.10 Test data generation results using class-level operators in JaCoPReasoner 154
C.11 Test data generation results using a motivating fault reported in the literature (averages

of 10 executions) . 155
C.12 Test data generation results in FaMa 1.0 alpha (averages of 10 executions) 156
C.13 Test data generation results in SPLOT (averages of 10 executions) 157

D.1 Experiment #1 Test Statistics . 165
D.2 Experiment #2 Test Statistics . 167

Acknowledgements

I have expected this moment for a long time. The sweet moment in which, with the feeling
of the work done, I could spend some minutes thanking those people that I really care about,
those that have made this thesis possible and to whom I owe my deepest gratitude.

First and foremost I am heartily thankful to my supervisors, Dr. David Benavides and Dr.
Antonio Ruiz. They were the first to identify my research skills and the ones who gave me the
opportunity to develop them. This thesis is undoubtedly the result of their encouragement,
guidance and support.

During the research period, I have also benefited from being surrounded by a group of
great people that have contributed, in one way or another, to make this thesis possible. Pablo
Trinidad, Jose M. García, Carlos Müller, José A. Parejo, José A. Galindo or Jesus Galán are some
of the fellow students with whom I spent more time and I would like thank them for their
patient and support. Also, I wish to thank the rest of the members of the ISA group for their
companionship and great help along this time. I also want to show my gratitude to the other
members of the Department of Computer Language and Systems and the members of the thesis
committee for their cheerful willingness to evaluate and improve my work.

This thesis has also fed off the insights and directions of colleagues from other universities
and research centres. I must express special gratitude to the professor Robert M. Hierons who
welcomed me warmly in his lab during my research stay in London. This thesis is also the
result of his experience, sound advice and good ideas.

Finally, and more importantly, I must thank my family and friends for being always there
whenever I needed them. Thanks mum, for instilling in me the hunger for knowledge and
fighting so hard for giving me the opportunity that you never had. Thanks Isabel, for being the
most beautiful woman in the world and loving me so much.

xii Acknowledgments

Abstract

You w ill have only one opportunity
to make a first impression .

Popular saying,

Software product line engineering is an approach to develop families of related software
products by reusing a common set of features instead of building each product from scratch.
Feature models play a key role in this paradigm by providing a high-level representation of
all the products of the product line. The automated extraction of information from feature
models is a thriving topic that has called the attention of researchers for the last twenty years.
During this time, numerous operations, techniques and tools to get information from feature
models have proliferated and a whole community has been built around what has been called
the automated analysis of feature models. Currently, the rapid progress of this discipline is
naturally leading to an increasing concern about the quality of feature model analysis tools. The
goal now is not simply developing basic research prototypes but solid and high quality analysis
tools in terms of absence of bugs and performance. In this context, current testing methods
are mainly random and guided by intuition rather than by well-studied testing techniques.
This makes testing conclusions rarely rigorous and verifiable weakening the value and scope of
research contributions and reducing the user’s confidence in the correctness of analysis tools.

The main goal of this thesis is to join knowledge from the software testing and feature mod-
elling communities into a set of contributions that lead the automated analysis of feature models
to a new level of maturity. To that purpose, we present a set of techniques, algorithms and tools
to support functional and performance testing of feature model analysis tools. These contribu-
tions are the results of the application of several classical and innovative testing techniques to
the context of the analysis of feature models. Regarding functional testing, we present a test
suite and automated test data generator enabling the efficient detection of faults in analysis
tools. Regarding performance testing, we present an evolutionary algorithm for the genera-
tion of computationally-hard feature models to reveal the deficiencies of tools in pessimistic
cases. These contributions have been evaluated using extensive and rigorous experiments that
reveal the efficacy and efficiency of our approach. Among other results, we detected two faults
in FaMa and another two in SPLOT, two popular analysis tools widely used in the commu-
nity of automated analysis of feature models. Our contributions have been integrated into a
framework, BeTTy, built as a part of the FaMa ecosystem, a tool suite for the analysis of feature
models developed in the bosom of our research group.

xiv Abstract

Resumen

Sólo tendrás una oportunidad
de dar una prim era impresión .

D icho popular,

La ingeniería de líneas de productos es un paradigma de desarrollo orientado a construir
familias de sistemas software que reutilicen características comunes en lugar de construir cada
producto desde cero. Un aspecto fundamental para la gestión de una línea de productos es
utilizar un modelo que permita representar todos los posibles productos que pueden derivarse
de ella. Uno de los modelos más populares usados para tal fin son los denominados modelos
de características. La información extraída de estos modelos es utilizada para tomar decisiones
importantes a lo largo del desarrollo y gestión de una línea de productos software.

La extracción automática de información de modelos de características es un tema de inves-
tigación activo que ha atraído la atención de numerosos investigadores en los últimos veinte
años. Durante este tiempo, se han presentado un gran número de operaciones, técnicas y
herramientas y se ha consolidado toda una comunidad alrededor de lo que se ha denominado
análisis automático de modelos de características. Actualmente, los avances en éste área están
llevando a una mayor preocupación por la calidad de las herramientas de análisis. Los prototi-
pos de investigación ya no son suficiente y ahora se buscan solidas herramientas de análisis en
términos de ausencia de errores y rendimiento. Sin embargo, las pruebas software empleadas
en este campo son fundamentalmente aleatorias y guiadas por la intuición de los propios de-
sarrolladores más que por técnicas maduras para el diseño de datos de prueba. Esto hace que
las conclusiones de las pruebas sean difícilmente rigurosas y verificables a la vez que limitan el
alcance y el valor de las contribuciones científicas en el análisis de modelos de características.
De igual forma, la arbitrariedad u omisión de las pruebas en este campo reducen notablemente
la confianza de los usuarios sobre el correcto funcionamiento de las herramientas de análisis.

El objetivo de esta tesis es combinar el conocimiento de las comunidades de pruebas soft-
ware y modelado de características en una serie de contribuciones que permitan llevar el análi-
sis automático de modelos de características a un nuevo nivel de madurez. Con este fin, en
esta memoria presentamos una serie de técnicas, algoritmos y herramientas para la realización
de pruebas funcionales y de rendimiento en herramientas de análisis de modelos de carac-
terísticas. Estas contribuciones son el resultado de la aplicación de varias técnicas clásicas e
innovadoras de pruebas software en el contexto de análisis de modelos de características. Para
facilitar las pruebas funcionales, presentamos un conjunto de casos de prueba así como un
generador automático de datos de prueba para la detección de errores en las herramientas de

xvi Resumen

análisis. En lo que se refiere a pruebas de rendimiento, presentamos un algoritmo evolutivo
para la generación de modelos de características difíciles de procesar en términos de tiempo
y memoria requeridos para su análisis. Etas herramientas han sido evaluadas experimental-
mente de forma rigurosa demostrando la viabilidad de la propuesta. Entre otros resultados,
nuestras herramientas nos han permitido detectar dos errores en FaMa y otros dos en SPLOT,
dos herramientas para el análisis de modelos de características ampliamente usadas por la co-
munidad. Nuestras contribuciones han sido integradas en un framework, BeTTy, desarrollado
como parte del ecosistema FaMa, un conjunto de herramientas para el análisis de modelos de
características desarrolladas por nuestro grupo de investigación.

Part I

Preface

Chapter 1

Introduction

There is nothing more difficult to take in hand,
more perilous to conduct or more uncertain in its success

than to take the lead in the introduction
of a new order of things.

N iccolo M achiavelli, 1469–1527
Italian dramatist, h istorian , and philosopher

I n this dissertation, we report on our work to develop a set of techniques, algorithms and
tools to support functional and performance testing of feature model analysis tools. In

this chapter, we first introduce the topics that constitute the context of our research work in
Section §1.1. In Section §1.2, we summarize our main contributions and publications. Finally,
we describe the structure of the dissertation in Section §1.3.

4 Chapter 1. Introduction

1.1 Research context

In the next sections, we briefly present the main concepts that we will use throughout the
rest of this dissertation. In Section §1.1.1, we present software product lines. Feature models
and their analyses are described in Section §1.1.2. Finally, we introduce the main concepts
concerning testing on the analysis of feature models in Section §1.1.3.

1.1.1 Software product lines

Economic and social progress has brought significant changes to the ways in which goods
are produced. Centuries ago, craftsmen were the responsible for the building of each product
from the beginning to the end. This means that they had to know everything about the as-
sembly process and the creation of the individual parts that composed each product. With the
industrial revolution, a new production paradigm emerged, so-called mass production. Mass
production can be defined as the creation of large amount of the same product using standard-
ized processes and techniques (i.e. assembly lines) intended to reduce costs and time to market.
Examples of mass production can be found in almost all commercial areas such as transport,
communications or food (see Figure §1.1). In a globalized world, however, the highly competi-
tive and segment–oriented market is starting to show the deficiencies of mass production when
it comes to respond to the demands for variety and customization of customers. To address
these needs, industry is currently involved in a shift from mass production to a more flexi-
ble paradigm referred to as mass customization. Tseng and Jiao define mass customization as
“producing goods and services to meet individual customers’ needs with near mass production
efficiency” [174]. Figure §1.2 depicts an example of how mass customization is offered to the
consumers of mobile phones by means of web configurators in which users can select the fea-
tures that better meet their needs. The story of software product lines is about the application
of mass customization to the production of software [15, 21].

Figure 1.1: Some pictures illustrating mass production.

Software product lines (a.k.a. software product families) has emerged as one of the most
promising reuse-based software development paradigm for a major improvement of the pro-
ductivity of IT industries, enabling them to handle the diversity of global market and reduce
the development costs and the amount of time to market [45, 162]. In particular, software prod-
uct lines are based on two key ideas. First, most software systems are not new. In fact, software
products usually share a number of features. Consider, for instance, the common features (a.k.a.

1.1. Research context 5

Figure 1.2: Example illustrating mass customization in the mobile phone industry.

commonalities) that can be found in current on-line purchase systems (e.g. catalogue manage-
ment, credit card validation, data access, etc.). Second, many companies are becoming market
segment–oriented. In this context, different variants of the same products are launched to the
market by combining different features in response to different customers’ preferences. As an
example, consider the software loaded in mobile phones in which hundreds of different mo-
dels are built by combining a common set of reusable features: calls, messaging, Bluetooth,
MP3, 3G, games, etc. Based on these ideas, software product line engineering focuses on the
systematic development of families of products rather than producing each product one by
one from scratch [45, 129]. To this aim, product variants are built using reusable assets which
usually include frameworks and components. More specifically, Clements and Northrop [45]
define a software product line as follows:

“a set of software-intensive systems that share a common, managed set of features satisfying
the specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way.”

Software product lines are traditionally developed and managed within the boundaries of
an organization. However, the success of a software product line may lead a company to share
their core assets (usually referred to as platform) with the community to promote external con-
tributions to the product line. When this occurs, companies transition from a software product
line approach to a so-called software ecosystem approach [30, 111]. Among other benefits, soft-
ware ecosystems increase the value and attractiveness of products for new users and accelerate
innovation. Software ecosystems have emerged in different areas like those of operating sys-
tems (e.g. iPhone OS) or Web applications (e.g. Google AppEngine). However, most software
ecosystems are derived from classical desktop applications that achieves success in the market
and are then opened up to promote contributions from their community of users (e.g. MS Of-
fice Suite). The adoption of a software ecosystem implies benefits but also new management
challenges like the coordination of internal and external developers and the collaboration with
partner companies and independent solution vendors.

6 Chapter 1. Introduction

1.1.2 Automated analysis of feature models

The products of a software product line can be specified in terms of features. A fea-
ture is defined as an increment in product functionality [11]. For instance, the software sys-
tem of a mobile phone could be defined by the set of features that it supports as follows:
{Calls, Messaging, MP3}. This could intuitively means that the software product provides sup-
port for calls, messaging and playing MP3 respectively.

Key to software product lines is to capture commonalities (i.e. common features) and vari-
abilities (i.e. variant features) of the systems that belong to the product line. To this aim, feature
models [85] are used. A feature model is a compact representation of all the products of a soft-
ware product line in terms of features. Figure §1.3 depicts a simplified example feature model
inspired by the mobile phone industry. The model illustrates how features are used to specify
and build software for mobile phones. The software loaded in the phone is determined by the
features that it supports. As illustrated, a feature model consists of:

• Nodes representing product features.

• Relationships between a parent feature and its child features.

• Cross-tree constraints that are typically inclusion or exclusion statements of the form : “If
feature A is included, then feature B must also be included (or excluded)”.

Mobile Phone

Calls GPS

ColourBasic

Screen Media

Camera MP3

Mandatory

Optional

Alternative

Or

Requires

Excludes

High resolution

Figure 1.3: Mobile phone feature model.

Feature models were first introduced in 1990 as a part of the FODA (Feature–Oriented Do-
main Analysis) method [85]. Since then, feature modelling has been widely adopted by the
software product line community and a number of extensions have been proposed in attempts
to improve properties such as succinctness and naturalness [140]. At the time of writing this
dissertation, two main groups of feature model notations are used in the literature: basic fea-
ture models [71] and cardinality-based feature models [50]. As a possible complement to both
of them, a third notation, extended feature models [18], proposes adding extra functional infor-
mation to the models by means of feature attributes.

1.1. Research context 7

Right from the introduction of feature models by Kang back in 1990, the manual manipu-
lation of these was recognized as a difficult and error-prone task [85]. Since then, a number
of approaches for the automated analysis of feature models have proliferated. The automated
analysis of feature models deals with the computer–aided extraction of information from fea-
ture models. From the information obtained, marketing, managerial and technical decisions are
derived all along the software product line lifecycle [15]. Typical operations of analysis allow
us to know whether a feature model is void (i.e. it represents no products), what is the number
of products represented by a feature model or whether a model contains any errors. Recent sur-
veys have identified up to 30 different analysis operations on feature models proposed in the
literature [21]. Common analysis techniques are those based on propositional logic, constraint
programming or description logic [21]. The applications supporting these analysis capabilities
are usually referred to as feature model analysis tools. There exists a variety of commercial and
open source feature model analysis tools such as AHEAD Tool Suite [4], Big Lever Software
Gears [27], FaMa Framework [58], Feature Model Plug-in [61], pure::variants [131] and SPLOT
[159].

1.1.3 Testing of feature model analysis tools

We human beings are by nature not perfect and so is not the software that we develop. Even
the most experienced programmer can make mistakes and introduce faults in his programs
[14, 47, 117]. The process of evaluating a program with the intent of finding faults is referred
to as software testing [117]. Software testing plays a key role in the development of software
to evaluate whether the program meets its requirements, both functional and non-functional,
and to gain confidence about the absence of bugs in the program. In fact, it is acknowledged
that software testing consumes more than 50% of the total development time and budget of a
software project [14, 117]. Despite this massive investment, however, we must admit that it is
still impractical, often impossible, to detect all the faults of a program [14, 47, 117].

Software testing is performed by means of test cases. A test case is a set of test inputs and
expected outputs developed to verify compliance with a specific requirement [47, 117]. Test
cases may be grouped into so-called test suites. A variety of testing techniques has been re-
ported to assist on the design of effective test cases, i.e. those that will find more faults with
less effort and time [14, 47, 117]. These techniques can be classified according to multiple fac-
tors such as knowledge of the source code (black–box, white–box, gray–box), source of infor-
mation used (program–based, specification–based, interface–based), testing level (unit–level,
integration–level, system–level) or degree of automation (manual vs. automated).

In this thesis, we will focus on the testing of feature model analysis tools at two levels,
namely:

Functional testing. During functional testing, analysis tools are evaluated to check whether the
implemented analyses are actually performing the expected computation. Gaining confidence
in the absence of faults in these tools is especially relevant since the information extracted from
feature models is used all along the development process to support important decisions [12].
The main obstacles at this level are the lack of representative test data and the difficulty to check
whether the output of an analysis is correct, so–called oracle problem [37, 189].

Performance testing. During performance testing, analysis tools are exercised to check how
well they behave when dealing with different types of problems, e.g. execution time. From

8 Chapter 1. Introduction

the results obtained, the strengths and weaknesses of the applications are highlighted helping
researchers to improve their solutions and identify new research directions. One of the hardest
challenges in this scenario is to find motivating input feature models that show the perfor-
mance of tools in extreme situations, e.g. those maximizing the execution time or the memory
consumption of the tools.

1.2 Contributions

In this section, we summarize the main contributions of our research work. These contribu-
tions have been published in relevant journals, conferences and workshops.

1.2.1 Summary of contributions

This thesis continues the work on the analysis of feature models carried out by our research
group in the last years. This work has focused on the development of a product line of tools for
the analysis of variability models and a framework, FaMa (FeAture Model Analyser), support-
ing it. Recently, however, we have realized of the benefits of opening up the FaMa product line
to external contributors sharing the costs and benefits of innovation. Hence, we are currently
involved in a shift from a product line strategy to a software ecosystem approach [30]. Figure
§1.4 depicts a graphical representation of the FaMa ecosystem. The FaMa framework represents
the core (also referred to as platform in the literature) of the ecosystem. Around it, a number
of extensions are built. These can be mainly divided into analysis components and 3rd party
tool integration usually carried out by external collaborators. At the time of writing this disser-
tation, FaMa is integrated into the visual editor MOSKitt feature modeller [113] and it is being
integrated into the commercial tool pure::variants [131]†1. One of the results of this disserta-
tion is the integration of our contributions in the fields of functional and performance testing
of feature model analysis tools into the FaMa ecosystem. In particular, we have endowed the
ecosystem with a test suite, FaMa TeS (FaMa Test Suite), and a framework, BeTTy (Benchmark-
ing and TesTing on the analysis of feature models) . Both resources have been released under
open source license and are accessible from the BeTTy [25] and FaMa [58] Web sites.

The main goal of this dissertation is to provide a set of techniques, algorithms and tools to
support the functional and performance testing of feature model analysis tools. In the pursuit
of this goal, we have made the following contributions:

i. FUNCTIONAL TESTING OF FEATURE MODEL ANALYSIS TOOLS

Problem statement: The lack of representative test data hinders the testing of feature
model analysis tools.

Contribution: We have developed a set of implementation–independent test cases for the
detection of faults in feature model analysis tools. The main results of this contribution
have been presented in the 5th Software Product Lines Testing Workshop [143] and the
IET Software journal [150].

†1In the context of the DiVA European project (http://www.ict-diva.eu/)

1.2. Contributions 9

Figure 1.4: The FaMa Ecosystem.

Problem statement: The testing of feature model analysis tools is a hard and time–
consuming task.

Contribution: We have developed an automated test data generator for the analyses of
feature models and we have evaluated it using both artificial and real faults. The main
results of this contribution have been presented in the Third International Conference on
Software Testing, Verification and Validation [151] and in the Information and Software
Technology journal [152, 153].

ii. PERFORMANCE TESTING OF FEATURE MODEL ANALYSIS TOOLS

Problem statement: There are not available hard feature models to evaluate the perfor-
mance of analysis solutions.

Contribution: We have developed a novel evolutionary algorithm for the generation of
computationally–hard feature models, e.g. those producing longest execution times or
highest memory consumption. This allows users and developers to know the behaviour
of tools in extreme situation revealing their real power. The mains results of these contri-
bution are about to be submitted to a journal.

In addition to the aforementioned approaches, during our research period we have made
some other contributions that are not included in this dissertation due to space constraints,
namely:

i. SURVEY AND TOOL SUPPORT ON THE ANALYSIS OF FEATURE MODELS

Problem statement: The publications on the analysis of feature models are numerous and
scattered hindering the progress of the discipline.

10 Chapter 1. Introduction

Contribution: We performed an exhaustive literature review and research agenda of the
analysis of feature models 20 years after of their introduction. The main result of this con-
tribution were presented in the XI Jornadas de Ingeniería del Software y Bases de Datos
[20] and the Information Systems journal [21].

Problem statement: The analysis of feature models requires efficient tool support.

Contribution: We have worked actively in the development of techniques and tools for
the analysis of feature models. The main results of this contributions have been published
in several international workshops and book chapters [22–24, 145, 169] as well as in the
tool tracks of the XII Jornadas de Ingeniería del Software y Bases de Datos [170] and the
12th International Software Product Line Conference [168].

ii. BENCHMARKING AND PERFORMANCE OPTIMIZATION

Problem statement: The lack of standard benchmarks to compare the performance of
different analysis solutions is hindering the progress of the community.

Contribution: We suggested the creation of a benchmark for the automated analyses of
feature models and proposed a preliminary research agenda setting milestones and clar-
ifying the types of contributions expected from the community. The main result of this
contribution was presented in the Third International Workshop on Variability Modelling
of Software-intensive Systems [154].

Problem statement: The analysis of feature models is a complex task.

Contribution: We presented an algorithm to reduce the size of the feature model prior to
their analysis reducing the complexity of the analysis process. We also showed the gains
in efficiency obtained when using this technique with different analysis tools. The main
result of this contribution was presented in the First Workshop on Analyses of Software
Product Lines [142].

iii. OTHER AUTOMATED TREATMENTS AND VARIABILITY DOMAINS

Problem statement: The merging of feature model requires automated support.

Contribution: We proposed using model transformation to automate the merging of fea-
ture models and presented a prototype implementation using graph transformations. The
results of this contribution were presented in a LNCS book chapter [148] and the VII Jor-
nadas sobre Programación y Lenguajes [147].

Problem statement: The synergies of service oriented applications and software product
lines are still to be explored.

Contribution: We presented a taxonomy of variability points in Web Service Flows. This
contribution was presented in the First International Workshop on Service Oriented Ar-
chitectures and Product Lines [146].

1.2. Contributions 11

1.2.2 Publications in chronological order

We next present a complete list of the publications derived from our research work in
chronological order.

[2006]. During our first year of work, we focused on the automated support for the analysis
of feature models. We proposed new analysis operations and compared the performance of
different analysis techniques [22, 23, 169]. Also, we published a preliminary version of a survey
on the analysis of feature models [20]. These works gave us the first hints about the lack of
standard mechanisms to test and compare the performance of different analysis tools.

• APLE’06. P. Trinidad , D. Benavides, A. Ruiz-Cortes, S. Segura and M. Toro. Explanations
for agile feature models. 1st International Workshop on Agile Product Line Engineering
(APLE’06). Baltimore, Maryland, USA, 2006.

• GTTSE’06. D. Benavides, S. Segura, P. Trinidad and A. Ruiz-Cortés. Using Java CSP
solvers in the automated analyses of feature models. Post-proceedings Summer School
on Generative and Transformational Techniques in Software Engineering (GTTSE’05).
LNCS, 4143:389- 398. Braga, Portugal, 2006.

• SPLC’06. D. Benavides, S. Segura, P. Trinidad and A. Ruiz-Cortés. A first step towards
a framework for the automated analysis of feature models. Managing Variability for
Software Product Lines: Working with Variability Mechanisms, pages 39-45. Baltimore,
Maryland, USA, 2006.

• JISBD’06. D. Benavides, P. Trinidad, A. Ruiz-Cortés and S. Segura. A survey on the
automated analyses of feature models. Jornadas de Ingeniería del Software y Bases de
Datos (JISBD’06), pages 367-376. Sitges, Barcelona (Spain), 2006.

[2007]. During this year, we released the first version of the analysis framework FaMa and
presented it to the community in several publications [24, 145, 170]. During the development
of the tool, we learned how difficult it was to gain confidence about the absence of errors in
the implementation of analysis operations. This was the problem that motivated big part of
this PhD dissertation. In the same year, we made some exploratory works. In particular, we
explored the connections between web services and software product lines [146]. Also, we stud-
ied how model transformations could help to provide support for other automated treatments
on feature models like model refactorings [144, 147].

• VaMoS’07. D. Benavides, S. Segura, P. Trinidad and A. Ruiz-Cortés. FAMA: Tooling a
framework for the automated analysis of feature models. First International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS’07),pages 129-134. Lim-
erick, Ireland, 2007.

• OSSPL’07. S. Segura, D. Benavides, A. Ruiz-Cortés and P. Trinidad. Open Source Tools
for Software Product Line Development .Open Source and Product Lines (OSSPL’07).
Kyoto, Japan, 2007.

• SOAPL’07. S. Segura, D. Benavides, A. Ruiz-Cortés and P. Trinidad. A Taxonomy of
Variability in Web Service Flows. Service Oriented Architectures and Product Lines
(SOAPL’07). Kyoto, Japan, 2007.

12 Chapter 1. Introduction

• PROLE’07. S. Segura, D. Benavides, A. Ruiz-Cortés and P Trinidad. Toward Automated
Refactoring of Feature Models using Graph Transformations. VII Jornadas sobre Progra-
mación y Lenguajes (PROLE’07), pages 275-284. Zaragoza, Spain, 2007.

• JISBD’07. P. Trinidad, D. Benavides, S. Segura, and A. Ruiz-Cortés. Fama: hacia el análi-
sis automático de modelos de características. In Actas de las XII Jornadas de Ingeniería
del Software y Bases de Datos. Zaragoza, Spain, 2007.

• DSDM’07. S. Segura, D. Benavides, A. Ruiz-Cortés and M.J. Escalona. From Require-
ments to Web System Design. An Automated Approach using Graph Transformations.
Desarrollo de Software Dirigido por Modelos. 4a Edición (DSDM’07), pages 61-69.
Zaragoza, Spain, 2007.

[2008]. In this year, we presented our first contributions in the context of functional test-
ing and performance on the analyses of feature models. In particular, we proposed the design
of a test suite for the analysis of feature models and studied which testing techniques were
more appropriate for that end [143]. Also, we proposed and algorithm to reduce the size of
feature model prior to their analysis gaining efficiency [142]. We also presented FaMa in the
Software Product Line Conference (SPLC), main forum of our community [168]. Furthermore,
we proposed using graph transformation to automate the merging of feature models. This con-
tribution was the result of our participation in the Second Summer School on Generative and
Transformational Techniques in Software Engineering (GTTSE’07). After the event, the orga-
nizers competitively selected 4 papers out of the submissions of the participants to be included
in a chapter of a special volume of Springer-Verlag Lecture Notes in Computer Science were
our paper was published [148]. In the same year, we collaborated with Trinidad in proposing a
tree-dimensional visualization of feature models [171]. We also collaborated with Ross-Frantz
studying how to apply our knowledge about feature models to the analysis of Orthogonal Vari-
ability Models [136].

• GTTSE’08. S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated merging
of feature models using graph transformations. Postproceedings of the Second Summer
School on Generative and Transformational Techniques in Software Engineering. LNCS,
5235:489-505. Braga, Portugal, 2008.

• SPLiT’08. S. Segura, D. Benavides, and A. Ruiz-Cortés. Functional testing of feature
model analysis tools. a first step. Proceedings of the Fifth International Workshop on
Software Product Lines Testing (SPLiT’08), pages 36-39. Limerick, Ireland, 2008.

• ASPL’08-1. S. Segura. Automated analysis of feature models using atomic sets. In pro-
ceedings of the First Workshop on Analyses of Software Product Lines (ASPL’08), pages
201-207. Limerick, Ireland, 2008.

• ASPL’08-2. F. Roos-Frantz and S. Segura. Automated Analysis of Orthogonal Variability
Models. A First Step. In proceedings of the First Workshop on Analyses of Software
Product Lines (ASPL’08), pages 243-248. Limerick, Ireland, 2008.

• SPLC’08. P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A. Jimenez. Fama
framework. In 12th Software Product Lines Conference - Tool track. Limerick, Ireland,
2008.

1.2. Contributions 13

• ViSPLE’08. P. Trinidad, A. Ruiz-Cortés, D. Benavides and S. Segura. Three-Dimensional
Feature Diagrams Visualization. 2nd International Workshop on Visualisation in Soft-
ware Product Line Engineering (ViSPLE 2008). Limerick, Ireland, 2008.

[2009]. We presented a roadmap for the development of a benchmark to compare the per-
formance of different analysis solutions [154]. In this work, we identified challenges, milestones
and types of contributions expected from the community. During this year, we also spent three
months in a research stay at England and submitted several journal and conference papers that
would be accepted the following year.

• VaMoS’09. S. Segura and A. Ruiz-Cortés. Benchmarking on the automated analyses of
feature models: A preliminary roadmap. In Third International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’09), pages 137-143. Seville, Spain, 2009.

[2010]. This was the most prolific year in terms of publications. First, we presented a litera-
ture review on the analysis of feature models in the Information Systems journal [21]. Later, we
presented a test suite for functional testing of feature model analysis tools in the IET Software
journal [150]. We also got a paper accepted in the International Conference on Software Testing,
Verification and Validation (ICST) [151]. This was a join work with the Professor Robert M.
Hierons who supervised our work during our research stay in his lab in England. Our paper
in ICST was extended in two directions. First, we reported on our experience using mutation
testing for the evaluation of our test data generator in the Information and Software Technol-
ogy Special Issue on Mutation Testing [152]. Second, we presented an improved version of our
test data generator and compared it with our manual test suite in an article published in the
Information and Software Technology journal [153]. In addition to this, we developed an evo-
lutionary algorithm for the generation of hard problems to be used in performance evaluations.
The results of this work are about to be submitted to a journal. Finally, we collaborated with
Galindo in the extraction of hard and realistic feature models from Debian package repositories
[63].

• ICST’10. S. Segura, R. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated test data
generation on the analyses of feature models: A metamorphic testing approach. In Inter-
national Conference on Software Testing, Verification and Validation, pages 35-44. Paris,
France, 2010. [Acceptation rate: 50/189 (26.5%)]

• ACoTA’10. J.A. Galindo, D. Benavides and S. Segura. Debian Packages Repositories
as Software Product Line Models. Towards Automated Analysis. Proceedings of the
1st International Workshop on Automated Configuration and Tailoring of Applications
(ACoTA’10). Antwerp, Belgium, 2010.

IS’10. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated anal-
ysis of feature models 20 years later: A literature review. Information
Systems, 35 (6):615 - 636, 2010.

JCR IF: 1.96
CS-IS: 31/116 (26.7%)

14 Chapter 1. Introduction

IET’10. S. Segura, D. Benavides, and A. Ruiz-Cortés. Functional testing
of feature model analysis tools: A test suite. IET Software, 2010 (to
appear).

JCR IF: 0.65
CS-SE: 72/93 (77.4%)

IST’10-1. S. Segura, R.M. Hierons, D. Benavides, and A. Ruiz-Cortés.
Mutation Testing on an Object-Oriented Framework: An Experience
Report. Information and Software Technology Special Issue on Muta-
tion Testing, 2010 (to appear).

JCR IF: 1.82
CS-SE: 19/93 (20.4%)

IST’10-2. S. Segura, R.M. Hierons, D. Benavides, and A. Ruiz-Cortés.
Automated Metamorphic Testing on the Analyses of Feature Models.
Information and Software Technology, 53:245-258, 2011. (published
on-line in 2010).

JCR IF: 1.82
CS-SE: 19/93 (20.4%)

A summary of our publications is presented in Figure §1.5. It classifies our contributions ac-
cording to the year of publication (vertically) and the topics introduced in the previous section
(horizontally). For each publication, a coloured circle is presented together with the acronym
of the paper. The colour of the circle show the type of participation of the PhD candidate in
the publication (first, second, third or later co-author). Large circles represent journal articles.
A summary of the publications presented each year is showed at the bottom of the figure. As
illustrated, the graph shows a clear definition of what has been our research path until now. We
started working on the identification of operations of analysis on feature models and studying
the performance of different solvers (APLE’06, GTTSE’06, SPLC’06, JISBD’06). The result of
this tasks led us to provide automated support for the analysis of feature models in the form
of the FaMa framework (VaMoS’07, OSSPL’07, JISBD’07, SPLC’08). Once the first prototype of
the framework was developed, we identified the need to provide techniques and tools to sup-
port functional and performance testing in the analysis of feature models (SPLiT’08, ASPL’08-
1, VaMoS’09, IS’10, IET’10, IST’10, IST’10-2). At the same time, we devoted some efforts to
collaborate with other authors working in similar topics (ASPL’08-2, ViSPLE’08, ACoTA’10)
and to study other promising ideas like the synergies between web services and product lines
(SOAPL’07) or the automation of operations of modification on feature models (PROLE’07,
GTTSE08).

Table §1.1 presents another view of our publication classified according to the place of pub-
lication.

1.2. Contributions 15

Automated Analysis

Functional Testing

Performance

Others

2006 2007 2008 2009/10

SPLC’06

APLE’06

GTTSE’06

JISBD’06 VaMoS’07

OSSPL’07

JISBD’07

PROLE’07

SOAPL’07 DSDM’07 GTTSE’08

SPLiT’08

ASPL’08-2

SPLC’08

ASPL’08-1 VaMoS’09

IS’10

IET’10

IST’10-1

ICST’10

IST’10-2

First co-author Second co-author Other

TOTAL 1 Book chapter
1 National conference
2 International workshops

1 National conference
2 National workshops
3 International workshops

1 Book chapter
1 International conference
4 International workshops

1 International conference
2 International workshop
4 JCR Journals

ACoTA’10

ViSPLE’08

Figure 1.5: Summary of publications grouped by topic and year.

Category Publications Acronyms

JCR journals 4 IS’10, IET’10, IST’10-1, IST’10-2

Book chapters (LNCS) 2 GTTSE’06, GTTSE’08

International conferences 1 ICST’10

International workshops 11 APLE’06, SPLC’06, VaMoS’07,
OSSPL’07, SOAPL’07, SPLiT’08,
ASPL’08-1, ASPL’08-2, ViSPLE’08,
VaMoS’09, ACoTA’10

National conferences 2 JISBD’06, PROLE,07

National workshops 1 DSDM’07

Tool demonstrations 2 JISBD’07, SPLC’08

Technical reports 7 -

Total 30

Table 1.1: Summary of publications grouped by place of publication.

16 Chapter 1. Introduction

1.2.3 Citations

Table §1.2 summarizes the citations to our work in the context of software product line and
feature modelling. Horizontally, we show the type of publication in which our work was cited.
Vertically, we show the acronym of the paper cited as shown in the previous section. In total, our
work has been cited 117 times (excluding self–citations) until October 2010 according to Google
Scholar. The major number of citations (50) comes from international conferences which means
that our work is fairly recognized by the international research community. The paper that has
received more attention from the community with 29 citations is our contribution to the VaMoS
workshop in 2007 (VaMoS’07) in which we presented the FaMa framework to the community.
We may remark, however, that our literature review on the analysis of feature models (IS’10)
has been cited 14 times since its publication in March 2010. This suggests that the number of
citations of this work could grow significantly in the next years.

G
T

T
SE

’0
6

[2
3]

JI
SB

D
’0

6
[2

0]

SP
L

C
’0

6
[2

2]

A
P

L
E

’0
6

[1
69

]

V
aM

oS
’0

7
[2

4]

SO
A

P
L’

07
[1

46
]

G
T

T
SE

’0
8

[1
48

]

SP
L

C
’0

8
[1

68
]

A
SP

L’
08

-1
[1

42
]

V
aM

oS
’0

9
[1

54
]

IS
’1

0
[2

1]

T
o

ta
l

JCR journals 0 2 1 1 1 0 0 0 0 0 0 5

Other journals 4 0 2 0 0 0 0 0 0 0 0 6

International conferences 1 7 6 1 13 1 5 4 3 1 8 50

International workshops 2 2 5 0 6 0 0 1 1 0 2 19

National conferences 0 1 0 0 0 2 0 1 0 0 0 4

National workshops 0 0 0 0 0 0 0 1 0 0 0 1

PhD dissertations 0 1 0 0 2 0 0 0 1 0 1 5

Others 5 4 5 1 7 1 1 0 0 0 3 27

Total 12 17 19 3 29 4 6 7 5 1 14 117

Table 1.2: Summary of citations.

1.2.4 Developed tools

The results of this thesis have been integrated into two tools developed in the context of our
research group, namely:

• FaMa Framework. FaMa [58, 168] is an open source Java framework for the automated
analysis of variability models. Since its release in 2007, FaMa has been used by at least
12 companies and universities in 7 different countries and it has been integrated into
several third-party tools. The results of this thesis have endowed FaMa with new analysis
components, performance optimization techniques and a new input format.

• BeTTy Framework. BeTTy [25] is an open source Java framework for functional and per-
formance testing of feature model analysis tools. BeTTy is a direct result of our thesis and

1.3. Structure of this dissertation 17

integrates most of the contributions presented in this dissertation. A detailed description
of the framework is presented in Appendix §A.

1.2.5 Research visits

During the development of this thesis, we visited the School of Information Systems, Com-
puting and Mathematics at Brunel University (London, UK). From June to September of 2009,
we worked closely with the Professor Robert M. Hierons, one of the world leading researchers
in the software testing community. Among other results, we developed the prototype of the
test data generator that we later presented in the Third International Conference on Software
Testing, Verification and Validation (ICST’10) [151] and in the Information and Software Tech-
nology journal [153]. We also worked in the initial version of the experience report that was later
published in the Information and Software Technology Special Issue on Mutation Testing [152].
Additionally, we developed the first version of our evolutionary algorithm for the generation
of computationally–hard feature models. The development, refinement and application of this
algorithm is one of the main tasks of our ongoing collaboration with the Professor Hierons.

1.3 Structure of this dissertation

This document is structured as follows:

Part I: Preface. It comprises this introduction chapter.

Part II: Background Information. In this part, we provide the reader with a deep understand-
ing of the research context in which our work has been developed. In Chapter §2, we sur-
vey the most common notations of feature models providing some examples. In Chapter
§3, we present a summary of the most relevant analysis operations found in the literature
and the works proposing automated support for them. This chapter is based on an exten-
sive literature review on the analysis of feature models presented by the authors in the
Information Systems journal [21]. In Chapter §4, we present the main concepts related to
software testing used in the context of our dissertation.

Part III: Our Contribution. This part is the core of our dissertation and is organized in four
chapters. In Chapter §5, we present the problems addressed in our thesis together with
an analysis of current solutions emphasizing the gap filled by our contributions. In Chap-
ter §6, we present a test suite for functional testing on the analysis of feature models. This
chapter is based on a journal article presented by the authors in the IET Software jour-
nal [150]. In Chapter §7, we present an automated test data generator for the analysis of
feature models based on metamorphic testing. This chapter is based on a journal paper
presented by the authors in the Information and Software Technology journal [153]. Fi-
nally, in Chapter §8, we present a novel evolutionary algorithm for the generation of hard
feature model to be used in performance testing of feature model analysis tools.

Part IV: Final Remarks. It consists of Chapter §9 in which we report our main conclusions and
our plans for future research.

18 Chapter 1. Introduction

Part V: Appendices. In Appendix §A, we present the BeTTy framework, a tool that integrates
most of our contributions in the field of testing of feature model analysis tools. A com-
plete list of the mutation operators used in our evaluations is presented in Appendix §B.
In Appendix §C, we present an experience report with the lessons learned from using
mutation testing to evaluate the effectiveness of our automated test data generator. This
appendix is based on a journal paper accepted for publication in the Information and Soft-
ware Technology Special Issue on Mutation Testing [152]. In Appendix §D, we present
the statistical analysis data from the experimental results obtained during the evaluation
of our evolutionary algorithm for the generation of computationally–hard feature mo-
dels. Finally, we clarify the meaning of the acronyms used throughout this dissertation
in Appendix §E.

Part II

Background Information

Chapter 2

Feature models

Variability is the law of life,
and as no tw o faces are the sam e,
so no tw o bodies are alike (...)

W illiam Osler, 1849–1919
Canadian Physician

F eature models were introduced twenty years ago as a way to model variability in soft-
ware product lines. Since then, a number of extensions to the original notation has been

proposed. In this chapter, we survey the most common notations for feature modelling pro-
viding some examples. In Section §2.1, we introduce feature models. Section §2.2 presents the
classical notation of feature models also referred to as basic feature models. Cardinality-based
feature models are presented in Section §2.3. Section §2.4 introduces the works proposing ex-
tending feature models with attributes. Finally, we summarize the main points of the chapter
in Section §2.5.

22 Chapter 2. Feature models

2.1 Introduction

In contrast to traditional software development, software product line engineering focuses
on building set of related products rather than individual products. This introduces a new
dimension in the development process referred to as variability management, i.e. managing
what is common and what is different across the products of a product line. Variability must
be correctly managed at all levels. For instance, requirement engineers must be aware of which
requirements are mandatory and which ones are optional. Similarly, design engineers must
know what features are incompatible and which ones depends on each other. Also, testers
must know which are the products that can be derived from the product line in order to design
their testing plans. In this context, feature models [85] are one of the most common artefacts
for variability management in software product lines. A feature model provides a compact
representation of all the products of a product line in terms of features where a feature is any
domain abstraction relevant for the stakeholder [164]. More specifically, a feature model is a
tree-like structure and consists of:

• Nodes representing products features.

• Relationships between a parent feature and its child features.

• Cross-tree constraints that are typically inclusion or exclusion statements of the form : “If
feature A is included, then feature B must also be included (or excluded)”.

Feature models are recognized in the literature to be one of the most important contributions
to software product line engineering [12, 48]. One of the main benefits of feature models is their
simplicity making it understood by all stakeholders [86]. In fact, feature models are widely
used during the whole product line development process in order to produce other assets such
as requirements documents [73, 101], architecture definition [127] or pieces of code [13, 48].

Feature models were first introduced as a part of the Feature-Oriented Domain Analysis
method (FODA) by Kang back in 1990 [85]. Since then, feature modelling has been widely
adopted by the software product line community. However, many extensions to the original
proposal have been presented and a consensus about a feature model notation has not been
reached yet. The goal of this chapter is to provide an overview of the feature modelling nota-
tions that we will refer to throughout the rest of this dissertation.

2.2 Basic feature models

We classify as basic feature models those in which simple relationships between features are
used. Next, we detail them:

2.2.1 FODA feature models

Feature models were first introduced as a part of the Feature-Oriented Domain Analysis
method (FODA) by Kang back in 1990 [85]. In this first approach, three kinds of relationships
between features were proposed:

2.2. Basic feature models 23

• Mandatory. A child feature has a mandatory relationship with its parent when the child is
included in all products in which its parent feature appears. Mandatory relationships are
generally modelled using a filled circle as shown in Figure §2.1(a). For instance, according
to the feature model of Figure §2.4, it is mandatory that the software for mobile phones
includes support for calls.

• Optional. A child feature has an optional relationship with its parent when the child
can be optionally included in all products in which its parent feature appears. Optional
relationships are generally represented using a empty circle as shown in Figure §2.1(b).
For instance, support for multimedia devices (e.g. camera) is an optional feature in the
feature model of Figure §2.4.

• Alternative. A set of child features have an alternative relationship with their parent
when only one feature of the children can be selected when its parent feature is part of
the product. Figure §2.1(c) depicts the usual visual representation for this relationship.
As an example, according to the feature model of Figure §2.4, a mobile phone may use a
Symbian or a WinCE operating system but not both in the same product.

B

A

(a) Mandatory.

B

A

(b) Optional.

A

CB

(c) Alternative.

Figure 2.1: Feature relationships.

Notice that a child feature can only appear in a product if its parent feature does. The
root feature is a part of all the products within the software product line. In addition to the
parental relationships between features, two kinds of cross-tree constraints between features
were identified in FODA. These are:

• Requires. If a feature A requires a feature B, the inclusion of A in a product implies
the inclusion of B in such product. Requires constraints are commonly modelled using
unidirectional arrows as shown in Figure §2.2(a). For instance, according to the feature
model of Figure §2.5, mobile phones including games require Java support.

• Excludes. If a feature A excludes a feature B, both features cannot be part of the same
product. This constraints are visually represented using bidirectional arrows as shown
in Figure §2.2(b). As an example, the software product line represented by the model of
Figure §2.5 rules out the possibility of offering support for MP3 and MP4 formats in the
same product.

24 Chapter 2. Feature models

BA

(a) Requires.

BA

(b) Excludes.

Figure 2.2: Cross-tree constraints.

2.2.2 Feature-RSEB feature models

Griss et al. [71] proposed integrating the Feature-Oriented Domain Analysis method
(FODA) into the so-called Reuse-Driven Software Engineering Business (RSEB). We call to this
combination Feature-RSEB. RSEB is a use-case driven systematic reuse process in which vari-
ability is explicitly modelled by means of variation points and variants. In their approach, the
authors proposed extending the FODA feature models with a new relationship between fea-
tures. This is:

• Or-relation. A set of child features are said to have an or-relation with their parent when
one or more of them can be included in the products in which its parent feature appears.
Figure §2.3 depicts the common visual notation used for this type of relationship. For
instance, according to the feature model of Figure §2.5, a mobile phone can provide con-
nectivity support for Bluetooth, USB, wifi or any combination of the three.

A

CB

Figure 2.3: Or relationship.

2.2.3 Some examples

In order to clarify the concepts concerning basic feature models we present some examples.
Figure §2.4 depicts a simplified feature model inspired by the mobile phone industry. The
model illustrates how features are used to specify and build software for mobile phones. The
software loaded in the phone is determined by the features that it supports. According to the
model, all phones must include support for calls, messaging, and one operating system (i.e.
OS), WinCE or Symbian (but not both of them). Furthermore, the software for mobile phones
may optionally include support for multimedia devices such as camera, MP3 or both of them.

An extended version of the previous example is shown in Figure §2.5. It includes more
features and cross-tree constraints (see Section §2.2.1). The requires cross-tree constraint implies

2.2. Basic feature models 25

Mobile Phone

Calls Messaging

MP3Camera

MediaOS

Symbian WinCE

Figure 2.4: Mobile phone feature model (without cross-tree constraints).

Mobile Phone

Calls

Voice Data Alarm clock

Utility Functions

Messaging

SMS MMSEMS

Connectivity

WifiBluetooth

Settings

MP3

CameraJava supportRinging tones

Games

USB

MP4

Media

OS

Symbian WinCE

Figure 2.5: Mobile phone feature model (with cross-tree constraints).

E-Shop

Search

Basic Advanced

Catalogue

Info

Image Price

Description

Security

MediumHigh

Payment

PCBank DraftOffers Mobile

GUI

Credit Card

Visa American Express

Banners

Figure 2.6: E-shop feature model.

26 Chapter 2. Feature models

that any phone including games must also include Java support. In a similar way, the excludes
cross-tree constraint removes the possibility of providing support for MP3 and MP4 in the same
product.

Figure §2.6 depicts a feature model representing the variability of a product line of on–line
shopping systems. The products in the product lines must include mandatory features such as
catalogue management or Graphic User Interface (GUI) and may include optional features such
as banners or product search. Furthermore, shopping system must include an specific security
policy (high or medium) and may include one or more payment modules. Finally, cross-tree
constraints indicates that payment with creditcard requires a high security policy. Also, banners
cannot be included in GUI for mobile devices.

2.3 Cardinality-based feature models

Some authors propose extending FODA feature models with UML-like multiplicities. An
overview of those proposals and a clarifying example are next presented.

Riebisch et al.’s Proposal

According to Riebisch et al. the combination of mandatory and optional features with al-
ternative and or-relationships could lead to ambiguities [134]. Motivated by this problem, the
authors proposed the extension of FODA feature models with multiplicities (a.k.a. cardinalities)
[134, 135]. In particular, they proposed using mandatory and optional relationships as in the
original FODA proposal and replacing alternative and or-relationships with a new relationship:

• Set relationship. A set relationship relates a parent feature with a set of child features. Set
relationships can include group cardinalities. A group cardinality is an interval,〈n..n ′〉,
with n as lower bound and n ′ as upper bound limiting the number of child features that
can be part of a product. For instance, in the set relationship of Figure §2.7, the number
of child features that can be included in a product is limited to 1 or 2. This way, a set
relationship with a group cardinality 〈1..1〉 is equivalent to the alternative relationship
defined in the original FODA proposal (see Section §2.2.1). Similarly, a group cardinality
of 〈1..N〉, being N the number of children of the set relationship, is equivalent to an or-
relation (see Section §2.2.2).

A

CB D

<1..2>

Figure 2.7: Set relationship with group cardinality.

2.4. Extended feature models 27

Czarnecki et al.’s Proposal

Czarnecki et al. [49, 50] also proposed a number of extensions to the original feature mod-
elling notation from FODA. One of those extensions is the usage of cardinalities. In their work,
the authors proposed using the mandatory, optional and set relationships previously detailed.
Additionally, they also introduced a new relationship:

• Feature cardinality. A feature cardinality is a sequence of intervals of the form [n..n ′]

whit n as lower bound and n ′ as upper bound. These intervals restrict the number of
instances of the feature that can be part of a product. For instance, according to the feature
cardinality showed in Figure §2.8, the number of instances of the feature B that can be
included in a product is restricted to 1, 2 or 4. Notice that this relationship may be used as
a generalization of the original mandatory and optional relationships defined in FODA.
A feature cardinality of [0..1] would be equivalent to an optional relationship meanwhile
a feature cardinality of [1..1] would be equivalent to a mandatory relationship.

B

A

[1..2],[4..4]

Figure 2.8: Feature cardinality.

As an example, Figure §2.9 depicts a cardinality–based version of the basic feature model
presented in Figure §2.5. The model was built by replacing the alternative and or relationships
of the original model with set relationships. Group cardinalities were adjusted conveniently to
make the model represents the same products than the original model. In particular, alternative
relationships were replaced by set relationships with group cardinality 〈1..1〉. Similarly, set
relationships with group cardinality 〈1..N〉 (being N the number of children) were used instead
of or-relationships.

2.4 Extended feature models

Feature models are mainly used to manage functional variability in software product lines.
However, several authors argue that in some contexts is also useful to add extra-functional
information to the models. To this aim, several works propose adding attributes to the features
[15, 16, 18, 49, 50, 57, 161]. These types of feature models in which extra information is included
by means of attributes are usually referred in the literature as extended, advanced or attributed
feature models [11, 12, 18, 51].

For instance, Figure §2.10 depicts a partial extended feature model using the notation pro-
posed in [18]. As illustrated in the figure, an attribute mainly consists of:

28 Chapter 2. Feature models

Mobile Phone

Calls

Voice Data Alarm clock

Utility Functions

Messaging

SMS MMSEMS

Connectivity

WifiBluetooth

Settings

MP3

CameraJava supportRinging tones

Games

USB

MP4

Media

OS

Symbian WinCE

<1..3>

<1..2> <1..1>

<1..3>

Figure 2.9: Cardinality-based feature model.

• Attribute name. Name or id of the attribute, e.g. memory.

• Attribute domain. It specifies the range of possible values for the attribute, e.g. real.

• Attribute value. The value of the attribute. This could be an specific value within the
domain or an expression depending on the value of other attributes of the same or other
features. A default value for the cases in which the feature is not selected could also be
included.

Similarly to the relationships between features, relationships between attributes are also
considered in extended feature models. This way, features could require or excludes other
features depending on the value of any of their attributes. For instance, in the feature model of
Figure §2.5, games could require an specific version of Java, e.g. ’games requires Java.version
≥ 1.5’.

Connectivity

WifiBluetooth

USB

Name: Cost
Domain: Real
Value: 85.5

Name: MaxSpeed
Domain: Real
Value: 3.6

Name: Memory
Domain: Real
Value: 726

Name: Memory
Domain: Real
Value: 425

Name: Cost
Domain: Real
Value: 50

Name: MaxSpeed
Domain: Real
Value: 3

Name: Cost
Domain: Real
Value: 35.50

Name: MaxSpeed
Domain: Real
Value: 12

Name: Memory
Domain: Real
Value: 176

Figure 2.10: Extended feature model.

2.5. Summary 29

2.5 Summary

In this chapter, we have presented the most common feature modelling notations found in
the literature. These notations are mainly extensions of the original feature model language
presented in the FODA report 20 years ago. At the time of writing this dissertation, two
main groups of feature model notations are used in the literature: basic feature models and
cardinality-based feature models. The main difference is that cardinality-based feature models
provide support for more complex relationships that the former one. As a possible complement
to both of them, a third notation, extended feature models, propose adding extra functional in-
formation to the models by means of feature attributes. For a more extensive and rigorous
survey of feature modelling languages we refer the reader to [140].

30 Chapter 2. Feature models

Chapter 3

Automated analysis of feature models

Computers are useless.
T hey can only g ive you answ ers.

Pablo P icasso, 1881–1973
Spanish Cubist painter

T he automated analysis of feature models deals with the automated extraction of infor-
mation from feature models. In this chapter, we overview the main contributions on the

analysis of feature models in the last years. In Section §3.1, we introduce the main concepts
related to the analysis of feature models. In Section §3.2, we present some of the most quoted
analysis operations on feature models identified in the literature. A detailed description of the
works proposing some kind of automated support for the analysis is presented in Section §3.3.
Finally, in Section §3.4, we summarize the chapter and explain our main contributions in this
field.

32 Chapter 3. Automated analysis of feature models

3.1 Introduction

Right from the introduction of feature models by Kang back in 1990, the manual manipu-
lation of these was recognized as a difficult and error-prone task: “it became clear that manual
methods would not suffice, even in a relatively small example.” [85] (pag. 70). This mainly
occurs due to the exponential number of possible feature combinations (i.e. products) in fea-
ture models. For instance, the E-shop feature model presented in Figure §2.6, with 22 features,
represents more than 2,000 different products. To make matters worse, software product lines
with thousands of features has been reported in the last years [12, 94, 160, 162]. In this situ-
ation, it is hard to imagine how to deal with feature models containing such a large number
of features and complex dependencies between them without an appropriate automated tool
support. Typical operations such as checking whether a feature model contains any errors be-
come a tedious and time-consuming task under these circumstances. This makes the automated
analysis of feature models to be considered as a relevant and challenging research topic in the
software product line community [12].

The automated analysis of feature models can be defined as the computer–aided extraction
of information from feature models. This extraction is mainly carried out in a two–step process
depicted in Figure §3.1. Firstly, the input parameters, which necessarily include a feature model,
are translated into a specific representation or paradigm such as propositional logic, constraint
programming, description logic or ad–hoc data structures. Then, off–the–shelf solvers or spe-
cific algorithms are used to automatically analyse the intermediate representation of the input
parameters and provide the result as an output.

Figure 3.1: Process for the automated analysis of feature models.

The analysis of feature models is performed in terms of analysis operations. An operation
takes a set of parameters as input and returns a result as output. From the analysis results
obtained, marketing, technical and managerial decisions can be taken [15, 127, 166]. There exists
a number of different operations that can be performed on feature models (e.g. finding out the
number of products represented by a feature model). Similarly, there exist multiple proposals

3.2. Analysis operations on feature models 33

providing techniques, algorithms and tools to perform automatically some of those operations.
The goal of this chapter is to review the state of the art in the context of the automated analysis
of feature models. In particular, we first study the most relevant analysis operations found in
the literature. Then, we analyse and compare the different proposals providing some kind of
automated support for the analysis of feature models.

3.2 Analysis operations on feature models

During our research work, we performed an exhaustive revision of the state of the art on
the analysis of feature models and identified 30 different analysis operations [21]. For the sake
of simplicity and space constraints, we present in this section only those operations that we will
refer to throughout the rest of the dissertation. We may remark that these operations are mainly
those with more references in the literature according to our review.

In order to simplify the definition of the operations, we next clarify the meaning of various
usually ambiguous terms found in the literature, namely:

• Configuration. Given a feature model with a set of features F, a configuration is a 2–tuple
of the form (S,R) such that S, R ⊆ F being S the set of features to be selected and R the set
of features to be removed such that S ∩ R = ∅. If S ∪ R = F the configuration is called
full configuration. Alternatively, if S ∪ R ⊂ F the configuration is referred to as partial
configuration. As an example, consider the model in Figure §3.2 and the full (FC) and
partial (PC) configurations described below:

FC =({MobilePhone, Calls, Screen, Colour},
{GPS, Basic, Highresolution, Media, Camera, MP3})

PC = ({MobilePhone, Calls, Screen, Colour}, ∅)

• Product. A product is equivalent to a full configuration where only selected features
are specified and omitted features are implicitly removed. For instance, the following
product is equivalent to the full configuration described above:

P = {MobilePhone, Calls, Screen, Colour}

For each operation, its definition, an example and possible practical applications are next
presented.

3.2.1 Void feature model

This operation takes a feature model as input and returns a value informing whether such
feature model is void or not. A feature model is void if it represents no products. The reasons
that may make a feature model void are related with a wrong usage of cross–tree constraints,
i.e. feature models without cross-tree constraints cannot be void.

As an example, Figure §3.3 depicts a void feature model. Constraint C − 1 makes the se-
lection of the mandatory features B and C not possible, adding a contradiction to the model
because both features are mandatory.

34 Chapter 3. Automated analysis of feature models

Mobile Phone

Calls GPS

ColourBasic

Screen Media

Camera MP3High resolution

Figure 3.2: Mobile phone feature model.

A

B C
C-1

Figure 3.3: A void feature model.

The automation of this operation is especially helpful when debugging large scale feature
models in which the manual detection of errors is recognized to be an error-prone and time–
consuming task [11, 85, 165]. This operation is also referred to by some authors as “model
validation”, “model consistency checking”, “model satisfiability checking”, “model solvability
checking” and “model constraints checking”.

3.2.2 Valid product

This operation takes a feature model and a product (i.e. set of features) as input and returns
a value that determines whether the product belongs to the set of products represented by the
feature model or not. For instance, consider the products P1 and P2, described below, and the
feature model of Figure §3.2.

P1 = {MobilePhone, Screen, Colour, Media, MP3}

P2 = {MobilePhone, Calls, Screen, Highresolution, GPS}

Product P1 is not valid since it does not include the mandatory feature Calls. On the other
hand, product P2 does belong to the set of products represented by the model.

This operation may be helpful for software product line analysts and managers to determine
whether a given product is available in a software product line. This operation is sometimes
also referred to as “valid configuration checking”,“valid single system”, “configuration consis-
tency”, “feature compatibility”, “product checking” and “product specification completeness”.

3.2. Analysis operations on feature models 35

3.2.3 All products

This operation takes a feature model as input and returns all the products represented by
the model. For instance, the set of all the products of the feature model presented in Figure §3.2
is detailed below:

P1 = {MobilePhone, Calls, Screen, Basic}

P2 = {MobilePhone, Calls, Screen, Basic, Media, MP3}

P3 = {MobilePhone, Calls, Screen, Colour}
P4 = {MobilePhone, Calls, Screen, Colour, GPS}

P5 = {MobilePhone, Calls, Screen, Colour, Media, MP3}

P6 = {MobilePhone, Calls, Screen, Colour, Media, MP3, GPS}

P7 = {MobilePhone, Calls, Screen, Highresolution}

P8 = {MobilePhone, Calls, Screen, Highresolution, Media, MP3}

P9 = {MobilePhone, Calls, Screen, Highresolution, Media, MP3, Camera}

P10 = {MobilePhone, Calls, Screen, Highresolution, Media, Camera}

P11 = {MobilePhone, Calls, Screen, Highresolution, GPS}

P12 = {MobilePhone, Calls, Screen, Highresolution, Media, MP3, GPS}

P13 = {MobilePhone, Calls, Screen, Highresolution, Media, Camera, GPS}

P14 = {MobilePhone, Calls, Screen, Highresolution, Media, Camera, MP3, GPS}

This operation may be helpful to identify new valid requirement combinations not con-
sidered in the initial scope of the product line. The set of products of a feature model is also
referred to in the literature as “all valid configurations” and “list of products”.

3.2.4 Number of products

This operation returns the number of products represented by the feature model received
as input. Note that a feature model is void iff the number of products represented by the model
is zero. As an example, the number of products of the feature model presented in Figure §3.2 is
14.

This operation provides information about the flexibility and complexity of the software
product line [18, 51, 179]. A big number of potential products may reveal a more flexible as
well as more complex product line. The number of products of a feature model is also referred
to in the literature as “variation degree”.

3.2.5 Optimization

This operation takes a feature model and a so-called objective function as inputs and returns
the product fulfilling the criteria established by the function. An objective function is a function
associated with an optimization problem that determines how good a solution is.

This operation is chiefly useful when dealing with extended feature models where attributes
are added to features. In this context, optimization operations may be used to select a set of fea-
tures maximizing or minimizing the value of a given feature attribute. For instance, mobile

36 Chapter 3. Automated analysis of feature models

phones minimizing connectivity cost in Figure §2.10 should include support for USB connec-
tivity exclusively since it is the cheapest one.

3.2.6 Filter

This operation takes as input a feature model and a configuration (potentially partial) and
returns the set of products including the input configuration that can be derived from the
model. Note that this operation does not modify the feature model but filters the features that
are considered.

For instance, the set of products of the feature model in Figure §3.2 applying the partial
configuration (S, R) = ({Calls, GPS},{Colour, Camera}), being S the set of features to be selected
and R the set of features to be removed, is:

P1 = {MobilePhone, Calls, Screen, Highresolution, GPS}

P2 = {MobilePhone, Calls, Screen, Highresolution, Media, MP3, GPS}

Filtering may be helpful to assist users during the configuration process. Firstly, users can
filter the set of products according to their key requirements. Then, the list of resultant products
can be inspected to select the desired solution [51].

3.2.7 Anomalies detection

A number of analysis operations address the detection of anomalies in feature models i.e.
undesirable properties such as redundant or contradictory information. These operations take
a feature model as input and return information about the anomalies detected. We identified
five main types of anomalies in feature models reported in the literature [21]. In this chapter,
we may emphasize the following two as the most quoted in the literature:

Dead features. A feature is dead if it cannot appear in any of the products of the software
product line. Dead features are caused by a wrong usage of cross–tree constraints. These are
clearly undesired since they give the user a wrong idea of the domain. Figure §3.4 depicts some
typical situations that generate dead features (dead features are depicted in grey).

A

B C

D E

A

B C

D E

A

B C

Figure 3.4: Common cases of dead features.

3.2. Analysis operations on feature models 37

False optional features. A feature is false optional if it is included in all the products of the
product line despite not being modelled as mandatory. Figure §3.5 depicts some examples of
false optional features (false optional features are depicted in grey).

A

B C

D E

A

B C

D E

A

B C

Figure 3.5: Some examples of false optional features.

3.2.8 Explanations

This operation takes a feature model and an analysis operation as inputs and returns in-
formation (so-called explanations) about the reasons of why or why not the corresponding
response of the operation [172]. Causes are mainly described in terms of features and/or re-
lationships involved in the operation and explanations are often related to anomalies. For in-
stance, Figure §3.6 presents a feature model with a dead feature. A possible explanation for the
problem would be “Feature D is dead because of the excludes constraint with feature B”. We
refer the reader to [172] for a detailed analysis of explanation operations.

A

B C

D E
C-1

Figure 3.6: Sample explanation.

Explanations are a challenging operation in the context of feature model error analysis,
(a.k.a. feature model debugging) [12, 165, 172]. In order to provide an efficient tool support,
explanations must be as accurate as possible when detecting the source of an error, i.e. it should
be minimal. This becomes an even more challenging task when considering extended feature
models and relationships between feature attributes.

3.2.9 Commonality

This operation takes a feature model and a feature as inputs and returns the percentage of
products represented by the model including the input feature. For instance, feature GPS in

38 Chapter 3. Automated analysis of feature models

Figure §3.2 is included in 6 out of the 14 products represented by the model. Therefore, its
commonality can be calculated as Comm(GPS) = 6/14 = 0.42, which means that the feature
appear in 42% of the products of the product line.

This operation may be used to prioritize the order in which the features are going to be de-
veloped [166] or to decide which features should be part of the core architecture of the software
product line [127]. This operation can easily be generalized as described in [21].

3.2.10 Variability factor

This operation takes a feature model as input and returns the ratio between the number
of products and 2n where n is the number of features considered. In particular, 2n is the po-
tential number of products represented by a feature model assuming that any combination of
features is allowed. The root and non-leaf features are often not considered. As an example, the
variability of the feature model presented in Figure §3.2 taking into account only leaf features
is:

N.Products

2n
=

14

27
= 0.0625

An extremely flexible feature model would be one where all its features are optional. For
instance, the feature model of Figure §3.7 has the following variability factor:

N.Products

2n
=

8

23
= 1

A

B DC

Figure 3.7: Sample feature model with three optional features.

The range of this indicator would depend on the features considered to calculate the fac-
tor. The feature model variability can be used to measure the flexibility of the feature model.
For instance, a small factor means that the number of combinations of features is very limited
compared to the total number of potential products.

3.3 Automated support

In this section, we present the proposals providing some kind of automated support for the
analysis of feature models. To this purpose, we classify the works in four different groups ac-
cording to the logic paradigm or method used to provide the automated support. In particular,

3.3. Automated support 39

we next present the group of approaches using propositional logic, constraint programming,
description logic, and other contributions not classified in the former groups proposing ad–hoc
solutions.

3.3.1 Propositional logic based analyses

A propositional formula consists of a set of primitive symbols or variables and a set of
logical connectives constraining the values of the variables, e.g. ¬,∧,∨,⇒,⇔.

A SAT solver is a software package that takes as input a propositional formula and deter-
mines if the formula is satisfiable, i.e. there is a variable assignment that makes the formula
evaluate to true. Input formulas are usually specified in Conjunctive Normal Form (CNF).
CNF is a standard form to represent propositional formulas that is used by most of SAT solvers
where only three connectives are allowed: ¬,∧,∨. It has been proved that every propositional
formula can be converted into an equivalent CNF formula [46]. SAT solving is a well known
NP-complete problem [46], however, current SAT solvers can deal with big problems where in
most of the cases the performance is not an issue [103].

Similarly, a Binary Decision Diagram (BDD) solver is a software package that takes a propo-
sitional formula as input (not necessarily in CNF) and translates it into a graph representation
(the BDD itself) which allows determining if the formula is satisfiable and providing efficient
algorithms for counting the number of possible solutions [32]. The size of the BDD is crucial
because it can be exponential in the worst case. Although it is possible to find a good variable
ordering that reduces the size of the BDD, the problem of finding the best variable ordering
remains NP-complete [29].

The mapping of a feature model into a propositional formula can change depending on
the solver that is used later for the analysis. In general, the following steps are performed:
i) each feature of the feature model maps to a variable of the propositional formula, ii) each
relationship of the model is mapped into one or more small formulas depending on the type of
relationship, in this step some auxiliary variables can appear, iii) the resulting formula is the
conjunction of all the resulting formulas of step ii plus and additional constraint assigning true
to the variable that represents the root, i.e. root ⇔ true.

Concrete rules for translating a feature model into a propositional formula are listed in
Figure §3.8. Also, the mapping of the mobile phone feature model presented in Figure §3.2 is
presented. We may mention that the mapping of the propositional formulas listed in Figure
§3.8 into CNF is straightforward (see [46]).

There are some works in the literature that propose the usage of propositional formulas for
the automated analysis of feature models. In these studies the analysis is performed in two
steps. Firstly, the feature model is translated into a propositional formula. Then, an off–the–
shelf solver is used to automatically analyse the formula and subsequently the feature model.
A summary of the solvers used for analysis is shown in Table §3.1.

To underline the most important contributions in terms of innovation with respect to prior
work we may mention the following works: Mannion et al. [101, 102] were the first to connect
propositional formulas and feature models. Zhang et al. [198] reported a method to calcu-
late atomic sets, later explored by Segura [142]. Batory [11] showed the connections among
grammars, feature models and propositional formulas, this was the first time that a SAT solver

40 Chapter 3. Automated analysis of feature models

Tool Proposals

SAT Solver [138] [11, 22, 24, 109, 142, 164]

Alloy [6] [64, 163]

BDD Solver [80] [22, 24, 51, 110, 142, 177, 178, 196, 199]

SMV [158] [197, 198]

Not specified [101, 102]

Table 3.1: Propositional logic based tools used for the analysis of feature models.���������	�
 �� �

��� ����� �	��� ����
���������������������
����������������� �!"�#�� A B

A B

$%
↔ %$
→ &'((('')* +,- ∨∨∨↔

./
→ 0./1

∧¬

&&*'((('')') &&*'(((')') &&*'(((')') -+,-+ +-, +,-
∧¬∧∧¬∧¬↔

∧∧¬∧∧¬↔
∧∧¬∧∧¬↔

−

P

C

P

C

P

C1 C2 Cn

P

C1 C2 Cn

$23345678935%:7; ↔ <=>55;5678935%:7; ↔ 5678935%:7;?%<
→ 5678935%:7;65@92 → &AB*'CDEFC)BEGHC ∨↔

IJFEEK&&'LMLFNCOHJ)PQHLK)RHSTFEOLM IJFEEK&&QHLKRHSTFEOLMPNCOHJ))'LMLF IJFEEK&&QHLKRHSTFEOLMP'LMLF))NCOHJ
∧¬∧¬↔

∧∧¬∧¬↔
∧∧¬∧¬↔

U97;V9W:>5473X$2Y5>2 → &NCOHJZ*I)
∧¬

Figure 3.8: Mapping from a feature model to propositional logic.

was proposed to analyse feature models. In addition, a Logic Truth Maintenance System (a
system that maintains the consequences of a propositional formula) was designed to analyse
feature models. Sun et al. [163] proposed using Z, a formal specification language, to provide
semantics to feature models. Alloy was used to implement those semantics and analyse feature
models. Benavides et al.[22, 24, 142] proposed using a multi–solver approach where different
solvers are used (e.g. BDD or SAT solvers) depending on the kind of analysis operations to be
performed. For instance, they suggested that BDD solvers seem to be more efficient in gen-
eral than SAT solvers for counting the number of products of a feature model. Mendonca et

3.3. Automated support 41

al. [110] also used BDDs for analysis and compared different classical heuristics found in the
literature for variable ordering of BDDs with new specific heuristics for the analysis of BDDs
representing feature models. They experimentally showed that existing BDD heuristics fail to
scale for large feature models while their novel heuristics can scale for models with up to 2,000
features. Thüm et al. [164] presented an automated method for classifying feature model edits,
i.e. changes in an original feature model, according to a taxonomy. The method is based on
propositional logic algorithms using a SAT solver and constraint propagation algorithms. Yan
et al. [196] proposed an optimization method to reduce the size of the logic representation of
the feature models by removing irrelevant constraints. Mendonca et al. [109] showed by means
of an experiment that the analysis of feature models with similar properties to those found in
the literature using SAT solvers is computationally affordable. In [119], Nakajima proposed a
semiautomated method to detect inconsistent fragments (which he calls bugs) in feature mo-
dels. The author presented a mapping from a feature model to a propositional formula and a
diagram–slicing algorithm for locating the inconsistencies. Some implementation details were
given. Later, in [118], the authors proposed a more refined method to detect inconsistencies
based on a Boolean Constraint Propagation (BCP) algorithm for non–clausal formulas. This
method does not require to translate the models to CNF. This allows a direct translation from
the inconsistencies found in the formulas to the feature tree. No implementation details were
presented.

3.3.2 Constraint programming based analyses

A Constraint Satisfaction Problem (CSP) [173] consists of a set of variables, a set of finite
domains for those variables and a set of constraints restricting the values of the variables. Con-
straint programming can be defined as the set of techniques such as algorithms or heuristics
that deal with CSPs. A CSP is solved by finding states (values for variables) in which all con-
straints are satisfied. In contrast to propositional formulas, CSP solvers can deal not only with
binary values (true or false) but also with numerical values such as integers or intervals.

A CSP solver is a software package that takes a problem modelled as a CSP and determines
whether there exists a solution for the problem. From a modelling point of view, CSP solvers
provide a richer set of modelling elements in terms of variables (e.g. sets, finite integer domains,
etc.) and constraints (not only propositional connectives) than propositional logic solvers.

The mapping of a feature model into CSP can vary depending on the concrete solver that is
used later for the analysis. In general, the following steps are performed: i) each feature of the
feature model maps to a variable of the CSP with a domain of 0..1 or TRUE, FALSE, depending
on the kind of variable supported by the solver, ii) each relationship of the model is mapped
into a constraint depending on the type of relationship, in this step some auxiliary variables
can appear, iii) the resulting CSP is the one defined by the variables of steps i and ii with the
corresponding domains and a constraint that is the conjunction of all precedent constraints plus
and additional constraint assigning true to the variable that represents the root, i.e. root ⇔ true

or root == 1, depending on the variables’ domains.

Concrete rules for translating a feature model into a CSP are listed in Figure §3.9. Also, the
mapping of our running example of Figure §3.2 is presented.

There are some works in the literature that propose the usage of constraint programming
for the automated analysis of feature models. Analyses are performed in two steps. Firstly,

42 Chapter 3. Automated analysis of feature models

the feature model is translated into a CSP. Then, an off–the–shelf solver is used to automati-
cally analyse the CSP and subsequently the feature model. A summary of the solvers used for
analysis is shown in Table §3.2.

Tool Proposals

JaCoP [79] [22–24, 142]

Choco [44] [23, 192, 194]

OPL studio [124] [17–19]

GNU Prolog [66] [56]

SkyBlue [137] [183, 184]

Not specified [165, 167]

Table 3.2: CSP based tools used for the analysis of feature models.

Benavides et al. were the first authors proposing the usage of constraint programming for
analyses on feature models [17–19]. In those works, a set of mapping rules to translate feature
models into a CSP were provided. Benavides et al. proposals provided support for the analysis
of extended feature models (i.e. including feature attributes) and the operation of optimization.
The authors also provided tool support [24, 168] and they compared the performance of differ-
ent solvers when analysing feature models [22, 23, 142]. Trinidad et al. [165, 167] focused on
the detection and explanation of errors in feature models based on Reiter’s theory of diagnosis
[133] and constraint programming. Djebbi et al. [56] proposed a method to extract information
from feature models in terms of queries. A set of rules to translate feature models to boolean
constraints were given. They also described a tool under development enabling the analysis of
feature models using constraint programming. White et al. [194] proposed a method to detect
conflicts in a given configuration and propose changes in the configuration in terms of features
to be selected or deselected to remedy the problem. Their technique is based on translating a
feature model into a CSP and adding some extra variables in order to detect and correct the pos-
sible errors after applying optimization operations. In [192], White et al. provided support for
the analysis of multi–step configuration problems. Karatas et al. [88] presented a mapping from
extended feature models to constraint satisfaction problem over finite domains. Their mapping
supports both basic and cardinality–based feature models. In their work, the authors suggest
that using their mapping the implementation of a number of analysis operations using an stan-
dard CSP solver would be straightforward but no implementation details were reported. Wang
et al. [183, 184] presented a dynamic priority–based approach to fix inconsistencies in feature
model efficiently. To that purpose, the authors proposed using the constraint hierarchy theory,
a known practical theory used in the construction of graphical user interfaces. Implementation
and evaluation details using the SkyBlue solver were presented.

3.3.3 Description logic based analyses

Description logics are a family of knowledge representation languages enabling the reason-
ing within knowledge domains by using specific logic reasoners [8]. A problem described in
terms of description logic is usually composed by a set of concepts (a.k.a. classes), a set of roles
(e.g. properties or relationships) and set of individuals (a.k.a. instances).

3.3. Automated support 43[\]^_`abcd`e fgh i^ee`bj iak`]\ hdab\ lm^ne]\opqrpstuv
twsxtqpytu
pyszuqpsx{zuz|}xuz~z��y}rz~

A B

A B

P

C

P

C

P

C1 C2 Cn

P

C1 C2 Cn

P = C

if (P = 0)
 C = 0

if (P > 0)
 Sum(C1,C2,...Cn) in {1..n}
else
 C1= 0, C2=0,…., Cn=0

if (P > 0)
 Sum(C1,C2,...Cn) in {1..1}
else
 C1= 0, C2=0,…., Cn=0

if (A > 0)
 B>0

if (A > 0)
 B=0

 Mobilephone = Calls
 Mobilephone = Screen

if (Mobilephone = 0)
GPS = 0

if (Mobilephone = 0)
Media = 0

if (Media > 0)
 Sum(Camera,MP3) in {1..2}
else
 Camera = 0, MP3 = 0

if (Screen > 0)
 Sum(Basic,Colour,High resolution) in {1..1}
else
 Basic = 0,Colour = 0, High resolution = 0

if (Camera > 0)
 High resolution > 0

if (GPS > 0)
 Basic = 0

Figure 3.9: Mapping from a feature model to CSP.

A description logic reasoner is a software package that takes as input a problem described
in description logic and provides facilities for consistency and correctness checking and other
reasoning operations.

Several related works propose the usage of description logic to analyse feature models.
Wang et al. [185] were the first to propose the automated analysis of feature models using
description logic. In their work, the authors introduced a set of mapping rules to translate
feature models into OWL-DL ontologies [52]. OWL-DL is an expressive yet decidable sub lan-
guage of OWL [52]. Then, the authors suggested using description logic reasoning engines such
as RACER [132] to perform automated analysis over the OWL representations of the models.
In [186], the authors extended their previous proposal [185] with support for explanations by
means of an OWL debugging tool. Fan et al. [59] also proposed translating feature models into
description logic and using reasoners such as RACER to perform their analyses. In [1], Zaid
et al. proposed using semantic web technologies to enable the analyses. They used OWL for
modelling and the Pellet [128] reasoner for the analysis.

44 Chapter 3. Automated analysis of feature models

3.3.4 Other studies

There are some related works that are not classified in the former groups, namely: i) pro-
posals in which the conceptual logic used is not clearly exposed and ii) works using ad–hoc
algorithms, paradigms or tools for analysis.

Kang et al. mentioned explicitly the automated analysis of feature models in the original
FODA report [85, pag. 70]. A prolog–based prototype was also reported. However, no detailed
information was provided to replicate their prolog coding. After the FODA report, Deursen et
al. [179] were the first authors proposing some kind of automated support for the automated
analysis of feature models. In their work, they proposed a textual feature diagram algebra to-
gether with a prototype implementation using the ASF+SDF Meta-Environment [91]. Von der
Massen et al. [180] presented Requiline, a requirement engineering tool for software product
lines. The tool is mainly implemented by using a relational data base and ad–hoc algorithms.
Later, Von der Massen et al. [181] proposed a method to calculate a rough approximation of
the number of products of a feature model, which they call variation degree. The technique is
described using mathematical expressions. In [9], Bachmeyer et al. presented conceptual graph
feature models. Conceptual graphs are a formalism to express knowledge. They also presented
an algorithm to enable the analysis of the models. Hemakumar [74] proposed a method to stat-
ically detect conditional dead features. The method is based on model checking techniques and
incremental consistency algorithms. Mendonca et al. [106, 108] studied dependencies among
feature models and cross–tree constraints using different techniques obtaining a noticeable im-
provement in efficiency. Gheyi et al. [65] presented a set of algebraic laws in feature models to
check configurability of feature model refactorings. They used the PVS tool to do some analysis
although this was not the main focus of the paper. White et al. [191] presented an extension
of their previous work [193]. The same method was presented but giving enough details to
make it reproducible since some details were missed in their previous work. The method is
called Filtered Cartesian Flattering which maps the problem of optimally selecting a set of fea-
tures according to several constraints to a Multi–dimensional Multi–choice Knapsack Problem
and then they applied several existing algorithms to obtain efficient and near optimal solu-
tions to the problem. Van den Broek et al. [176] proposed transforming feature models into
generalised feature trees and computing some of their properties. A generalised feature tree
is a feature model in which cross-tree constraints are removed and features can have multiple
occurrences. Some algorithms and an executable specification in the functional programming
language Miranda were provided. The strength of their proposal lied in the efficiency of the
analysis operation. Fernandez et al. [60] proposed an algorithm to compute the total num-
ber of products on what they call Neutral Feature Trees, trees that allow complex cross-tree
constraints. Computing the total number of products the authors were also able to calculate
the homogeneity of a feature tree as well as the commonality of a given feature. They finally
compared the computational complexity of their approach with respect to previous work.

3.4 Summary

In this chapter, we have introduced the main concepts related to the analysis of feature
models. In particular, we have presented those analysis operations that are more relevant in the
context of this dissertation. Also, we have introduced those related works proposing support
for the analysis of feature models and we have classified them into four groups according to the

3.4. Summary 45

main paradigm used for the analysis: propositional logic, constraint programing, description
logic and ah–doc solutions.

During our research work, we have made several contributions to the field of automated
analysis of feature models, namely: we proposed a technique for the detection of errors in
feature models in an international workshop [169]. We have developed a tool supporting the
analysis of feature models and we have presented it to the community in different workshop
and conference papers [24, 168, 170]. We also presented a survey of the state of the art on the
analysis of feature models in the XI Jornadas de Ingeniería del Software y Bases de Datos [20].
This survey was later extended as an extensive literature review published in the Information
Systems journal [21].

46 Chapter 3. Automated analysis of feature models

Chapter 4

Software testing

Program testing can be used to show the presence of bugs,
but never to show their absence!

Edsger W ybe D ijkstra, 1930–2002
Dutch computer scientist, 1972 Turing Award

I n this chapter, we present the concepts of software testing that are relevant to understand
our contributions. In Section §4.1, we present an overview of the testing techniques used

in our thesis. In Section §4.2, we present the basic testing procedure and introduce the oracle
problem. Sections §4.3 and §4.4 present the testing techniques that we used to design and eval-
uate test data for functional and performance testing of feature model analysis tools. Finally,
we summarize the chapter in Section §4.5.

48 Chapter 4. Software testing

4.1 Introduction

According to the IEEE Standard for software testing documentation, software testing is de-
fined as ”The process of analyzing a software item to detect the differences between existing
and required conditions (that is, bugs) and to evaluate the features of the software item.” [78].
Software testing plays a key role in the development of software to evaluate whether the pro-
gram meets its requirements, both functional and non-functional, and to gain confidence about
the absence of faults in the program. In fact, it is acknowledged that most of the resources of a
software project (more than 50%) are invested in the detection and correction of faults [14, 117].
Despite this massive investment, however, it is widely known that the complexity of software
makes it impractical, often impossible, to detect all the faults of a program [14, 47, 117].

In this chapter, we introduce the testing techniques used in the context of our dissertation.
Figure §4.1 classifies these techniques according to the purpose we used them for. As illustrated,
we address both functional and performance testing on the analysis of feature models. Re-
garding functional testing, we used several classical techniques for the design of a manual test
cases, namely: equivalence partitioning, boundary–value analysis, error guessing and pairwise
testing. Also, we used a more sophisticated method, metamorphic testing, for the automated
generation of test data. To measure the effectiveness of our contributions on functional testing,
we checked their ability to detect artificial faults introduced in the programs using mutation
testing. Regarding performance testing, we used an evolutionary algorithm for the generation
of test data and a thorough comparison with random search for its evaluation.

Testing techniques

Functional testing Performance testing

Equivalence
partitioning

Test data design Test data evaluation Test data design Test data evaluation

Boundary-value
analysis

Error
guessing

Pairwise testing

Metamorphic
testing

Evolutionary
algorithms

Comparison with
random search

Mutation testingManual Automated

Figure 4.1: Classification of testing techniques used in this dissertation.

4.2 The testing procedure

Software testing is performed by means of test cases. A test case is a set of test inputs and
expected outputs developed to verify compliance with a specific requirement [47, 117]. Figure
§4.2 depicts the two basic steps of the testing procedure. First, the program is run with the

4.3. Functional testing 49

selected inputs producing an output. Then, the output is examined to determine the program’s
correctness on the test data. The procedure by which testers can decide whether the output of a
program is correct or not is referred to as oracle [189]. Typical oracles may include specification
and documentation, statistical properties of the program or simply human being’s judgment.

Figure 4.2: Basic testing procedure.

In some situations, the oracle is not available or it is too difficult to apply. This limita-
tion is referred to in the testing literature as the oracle problem [200]. Consider, as an ex-
ample, checking the results of complicated numerical computations (e.g. cos(x)) or the pro-
cessing of non-trivial outputs like the code generated by a compiler. Furthermore, even when
the oracle is available, the manual prediction and comparison of the results are in many cases
time–consuming and error–prone. In this context, Weyuker [189] defined a program to be non-
testable if “(1) there does not exist an oracle” or “(2) it is theoretically possible, but practically
too difficult to determine the correct output.”

Test cases may be grouped into so-called test suites. A variety of testing techniques has been
reported to assist on the design of effective test cases, i.e. those that will find more faults with
less effort and time [14, 47, 117]. These techniques can be classified according to multiple factors
such as knowledge of the source code (black–box, white–box, gray–box) [28, 87, 117, 139, 201],
source of information used (program–based, specification–based, interface–based) [28, 87, 201]
or testing level (unit–level, integration–level, system–level). Also, there are different strategies
to decide when the results of the test is adequate and testing should be stopped (so-called ade-
quacy criteria). Common adequacy criteria are those that require the tests to cover a particular
set of element in the program (e.g. branch coverage) or those that measures the adequacy of a
test according to its ability to detect faults (e.g. mutation testing) [201].

4.3 Functional testing

Functional testing is intended to check whether a program satisfies its functional require-
ments, i.e. whether the program does what the user expect it to do. In the context of our
dissertation, the goal of functional testing is to gain confidence in the correctness of the imple-
mentation of the analysis operation on feature models. In the following sections, we describe
the techniques that we used to design and evaluate functional test data.

50 Chapter 4. Software testing

4.3.1 Test cases design

We will refer to the following test case design techniques for functional testing along this
dissertation.

4.3.1.1 Equivalence partitioning

This technique is used to reduce the number of test cases to be developed while still main-
taining a reasonable test coverage (i.e. the degree to which the test cases verifies the test require-
ments) [47, 117]. In this technique, the input domain of the program is divided into partitions
(also called equivalence classes) in which the program is expected to process the set of data
input in the same way. According to this testing approach, only one test case of each partition
is needed to evaluate the behaviour of the program for the corresponding partition. The values
within one partition are considered to be “equivalent” and thus selecting more than one value
would not help to find new faults. Partitions can be created both in the input and the output
domain.

As an example, consider a program that receives an integer as input representing a month.
The valid range for the month is 1 to 12, representing January to December. This valid range
represents a partition or equivalence class (see Figure §4.3). Similarly, there are two partitions
of invalid ranges, one partition with those values less than 1 and another partition with those
values greater than 12. The program is expected to process the values of each partition in an
identical way. Thus, following the guidelines of equivalence partitioning, we could select just
three input values, one from each partition (e.g. 0, 5, 14), to test the program effectively while
reducing the number of test cases significantly.

-1 0 1 2 … … 11 12 13 …

Invalid partition Valid partition Invalid partition

Figure 4.3: Equivalence partitioning example.

4.3.1.2 Boundary–value analysis

This technique is used to guide the tester when selecting inputs from equivalence classes
[47, 117]. According to this technique, programmers usually make mistakes with the inputs
values located on the boundaries of the equivalence classes. Thus, this method guides the
tester to select those inputs located on and around the beginning and end of the equivalence
partitions.

In the example presented in Figure §4.3, the boundaries values are 1 and 12. Using
boundary–value analysis, test cases should be created with inputs that would fall on and to
either side of each boundary. This would therefore result in three test cases per boundary, those
with input values 0, 1, 2 and those with input values 11, 12, 13.

4.3. Functional testing 51

4.3.1.3 Error guessing

This is a software testing technique based on the ability of the tester to predict where faults
are located according to its experience on the domain [47]. Using this technique, test cases are
specifically designed to exercise typical error-prone points related to the type of system under
test.

As an example, let us consider again the program that receive an integer representing a
month as input. An experienced tester could have determined that the processing of holidays
months (July and August) is error–prone. Thus, the tester could decide to design test cases with
the inputs 7 and 8.

4.3.1.4 Combination strategies

The testing methods presented in previous sections support the selection of interesting val-
ues for each parameter of the system under test. Once that suitable values have been selected
for each one of the input parameters of the system we must decide which combination of val-
ues should be used to design the test cases. Combination strategies determine the way in which
input parameters are combined to form complete test cases. [70].

In order to illustrate the combination strategies, let us consider a program that receives
three input parameters representing the Day of the Week (DW), Day of the Month (DM) and
the Month (M). Table §4.1 shows the selected values for each parameter using equivalence par-
titioning as showed in Section §4.3.1.1. For simplicity, in the following we will refer to each
value as Pi where P is the acronym of the parameter and i is the number of the column, e.g.
DM2 = 24. The way in which these values are combined is determined by the combination
strategy used. These strategies can be mainly classified according to their coverage as follows:

Parameter
Values

1 2 3

DW -2 4 8

DM -3 24 32

M 0 6 13

Table 4.1: Test values for a sample program processing a date.

• 1-wise. This is the simplest coverage criterion. It just requires that every value of every
parameter is included in at least one test case in the test suite. For instance, the following
combinations of inputs (determining test cases) fulfil this criterion: {(DW1, DM1, M1),
(DW2, DM2, M2), (DW3, DM3, M3)}.

• 2–wise. Also known as 100% pair–wise. This criterion requires that every possible pair
of any two values is included in at least one test case. For instance: {(DW1, DM1, M1),
(DW1, DM2, M1), (DW1, DM3, M1),(DW2, DM1, M2),(DW2, DM2, M2), (DW2, DM3, M2),
(DW3, DM1, M3), (DW3, DM2, M3), (DW3, DM3, M3)}.

52 Chapter 4. Software testing

• t-wise. This is a generalization a 2–wise in which it is required that every combination
of any t values is included in at least one test case. When t = N being N the number
of parameters of the program, the strategy is referred to as N–wise. In our example, the
number of test cases that would be required to fulfil 3–wise coverage is 33 = 27, i.e. all
the combination of the three values for the three parameters.

The selection of a combination strategy requires considering the trade–off between coverage
and simplicity. Hence, a higher coverage implies a higher number of test cases and more testing
effort.

4.3.1.5 Metamorphic testing

Metamorphic testing [37, 189] was proposed as a way to address the oracle problem, i.e. the
problem of determining whether a test output is correct or not. The idea behind this technique
is to generate new test cases based on existing test data. The expected output of the new test
cases can be checked by using so–called metamorphic relations, that is, known relations among
two or more input data and their expected outputs. As a positive result of this technique, there
is no need for an oracle and the testing process can be highly automated.

Consider, as an example, a program that compute the cosine function (cos(x)). Suppose the
program produces output -0.39 when run with input x=42 radians. An important property of
the cosine function is cos(x) = cos(−x). Using this property as a metamorphic relation, we
could design a new test case with x=-42. Assume the output of the program for this input is
0.42. When comparing both outputs, we could easily conclude the program is not correct.

Metamorphic testing has shown to be effective in a number of testing domains including
numerical programs [38], graph theory [39] or service–oriented applications [33].

4.3.2 Test cases evaluation

In order to measure the quality of our tests, we measured their ability to detect artificial
faults introduced in the programs. This technique is called mutation testing and it is described
next.

4.3.2.1 Mutation testing

Mutation testing [53] is a common fault–based testing technique that measures the effec-
tiveness of test cases. More specifically, it measures the quality of test cases according to their
ability to detect faults. The method starts by introducing simple faults into a program creating a
collection of faulty versions, called mutants. The mutants are created from the original program
by applying syntactic changes to its source code. Each syntactic change is determined by a so–
called mutation operator. Mutation operators are specifically designed for the programming
language or paradigm to be mutated. At the time of writing this dissertation, two main types
of mutation operators are used in the literature: traditional and class–level operators [82]. The
former are those mainly designed for procedural languages such as C or Fortran. These mainly
mutate traditional programming features such as algebraic or logical operators (e.g. i ⇒ i++).

4.3. Functional testing 53

int sum(int a, int b)
{

int result = a + b;
return result;

}

int sum(int a, int b)
{

int result = a / b;
return result;

}

int sum(int a, int b)
{

int result = a + b;
return result++;

}

a) Original code b) Mutant c) Equivalent mutant

Figure 4.4: An example of program mutation.

The latter are specifically designed to introduce faults affecting object–oriented features like in-
heritance or polymorphism (e.g. super keyword deletion). Figure §4.4(b) depicts an example
of mutant created by changing the operator + of the original program in Figure §4.4(a) into the
operator /.

Once the mutants have been created, test cases are used to check whether the mutants and
the original program produce different responses. If a test case distinguishes the original pro-
gram from a mutant we say the mutant has been killed and the test case has proved to be
effective at finding faults in the program. Otherwise, the mutant remains alive. Mutants that
keep the program’s semantics unchanged and thus cannot be detected are referred to as equiv-
alent. The percentage of killed mutants with respect to the total number of them (discarding
equivalent mutants) provides an adequacy measurement of the test suite called the mutation
score.

Figure §4.4(c) depicts an example of equivalent mutant generated by adding a post–
increment to the local variable result in the return instruction. Notice that this change will
not affect the behaviour of the program since the variable will not be read anymore after that
instruction. The automated detection of equivalent mutants is unfeasible because program
equivalence is an undecidable problem [82]. This is currently the main barrier for the prac-
tical application of mutation testing. Several techniques have been proposed to alleviate this
problem but their effectiveness is limited [75, 122, 141].

The underlying theory of mutation testing relies on two main hypothesis: the Competent
Programmer Hypothesis and the Coupling Effect [53]. The former hypothesis assumes that
programmers are competent and they introduce simple faults as those created by mutation.
Hence, if a test case prove to be good at killing mutants it is also expected to be good at detecting
real faults. The later hypothesis states that test cases that are able to detect simple faults like
those of mutants will also implicitly distinguish more complex errors. This explains why only
simple faults are introduced by mutation.

Mutation testing have been applied not only to common programming languages but also
to other domains such as SQL, aspect–oriented programs, network protocols, web services, etc.
Also, a number of tools for mutation testing are currently available on the Web. We refer the
reader to [82] for a detailed survey on mutation testing.

54 Chapter 4. Software testing

4.4 Performance testing

Performance testing evaluates how well the program behaves under a particular workload.
This type of testing may deal with a number of indicators such as response time of the applica-
tion, memory consumption, availability, number of concurrent users, etc. In the context of this
dissertation, we focus on those indicators that give a better idea of the efficiency of the analysis
techniques under test, mainly execution time and memory consumption. In order to generate
representative test data for performance testing, we used evolutionary testing. This technique
is next described.

4.4.1 Evolutionary testing

The exhaustive search for test inputs is acknowledged to be unfeasible due to the size and
complexity of the programs, there are simply too many inputs combinations [3]. In this context,
evolutionary testing have proved to be a promising solution for the automated generation of
test data for both functional [105] and non–functional properties [3]. Evolutionary testing refers
to the usage of evolutionary algorithms to generate test data. Evolutionary algorithms use
heuristics to find solutions to hard problems at an affordable computational cost [10]. For the
generation of test data, these algorithms translate the test criteria into an objective function (also
called fitness function) that is used to evaluate and compare the candidate solutions respect to
the overall search goal. Using this information, the search is guided toward promising areas of
the search space.

Each candidate solution in an evolutionary algorithm is referred to as individual or chro-
mosome in analogy to the evolution of species in biological genetics where DNA of individuals
is combined and modified along generations enhancing species through natural selection. Two
of the main properties of evolutionary algorithms are that they are heuristic and stochastic. The
former means that there is no guarantee of obtaining the global optimum for the optimization
problem. The latter means that different executions of the algorithm with the same input pa-
rameters can produce different output, i.e. they are not deterministic. Despite this, evolutionary
algorithms are among the most widely used optimization techniques being applied successfully
in nearly all scientific and engineering areas by thousands of practitioners [10].

As an example, let us consider the design of a car as an optimization problem. A similar
example was used to illustrate the working of evolutionary algorithms in [188]. Let us con-
sider that the goal of the optimization problem is to find a car design that maximize speed and
minimize fuel consumption. This problem is hard since a car is a highly complex system in
which speed and fuel consumption depends on a number of parameters such as engine type,
components as well as shape and body elements. Moreover, this problem is likely to have extra
constraints like keeping the cost of the car under a certain value, making some designs unfeasi-
ble. In order to solve this problem using evolutionary algorithms, a fitness function providing
numerical values associated to designs is needed. This fitness function drives the optimization
process to our objective. Thus, designs that provide a better relation between fuel consumption
and speed are expected to have better fitness values.

All the variants of evolutionary algorithms are based on a common working scheme shown
in Figure §4.5. The basic steps of this scheme are:

4.4. Performance testing 55

Initialization

Stop criteria met?

Selection

Mutation

Crossover

Evaluation

[NOT]

[YES]

Evaluation

Encoding

Decoding

Survival

Figure 4.5: General working scheme of an evolutionary algorithm.

Initialization. The initial population (i.e. set of candidate solutions to the problem) is usually
generated randomly. In our example, this could be done by choosing a set of random values for
the design parameters of the car. Of course, the chances of finding optimal or near optimal car
designs in this initial population are very small. However, promising values found at this step
will be used to produce variants along the optimization process leading to better designs.

Evaluation. Next, individuals are evaluated using the fitness function that determines its op-
timality for the problem. The fitness function should be deterministic to avoid interferences in
the algorithm, i.e. different calls to the function with the same set of inputs parameters should
produce the same output. In our car example, a simulator could be used to provide the relation
between fuel consumption and speed as fitness.

Encoding. In order to create offspring, individuals need to be encoded expressing its charac-
teristics in a suitable form. In biological genetics, DNA encodes individual’s characteristics on
chromosomes that are used on reproduction and whose modifications produce mutants. For
instance, classical encoding mechanisms on evolutionary algorithms are binary vectors encod-
ing numerical values in genetic algorithms [10, Sec. C1.2] and tree structures encoding abstract
syntax of programs in genetic programming [92]. In our car example, this step would imply
to express design parameters of cars using some kind of data structure, e.g. binary vectors for

56 Chapter 4. Software testing

each design parameter.

Stop criteria. Iterations on the remainder of the algorithm are performed until a termination cri-
terion is met. Typical stop criteria are: reaching a minimum or average fitness value, maximum
execution times of the fitness function, number of iterations of the loop (so-called generations)
or number of iterations without improvements on the best individual found.

Selection. In the main loop of the algorithm (see Fig. §4.5), individuals are selected from cur-
rent population in order to create new offspring. In this process, better individuals usually have
more probability of being selected resembling the natural evolution where stronger individuals
have more chances of reproduction. For instance, two classic selection mechanisms are roulette
wheel and tournament selection [67]. When using the former, the probability of choosing an in-
dividual is proportional to its fitness determining the width of the slice of a hypothetic spinning
roulette wheel. This mechanism is often modified assigning probability based on the position of
the individuals in a fitness–ordered ranking (so-called rank-based roulette wheel). When using
tournament selection, a group of n individuals is randomly chosen from the population and a
winning individual is selected according to its fitness.

Crossover. These are the techniques used to combine individuals in some way and produce
new individuals in an analogous way to biological reproduction. Crossover mechanisms de-
pend on the encoding scheme used but standard mechanisms are available in literature for
widely used encodings [10, Sec. C3.3]. For instance, two classical crossover mechanisms for
vector encoding are one-point crossover [76] and uniform crossover [2]. When using the for-
mer, a random location in the vector is chosen as break point and portions of vectors after the
break point are exchanged to produce offspring. When using uniform crossover, the value of
each vector element is taken from one parent or other with a certain probability, usually 50%.
Fig. §4.6(a) shows a high–level application of crossover in our example of car design. An F1
car and an small family car are combined by crossover producing a sports car. The new vehicle
has some design parameters inherited directly of each parent such as number of seats or engine
type and others mixed such as shape and intermediate size.

Mutation. At this step, random changes are applied to the individuals. Changes are performed
with certain probability where small modifications are more likely than larger ones. This step
is crucial to prevent the algorithm from getting stuck prematurely at a locally optimal solution.
An example of mutation in our car optimization problem is presented in Fig. §4.6(b). The shape
of a family car is changed by adding a back spoiler while the rest of its design parameters re-
main intact.

Decoding. In order to evaluate the fitness of new and modified individuals decoding is per-
formed. For instance, in our car design example, data stored on data structures is transformed
into a suitable car design that our fitness function can evaluate. It often happens that the
changes performed in the crossover and mutation steps create individuals that are not valid
designs or break a constraint, this is usually referred to as an infeasible individual [10], e.g. a
car with three wheels. Once an infeasible individual is detected, this can be either replaced by
an extra correct one or it can be repaired, i.e. slightly changed to make it feasible.

4.5. Summary 57

Figure 4.6: Crossover and mutation in the search of an optimal car design.

Survival. Finally, individuals are evaluated and the next population is conformed in which
individuals with better fitness values are more likely to remain in the population. This pro-
cess simulates the natural selection of the better adapted individuals that survive and generate
offspring improving species.

4.5 Summary

In this chapter, we have presented the testing techniques that we will refer to during the
rest of this dissertation. First, we have described those techniques that we used for the design
and evaluation of test cases for the detection of faults in feature model analysis tools. Then, we
have presented evolutionary testing, a technique based on natural evolution that we used for
the generation of performance test data.

58 Chapter 4. Software testing

Part III

Our Contribution

Chapter 5

Motivation

Research is to see w hat everybody else has seen ,
and to think w hat nobody else has thought.

A lbert SzentGyorgyi, 1893–1986
Hungarian B iochem ist, 1937 Nobel P rize for M edicine

I n this chapter, we present the problems that we have addressed during our research work
analyzing the current solutions and emphasizing the gap filled by our contributions. In

Section §5.1, we motivate the chapter. The main problems addressed in this dissertation are
presented in Section §5.2. In Section §5.3, we revise the current solutions found in the litera-
ture. In Section §5.4, we summarize and analyse current trends and explain the context of our
contributions. Finally, we summarize the chapter in Section §5.5.

62 Chapter 5. Motivation

5.1 Introduction

The analysis of feature models is a thriving research topic that involves an increasing num-
ber of analysis operations, techniques and tools. The progress of this discipline is leading to
an increasing interest in the quality of analysis solutions. However, the lack of specific testing
mechanisms for functional and performance testing is becoming a major obstacle hindering the
development of tools and affecting their reliability.

Supporting testing on the analysis of feature models require to overcome a number of prob-
lems described in the next section, among others: design of representative test data, develop-
ment of test data generators overcoming the oracle problem, generation of hard problems, etc.
Until now, most works on the analysis of feature models have either escaped the testing of their
applications or used custom methods guided more by intuition than by well studied testing
methods. This make testing results rarely rigorous and verifiable weakening the value and
scope of contributions.

The final goal of this chapter is to motivate the need for specific methods for functional and
performance testing on the analysis of feature models and introduce our contributions in this
topic. These contributions are the results of the application of several classical and innovative
testing techniques to the context of feature model analysis tools. We consider these contribu-
tions can promote the progress of the discipline both at a technical and a social level. From
a technical standpoint, the usage of testing methods leads to a rigorous examination of the
functional and performance results. From these results, the strengths and weaknesses of each
proposal are identified helping researchers and practitioners to refine their solutions and to
find new ways to improve them. From a social standpoint, testing results, especially those re-
lated to performance, can also promote the collaboration and communication among different
researchers. As a result, these become more aware of the work carried out by their colleagues
and collaborations among researchers with similar interests emerge naturally.

5.2 Problems

The main contributions of this thesis were motivated by the following problems, namely:

i. FUNCTIONAL TESTING OF FEATURE MODEL ANALYSIS TOOLS

Lack of representative test data. Feature model analysis tools deal with complex data
structures and algorithms. This makes the implementation of analyses far from trivial
and easily leads to faults increasing development time and reducing reliability of analy-
sis solutions. Gaining confidence in the absence of faults in these tools is especially rel-
evant since the information extracted from feature models is used all along the software
product line development process to support important decisions [12]. In this context,
the lack of specific test data is a major obstacle for engineers when trying to assess the
functionality and quality of their analysis tools and remains as an open issue.

Automated generation of test data. The application of manual testing techniques rapidly
becomes costly due to the complexity and high number of analysis operations on feature

5.3. Analysis of current solutions 63

models. Automation is therefore desirable but difficult to apply due to the impossibility
to determine the expected output of test cases, i.e. oracle problem. This occurs because
the only way to check the correctness of the output of an analysis is by hand what in most
of the cases is unfeasible. In fact, the analysis of feature models may fall into the category
of software that Weyuker [189] classifies as non–testable because “it is theoretically pos-
sible, but practically too difficult to determine the correct output”. The development of
automated test data generators that overcome the oracle problem making the analysis of
feature models testable is an open challenge.

ii. PERFORMANCE TESTING OF FEATURE MODEL ANALYSIS TOOLS

Automated generation of hard feature models. The number of works presenting perfor-
mance results on the analysis of feature models has grown significantly. From the results
obtained, the strengths and weaknesses of the applications are highlighted helping re-
searchers to improve their solutions and identify new research directions. One of the
main challenges in performance testing is to find hard problems that show the perfor-
mance of tools in extreme situations, e.g. those maximizing execution time. Currently,
hard feature models are generated randomly with a huge number of features and con-
straints. However, these only provide a rough idea of the behaviour of the tools with
average problems and are not sufficient to reveal their real power. The generation of
hard problems of realistic size to evaluate feature model analysis tools is an unexplored
research topic.

5.3 Analysis of current solutions

In this section, we present the related works found in the literature. This is the result of
an exhaustive literature review in which we found 25 related proposals published between
November 2004 and October 2010. We may remark that we did not find any related work
considering functional testing on the analysis of feature models. The works next presented are
those reporting results about performance testing.

Benavides et al. [17–19] were the first presenting performance results of their CSP-based
approach for the analysis of feature models. In their work, they used five sample feature mo-
dels with a maximum of 15 features. Later, in [23], the authors presented a comparison of the
performance of two CSP solvers for the analysis of feature models. They used two manually
designed feature models and three models generated randomly with up to 52 features. This
was the first work using random feature models and comparing the performance of different
solvers. In [22], the authors extended their work by comparing the performance (execution
time and memory consumption) of three analysis tools based on CSP, SAT and BDD. They used
randomly generated feature model with up to 300 features and 25% of cross–tree constraints
(with respect to the number of features).

Gheyi et al. [64] presented a propositional logic–based approach to analyse feature mo-
dels. In their work, the authors reported execution times on several analysis on random feature
models ranging in size up to 300 features.

Wang et al. [186] presented a case tool for checking product configurations and refactorings

64 Chapter 5. Motivation

on feature models and evaluated it with a feature model of 1,000 features and 400 relationships.
The authors mention that the model represents a large system but it is not clear whether it is
real or it was generated randomly.

Hemakumar [74] proposed an algorithm based on boolean constraint propagation to detect
conditionally dead features. As a part of his work, the author presented an implementation of
his algorithm and reported the execution times for 11 feature models taken from the literature
with up to 64 features.

Mendonca et al. [108] extended their previous work [106] formalizing their approach and
providing some algorithms for dependency analysis in the context of collaborative product
configuration. Execution times were reported for four random feature model with up to 2,000
features. Later, in [109], the authors presented experimental data showing that the some analy-
sis of feature models are easily tractable by SAT–solvers. They analysed specific characteristics
of this type of solvers and presented execution times using random feature models with up to
10,000 features. Feature models were generated with similar characteristics to those found in
the literature.

Segura et al. [142] presented an algorithm and a prototype implementation to compute the
atomic sets of a feature model. Executions times and memory consumption data for random
feature models ranging in size up to 300 features and 25% of constraints were reported.

White et al. [190, 194] proposed a constraint-based diagnostic approach to detect inconsis-
tencies in feature model configurations and repair them. Performance results, mainly execution
times, were reported using random feature models ranging in size from 100 to 5,000 features
and from 0% to 50% of cross-tree constraints. Later, in [191, 193], the authors proposed an al-
gorithm to solve optimization problems on feature models. Experimental results with feature
models with up to 10,000 were presented.

Zhang et al. [199] proposed a BDD–based approach to deal with the problem of analysis of
feature models including feature cardinalities. They presented performance results comparing
the proposal with their previous approach. In particular, execution times with random feature
models between 10 and 1,000 features were reported.

Osman et al. [125, 126] proposed a knowledge base method to validate feature models and
showed how it can be used to perform several analysis on the models. In their work, the authors
presented some execution times with feature models with up to 20,000 features (referred to as
variants in the paper) and 50% of cross-tree constraints.

Thüm et al [164] proposed automated support for classifying feature model edits, i.e.
changes in an original feature model, according to a taxonomy. As a part of their work, the
authors reported execution times using a realistic feature model taken from the literature with
287 features [93]. They also used randomly generated feature models (with up to 10,000 features
and 10% of cross–tree constraints) with similar characteristic to those found in the literature.

Yan et al. [196] proposed a method and BDD–based tool to optimize the analysis of fea-
ture models by eliminating irrelevant features and constraints. Execution times for random
feature models ranging in size from 100 to 1,900 features and 20% of cross-tree constraints as a
maximum were reported.

She et al. [155] extracted a feature model from the Linux kernel in an attempt to find a hard
and realistic problem to be used in the performance evaluation and benchmarking of feature

5.4. Discussion 65

model analysis tools. The model generated had 5,426 features. They also compared the gener-
ated model with those found in the literature. Galindo et al. [63] followed a similar approach.
The authors propose modelling the Debian package repositories as variability models to obtain
hard and realistic input models to evaluate the performance of analysis tools. The authors also
suggest using the current techniques for the analysis of variability models to detect inconsis-
tencies in the repositories.

Wan et al. [183, 184] proposed a dynamic-priority based approach to fixing inconsistent fea-
ture models. They also extend the constraint solver SkyBlue to implement a system that guide
domain analysts in fixing inconsistencies. As a part of their work, they present the execution
times of their tool when processing random feature model ranging in size up to 4,400 features
and 10% of cross-tree constraints.

5.4 Discussion

From the analysis of related works, we conclude that functional testing is not addressed in
the literature. This means that no evidences are shown about whether the implementation of
the analysis operations are actually performing the right computation and about the absence of
bugs in the applications. In contrast, most of the proposals focus on testing the performance of
their tools reporting data about execution times and memory consumption. In other words,
most authors try to answer the question How efficient is my tool? even before answering
some more trivial ones: Is my tool working right?, Does it contain any bug?. We presume this
lack of functional testing evidences occurs because it is simply much easier to perform basic
performance evaluations than functional testing. In performance testing, the tool is run with
an input feature model and performance data are recorded. In functional testing, however, two
key challenges must be faced, namely: i) designing test data that provide a good test coverage,
and ii) checking the correctness of outputs which is unfeasible in most of the cases for the
analysis of feature models due to the oracle problem.

A key aspect in performance testing on the analysis of feature models is the type of sub-
ject problems used for the tests, i.e. test data. We found three main types of feature models
used for experimentation: realistic, automatically generated feature models and those extracted
from other domains with variability. By realistic models we intend those modelling real–world
domains or a simplified version of them, e.g. e-shop feature model with 287 features [93]. Al-
though there are reports from the industry of feature models with hundreds or even thousands
of features [12, 94, 160], only a portion of them is typically published. This has led authors
to generate feature models automatically to show the scalability of their approaches with large
problems. These models are generated either randomly or trying to imitate the properties of the
realistic models found in the literature. More recently, some authors have suggested looking for
tough and realistic feature models into the open source community.

Fig. §5.1 summarizes the number of related works using realistic and automatically gener-
ated models as well as those extracted from other variability domains per each year. For each
type of model, we also show the number of features of the largest feature model for each year.
We may recall that the works included are those collected until October 2010. As illustrated, first
works back in 2004 and 2005 used small realistic feature models in their experiments. However,
since 2006, far more automatically generated feature models than realistic ones have been used.
Regarding the size of the problems, there is a clear ascendant tendency ranging from the model

66 Chapter 5. Motivation

Figure 5.1: Type and maximum size of the feature models used in performance testing.

with 15 features used in 2004 to the model with 20,000 features used in 2009. These findings
reflect an increasing concern to evaluate and compare the performance of different solutions
using complex feature models. This also suggest that the only known mechanism to increase
the complexity of the models is by increasing its size. A new trend, in 2010, propose to extract
hard but realistic feature models from other domains with variability like those of open source
operation systems.

Table §5.1 summarizes the related works found in the literature. Horizontally, the different
proposals are presented grouped by the publication year. Vertically, we list the main contri-
butions in the fields of functional and performance testing on the analysis of feature models.
These contributions are mainly related to the type of test data (and associated tool support)
proposed to perform the testing. For each row, the first cell marked with ‘+’ indicates the year,
depicted by the column, in which the contribution was first proposed. Later cells on each row
are also marked with ‘+’ to indicate that the contribution was already available. At first, the
only test data used for performance testing were realistic models, usually invented. In 2006, the
community started to use randomly generated feature models. This strategy is still the most
popular among researchers as shown in Figure §5.1. In this thesis, we have provided the com-
munity with a new set of techniques and tools for both functional and performance testing on
the analysis feature models. First, we have presented a carefully designed manual test suite,
called FaMa Test Suite (FaMa TeS) for functional testing. Second, we have presented a frame-
work, BeTTy, providing tool support for i) automated generation of test data for functional
testing based on metamorphic testing, and ii) automated generation of hard feature models for
performance testing using evolutionary algorithms.

5.5. Summary 67

B
en

av
id

es
et

al
.[

17
]

B
en

av
id

es
et

al
.[

18
,1

9]

B
en

av
id

es
et

al
.[

22
,2

3]

G
he

yi
et

al
.[

64
]

W
an

g
et

al
.[

18
6]

H
em

ak
u

m
ar

[7
4]

M
en

d
on

ca
et

al
.[

10
8,

11
0]

Se
gu

ra
[1

42
]

W
hi

te
et

al
.[

19
3,

19
4]

Z
ha

ng
et

al
.[

19
9]

M
en

d
on

ca
et

al
.[

10
9]

O
sm

an
et

al
.[

12
6]

T
hü

m
et

al
.[

16
4]

W
hi

te
et

al
.[

19
0–

19
2]

Ya
n

et
al

.[
19

6]

G
al

in
d

o
et

al
.[

63
]

Sh
e

et
al

.[
15

5]

W
an

g
et

al
.[

18
3,

18
4]

O
u

r
co

n
tr

ib
u

ti
o

n
s

2004 2005 2006 2007 2008 2009 2010

Functional testing +

Manual test data +

Test data generation +

Performance testing + + + + + + + +

Realistic test data + + + + + + + +

Random test data + + + + + +

Hard test data generation +

Table 5.1: Summary of the related works.

5.5 Summary

In this chapter, we have presented the main problems that motivated this dissertation. We
have analysed the related literature on the analysis of feature models and observed that func-
tional and performance testing is strongly necessary but poorly supported until now. We have
also emphasized the value and originality of our main contributions, a manual test suite and a
framework for functional and performance testing on the analysis of feature models.

68 Chapter 5. Motivation

Chapter 6

A test suite for the analyses of feature
models

There are tw o ways to w rite errorfree program s;
only the third one w orks.

A lan Jay Perlis, 1922–1990
American computer scientist, 1966 Turing Award

T he analysis of feature models is usually automated using complex techniques of con-
straint programming, boolean formula satisfiability and description logic. Implementing

analysis operations using these techniques is a time-consuming and complex task that easily
leads to defects in analysis solutions. In this context, the lack of specific testing mechanisms is
becoming a major obstacle hindering the development of tools and affecting their quality and
reliability. In this chapter, we present FaMa Test Suite, a set of implementation–independent
test cases to validate the functionality of feature model analysis tools. This is an efficient mech-
anism to assist in the development of tools, detecting faults and improving their quality. In
order to show the effectiveness of our proposal, we evaluated the suite using mutation testing
as well as real faults. Our results are promising and directly applicable in the testing of analysis
solutions.

The remainder of the chapter is structured as follows: Section §6.1 introduces the problem
tackled and the solution proposed. A detailed description of how we designed our test cases
is presented in Section §6.2. Section §6.3 describes the adequacy evaluation and refinement of
the suite. A summary of the refined suite and a brief discussion is presented in Section §6.4.
Finally, we summarize the main points of our contribution in Section §6.5.

70 Chapter 6. A test suite for the analyses of feature models

6.1 Introduction

The implementation of analysis operations on feature models is a hard task involving com-
plex data structures and algorithms. This makes the development of analysis tools far from
trivial and easily leads to errors increasing development time and reducing their reliability.
Gaining confidence in the absence of defects in these tools is essential since the information
extracted from feature models is used to support decisions all along the software product line
development process [12]. However, the lack of specific testing mechanisms in this context
appears as a major obstacle for engineers when trying to assess the functionality of their pro-
grams.

In this chapter, we present a set of implementation–independent test cases to validate the
functionality of feature model analysis tools. Through the implementation of our test cases,
faults can be rapidly detected assisting in the development of feature model analysis tools and
improving their reliability and quality. For its design and evaluation, we used popular tech-
niques from the software testing community to assist us on the creation of a representative set
of input-output combinations. These test cases can be used either in isolation or as a suitable
complement for further testing methods such as white–box testing techniques [47, 117] or au-
tomated test data generators [151]. As suggested by the testing literature, each test case was
designed to reveal a single type of fault. This allows users to identify clearly the source of a
fault once it has been detected. Briefly, we next describe the main characteristics of our suite:

• Operations tested. Current version of our suite, called FaMa Test Suite, addresses 7 out
of 30 analysis operations on feature models identified in the literature [21]. These were
selected for their extended use in the community of automated analysis and their hetero-
geneous nature.

• Testing techniques. Four testing techniques were used to design test cases, namely:
equivalence partitioning, boundary-value analysis, pairwise testing and error guessing.
A preliminary evaluation of the testing techniques to be used in our approach was pre-
sented in [143].

• Test cases. The suite is composed by 192 test cases. Each test case is designed in terms of
the inputs (i.e. feature models and some other parameters) and expected outputs of the
analysis operations under test.

• Adequacy. We evaluated the effectiveness of our suite using mutation testing and real
faults as follows. Firstly, we generated hundreds of faulty versions (so-called mutants) of
three open source analysis tools integrated into the FaMa framework. Then, we executed
our suite against those faulty tools and check how many faults were detected by our test
cases. As a result, the suite identified 96.1% of the faults showing the feasibility of our
proposal. We then refined our suite until obtaining a score of 100%. Our refined suite
also showed to be effective in detecting motivating faults found in the literature and in a
recent release of the FaMa framework.

6.2. Test suite design 71

6.2 Test suite design

In this section, we describe how we designed the test cases that compose our suite. These
mainly are input-output combinations specifically created to reveal failures in the implementa-
tions of analysis operations on feature models.

Creating test cases for every possible permutation of a program is impractical and very often
impossible; there are simply too many input-output combinations [117]. Thus, as recalled by
Pressman [130], the objective when testing is to “design tests that have the highest likelihood of
finding most errors with a minimum amount of time and effort”. To assist us in the process, we
evaluated a number of techniques reported in the literature [47, 117]. We focused on black-box
techniques since we want our test cases to rely on the specification of the analysis operations
rather than on specific implementations. In particular, we found four of these techniques to be
effective and generic enough to be applicable to our domain, namely: equivalence partitioning,
boundary–value analysis, error–guessing and pairwise testing. These techniques are described
in Section §4.3.1.

For the design of the suite we followed four steps, namely: i) identification of the inputs
and outputs of the analysis operations, ii) selection of representative instances of each type of
input, iii) combination of previous instances in those operations receiving more than one input
parameter, and iv) test cases report. Following, we detail how we carried out these steps.

6.2.1 Identification of inputs and outputs

The current version of our suite addresses 7 out of 30 analysis operations on feature models
identified in the literature [21]. These operations are listed in Table §6.1 and fully described in
Section §3.2. We selected these operations for its extended use in the community of automated
analysis and their heterogeneous nature. In order to identify the type of the input/output pa-
rameters of the operations and avoid misunderstandings when interpreting their semantics,
we used the formal definition of the operations proposed by Benavides [15]. Table §6.1 summa-
rizes the operations in terms of their inputs and outputs. For the sake of simplicity, we assign
an identificator to each operation to refer them along the chapter. As illustrated, inputs are
composed of feature models, products and features. Outputs mainly comprise collections of
products and features together with numeric and boolean values.

ID operation Operation Inputs Output

VoidFM Void FM FM Boolean value

ValidProduct Valid product FM, Product Boolean value

Products Products FM Collection of products

#Products Number of products FM Numeric value

Variability Variability FM Numeric value

Commonality Commonality FM, Feature Numeric value

DeadFeatures Dead features FM Collection of features

Table 6.1: Analysis operations addressed in the suite.

72 Chapter 6. A test suite for the analyses of feature models

The feature modelling notation used in our suite corresponds to basic feature models, de-
scribed in Section §2.2. We selected this notation for its simplicity and extended use in current
feature model analysis tools and literature.

6.2.2 Inputs selection

In this section, we explain how we selected the inputs to be used in our test cases. For each
type of input (i.e. feature models, products and features), we next describe the techniques used
and how we applied them.

6.2.2.1 Feature models

We found two testing techniques to be helpful for the selection of a suitable set of input fea-
ture models, namely: equivalence partitioning and error guessing. We applied them as follows:

Equivalence partitioning. The potential number of input feature models is limitless. To select
a representative set of these, we propose dividing input feature models into equivalence classes
according to the different types of relationships and constraints among features, i.e. mandatory,
optional, or, alternative, requires and excludes. This is a natural partition intuitively used in
most proposals when defining the mapping from a feature model to a specific logic paradigm
(e.g. constraint satisfaction problem) [11, 15, 18, 64, 102, 165, 186, 197]. Therefore, according to
this technique, if a feature model with a single mandatory relationship is correctly managed by
an operation, we could assume that those with more than one mandatory relationship would
also be processed successfully.

To keep equivalence classes in a manageable level, we propose dividing the input domain
into three groups of partitions as follows:

i. Feature models including a single type of relationship or constraint. Inputs from these
partitions would help us to reveal failures when processing isolated relationships and
constraints. For basic feature models, 6 partitions are created: feature models including
mandatory relationships, optional, or, alternative, requires and excludes. Figure §6.1 (a)
depicts the inputs we selected from each equivalence class using this criterion. Note
that feature models with requires and excludes constraints also include an additional
relationship (e.g. optional) to make them syntactically correct, i.e. sharing a common
parent feature.

ii. Feature models combining two different types of relationships or constraints. We propose
testing how analysis tools process feature model with multiple relationships by designing
all the possible combinations of two of these, i.e. mandatory-optional, mandatory-or,
etc. Following this criterion with basic feature models, we created a second group of
13 partitions. Figure §6.1 (b) presents the input models we took from each one of them.
In general terms, feature relationships may appear in two main forms, child and sibling
relationships (see Figure §6.2). According to our experience, inputs combining both types
of relationships (highlighted in Figure §6.2) usually result in more complex constraints
and therefore in more effective test cases. Thus, we selected inputs models from each

6.2. Test suite design 73

A

B

A

B

A

B

A

B C

A

B CC

A

B C

A

B

D E

C

F G

A

B C

A

B C

A

B C

A

B

D

A

B C

A

B C

A

B C

A

B C

a) Feature models with a single relationship or constra int c) Feature models including all different types of
relationships and constraints

b) Feature models including two different types of re lationships or constraints.

C

E

A

D E

H I

A

B

E F

C D

G

A

B

E F

C D

G

A

B

E F

C D

G

A

B

E F

C D

G

B C

F G

Figure 6.1: Equivalence partitions on feature models.

partition randomly but making sure these included both types of relationships, child and
sibling relationships. For those input models including cross–tree constraints, we gave
priority to simplicity and used sibling relationships exclusively.

A

B

C

A

B

C

A

B C

A

B C

D E

Figure 6.2: Some possible combinations of mandatory and optional relationships.

iii. Feature models including three or more different types of relationships or constraints. We
finally propose creating a last partition including all those feature models not included in
previous equivalence classes. Although this partition could be easily divided into smaller
ones we did not find any evidence that justify such an increment in the number of test
cases. Figure §6.1 (c) illustrates the random input feature model we took from this parti-
tion.

As a result of the application of this technique we got 20 feature models representing the
whole input domain of basic feature models (see Figure §6.1). These were used as input in all

74 Chapter 6. A test suite for the analyses of feature models

the operations included in our suite with the exception of the operation DeadFeatures in which
models derived from error–guessing were used.

Error guessing. Some common errors on feature models have been reported in the literature
[15, 165]. As an example, Trinidad et al. [165] present some common problematic situations in
which dead features appear. Figure §6.3 illustrate those situations (dead features are depicted
in grey). Following the guidelines of error guessing, we propose using these models as suitable
inputs to check whether dead features are correctly detected by the tools under test (i.e. opera-
tion for the detection of dead features). This way, we kept the number of input models for this
operation in a reasonable level while still having a fair confidence in the ability of our tests to
reveal failures.

A

B C

D E

A

B C

D E

A

B C

D E

A

B C

A

B C

A

B C

A

B

A

B C

Figure 6.3: Input feature models with dead features.

6.2.2.2 Products

Products are used in the operation ValidProduct to determine whether a given product (i.e.
set of features) is included in those represented by a feature model. For the selection of these
inputs, we propose applying equivalence partitioning and boundary analysis as follows.

Firstly, we propose dividing input products into two equivalent partitions: valid and non-
valid products. For each of these equivalence classes, inputs should be treated in the same
way by the program under test and should produce the same answer. Then, we propose using
boundary analysis for the systematic selection of input products from each partition. In partic-
ular, we suggest quantifying products according to the number of features they include. Then,
we propose selecting those products on the “edges" of the partitions.

Figure §6.4 depicts an example of how we applied equivalence partitioning and boundary
analysis for the selection of input products. As input feature models, we used those presented
in previous section created using equivalence partitioning (Figure §6.1). For each input feature
model, four inputs products were selected, two valid and two non-valid, as follows:

• VPmin : valid product with the minimum number of features. This product could be help-
ful to reveal failures caused by spare of erroneous constraints when processing minimal
solutions of the problem. For instance, a failure using VPmin={A, B, D, E} may suggest
that any of the other features (i.e. C, F or G) are erroneously treated as core features. A
core feature is a feature that is part of all the products [172].

• VPmax: valid product with the maximum number of features. This product would allow
testers to detect overconstrained representations of the model using large valid combi-
nation of features. As an example, a failure using VPmax={A, B, C, E, G} may suggest that

6.2. Test suite design 75

some spare constraint forcing the selection of D or F is not being fulfilled. Note that VPmin

would still be helpful to detect, for example, whether non core features are erroneously
included in all products.

• NVPmin: non-valid product with one less feature than VPmin. This product would be
helpful to reveal failures caused by omitted or insufficiently constrained representations
of the models. In the example, NVPmin={A, B, D} could help us to check whether the
parent feature of an alternative relationship (B) can be erroneously included in a product
without including any of its child features (E or F).

• NVPmax: non-valid product with one more feature than VPmax. This product would help
us to check broken constraint caused by the selection of too many features. For instance,
NVPmax={A, B, C, D, E, G} may reveal failures derived from including in a product more
than one alternative subfeature (C and D). Once again, we would still need NVPmin to
make sure that underconstrained solutions are detected.

VPmax={A,B,C,E,G}VPmin={A,B,D,E}

NVPmin={A,B,D}

Valid products

Non-valid products

NVPmax={A,B,C,D,E,G}

A

B

E F

C D

G

Figure 6.4: Input products selection using partition equivalence and boundary analysis.

We identified two special causes making a product to be non-valid, namely: i) not includ-
ing the root feature (e.g. product {B, D, E} for the model in Figure §6.4), and ii) including
non-existent features (e.g. product {A, B, D, E, H} for the model in Figure §6.4). These causes
are applicable to all products independently of the characteristics of the input feature model.
Therefore, we did not consider these situations for products NVPmin and NVPmax. Instead of
this, we checked these problems in two separated test cases to be as accurate as possible when
informing about failures.

6.2.2.3 Features

Given a feature model, the Commonality operation informs us about the percentage of
products in which an input feature appears. For the selection of these input features, we pro-
pose applying equivalence partitioning and boundary analysis as follows.

To apply equivalence partitioning, we suggest focusing on the result space of the common-
ality operation. More specifically, we propose considering a single output partition: from 0% to
100% of commonality. Then, we propose applying boundary analysis and selecting those input
features returning a value situated on the edges of the output partition. Figure §6.5 depicts an
example of our proposal. For each input feature model, two input features are used, one with
minimum commonality (G = 40%) and another one with maximum commonality (C = 80%). We

76 Chapter 6. A test suite for the analyses of feature models

intentionally exclude the root feature whose commonality is trivial (100%). We also included
an additional test case to check the behaviour of the operation when receiving a non-existent
feature as input (e.g. feature H for model of Figure §6.5).

0%

Output partition

100%40% 80%

Fmin = G Fmax = C

A

B

E F

C D

G

Figure 6.5: Input features selection using partition equivalence and boundary analysis.

6.2.3 Inputs combination

Combination strategies define ways to combine input values in those programs receiving
more than one input parameter [70]. This is the case of two of the operations included in our
suite: ValidProduct (it receives a feature model and a product) and Commonality (it receives
a feature model and a feature). To create effective test cases for these operations, we used a
pairwise combination strategy. That is, we created a test case for each possible combination
of the two input parameters. Hence, our suite satisfies 2-wise coverage being 2 the maximum
number of input received by the operations included on it.

As an example, consider the operation ValidProduct which receives two inputs: a feature
model and a product. In previous section, we studied these inputs in isolation and selected
representative values for them resulting in 20 feature models (see Figure §6.1) and 4 products
(i.e. VPmin, VPmax, NVPmin and NVPmax). Using pairwise testing, we created a test case for each
possible combination of them (i.e. 20*4 potential test cases). Note that some combination were
not applicable (e.g. feature models without non–valid products) reducing the number of test
cases for this operation to 60.

6.2.4 Test cases report

To conclude the design of our suite, we organized the selected inputs and their expected out-
puts into test cases; 180 in total. For their specification, we followed the guidelines of the IEEE
Standard for Software Testing Documentation [78]. As an example, Table §6.2 depicts three
of the test cases included in the suite. For each test case, an ID, description, inputs, expected
outputs and intercase dependencies (if any) are presented. Intercase dependencies refer to the
identifiers of test cases that must be executed prior to a given test case. As an example, test case
P-9 tries to reveals failures when obtaining the products of feature models including mandatory
and alternative relationships. Note that test cases P-1 (test of mandatory relationship in isola-
tion) and P-4 (test of alternative relationship in isolation) should be executed beforehand. Test
case C-28 exercises the interaction between requires and excludes constraints when calculating

6.3. Test suite evaluation and refinement 77

ID Description Input Expected Output Deps

P-9

Check whether the interac-
tion between mandatory and
alternative relationships is
correctly processed.

A

B

E F

C D

G

{A,B,D,F},
{A,B,D,E},

{A,B,C,F,G},
{A,B,C,E,G}

P-1
P-4

C-28

Check whether the interac-
tion between “requires” and
“excludes” constraints is cor-
rectly processed. Input fea-
ture has minimum common-
ality.

A

B C

Feature=B

0%

C-2
C-5
C-6
C-7

VP-37

Check whether valid prod-
ucts (with a maximum set of
features) are correctly identi-
fied in feature models con-
taining or- and alternative re-
lationships.

A

D E

H I

B C

F G

P={A,B,D,E,F,G,H}

Valid

VP-5
VP-6
VP-7
VP-8
VP-9
VP-10

Table 6.2: Three of the test cases included in the suite.

commonality. Finally, test case VP-37 is designed to reveal failures when checking whether an
input product is included in those represented by a feature model including or- and alternative
relationships. For a complete list of the test cases included in the suite we refer the reader to an
external technical report [149].

6.3 Test suite evaluation and refinement

In this section, we first detail the results obtained when using mutation testing to evaluate
and refine our suite. Then, we show the efficacy of our tests in detecting some real faults found
in the literature and a recent release of the FaMa Framework.

6.3.1 Evaluation using mutation testing

In order to measure the effectiveness of our proposal, we evaluated the ability of our test
suite to detect faults in the software under test (i.e. so-called fault-based adequacy criterion).
To that purpose, we applied mutation testing on an open source framework for the analysis of
feature models. We next present the experimental setup and the analysis of results.

78 Chapter 6. A test suite for the analyses of feature models

6.3.1.1 Experimental setup

We selected FaMa Framework as a good candidate to be mutated. FaMa is an open source
framework integrating different analysis components (so-called reasoners) for the automated
analysis of feature models. It is integrated into the feature modelling tool MOSKitt [113] and
it is currently being integrated into the commercial tool pure::variants [131] . Also, our fa-
miliarity with the tool made it feasible to use it for the mutations. In particular, we selected
three of the analysis components integrated into the framework (so-called reasoners), namely:
Sat4jReasoner v0.9.2 (using propositional logic by means of Sat4j solver [138]), JavaBDDRea-
soner v0.9.2 (using binary decision diagrams by means of JavaBDD solver [80]) and JaCoPRea-
soner v0.8.3 (using constraint programming by means of JaCoP solver [79]). Each one of these
reasoners uses a different paradigm to perform the analyses and was coded by different de-
velopers, providing the required heterogeneity for the evaluation of our approach. For each
reasoner, the seven analysis operations presented in Table §6.1 were tested.

For the mutations, we selected the key classes from each reasoner extending the framework
and implementing the analysis capabilities. Table §6.3 shows size statistics of the subject pro-
grams including the number of classes selected from each reasoner, the total number of lines of
code (LoC†1) and the average number of methods and attributes per class. The size of the 28
subject classes included in our study ranged between 35 and 220 LoC.

Reasoner LoC Classes Av Methods Av Attributes

Sat4jReasoner 743 9 6.5 1.8

JavaBDDReasoner 625 9 6.3 2.1

JaCoPReasoner 791 10 6.3 2.3

Total 2,159 28 6.4 2.1

Table 6.3: Size statistics of the three subject reasoners.

To automate the mutation process, we used MuClipse Eclipse plug-in v1.3 [157]. MuClipse
is a Java visual tool for mutation testing based on MuJava [95]. It supports a wide variety
of operators and can be used for both generating mutants and executing them in separated
steps. Despite this, we still found several limitation in the tool. On the one hand, the current
version of MuClipse does not support Java 1.5 code features. This forced us to make slight
changes in the code, basically removing annotations and generic types when needed. On the
other hand, we found the execution component provided by this and other related tools to not
be sufficiently flexible, providing as a result mainly mutation score and lists of alive and killed
mutants. To address our needs, we developed a custom execution module providing some extra
functionality including: i) custom results such as time required to kill each mutant and number
of mutants generated by each operator, ii) results in Comma Separated Values (CSV) format for
its later processing in spreadsheets, and iii) filtering capability to specify which mutants should
be considered or ignored during the execution. For the evaluation of the suite using MuClipse,
we followed three steps, namely:

i. Reasoners testing. Prior to their analysis, we made sure the original reasoners passed all
the test cases in our suite.

†1LoC is any line within the Java code that is not blank or a comment.

6.3. Test suite evaluation and refinement 79

ii. Mutants generation. We applied all the traditional mutation operators available in Mu-
Clipse, a total of 15. These mainly mutate common programming languages features
such as arithmetic (e.g. ++,-) and relational operators (e.g. ==,!=). Specific mutation
operators for object–oriented code were discarded to keep the number of mutants man-
ageable. Once generated, we manually discarded those mutants affection portions of the
code not related to the analysis of feature models and therefore not addressed by our test
suite (e.g. exception handling). A list of the mutation operators used in our evaluation is
presented in Appendix §B.

iii. Mutants execution. For each mutant, we ran our test cases using JUnit [84] and tried to
kill it. We may remark that the functionality of each operation was scattered in several
classes. Some of these were reusable being used in more than one operation. Mutants
on these reusable classes were evaluated separately with the test data of each operation
using them for more accurate mutation scores, i.e. some mutants were executed more
than once. As a result, the number of executed mutants was higher than the number of
generated mutants. Equivalent mutants were manually identified and discarded after
each execution.

6.3.1.2 Analysis of results

Table §6.4 shows information about the number of generated mutants. Out of the 760 gen-
erated mutants, 103 of them (i.e. 13.5%) were identified as semantically equivalent. In addition
to these, we manually discarded 87 mutants (i.e. 11.4%) affecting other aspects of the program
not related to the analysis of feature models and therefore not considered in our test suite.
These were mainly related to the computation of statistics (e.g. execution time) and exception
handling.

Reasoner Mutants Equivalent Discarded

Sat4jReasoner 262 27 47

JavaBDDReasoner 302 28 37

JaCoPReasoner 196 48 3

Total 760 103 87

Table 6.4: Mutants generation results.

Table §6.5 depicts the results obtained when using our test suite to kill the mutants in the
FaMa reasoners. For each operation and reasoner, the total number of mutants executed, num-
ber of alive mutants and mutation score are presented. The detection of dead features was
tested only in JaCoPReasoner since this was the only reasoner implementing it. As illustrated,
the operations VoidFM and ValidProduct produced the lowest scores and higher number of
alive mutants. We found that mutants on these operations required input models to have a
very specific pattern in order to be killed and therefore were harder to detect than mutants in
the rest of operations. Average mutation scores in the three reasoners ranged between 94.4%
and 100%. In total, our test suite was able to kill 1390 (96.1%) out of the 1445 mutants executed
showing the effectiveness of the suite.

80 Chapter 6. A test suite for the analyses of feature models

Operation
Sat4jReasoner JavaBDDReasoner JaCoPReasoner

Mutants Alive Score Mutants Alive Score Mutants Alive Score

VoidFM 55 20 63.6 75 12 84.0 8 0 100

ValidProduct 109 4 96.3 129 7 94.6 61 0 100

Products 86 1 98.8 130 2 98.5 37 0 100

#Products 57 1 98.2 77 2 97.4 13 0 100

Variability 82 1 98.8 104 2 98.1 36 0 100

Commonality 109 1 99.1 131 2 98.5 66 0 100

DeadFeatures - - - - - - 80 0 100

Total 498 28 94.4 646 27 95.8 301 0 100

Table 6.5: Mutants execution results.

6.3.1.3 Refinement

As shown in previous sections, mutation testing is an effective means to measure the effec-
tiveness of a test suite. However, information provided by mutation testing can also be used
to guide the creation of new test cases that kill the remaining alive mutants and strengthen the
final test suite [157]. Following this approach, we designed a number of test cases to kill re-
maining undetected mutants until obtaining a score of 100% in the three FaMa reasoners. A
total of 27 new test cases were created and executed. For instance, alive mutants guided us to
the creation of a couple test cases to ensure that alternative relationships are not processed as
or-relationships and vice–versa (e.g. test cases VM-21 and VM-22 in [149]). Out of the 27 test
cases created, we selected those test cases that showed to be effective in killing mutants in at
least two of the three subject reasoners and added them to our suite. As a result, 10 test cases
were added to the initial test suite increasing the number of these until 190.

6.3.2 Evaluation using real faults

For a further evaluation of our approach, we checked the effectiveness of our tool in detect-
ing real faults. In particular, we first studied a motivating fault found in the literature. Then,
we used our test suite to test the release 1.0 alpha of the FaMa framework, detecting one defect.
These results are next reported.

6.3.2.1 Motivating fault found in the literature

Consider the work of Batory in SPLC’05 [11], one of the seminal papers in the community of
automated analysis of feature models. The paper included a bug (later fixed†2) in the mapping
of a feature model to a propositional formula. We implemented this wrong mapping into a
mock reasoner for FaMa and checked the effectiveness of our approach in detecting the fault.

Figure §6.6 illustrates an example of the wrong output caused by the fault. This manifests

†2ftp://ftp.cs.utexas.edu/pub/predator/splc05.pdf

6.4. Test suite summary and discussion 81

itself in alternative relationships whose parent feature is not mandatory making reasoners to
consider as valid product those including multiple alternative subfeatures and excluding the
parent feature (P3). As a result, the set of products returned by the tool is erroneously larger
than the actual one. For instance, the number of products returned by our faulty tool when
using the model in Figure §2.6 as input is 3,584 (instead of the actual 2,016). Note that this is a
motivating fault since it can easily remain undetected even when using an input with the prob-
lematic pattern. Hence, in the previous example (either with “security” feature as mandatory
or optional), the mock tool correctly identifies the model as non void (i.e. it represents at least
one product), and so the fault remains latent.

Security

MediumHigh

P1={Security,High}
P2={Security,Medium}
P3={High,Medium}

Figure 6.6: Wrong set of products obtained with the faulty reasoner.

We implemented our test cases using JUnit and tested our faulty tool. The fault was detected
by our test suite in the operations VoidFM, Product, #Products, Variability and Commonality
remaining latent in the operations ValidProduct and DeadFeatures. These two operations re-
quired a very specific pattern to reveal the fault not included in the inputs of our test suite.
This gives an idea of the complexity of testing in this domain. We found this fault sufficiently
motivating to extend our suite with test cases that detect it in all the operations. Thus, we de-
signed two new test cases to detect the fault in the operation ValidProduct and DeadFeatures
and added them to our test suite resulting in a total of 192 test cases.

6.3.2.2 FaMa Framework

Finally, we evaluated our tool by trying to detect faults in FaMa Framework v1.0 alpha. We
executed the 192 test cases of our refined test suite. Tests revealed one defect. The fault affected
the operations ValidProduct and Commonality in Sat4jReasoner. The source of the problem
was a bug in the creation of propositional clauses in the so-called staged configurations, a new
feature of the tool.

6.4 Test suite summary and discussion

Table §6.6 summarizes the general aspects of the refined test suite using the common terms
of the IEEE Standard for Software Testing Documentation [78]. For each operation, the num-
ber of test cases and the testing techniques used are presented (EP: Equivalence Partitioning,
PT: Pairwise Testing, BVA: Boundary-Value Analysis, EG: Error Guessing). Global inputs con-
straints specify constraints that must be true for every input in the set of associated test cases.
For the sake of simplicity, two main input constraints were imposed, namely: i) input feature

82 Chapter 6. A test suite for the analyses of feature models

models must be syntactically correct (e.g. checking models for conformance to a metamodel),
and ii) all input parameters of the analysis operations must be provided. An operation is said
to pass the test (so-called pass criteria) when all the test cases associated to that operation are
successful.

Test suite identifier: FaMa Test Suite v1.2

Operations tested Test cases Techniques used

Void FM 24 EP, PT

Valid product 63 EP, PT, BVA

Products 21 EP, PT

Number of products 21 EP, PT

Variability 21 EP, PT

Commonality 33 EP, PT, BVA

Dead features 9 EG

Total 192

Global input constraints:

- Input FMs must be syntactically correct

- All input parameters are required

Operation pass criteria:

- Pass 100% of associated test cases

Table 6.6: General overview of the FaMa Test Suite.

Trying to be exhaustive when testing feature model analyses tools can easily increase the
number of test cases to an unmanageable level. To keep a reasonable balance between number
of test cases and test coverage, we kept in mind a number of generic recommendations from
the testing literature, namely: i) we gave priority to those decisions reducing the number of test
cases, ii) we avoided redundancies by designing each test case to reveal a single type of fault,
and iii) we designed simple test cases whose output could be worked out manually to avoid
test themselves to become error-prone.

We remark that the potential users of the suite are every tool supporting the analysis of
feature model. This can be automated by simply implementing the test cases in the desired
platform and executing them. A complete list of the test cases that compose the suite is reported
in [149]. To facilitate its implementation, input models used in the test cases are also available
in XML format in the FaMa Web site [58].

6.5 Summary

In this chapter, we have presented a set of implementation–independent test cases to vali-
date the functionality of tools supporting the analysis of feature models. Through the imple-
mentation of our test cases, faults can be rapidly detected assisting in the development of fea-
ture model analysis tools and improving their reliability and quality. These can be used either
in isolation or as a suitable complement for further testing methods such as white–box testing
techniques or automated test data generators. For its design, we used popular techniques from

6.5. Summary 83

the software testing community to assist us on the creation of a representative set of input–
output combinations. To evaluate its effectiveness, we applied mutation testing on three open
source feature model analysis tools integrated into the FaMa framework. These tools use differ-
ent underlying paradigms and were coded by different developers what provides the necessary
heterogeneity for the evaluation. We initially obtained an average mutation score of 96.1% and
refined our suite progressively until getting 100%. Once refined, our suite also showed to be
effective in detecting real faults found in the literature and in a recent release of FaMa. Both,
the test suite documentation and the inputs models used in the test cases are ready–to–use and
available at the FaMa Web Site. We intend this contribution to be a first effort toward the de-
velopment of a widely accepted test suite to support functional testing in the community of
automated analysis of feature models.

The results described in this chapter were presented in the 5th Software Product Lines Test-
ing Workshop [143] and the IET Software journal [150].

84 Chapter 6. A test suite for the analyses of feature models

Chapter 7

A test data generator for the analysis of
feature models

The function of good software is to make the complex appear to be simple.

G rady Booch, 1955–
American software engineer and scientist

I n the previous chapter, we presented a manually–designed test suite for functional testing
on the analysis of feature models. Although effective, we found several practical limita-

tions in our approach. One of the main limitations was the difficulty to calculate the expected
output of the test cases which we found to be time-consuming, error-prone and in most cases
infeasible due to the combinatorial complexity of the analyses, i.e. oracle problem. In this chap-
ter, we propose using metamorphic testing to automate the generation of test data for feature
model analysis tools overcoming the oracle problem. An automated test data generator is pre-
sented and evaluated to show the feasibility of our approach. Using this generator, complex
feature models representing millions of products can be efficiently generated and used to test
a number of analyses on the feature models automatically. Our evaluation results using muta-
tion testing and real faults reveal that most faults can be automatically detected within a few
seconds.

In Section §7.1, we introduce our contribution. A detailed description of our metamorphic
relations and test data generator is presented in Section §7.2. Section §7.3 describes the evalua-
tion of our approach in different scenarios as well as the comparison with FaMa Test Suite. We
show how our approach can be refined by combining it with other test case selection strategies
in Section §7.4. Section §7.5 discusses the main threats to validity of our work. In Section §7.6,
we present the related works in the field of metamorphic testing and compare them with our
approach. Finally, we summarize the chapter in Section §7.7.

86 Chapter 7. A test data generator for the analysis of feature models

7.1 Introduction

In the previous chapter, we gave a first step to address the problem of functional testing
on the analyses of feature models. In particular, we presented a set of manually designed test
cases, the so-called FaMa Test Suite (FaMa TeS), to validate the implementation of the analyses
on feature models. Although effective, we found several limitations in our manual approach
that motivated this work. First, the number of test cases is very high despite the fact that
we did our best to keep it low during the design. Current version of the suite contain 192
test cases addressing 7 different analysis operations. This means that a suite that would cover
the 30 analysis operations reported in the literature could easily have thousands of test cases
hindering the manipulation and maintenance of the suite. Second, the suite is not generic, that
is, specific test cases must be designed for each operation which is tedious and time-consuming.
Third, evaluation results with artificial and real faults showed room for improvement in terms
of efficacy. Finally, the manual design of new test cases relied on the ability of the tester to
decide whether the output of an analysis was correct. We found this was time–consuming,
error–prone and in most cases infeasible due to the combinatorial complexity of the analyses.
As a result, we were force to use small and in most cases oversimplistic input models whose
output could be calculated by hand. This limitation, also found in many other software testing
domains, is known as the oracle problem [189] i.e. impossibility to determine the correctness of
a test output.

In this chapter, we propose using metamorphic testing for the automated generation of test
data for the analyses of feature models. In particular, we present a set of metamorphic relations
between feature models and their set of products and a test data generator based on them.
Given a feature model and its known set of products, our tool generates a set of neighbouring
models together with their associated sets of products. Complex feature models representing
millions of products can be efficiently generated by applying this process iteratively. Once
generated, products are automatically inspected to get the expected output of a number of
analyses over the models. Key benefits of our approach are that it removes the oracle problem
and is highly generic being suitable to test any operation extracting information from the set of
products of a feature model. In order to show the feasibility of our approach, we evaluated the
ability of our test data generator to detect faults in three main scenarios. First, we introduced
hundreds of artificial faults (i.e. mutants) into three of the analysis reasoners integrated into the
FaMa framework and checked the effectiveness of our generator to detect them. As a result,
our automated test data generator found more than 98.5% of the faults in the three reasoners
with average detection times under 7.5 seconds. Second, we developed a mock tool including
a motivating fault found in the literature and checked the ability of our approach to detect it
automatically. As a result, the fault was detected in all the operations tested with a score of
91.4% and an average detection time of 23.5 seconds. Finally, we evaluated our approach with
recent releases of two real tools for the analysis of feature models, FaMa and SPLOT, detecting
two defects in each of them.

7.2. Automated metamorphic testing on the analysis of feature models 87

B

A

C

B

A

C D

B

A

C D

B

A

C D EB

A

C D E

B

A

C

B

A

C

P1 = {A,C}
P2 = {A,B,C}

P1' = {A,C,D}
P2' = {A,B,C,D}

a) FM’ = FM + Mandatory

P1' = {A,C}
P2' = {A,B,C}
P3' = {A,C,D}
P4' = {A,B,C,D}

b) FM’ = FM + Optional

P1' = {A,C,D}
P2' = {A,C,E}
P3' = {A,B,C,D}
P4' = {A,B,C,E}

c) FM’ = FM + Alternative

P1' = {A,C,D}
P2' = {A,C,E}
P3' = {A,B,C,D}
P4' = {A,B,C,E}
P5' = {A,C,D,E}
P6' = {A,B,C,D,E}

d) FM’ = FM + Or

P1' = {A,B,C}

e) FM’ = FM + Requires

f) FM’ = FM + Excludes

FM

P1' = {A,C}

Figure 7.1: Some examples of neighbour feature models.

7.2 Automated metamorphic testing on the analysis of

feature models

In this section, we detail our proposal. We first present a set of metamorphic relations
to relate feature models and the set of products that these represent. Then, we show how
these relations can be used for the automated generation of test data for the analysis of feature
models. Finally, we present the implementation of our approach.

7.2.1 Metamorphic relations on feature models

In this section, we define a set of metamorphic relations between feature models (i.e. input)
and their corresponding set of products (i.e. output). These metamorphic relations are derived
from the basic modelling elements found in feature models, that is, the different types of re-
lationships and cross–tree constraints among features. In particular, we relate feature models
using the concept of neighbourhood. Given a feature model, FM, we say that FM ′ is a neigh-
bour model if it can be derived from FM by adding or removing a relationship or constraint R.
The metamorphic relations between the products of a model and the one of their neighbours
are then determined by R as follows:

Mandatory. Consider the neighbours models and associated set of products depicted in Figure
§7.1. FM ′ in Figure §7.1(a) is created from FM by adding a mandatory feature (D) to it, i.e.
they are neighbours. The semantics of mandatory relationships state that mandatory features

88 Chapter 7. A test data generator for the analysis of feature models

must always be part of the products in which is parent feature appears. Based on this, we
conclude that the set of expected products of FM’ is incorrect if it does not preserve the set
of products of FM extending it by adding the new mandatory feature (D) in all the products
including its parent feature (A). In the example, therefore, this relation is fulfilled. Formally, let
f be the mandatory feature added to the model and pf its parent feature, D and A in the example
respectively. Consider the functions products(FM), returning the set of products of an input
feature models, and features(P), returning the set of features of a given product. We use the
symbol ‘#’ to refer to the cardinality (i.e. number of elements) of a set. We define the relation
between the set of products of FM and the one of FM ′ as follows:

#products(FM ′) = #products(FM)∧

∀P ′(P ′ ∈ products(FM ′) ⇔ ∃P ∈ products(FM)·
(pf ∈ features(P) ∧ P ′ = P ∪ {f})∨

(pf /∈ features(P) ∧ P ′ = P))

Optional. Let f be the optional feature added to the model and pf its parent feature. An exam-
ple is presented in Figure §7.1(b) with f = D and pf = A. Consider the function filter(FM, S, E)

that returns the set of products of FM including the features of S and excluding the features of
E. The metamorphic relation between the set of products of FM and that of FM ′ is defined as
follows:

#products(FM ′) = #products(FM) + #filter(FM, {pf}, ∅)∧
∀P ′(P ′ ∈ products(FM ′) ⇔ ∃P ∈ products(FM)·
P ′ = P ∨ (pf ∈ features(P) ∧ P ′ = P ∪ {f}))

Alternative. Let C be the set of alternative subfeatures added to the model and pf their parent
feature. In Figure §7.1(c), C={D, E} and pf = A. The relation between the set of products of FM

and FM ′ is defined as follows:

#products(FM ′) = #products(FM) + (#C − 1)#filter(FM, {pf}, ∅)∧
∀P ′(P ′ ∈ products(FM ′) ⇔ ∃P ∈ products(FM)·
(pf ∈ features(P) ∧ ∃c ∈ C · P ′ = P ∪ {c})∨

(pf /∈ features(P) ∧ P ′ = P))

Or. Let C be the set of subfeatures added to the model and pf their parent feature. For instance,
in Figure §7.1(d), C={D, E} and pf = A. We denote with PI(C) the powerset of C (the set of all
subsets in C) excluding the empty set. This metamorphic relation is defined as follows:

#products(FM ′) = #products(FM) + (2#C − 2)#filter(FM, {pf}, ∅)∧
∀P ′(P ′ ∈ products(FM ′) ⇔ ∃P ∈ products(FM)·
(pf ∈ features(P) ∧ ∃S ∈ PI(C) · P ′ = P ∪ S)∨

(pf /∈ features(P) ∧ P ′ = P)))

7.2. Automated metamorphic testing on the analysis of feature models 89

Requires. Let f and g be the origin and destination features of the new requires constraint
added to the model. In Figure §7.1(e), f = C and g = B. The relation between the set of products
of FM and FM ′ is defined as follows:

products(FM ′) = products(FM) \ filter(FM, {f}, {g})

Excludes. Let f and g be the origin and destination features of the new excludes constraint
added to the model. This is illustrated in Figure §7.1(f) with f = B and g = C. This metamorphic
relation is defined as follows:

products(FM ′) = products(FM) \ filter(FM, {f, g}, ∅)

7.2.2 Automated test data generation

The semantics of a feature model is defined by the set of products that it represents [140].
Most analysis operations on feature models can be answered by inspecting this set adequately.
Based on this, we propose a two–step process to automatically generate test data for the analy-
ses of feature models as follows:

Feature model generation. We propose using previous metamorphic relations together with
model transformations to generate feature models and their respective set of products. Note
that this is a singular application of metamorphic testing. Instead of using metamorphic rela-
tions to check the output of different computations, we use them to actually compute the output
of follow–up test cases. Figure §7.2 illustrates an example of our approach. The process starts
with an input feature model whose set of products is known. A number of step–wise trans-
formations are then applied to the model. Each transformation produces a neighbour model
as well as its corresponding set of products according to the metamorphic relations. Transfor-
mations can be applied either randomly or using heuristics. This process is repeated until a
feature model (and corresponding set of products) with the desired properties (e.g. number of
features) is generated.

Test data extraction. Once a feature model with the desired properties is created, it is used
as non-trivial input for the analysis. Similarly, its set of products is automatically inspected to
get the output of a number of analysis operations i.e. any operation that extracts information
from the set of products of the model. As an example, consider the model and set of products
generated in Figure §7.2 and the analysis operations listed in Table §7.1 (fully described in Sec-
tion §3.2). We can obtain the expected output of all of them by simply answering the following
questions:

• Is the model void? No, the set of products is not empty.

• Is P={A, C, F} a valid product? Yes. It is included in the set.

• How many different products represent the model? 6 different products.

90 Chapter 7. A test data generator for the analysis of feature models

B

A

C
B

A

C
P1 = {A,C}
P2 = {A,B,C}

D E

P1 = {A,C}
P2 = {A,B,C,D}
P3 = {A,B,C,E}
P4 = {A,B,C,D,E}

B

A

C

D E

F G

Or

Requires

���������������������������������� �
=+=+= φ

�������
=

���������� ¡¢¡£ ¤�¥¢¡£�¤�¥¢¡£¦¤
=== §

P1 = {A,C,F}
P2 = {A,C,G}
P3 = {A,B,C,D,F}
P4 = {A,B,C,E,F}
P5 = {A,B,C,D,G}
P6 = {A,B,C,E,G}
P7 = {A,B,C,D,E,G}
P4 = {A,B,C,D,E,F}

B

A

C

D E

F G

P1 = {A,C,F}
P2 = {A,C,G}
P3 = {A,B,C,D,F}
P4 = {A,B,C,E,F}
P5 = {A,B,C,D,G}
P6 = {A,B,C,E,G}
P7 = {A,B,C,D,E,G}
P8 = {A,B,C,D,E,F} ¨©ª«©¬® °̄±²±³°«¬´µ²¶·²±³¬´¬·²±³¸´

=+=+= φ

Alternative

B

A

C

D E

F G ¹º»¼½¾¿ÀÁÂÃÂÄÁÅÆÃÂÄ½Å½ÆÃÂÄÇÅ
==+= φ

P1 = {A,C,F}
P2 = {A,B,C,D,F}
P3 = {A,B,C,E,F}
P4 = {A,B,C,D,E,F}
P5 = {A,B,C,D,F,H}
P6 = {A,B,C,D,E,F,H}

H

B

A

C

D E

F G È�����������É�
==

P1 = {A,C,F}
P2 = {A,B,C,D,F}
P3 = {A,B,C,E,F,L}
P4 = {A,B,C,D,F,H}
P5 = {A,B,C,D,E,F,L}
P6 = {A,B,C,D,E,F,H,L}

H

OptionalMandatory

L

Figure 7.2: An example of random feature model generation using metamorphic rela-
tions.

• What is the variability of the model? 6/(29 − 1) = 0.011

• What is the commonality of feature B? Feature B is included in 5 out of the 6 products of
the set. Therefore its commonality is 83.3%

• Does the model contain any dead feature? Yes. Feature G is dead since it is not included
in any of the products represented by the model.

Operation Description

VoidFM Informs whether the input feature model is void or not

ValidProduct Informs whether the input product belongs to the set of products of a given model

Products Returns the set of products of a feature model

#Products Returns the number of products represented by a feature model

Variability Returns the variability degree of a feature model

Commonality Returns the percentage of products in which a given feature appears

Table 7.1: Analysis operations tested.

We may remark that we could have also used a ‘pure’ metamorphic approach, start with a
known feature model, transform this to obtain a neighbour model, and use metamorphic rela-
tions to check the outputs of the tool under test. However, this strategy would require to define
metamorphic relations for each operation. In contrast, we propose to use the metamorphic re-
lations to compute the output of follow-up test cases instead of simply comparing the results
of different tests. Starting from a trivial test case, we can generate increasingly larger and more
complex test cases making sure that the metamorphic relations are fulfilled at each step. This
allows us to define the metamorphic relations for a single operation, Products, from which we
derive the expected output of many of the other analyses on feature models. A key benefit of
our approach is that it can be easily automated enabling the generation and execution of test
cases without the need for a human oracle.

7.2. Automated metamorphic testing on the analysis of feature models 91

Finally, we would like to emphasize that the operations presented are only some examples
of the analyses that can be tested using our approach. We estimate that this technique could be
used to test, at least, 16 out of the 30 analysis operations identified in [21]. The operations out
of the scope of our approach are mainly those looking for specific patterns in the feature tree.

7.2.3 A test data generator

As a part of our proposal, we implemented a test data generator relying on our metamor-
phic relations. The tool receives a feature model and its associated set of products as input and
returns a modified version of the model and its expected set of products as output. If no inputs
are specified, a new model is generated from scratch.

Our tool applies random transformations to the input model increasing its size progres-
sively. The set of products is efficiently computed after each transformation according to the
metamorphic relations presented in Section §7.2.1. Transformations are performed according
to a number of parameters including number of features, percentage of constraints, maximum
branching factor and percentage of each type of relationship to be generated.

The number of products of a feature model increases exponentially with the number of fea-
tures. This was a challenge during the development of our tool causing frequent time deadlocks
and memory overflows. To overcome these problems, we optimized our implementation using
efficient data structures (e.g. boolean arrays) and limited the number of products of the models
generated. Using this setup, feature models with up to 11 million products were generated in a
standard laptop machine within a few seconds.

Our test data generator has been integrated into our framework BeTTy (see Appendix §A).
This system provides a number of capabilities for benchmarking and testing in the context
of feature models including test data generators as well as readers and writers for different
formats. Figure §7.3 depicts a random feature model generated with our test data generator and
exported from BeTTy to the graph visualization tool GraphViz [69]. The model has 20 features
and 20% of constraints. Its set of products contains 22,832 different feature combinations.

OR-2 OR-3

OR-7

root

F1 F2

F3 F4 F5 F6 F7 F8

F9 F13

E

F18

D

F10F11F12F14

F15

F16 F17 F19E

E

Figure 7.3: Sample input feature model generated with our tool.

92 Chapter 7. A test data generator for the analysis of feature models

7.3 Evaluation

7.3.1 Evaluation using mutation testing

In order to measure the effectiveness of our proposal, we evaluated the ability of our test
data generator to detect faults in the software under test (i.e. so–called fault-based adequacy
criterion). To that purpose, we applied mutation testing on the FaMa Framework in a similar
way as we did to evaluate our manual suite. The setup used in our experiments and the analysis
of the results are next presented.

7.3.1.1 Experimental setup

As with our manual suite, we selected the FaMa Framework as a good candidate to be mu-
tated. In particular, we selected three of the reasoners integrated into the framework, namely:
Sat4jReasoner v0.9.2 (using satisfiability problems by means of Sat4j solver [138]), JavaBDDRea-
soner v0.9.2 (using binary decision diagrams by means of JavaBDD solver [80]) and JaCoPRea-
soner v0.8.3 (using constraint programming by means of JaCoP solver [79]). Each one of these
reasoners uses a different paradigm to perform the analyses and was coded by different de-
velopers, providing the required heterogeneity for the evaluation of our approach. For each
reasoner, the analysis operations listed in Table §7.1 were tested. The operation DeadFeatures,
however, was tested in JaCoPReasoner exclusively since it was the only reasoner implementing
it.

Test cases were generated randomly using our test data generator as described in Section
§7.2.2. In the cases of operations receiving additional inputs apart from the feature model (e.g.
valid product), the additional inputs were selected using a basic partition equivalence strategy.
For each operation, test cases with the desired properties were generated and run until a fault
was found or a timeout was exceeded. Feature models were generated with an initial size of 10
features and 10% (with respect to the number of features) of constraints for efficiency. This size
was then incremented progressively according to a configurable increasing factor. This factor
was typically set to 10% and 1% (every 20 test cases generated) for features and constraints
respectively. The maximum size of the set of products was equally limited for efficiency. This
was configured according to the complexity of each operation and the performance of each
reasoner with typical values of 2000, 5000 and 11000000.

The mutation tool and configuration used in our evaluation was identical to the used for
the evaluation of our test suite, described in Section §6.3.1.1. In particular, we followed three
steps for the evaluation of our approach, namely:

i. Reasoners testing. Prior to their analysis, we checked whether the original reasoner
passed all the tests. A timeout of 60 seconds was used. As a result, we detected and
fixed a defect affecting the computation of the set of products in JaCoPReasoner. We
found this fault to be especially motivating since it was also present in the current release
of FaMa (see Section §7.3.2.2 for details).

ii. Mutants generation. We applied all the traditional mutation operators available in Mu-
Clipse, a total of 15. Specific mutation operators for object–oriented code were discarded

7.3. Evaluation 93

to keep the number of mutants manageable. For details about these operators we refer
the reader to [95].

iii. Mutants execution. For each mutant, we ran our test data generator and tried to find a
test case that kills it. An initial timeout of 60 seconds was set for each execution. This
timeout was then repeatedly incremented by 60 seconds (until a maximum of 600) with
remaining alive mutants recorded. Equivalent mutants were manually identified and
discarded after each execution.

Both the generation and execution of mutants was performed in a laptop machine equipped
with an Intel Pentium Dual CPU T2370@1.73GHz and 2048 MB of RAM memory running Win-
dows Vista Business Edition and Java 1.6.0_05.

7.3.1.2 Analysis of results

Table §7.2 recalls the information about the size of the reasoners and the number of gener-
ated mutants. Lines of code (LoC) do not include blank lines and comments. Out of the 760
generated mutants, 103 of them (i.e. 13.5%) were identified as semantically equivalent. In addi-
tion to these, we manually discarded 87 mutants (i.e. 11.4%) affecting secondary functionality
of the subject programs (e.g. computation of statistics) not addressed by our current test data
generator.

Reasoner LoC Mutants Equivalent Discarded

Sat4jReasoner 743 262 27 47

JavaBDDReasoner 625 302 28 37

JaCoPReasoner 791 196 48 3

Total 2,159 760 103 87

Table 7.2: Mutants generation results.

Tables §7.3, §7.4 and §7.5 show the results of the mutation process on Sat4jReasoner, Jav-
aBDDReasoner and JaCoPReasoner respectively. For each operation, the number of classes
involved, number of executed mutants, test data generation results and mutation score are
presented. Test data results include average and maximum time required to kill each mutant,
average and maximum number of test cases generated to kill a mutant and maximum timeout
that showed to be effective in killing any mutant, i.e. further increments in the timeout (until
the maximum of 600s) did not kill any new mutant.

Note that the functionality of each operation was scattered in several classes. Some of these
were used in more than one operation. Mutants on these reusable classes were evaluated sepa-
rately with the test data of each operation using them for more accurate mutation scores. This
explains why the number of executed mutants on each reasoner (detailed in Tables §7.3, §7.4
and §7.5) is higher than the number of mutants generated for that reasoner (showed in Table
§7.2).

Results revealed an overall mutation score of over 98.5% in the three reasoners. Operations
Products, #Products, Variability and Commonality showed a mutation score of 100% in all the

94 Chapter 7. A test data generator for the analysis of feature models

Operations Executed Mutants Test Data Generation
Score

Name Classes Total Alive Av Time (s)Max time (s) Av TCs Max TCs Timeout (s)

VoidFM 2 55 0 37.6 566.5 95.1 414 600 100

ValidProduct 5 109 3 4.3 88.6 12 305 120 97.2

Products 2 86 0 0.6 3.4 1.5 12 60 100

#Products 2 57 0 0.7 2.4 1.8 8 60 100

Variability 3 82 0 0.6 1.7 1.3 5 60 100

Commonality 5 109 0 0.6 3.8 1.5 13 60 100

Total 19 498 3 7.4 566.5 18.9 414 99.4

Table 7.3: Test data generation results in Sat4jReasoner.

Operations Executed Mutants Test Data Generation
Score

Name Classes Total Alive Av Time (s)Max time (s) Av TCs Max TCs Timeout (s)

VoidFM 2 75 3 6.6 111.7 29.3 350 120 96

ValidProduct 5 129 5 1 34.6 3.8 207 60 96.1

Products 2 130 0 0.7 34.6 1.4 12 60 100

#Products 2 77 0 0.5 1.4 1.6 6 60 100

Variability 3 104 0 0.5 2.4 1.6 12 60 100

Commonality 5 131 0 0.5 3 1.5 16 60 100

Total 19 646 8 1.6 111.7 6.5 350 98.7

Table 7.4: Test data generation results in JavaBDDReasoner.

Operations Executed Mutants Test Data Generation
Score

Name Classes Total Alive Av Time (s)Max time (s) Av TCs Max TCs Timeout (s)

VoidFM 2 8 0 1.5 8.3 11.3 83 60 100

ValidProduct 5 61 0 0.7 1.2 1.3 5 60 100

Products 2 37 0 0.5 0.7 1 1 60 100

#Products 2 13 0 0.5 0.7 1 1 60 100

Variability 3 36 0 0.5 0.7 1 1 60 100

Commonality 5 66 0 0.5 0.7 1.1 3 60 100

DeadFeatures 5 80 0 0.8 2.1 2.3 14 60 100

Total 24 301 0 0.7 8.3 2.7 83 100

Table 7.5: Test data generation results in JaCoPReasoner.

reasoners with an average number of test cases required to kill each mutant under 2. Similarly,
the operation DeadFeatures revealed a mutation score of 100% in JaCoPReasoner with an aver-
age number of test cases of 2.3. This suggests that faults in these operations are easily killable.
On the other hand, faults in the operations VoidFM and ValidProduct appeared to be more
difficult to detect. We found that mutants on these operations required input models to have
a very specific pattern in order to be revealed. As a consequence of this, the average time and
number of test cases required for these operations were noticeable higher than for the other

7.3. Evaluation 95

analysis operations tested.

The maximum average time to kill a mutant was 7.4 seconds. In the worst case, our test
data generator spent 566.5 seconds before finding a test case that killed the mutant. In this time,
414 different test cases were generated and run. This shows the efficiency of the generation
process. The maximum timeouts required to kill a mutant were 600 seconds for the operation
VoidFM, 120 for the operation ValidProduct and 60 seconds for the rest of analysis operations.
This gives an idea of the minimum timeout that should be used when applying our approach
in other scenarios.

Figure §7.4 depicts a spread graph with the size (number of features and constraints) of
the feature models that killed mutants in the operation VoidFM. As illustrated, small feature
models were in most cases sufficient to find faults. This was also the trend in the rest of the
operations. This means that feature models with an initial size of 10 features and 10% of cross-
tree constraints were complex enough to exercise most of the features of the analysis reasoners
under test. This suggests that the procedure used for the generation of models, starting from
smaller and moving progressively to bigger ones, is adequate and efficient.

Figure 7.4: Size of the feature models killing mutants in the operation VoidFM.

Finally, we may mention that experimentation with Sat4jReasoner revealed a serious defect
affecting its scalability. The reasoner created a temporary file for each execution but it did not
delete it afterward. We found that the more temporary files were created, the slower became
the creation of new ones with delays of up to 30 seconds in the executions of operations. Once
detected, the defect was fixed and the experiments repeated. This suggests that our approach
could also be applicable to scalability testing.

For more details about the evaluation of our test data generator using mutation testing
on FaMa, we refer the reader to Appendix §C. The content of the appendix is based on an
experience report presented by the authors in the Information and Software Technology special
issue on Mutation Testing [152].

96 Chapter 7. A test data generator for the analysis of feature models

7.3.2 Evaluation using real faults

In this section, we present the evaluation results of our test data generator with some real
faults found in the literature and two tools for the analysis of feature models.

7.3.2.1 A motivating fault

In this section, we report on the results obtained when using our test data generator to
detect the motivating fault reported by Batory in SPLC’05 [11]. This fault was fully described in
the previous chapter (Section §6.3.2.1). In particular, we manually inserted the bug into a mock
reasoner for FaMa using the CSP-based solver Choco [44] and checked the effectiveness of our
approach in detecting it.

Table §7.6 depicts the results of the evaluation. The testing procedure was similar to the
one used with mutation testing. A maximum timeout of 600 seconds was used. The results
are based on 10 executions. The fault was detected in all the executions performed in 6 out
of 7 operations. Most of the average and maximum times were higher than the ones obtained
when using mutants but still low being 191.9 seconds (3.2 minutes) in the worst case. The
fault remained latent in 40% of the executions performed in the ValidProduct operation. When
examining the data, we concluded that this was due to the basic strategies used for the selection
of inputs products for this operation. We presume that using more complex heuristic for this
purpose would improve the results.

Operation Av Time (s) Max Time (s) Av TCs Max TCs Score

VoidFM 101.2 191.9 294.6 366 100

ValidProduct 41.6 91.8 146.8 312 40

Products 1.8 4.6 4.5 14 100

#Products 2.9 7.9 9.0 28 100

Variability 2.2 3.2 6.1 10 100

Commonality 2.1 4.8 5.6 15 100

DeadFeatures 12.8 29.2 42.3 101 100

Total 23.5 191.9 72.7 366 91.4

Table 7.6: Evaluation results using a motivating fault reported in the literature.

7.3.2.2 FaMa Framework

We also evaluated our tool by trying to detect faults in FaMa Framework v1.0 alpha. A
timeout of 600 seconds was used for all the operations since we did not know a priori the ex-
istence of faults. For each operation, we ran our test data generator 10 times. Tests revealed
two defects in all the executions (see Table §7.7). The first one, also detected during our exper-
imental work with mutation, was caused by an unexpected behaviour of JaCoP solver when
dealing with certain heuristics and void models in the operation Products. In these cases, the
solver did not instantiate an array of variables raising a null pointer exception. This fault was

7.3. Evaluation 97

detected in 142.9 seconds on average. The second fault, detected in less than one second in
all executions, affected the operations ValidProduct and Commonality in Sat4jReasoner. The
source of the problem was a bug in the creation of propositional clauses in the so-called staged
configurations, a new feature of the tool. Both bugs were fixed in the new version of the tool.

Operation Av Time (s) Max Time (s) Av TCs Max TCs Score

JaCoP-Products 142.9 198.6 437.3 605 100

Sat4j-ValidProduct 0.6 0.7 1 1 100

Sat4j-Commonality 0.6 0.6 1 1 100

Total 48 198.6 146.4 605 100

Table 7.7: Evaluation results with FaMa.

7.3.2.3 SPLOT

Software Product Lines On-line Tools (SPLOT) [107, 159] is a Web portal providing a com-
plete set of tools for on-line editing, analysis and storage of feature models. It supports a num-
ber of analyses on cardinality-based feature models using propositional logic by means of the
Sat4j and JavaBDD solvers. The authors of SPLOT kindly sent us a standalone version†1 of their
system to evaluate our automated test data generator. In particular, we tested the operations
VoidFM, #Products and DeadFeatures in SPLOT. As with FaMa, we used a timeout of 600 sec-
onds and tested each operation 10 times to get averages. Tests revealed two defects in all the
executions (see Table §7.8). The first one, detected in less than one second on average, affected
all operations on the SAT-based reasoner. With certain void models, the reasoner raised an ex-
ception (org.sat4j.specs.ContradictionException) and no result was returned. The second bug,
detected in about 0.5 seconds in all cases, was related with cardinalities in the BDD-based tool.
We found that the reasoner was not able to process cardinalities other than [1,1] and [1,*]. As
a consequence of this, input models including or-relationships specified as [1,n] (n being the
number of subfeatures) caused a failure in all the operations tested. Faults detected in the stan-
dalone version of the tool were also observed in the online version of SPLOT. We may remark
that the authors confirmed the results and told us that they were aware of these limitations.

Operation Av Time (s) Max Time (s) Av TCs Max TCs Score

Sat4j-VoidFM 0.7 1.3 26.7 66 100

Sat4j-#Products 1 2 26.1 66 100

Sat4j-DeadFeatures 0.9 2.2 38.3 134 100

JavaBDD-VoidFM 0.4 0.5 1.5 2 100

JavaBDD-#Products 0.4 0.5 1.9 5 100

Total 0.7 2.2 18.9 134 100

Table 7.8: Evaluation results with SPLOT.

†1SPLOT does not use a version naming system. We tested the tool as it was in February 2010.

98 Chapter 7. A test data generator for the analysis of feature models

7.3.3 Comparison with a manual test suite

In this section, we compare the ability to detect faults of our automated test data generator
and the test suite (FaMa TeS) presented in the previous chapter. To that purpose, we compare
the evaluation results obtained with both techniques. Notice that this is a fair comparison since
both approaches were evaluated with exactly the same mutants and real faults. We may also
remark that we refer to our manual suite as the set of 180 test cases presented in Section §6.2.
The refined version of the suite, with 192 test cases, was discarded since it was specifically
extended to detect the subject mutants and faults used for the comparison.

Table §7.9 recalls the results obtained when using FaMa TeS to kill the mutants in the FaMa
reasoners. For each reasoner and operation, the total number of executed mutants, alive mu-
tants and mutation score are presented. On the one hand, all mutants in JaCoPReasoner were
killed by the manual suite equalling the results obtained with our metamorphic approach. On
the other hand, mutation scores in Sat4jReasoner (94.4%) and JavaBDDReasoner (95.8%) were
significantly lower than those obtained with our test data generator (99.4% and 98.7% respec-
tively). This inferiority of the manual suite was also observed in the results of the evaluation
with the bugs found in FaMa, SPLOT and the faulty reasoner (i.e. that including the motivat-
ing fault found in [11]). These results are depicted in Table §7.10. In the faulty reasoner, our
automated test data generator detected the fault in all the operations meanwhile our manual
suite failed to detect the defect in the operations ValidProduct and DeadFeatures. Similarly, the
manual suite was unable to reveal the failure in the operation Products of JaCoPReasoner in
FaMa 1.0.

Operation
Sat4jReasoner JavaBDDReasoner JaCoPReasoner

Mutants Alive Score Mutants Alive Score Mutants Alive Score

VoidFM 55 20 63.6 75 12 84.0 8 0 100

ValidProduct 109 4 96.3 129 7 94.6 61 0 100

Products 86 1 98.8 130 2 98.5 37 0 100

#Products 57 1 98.2 77 2 97.4 13 0 100

Variability 82 1 98.8 104 2 98.1 36 0 100

Commonality 109 1 99.1 131 2 98.5 66 0 100

DeadFeatures - - - - - - 80 0 100

Total 498 28 94.4 646 27 95.8 301 0 100

Table 7.9: Mutants execution results of the manual test suite.

From the results obtained and our experience working with FaMa TeS, we conclude that our
automated metamorphic approach outperformed the manual suite in multiple ways. First, our
automated generator was more effective than the manual suite, i.e. it detected more faults. Sec-
ond, our metamorphic approach is highly generic so it can easily be adapted to test numerous
analysis operation while the development of manual test cases is tedious and time-consuming.
Also, manual test cases are trivially small while our current approach allows the efficient gener-
ation of large feature models representing million of products. Finally, and more important, our
generator automatically checks the output of tests, removing the oracle problem found when
using manual means. All these pieces of evidence support the effectiveness of our approach
when compared to related testing mechanisms for feature model analysis tools in general, and

7.4. Refinement 99

Fault Automated Generator Manual Test Suite

Faulty reasoner

VoidFM + +

ValidProduct + -

Products + +

#Products + +

Variability + +

Commonality + +

DeadFeatures + -

Faults in FaMa and SPLOT

FaMa-JaCoPProducts + -

FaMa-Sat4j + +

SPLOT-Sat4j + +

SPLOT-JavaBDD + +

Table 7.10: Real faults detected by our test data generator and the manual suite.

manual mechanisms in particular.

7.4 Refinement

In the approach presented previously, test cases are randomly generated from scratch for
simplicity. However, it is known that metamorphic testing produces better results when com-
bined with other test case selection strategies that generate the initial set of test cases [37, 38].
In this section, we propose refining our approach by using an initial set of input models that
seed the generation of follow-up test cases. This initial set of models could guide the generator
to search in specific error-prone areas improving the detection results. To show the feasibility
of the proposal, we used the input models in our manual test suite (see Chapter §6 for details)
as seed for the automated generation of test data. Later, we repeated the evaluation with mu-
tants and real faults and checked how the input test cases had improved the efficiency and
effectiveness of our automated generator.

As a preliminary step, we manually refined our suite by adding new test cases that kill the
remaining alive mutants found during the evaluation with mutation. As mentioned previously,
this is a natural step when using mutation to improve the quality of the test suite [157]. In order
to avoid the suite being overfitted for the mutants under evaluation, we used the information
provided by only one of the reasoners that was later excluded for the evaluation. In particular,
we selected Sat4jReasoner since it was the one in which more mutants remained alive and
therefore the one providing more feedback to improve our suite (see Table §7.9). As a result,
13 new test cases were added to the manual suite (from 180 to 193), i.e. those that killed the
remaining alive mutants in Sat4jReasoner.

Figure §7.5 illustrates the steps we followed to use the input models of the refined manual
suite to guide the generation of follow–up test cases. For each operation, the input models used

100 Chapter 7. A test data generator for the analysis of feature models

 Save input models and
their set of products

Select input model

 Extend the model and its
associated set of products

Failed?

Run test

No

Yes

Selection strategy
(e.g. sequentially, randomly)

Configuration parameters
(e.g. desired number of features)

Manual test cases
(e.g. FaMaTeS)

Timeout?

No

Yes

(1)

(2)

(3)

(4)

Figure 7.5: Algorithm for the generation of test cases using a starting manual test suite.

in their associated test cases in FaMa TeS and their corresponding set of products (calculated
manually) are saved (step 1). Then, for each test case to be generated, a feature model is selected
(step 2) and extended (step 3) by applying a set of step-wise random transformations to it. Each
transformation produces a neighbour model as well as its corresponding set of products ac-
cording to the metamorphic relations presented in Section §7.2.1. Once a feature model with
the desired properties has been generated, the test case is run (step 4) and the execution stopped
if a failure is revealed. Otherwise, a new input model from FaMa TeS is selected and the pre-
vious process repeated. In our current approach, initial input models are selected sequentially,
however, other strategies (e.g. random selection) would also be feasible. A maximum timeout
of 600 seconds was used for all the executions. The configuration parameters for the genera-
tion (e.g. desired number of features, increasing size factor, etc.) were set to the same values
described in Section §7.3.1.1.

Table §7.11 depicts the mutants execution results of our refined generator. For each reasoner,
the average detection time, maximum detection time, average number of test cases generated
and mutation scores are presented. The last row shows the average values in the form x /
y where x is the value obtained when using our initial approach (i.e. test cases are created
randomly from scratch) and y is the value obtained when using the refined version of our
generator (i.e. input models from FaMa TeS are used to guide the generation of test cases).
As illustrated, the experiments revealed a significant improvement in the detection times and
number of test cases generated before killing a mutant. In JavaBDDReasoner, for instance,
the average detection time was reduced by 43.7% (from 1.6 to 0.9 seconds) and the number of
test cases was reduced by 63% (from 6.5 to 2.4 test cases). This improvement was especially

7.5. Threats to validity 101

significant in the maximum detection times reduced by 63.9% (from 111.7 to 40.3 seconds) in
JavaBDDReasoner and 79.5% (from 8.3 to 1.7 seconds) in JaCoPReasoner. We may mention
that we found some cases, those with lowest times, in which our refined generator was slightly
slower than our original approach. As expected, this was caused by the overhead introduced
in the new program when loading the initial test set from XML files. Finally, we also found a
slight improvement in the mutation score of JavaBDDReasoner, from 98.7% to 98.9%.

Operation
JavaBDDReasoner JaCoPReasoner

Av Time (s) Max Time (s) Av TCs Score Av Time (s)Max Time (s) Av TCs Score

VoidFM 1.5 25.7 5.8 97.3 0.8 1.7 2.3 100

ValidProduct 0.9 7.2 2.3 96.1 0.8 1.2 1.3 100

Products 1.0 40.3 1.5 100 0.8 1.1 1.0 100

#Products 0.7 1.5 1.5 100 0.9 1.1 1.1 100

Variability 0.7 3.5 1.6 100 0.8 0.9 1.0 100

Commonality 0.6 2.9 1.4 100 0.8 1.2 1.1 100

DeadFeatures - - - - 0.8 1.1 1.1 100

Total 1.6 / 0.9 111.7 / 40.3 6.5 / 2.4 98.7 / 98.9 0.7 / 0.8 8.3 / 1.7 2.7 / 1.3 100 / 100

Table 7.11: Mutants execution results of our refined automated test data generator.

The evaluation results with real faults, shown in Table §7.12, were similar to those obtained
with mutants. The average detection times, for instance, were reduced by 41.7% (from 23.5
to 13.7 seconds) in the faulty reasoner and by 43.9% (from 36.2 to 20.3 seconds) in the real
faults founds in FaMa and SPLOT. Results in the operation VoidFM of our faulty reasoner
were especially positive with a reduction in the average detection time of 93.6%, from 101.2
seconds (see Table §7.6) to 6.4. The mutation score in the operation ValidProduct showed no
improvement. Again, we think this is due to the basic strategies used for the selection of input
products for this operation. More complex heuristic for this purpose could certainly yield better
results. Finally, we may mention that the results obtained in the operation DeadFeatures of the
faulty reasoner were much worse that those found in our original approach with an average
detection time increasing from 12.8 seconds (see Table §7.6) to 41.3. Interestingly, it seems that
starting the generation with models that already had some dead features affected negatively
the detection of the fault.

These results support the feasibility of combining our test data generator with other testing
strategies that generate the initial set of models for a more effective search of faults. How-
ever, while the improvement in detection times was noticeable, we may remark that we did
not obtain significant improvements in terms of efficacy. Therefore, we encourage researchers
and practitioners following our approach to assess carefully the trade–off between the effort
required to develop an initial set of test cases and the expected gains in efficiency.

7.5 Threats to validity

We briefly discuss the threats to validity of our work.

102 Chapter 7. A test data generator for the analysis of feature models

Fault Av Time (s) Av TCs Score

Faulty reasoner

VoidFM 6.4 22 100

ValidProduct 39.1 145.8 40

Products 2.0 4.7 100

#Products 2.3 5.2 100

Variability 2.0 4.4 100

Commonality 2.9 7.1 100

DeadFeatures 41.3 151.9 100

Total 23.5 / 13.7 72.7 / 48.7 91.4 / 91.4

Faults in FaMa and SPLOT

FaMa-JaCoPProducts 79.2 244.0 100

FaMa-Sat4j 1.0 1.2 100

SPLOT-Sat4j 0.5 8.7 100

SPLOT-JavaBDD 0.4 1.9 100

Total 36.2 / 20.3 117.6 / 63.9 100 / 100

Table 7.12: Evaluation results of our refined generator using real faults.

• Subject reasoners. Our mutation results apply only to three of the reasoners integrated
into the FaMa framework and therefore could not extrapolate to other programs. Nev-
ertheless, we may remark that each one of these reasoners use a different technique to
automate the analysis and were coded by different developers providing the required
level of heterogeneity for our evaluation.

• Equivalent mutants. The detection of equivalent mutants, an undecidable problem in
general, was performed by hand resulting in a tedious and error-prone task. Thus, we
must concede a small margin of error in the data regarding equivalence. We remark, how-
ever, that results were taken from three different reasoners providing a fair confidence in
the validity of the average data. Furthermore, equivalence results were also confirmed
by the results obtained by our manual suite.

• Real faults. The number of real faults in our study was not large enough to allow us
to draw general conclusions. However, we may emphasize that these were collected
from both the literature and real tools providing a sufficient degree of representativeness.
These faults were harder to detect than mutants in general and provided a good idea of
the behaviour of our approach in real scenarios.

7.6 Related works on metamorphic testing

The related works in the field of metamorphic testing can be divided into three areas,
namely:

7.6. Related works on metamorphic testing 103

Applications. Chen et al. [38] studied the application of metamorphic testing to address the
oracle problem in numerical programs. A case study with partial differential equations was
presented. Zhou et al. [200] presented several uses of metamorphic testing in the domains of
graph theory, computer graphics, compilers and interactive software. Some metamorphic re-
lations were proposed but no experimental results were reported. Later, in [39], the authors
proposed a guideline for the selection of good metamorphic relations and presented two cases
studies with the shortest path program and the critical path program. Experimental results of
the evaluation of the metamorphic relations using manual mutation testing were reported. In
[34], Chan et al. presented a metamorphic approach for integration testing in context–sensitive
middleware–based applications. The authors identified functional relations that associate dif-
ferent execution sequences of a test case. Then, they used metamorphic testing to check the
results of the test cases and find contradictions of those relations. Chan et al. [33] proposed an
approach for online service testing and presented an experiment with a service-oriented calcu-
lator of arithmetic expressions to show the feasibility of their work. Chen et al. [36] proposed
using metamorphic testing to test bioinformatic programs and presented experimental results
with two of those programs.

Tools, frameworks and methods. Gotlieb and Botella [68] proposed an automated testing
framework able to check metamorphic relations using constraint programming. Given a pro-
gram and a metamorphic relation, their tool tries to find test data that violates the relation.
Evaluation results with mutation testing were presented. Chan et al. [35] proposed a testing
methodology for service-oriented applications based on metamorphic testing. The authors in-
troduced the concept of metamorphic service. A metamorphic service is a service that calls the
relevant services of the application and checks the metamorphic relations. Beydeda [26] pro-
posed a method to enable self-testability of components using metamorphic testing. Murphy et
al. [116] presented an extension to the Java Modeling Language (JML) and a tool able to process
it. This extension allows users to specify metamorphic relations as annotations in the Java code.
These annotations are later processed by their tool that generates test code that can be executed
using JML runtime assertion checking, for ensuring that the specifications hold during pro-
gram execution. Later, in [115], the authors presented a framework called Amsterdam to sup-
port metamorphic testing at the system level. They also presented an approach called Heuristic
Metamorphic Testing to reduce false positives and address some cases of non-determinism.
The authors extended their work in [114] presenting a new technique called Metamorphic Run-
time Checking, a testing approach that automatically conducts metamorphic testing of individ-
ual functions during the program’s execution. The authors also presented a framework called
columbus and presented experimental results.

Integration of metamorphic testing with other testing techniques. Chen et al. [41] proposed
a semi–proving method based on metamorphic testing and global symbolic evaluation. The
proposed method verifies expected necessary properties for program correctness and identifies
failure-causing inputs if such properties are not satisfied. Later, in [42], the authors presented
an integrated method that combined metamorphic testing and fault–based testing by means of
mutation testing. Chen et al. [40] proposed using metamorphic testing in combination with
special values testing. Special test values are test values in which their expected results are well
known and can be used to verify the program. Some examples with numerical programs were
presented. Xie et al. [195] extend the spectrum–based fault localization method with metamor-
phic testing making it applicable to applications without a test oracle.

104 Chapter 7. A test data generator for the analysis of feature models

When compared to previous studies, our work contributes to the three main areas men-
tioned above as follows. First, we have presented the application of metamorphic testing to
a novel domain, the analysis of feature models. In contrast to most related works, our meta-
morphic relations are derived from the operators of the models (i.e. types of relationships and
constraints) rather than from the properties of the application domain in which they are used.
Also, we have applied metamorphic testing in a slightly different way to that showed in re-
lated studies. In particular, we have used the metamorphic relations to compute the output of
follow-up test cases instead of simply comparing the results of different tests. Starting from a
trivial test case, we generate increasingly larger and more complex test data by making sure
that the metamorphic relations are fulfilled at each step. This strategy allowed use to define the
metamorphic relations for a single operation, Products, from which we derived the expected
output of many of the other analyses on feature models. Second, we have presented a test
data generator for the automated generation of test data based on our metamorphic relations.
This generator is available as a part of the BeTTy framework. In contrast to related works,
we have evaluated our test data generator using hundreds of automatically inserted mutants
rather than manual mutation. We have also evaluated our approach with real faults found in
the literature and current releases of several tools. We are not aware of any other study report-
ing the detection of real bugs using metamorphic testing. Finally, we have proposed a new
integrated proposal combining our metamorphic approach and a black–box test suite showing
experimental evidences of the gains obtained in terms of efficiency and efficacy.

7.7 Summary

In this chapter, we have presented a set of metamorphic relations on feature models and an
automated test data generator based on them. Given a feature model and its set of products,
our tool generates neighbouring models and their corresponding set of products. Generated
products are then inspected to obtain the expected output of a number of analysis operations
over the models. Non-trivial feature models representing millions of products can be efficiently
generated applying this process iteratively. In order to evaluate our approach, we checked the
effectiveness of our tool in detecting faults using mutation testing as well as real faults and tools.
Two defects were detected in a recent release of FaMa and another two in SPLOT, an online
feature model analyser actively used by the community. We also showed how our generator
outperforms our manual suite for the analysis of feature models. Finally, we explained how our
approach can be refined by using a set of initial test cases that guide the generation of test data
improving the detection of faults. Our results show that the application of metamorphic testing
in the domain of automated analysis of feature models is efficient and effective in detecting most
faults in a few seconds without the need for a human oracle. To the best of our knowledge, this
is the first automated approach for functional testing on the analyses of feature models.

The main results of this chapter were presented in the Third International Conference on
Software Testing, Verification and Validation (ICST’10) [151]. An extension of that paper in-
cluding the comparison and refinement with our manual suite was presented in the Information
and Software Technology journal [153]. Finally, we reported on our experience using mutation
testing with the FaMa framework in a paper accepted for publication in the Information and
Software Technology special issue on Mutation Testing [152].

Chapter 8

Automated generation of hard feature
models

If it ain ’t broke, you are not trying hard enough.

Popular saying

T he rapid progress on the analysis of feature models is leading to an increasing interest
to test and compare the performance of analysis solutions. One of the main challenges

in this scenario is to find hard input models that show the behaviour of the tools in extreme
situations (e.g. those producing longest execution times or highest memory consumption).
Currently, these feature models are generated randomly ignoring the internal aspects of the
tools under tests. As a result, these only provide a rough idea of the behaviour of the tools
with average problems and are not sufficient to reveal their real strengths and weaknesses. In
this chapter, we model the problem of finding computationally–hard feature models as an op-
timization problem and we solve it using a novel evolutionary algorithm. Given a tool and
an analysis operation, our algorithm generates input models of a predefined size maximizing
aspects as the execution time or the memory consumption of the tool when performing the op-
eration over the model. This allows users and developers to know the behaviour of tools in
pessimistic cases providing a better idea of their real power. Experiments using our evolution-
ary algorithm on a number of analysis operations and tools have successfully identified input
models causing much longer executions times and higher memory consumption than random
models of identical or even larger size.

The rest of the chapter is structured as follows: In Section §8.1, we motivate the problem
addressed and introduce the solution proposed. In Section §8.2, we present a novel evolution-
ary algorithm to deal with optimization problems on feature models and show how it can be
applied to the search of computationally–hard feature models. The empirical evaluation of our
approach is presented in Section §8.3. Section §8.4 presents the threats to validity of our work.
Finally, we summarize our conclusions in Section §8.5.

106 Chapter 8. Automated generation of hard feature models

8.1 Introduction

As presented in our analysis of current solutions (see Chapter §5), recent publications re-
flect an increasing interest to evaluate and compare the performance of analysis techniques and
tools on the analyses of feature models. One of the main challenges when assessing perfor-
mance is to find hard problems that show the strengths and weaknesses of the tools under test
in extreme situations (e.g. those producing longest execution times). Feature models from real
domains are by the far the most appealing input problems. Unfortunately, although there are
references to large–scale real feature models, only small examples from research publications or
case studies are available. For instance, the largest feature model available in the SPLOT feature
model repository [159] at the time of writing this paper has 287 features. This lack of hard real-
istic feature models, has led authors to evaluate their tool with large–scale randomly generated
feature models of 5000, 10000 and up to 20000 features. More recently, some authors have also
suggested looking for tough and realistic feature models into the open source community.

Regardless of the type of feature model used during experimentation, the characteristics of
the tools under tests are not considered in the current state of the art. As a result, current perfor-
mance evaluations only provide a rough idea of the behaviour of tools with average problems
rather than looking for specific weak points related to the type of technique or algorithm under
evaluation. Hence, developers and users would probably be more interested to know whether
their tool can crash with a hard realistic model of small or medium size rather than knowing
the execution times of huge random model out of their scope.

The main goal of software testing is to find inputs that reveal errors in the software under
test. The exhaustive search for these inputs is acknowledged to be unfeasible due to the size
and complexity of the programs, there are simply too many inputs combinations. As pointed
by McMinn [105], random testing is not a feasible solution: "random methods are unreliable
and unlikely to exercise ‘deeper’ features of software that are not exercise by mere chance". In
this context, metaheuristic search techniques have proved to be a promising solution for the
automated generation of test data for both functional [105] and non–functional properties [3].
Metaheuristic search techniques are frameworks which use heuristics to find solutions to hard
problems at an affordable computational cost. Typical metaheuristic techniques are evolution-
ary algorithms, hill climbing or simulated annealing [182]. For the generation of test data, these
strategies translate the test criteria into an objective function (also called fitness function) that is
used to evaluate and compare the candidate solutions respect to the overall search goal. Using
this information, the search is guided toward promising areas of the search space. Wegener
et al. [187, 188] were one of the first proposing using evolutionary algorithms to verify the
time constraints of software back in 1996. In their work, the authors used genetic algorithms
to find input combinations that violate the time constraints of real–time systems, that is, those
inputs producing an output too early or too late. Their experimental results showed that evolu-
tionary algorithms are much more effective than random search in finding input combinations
maximizing or minimizing execution times. Since then, a number of authors have followed
their steps using metaheuristics and especially evolutionary algorithms for the testing of non–
functional properties such as execution time, quality of service, security, usability or safety
[3, 105].

Inspired by the ideas of Wegener and later authors, in this chapter we propose using evo-
lutionary algorithms for the automated generation of hard feature models. In particular, we
model the problem of finding computationally–hard feature models as an optimization prob-
lem and we solve it using a novel evolutionary algorithm for feature models. Given a tool

8.2. Automated generation of hard feature models 107

and analysis operation, our algorithm generates input models of a predefined size maximizing
aspects as the executions times or the memory consumption of the tool when performing the
operation. For the evaluation of our approach, we performed several experiments using dif-
ferent analysis operations, paradigms, tools and optimization criteria. In total, we performed
over 50 million executions of analysis operations for the configuration and evaluation of our
approach. The results showed how our evolutionary program successfully identified input
models causing much longer executions times and higher memory consumption than random
models of identical or even larger size. Furthermore, the data revealed that the hard feature
models found have similar properties to the realistic models found in the literature.

Our work enhances and complements the current state of the art of performance testing of
feature model analysis tools as follows:

• Our approach is the first one using a search–based strategy to exploit the internal weak-
nesses of the analysis tools and techniques under evaluation rather than trying to detect
them by chance using random models.

• Our work allows developers to focus on the search of computationally–hard models of
realistic size that could reveal deficiencies in their tools rather than using huge feature
models out of their scope.

• Our approach provides users with helpful information about the behaviour of tools in
pessimistic cases helping them to choose the tool that better adapts to their needs.

• Our approach is highly generic being applicable to any automated operation on feature
models, not only analyses, in which the quality (i.e. fitness) of the models with respect to
an optimization criteria can be measured quantitatively.

• Our experimental results show that the hardness of feature models depends on different
factors in contrast to related works in which the complexity of the models is mainly asso-
ciated to their size. Although this is generally true, our work demystifies the belief that
large models have to be necessarily harder to process than small ones.

8.2 Automated generation of hard feature models

In this section, we present the core of our contribution. First, we introduce a novel evolu-
tionary algorithm to deal with optimization problems on feature models. Then, we present a
specific instantiation of the algorithm to search for computationally-hard feature models.

8.2.1 An evolutionary algorithm for feature models

In this section, we present a novel evolutionary algorithm for solving optimization problems
on feature models. The algorithm takes several size constraints and a fitness function as input
and returns a feature model of the given size maximizing the optimization criteria defined by
the function. In Section §4.4.1, we described the general structure of an evolutionary algorithm
and explained its basic steps. In the following, we describe how these basic steps are carried
out in our algorithm.

108 Chapter 8. Automated generation of hard feature models

0

2

1 3

4 5

6

Op,2 Or,1 M,0 Or,0 Alt,0 Alt,1 M,0

E,3,6

7

Op,0

R,6,7

TREE

CTC

Individual

Figure 8.1: Encoding of a feature model.

Initial population. The initial population is generated randomly according to the size con-
straints received as input. The current version of our algorithm allows the user to specify the
number of features, percentage of cross-tree constraints and maximum branching factor of the
feature model to be generated.

Evaluation. Feature models are evaluated according to the fitness function received as input
obtaining a numeric value that represents the quality of the candidate solution (i.e. its fitness).

Encoding. For the representation of feature models as individuals we propose using a custom
encoding. Usual encodings for evolutionary algorithms were ruled out since these were either
not adequate to represent tree structures (e.g. binary encoding [10]) or were not able to produce
solutions of a fixed size (e.g. tree encoding [92]), a key requirement in our approach. Figure
§8.1 depicts an example of our encoding. As illustrated, each model is represented by means
of two arrays, one storing information about the tree and another one with information about
Cross-Tree Constraints (CTC). The order of each feature in the array corresponds to the Depth–
First Traversal (DFT) order of the tree. Hence, feature labelled with ‘0’ in the tree is stored in the
first position of the array, feature labelled with ‘1’ is stored the second position and so on. Each
feature in the tree array is defined as a two-tuple < PR,C > where PR is the type of relationship
with its parent feature (M: Mandatory, Op: Optional, Or: Or-relationship, Alt: Alternative) and
C is the number of children of the given feature. As an example, first position in the tree array,
< Op, 2 >, indicates that feature labelled with ‘0’ in the tree has an optional relationship with
its parent feature and has two child features (those labelled with ‘1’ and ‘3’). Analogously, each
position in the CTC array stores information about one constraint in the form < TC,O,D >

where TC is the type of constraint (R: Requires, E: Excludes) and O and D are the indexes of
the origin and destination features in the tree array respectively.

Selection. This step determines how the individuals of one generation are selected to be com-
bined and produce new offspring. Selection strategies are generic and can be applied regardless
of how the individuals are represented. In our algorithm, we experimented with both rank-
based roulette-wheel and binary tournament selection strategies obtaining positive results with
both of them (see Section §4.4.1 for details about these techniques).

8.2. Automated generation of hard feature models 109

E,3,6

O,2 Or,1 M,0 Or,0 Alt,0

E,3,6 R,6,7

M,0 Or,0 Alt,0 Alt,1 M,0 O,0O,2 Or,1

0

2

1 3

4 5

6

7

TREE

CTC

0

2

1 3 6 75

O,2 Or,1 O,0 Or,0 O,3 Alt,0 Alt,0

R,3,5

4

Alt,0

R,2,6

0

2

1 3

5 64

Alt,0 Alt,0 Alt,0

R,2,6

7

Parent A Parent B Offspring

Crossover point

Figure 8.2: Example of one-point crossover in our algorithm.

Crossover. These are the techniques used to combine chromosomes in some way and pro-
duce new individuals in an analogous way to biological reproduction. We tried two different
crossover techniques in our algorithm with positive results, one–point and uniform crossover.
Figure §8.2 depicts an example of the application of one–point crossover in our algorithm. The
process starts by selecting two parent chromosomes (i.e. encoded feature models) to be com-
bined. For each array in the chromosomes, the tree and CTC arrays, a random point is chosen
(so–called crossover point). Finally, the offspring is created by copying the content of the ar-
rays from the beginning to the crossover point from one parent and the rest from the other one.
Notice that the characteristics of our encoding guarantee a fixed size for the individuals.

Mutation. In this step, random changes are applied to the chromosomes to prevent the algo-
rithm from getting stuck prematurely at a locally optimal solution. Mutation operators must be
specifically designed for the type of encoding used. In our algorithm, we defined four different
types of custom mutation operators, namely:

• Operator 1. It changes randomly the type of a relationship in the tree array, e.g. from
mandatory,< M, 3 >, to optional,< Op, 3 >.

• Operator 2. It changes randomly the number of children of a feature in the tree, e.g. from
< M, 3 > to < M, 5 >. The new number of children is in the range [0, BF] where BF is the
maximum branching factor indicated as input.

• Operator 3. It changes the type of a cross-tree constraint in the CTC array, e.g. from
excludes < E, 3, 6 > to requires < R, 3, 6 >.

• Operator 4. It changes randomly (with equal probability) the origin or destination feature
of a constraint in the CTC array, e.g. from < E, 3, 6 > to requires < E, 1, 6 >. Origin and
destination features are ensured to be different.

These operators are applied randomly with the same probability.

Decoding. At this stage, the array-based chromosomes are translated back into feature models
in order to be evaluated. In our algorithm, we identified three types of patterns making a chro-
mosome infeasible or semantically redundant, namely: i) those encoding set relationships (or-
and alternative) with a single child feature (e.g. Figure §8.3(a)), ii) those containing cross-tree

110 Chapter 8. Automated generation of hard feature models

B

A

B

A

B

A

B

A BA

B

A

BA

B

A

BA

(a)

(d)

(b)

(e)

(c)

(f)

In
co

ns
is

te
nc

y
R

ep
ai

r

Figure 8.3: Examples of infeasible individuals and repairs.

constraints between features with parental relationship (e.g. Figure §8.3(b)), and iii) those con-
taining features sharing contradictory or redundant cross-tree constraints (e.g. Figure §8.3(c)).
The specific approach used to address infeasible individuals, replacement or repairing, mainly
depend on the problem and it is ultimately up to the user.

Survival. Finally, the next population is created by including all the new offspring plus those
individuals from the previous generation that were selected for crossover but did not generate
descendants due to probability.

8.2.2 Instantiation of the algorithm

In this section, we propose to model the problem of finding computationally–hard feature
models as an optimization problem and to solve it using an instantiation of our evolutionary
algorithm. We chose evolutionary computation because it has proved to be a robust search
technique suited for the complex search spaces and noisy objective functions used when dealing
with non–functional properties [3]. Key benefit of our approach is that it takes into account the
characteristics of the tools under test trying to exploit its vulnerabilities. Also, our approach is
very generic being applicable to any automated operation on feature models, not only analyses,
in which the quality (i.e. fitness) of the models can be measured quantitatively.

In order to find a suitable configuration of our algorithm, we performed numerous execu-
tions of a sample optimization problem evaluating different combination of values for the key
parameters of the algorithm, presented in Table §8.1. The optimization problem was to find
a feature model maximizing the execution time invested by the analysis tool when checking
whether the model is void (i.e. whether it represents at least one product). We chose this anal-
ysis operation because it is currently the most quoted in the literature [21]. In particular, we
looked for feature models of different size maximizing execution time in the CSP solver JaCoP
integrated into the FaMa framework v1.0. We choose FaMa mainly because our familiarity with
the tool. Next, we clarify the main aspects of the configuration of our algorithm:

8.2. Automated generation of hard feature models 111

• Fitness function. Our first attempt was to measure the execution time in milliseconds
invested by FaMa to perform the operation. However, we found that this was very inac-
curate since the result of the function was deeply affected by the system load, i.e. it was
not deterministic. To solve this problem, we decided to measure the fitness of a feature
model as the number of backtracks produced by the analysis tool during its analysis. A
backtrack represents a partial candidate solution to a problem that is discarded because
it cannot be extended to a full valid solution [173]. In contrast to the execution time,
most CSP backtracking heuristics are deterministic. Together with execution time, the
number of backtracks is commonly used to measure the complexity of constraint satis-
faction problems [173]. Thus, we may assume that the higher the number of backtracks
the longer the computation time.

• Infeasible individuals. We evaluated the effectiveness of both replacement and repair-
ing techniques and we finally opted for the later. More specifically, we used the fol-
lowing repairing algorithm with infeasible individuals: i) isolated set relationships are
converted into optional relationships (e.g. the model in Figure §8.3(a) is changed as in
Figure §8.3(d)), ii) cross-tree constraints between features with parental relationships are
removed (e.g. the model in Figure §8.3(b) is changed as in Figure §8.3(e)), and iii) two fea-
tures cannot share more than one constraint (e.g. the model in Figure §8.3(c) is changed
as in Figure §8.3(f)).

• Stop criteria. There is no means of deciding when an optimum input has been found and
the evolutionary algorithm should be stopped [188]. Therefore, we decided to allow the
algorithm to continue for a given number of executions of the fitness function taking the
largest number of backtracks obtained as the optimum, i.e. solution to the problem.

Table §8.1 depicts the values evaluated for each parameter. These values were based on
related works with evolutionary algorithms and our previous experience in this domain. Each
combination of parameters was executed 10 times to avoid heterogeneous results and perform
statistical analysis of the data. Underlined values were those providing better results and there-
fore those selected for the final configuration of our algorithm. In total, we performed over 40
million executions of the objective function to find a good setup for our algorithm. Statistical
significance test of the effect of parameters on best objective function value obtained for each
parameter setting were performed on results obtained, in order to ensure soundness of selected
values. When test shown non-significant differences on performance, values with the best av-
erage performance were chosen.

Parameter Values evaluated and selected

Selection strategy Roulette-wheel, 2-Tournament

Crossover strategy One-point, Uniform

Crossover probability 0.7, 0.8, 0.9

Mutation probability 0.0075, 0.005, 0.02

Size initial population 50, 100, 200

#Executions fitness function 2000, 5000

Infeasible individuals Replacing, Repairing

Table 8.1: Algorithm configuration.

112 Chapter 8. Automated generation of hard feature models

8.3 Evaluation

In order to evaluate our approach, we developed a prototype implementation of our al-
gorithm in Java. This prototype is available as a part of the BeTTy framework described in
Appendix §A.

In general, it is not possible to verify that the solution obtained by the algorithm represents
a global optimum. Although there are static techniques that could be used for this (e.g. con-
trol flow graph analysis), these are not affordable in general for large complex software [188].
Thus, we decided to evaluate the efficacy of our approach by comparing it to random search
since this is the most extended strategy for performance testing in the current state of the art. In
particular, the evaluation of our evolutionary program was performed through a number of ex-
periments. On each experiment, we compared the effectiveness of random generators and our
evolutionary program on the search of feature models maximizing properties such as the exe-
cution time or memory consumption required for their analysis. Additionally, we performed
some extra experiments studying the characteristics of the hard feature models generated and
the behaviour of the program with different stop criteria.

All the experiments were performed on a desktop machine equipped with an Intel Xeon
CPU 5140@2.33GHz running Windows Server 2003 and Java 1.6.0_13 on 1400 MB of dedicated
memory.

8.3.1 Experiment #1: Maximizing execution time

In this experiment, we evaluated the ability of our evolutionary algorithm to search input
feature models maximizing the analysis time of a solver. In particular, we measured the exe-
cution time required by a CSP solver to find out if the input model is consistent (i.e. whether
it is void or not). Notice that this was the same problem used to tune the configuration of our
algorithm. Again, we chose the consistency operation because it is currently the most used in
the literature. Next, we present the setup and results of our experiment.

Experimental setup. This experiment was performed through a number of iterative steps. On
each step, we generated 5,000 random feature models and checked their consistency saving the
maximum fitness obtained. Then, we executed our evolutionary program and allowed it to
run during the same number of executions of the fitness function (i.e. 5,000) and compared the
results. This process was repeated with different size of the models to evaluate the scalability
of our algorithm. In particular, we generated models with different combinations of features,
{200, 400, 600, 800, 1,000} and percentage of constraints (with respect to the number of features),
{10%, 20%, 30%, 40%}. Additionally, for each size of the model, we repeated the process 20
times to get averages and perform statistical analysis of the data. In total, we performed 4
million executions of the fitness function for this experiment. The fitness was set equal to the
number of backtracks obtained by the analysis tool when checking the model consistency. For
the analysis, we used the solver JaCoP integrated into FaMa v1.0 with the default heuristics
MostConstrainedDynamic for the selection of variables and IndomainMin for the selection of
values from the domains. To prevent the experiment from getting stuck, a maximum timeout
of 30 minutes was used for the execution of the fitness function in both the random and evolu-
tionary search. If this time was exceeded, a new iteration was started. After all the executions,
we measured the execution time of the hardest feature models found for a full comparison, i.e.

8.3. Evaluation 113

Figure 8.4: Effectiveness of the evolutionary algorithm.

those producing a larger number of backtracks. More specifically, we executed 10 times each
optimal solution to get average execution times.

Analysis of results. Figure §8.4 depicts the effectiveness of our algorithm for each size range
of the feature models generated. We define the effectiveness of our evolutionary program as
the percentage of times (out of 20) in which the program found a better optimum than random
models, i.e. a higher number of backtracks. As illustrated, the effectiveness of evolutionary
programming was over 90% in most of the cases reaching 100% in six of them. Overall, our
evolutionary program found harder feature models than those generated randomly in 88.75% of
the executions. We may remark that our algorithm revealed the lowest effectiveness with those
models containing 10% of cross-tree constraints. We found that this was due to the simplicity
of the analysis in these models. The number of backtracks produced by these models was
very low, zero in most of the cases, and thus our evolutionary program had problems finding
promising individuals that could evolve towards optimal solutions.

Table §8.2 depicts the evaluation results for the range of feature models with 20% of cross-
tree constraints. For each number of features and search technique, random and evolutionary,
the table shows the average and maximum fitness obtained as well as the average and maxi-
mum execution times of the hardest feature models found. The effectiveness of the evolutionary
program is also presented in the last column. As illustrated, the evolutionary program found
feature models producing a number of backtracks larger by several orders of magnitude than
those produced by random models. The fitness of the hardest models generated using our evo-
lutionary approach was on average 1,950 times higher than that of random models (108,579.13
backtracks against 55.63) and 2,450 times higher in the maximum value (6.6 million backtracks
against 2,751). As expected, these results were also reflected in the execution times. On average,
the CSP solver invested 0.03 seconds to analyse the random models and 5.35 seconds to analyse
those generated using our evolutionary generator. The superiority of evolutionary search was
especially remarkable in the maximum times ranging from the 0.23 seconds of random models
to the 251.45 seconds (4.1 minutes) invested by the CSP solver to analyse the hardest feature
model generated by our evolutionary program. Overall, our evolutionary approach produced
a harder feature model than random techniques in 94% of the executions in the range of 20% of
constraints.

114 Chapter 8. Automated generation of hard feature models

Random Testing Evolutionary Algorithm

#Feat. Avg Fitness Max Fitness Avg Time (s) Max Time (s) Avg Fitness Max Fitness Avg Time (s) Max Time (s) Effectiveness

200 6.45 15 0.01 0.01 310.25 2,122 0.02 0.06 90

400 13.20 37 0.02 0.02 8,028.85 153,599 0.28 4.80 95

600 29.50 223 0.03 0.06 8,765.65 118,848 0.67 7.33 100

800 53.95 304 0.05 0.06 346,217.95 6,678,168 13.19 251.45 95

1,000 175.05 2,751 0.07 0.23 179,572.95 3,167,253 12.58 208.91 90

Total 55.63 2,751 0.03 0.23 108,579.13 6,678,168 5.35 251.45 94

Table 8.2: Evaluation results on the generation of feature models maximizing execution
time.

A global summary of the results is presented in Table §8.3. The table depicts the maximum
execution times invested by the CSP solver to analyse the hardest models found using random
and evolutionary search. The data show that our approach was more effective than random
models in all size ranges. The hardest random model required 0.23 seconds to be processed.
In contrast, our evolutionary approach found five models requiring between 1 and 4.2 minutes
to be analysed. Interestingly, our algorithm was able to find harder but significantly smaller
feature models (between 400 and 800 features) than the hardest random model found (1,000
features). This emphasizes the ability of our approach to generate motivating input models of
realistic size that reveal the vulnerabilities of tools and heuristics instead of just running them
using large random models.

10% CTC 20% CTC 30% CTC 40% CTC

#Feat. Rand. Time (s) EA Time (s) Rand. Time (s) EA Time (s) Rand. Time (s) EA Time (s) Rand. Time (s) EA Time (s)

200 0.01 0.05 0.01 0.06 0.02 0.14 0.01 0.02

400 0.07 0.22 0.02 4.80 0.02 1.02 0.02 0.10

600 0.05 1.78 0.06 7.33 0.03 4.79 0.03 7.25

800 0.05 62.30 0.06 251.45 0.05 250.95 0.05 0.35

1,000 0.10 3.43 0.23 208.91 0.07 84.99 0.06 0.49

Table 8.3: Maximum execution times produced by random and evolutionary search.

Figure §8.5 compares random and evolutionary techniques for the search of a feature model
maximizing the number of backtracks in two sample executions. We may remark that it was
very hard to find two motivating examples that could be represented graphically. This occurred
because the results obtained by our evolutionary program were so much higher than those of
random models that it was unfeasible to represent them using a similar scale. Horizontally,
the graphs show the number of generations where each generation represent 200 executions of
the fitness function. Figure §8.5(a) shows that random models reaches its maximum number
of backtracks after only about 400 executions. That is, the generation of 4,600 other random
models do not produce any higher number of backtracks and therefore are useless. In contrast
to this, our evolutionary approach shows a continuous improvement up to the 25th genera-
tion. After 11 generations (about 2,200 executions), the fitness found by evolutionary search are
above of those of random models. Figure §8.5(b) depicts another example in which random
models are lucky to find a high number of backtracks in the 17th generation. Evolutionary
optimization, however, once again manages to improve the execution times continuously over-
coming the best random fitness after 22 generations. In generation number 23, even a significant

8.3. Evaluation 115

a) Feature models with 200 features and 40% of cross-tree constraints

b) Feature models with 400 features and 10% of cross-tree constraints

ÊËÊÌÊÊÌËÊÍÊÊÍËÊÎÊÊÎËÊ

Ì Í Î Ï Ë Ð Ñ Ò Ó ÌÊ ÌÌ ÌÍ ÌÎ ÌÏ ÌË ÌÐ ÌÑ ÌÒ ÌÓ ÍÊ ÍÌ ÍÍ ÍÎ ÍÏ ÍËÔÕÖÕ×ØÙÚÛÖ

ÜÝÞßàá âàßãäå æçàäèéêàÞÝëì íäîàëêéïá

ÊËÊÊÌÊÊÊÌËÊÊÍÊÊÊÍËÊÊÎÊÊÊÎËÊÊÏÊÊÊ

Ì Í Î Ï Ë Ð Ñ Ò Ó ÌÊ ÌÌ ÌÍ ÌÎ ÌÏ ÌË ÌÐ ÌÑ ÌÒ ÌÓ ÍÊ ÍÌ ÍÍ ÍÎ ÍÏ ÍËÔÕÖÕ×ØÙÚÛÖ

ÜÝÞßàá âàßãäå æçàäèéêàÞÝëì íäîàëêéïá
ðñðòðóðôð õ ñ ö ò ÷ ó ø ô ù õð

Generation

Generation

F
itn

es
s

va
lu

e
fo

r
be

st
 in

di
vi

du
al

F
itn

es
s

va
lu

e
fo

r
be

st
 in

di
vi

du
al

Figure 8.5: Comparison of random models and our evolutionary algorithm for the
search of the highest number of backtracks.

leap of more than 2,000 backtracks can be observed. In both examples, the curve trace suggests
that the evolutionary algorithm would find even better solutions if the number of generations
were increased. This was confirmed in a later experiment in which the program was allowed to
run for up to 125 generations (25,000 executions of the fitness function) finding feature models
producing more than 13 million backtracks (see Section §8.3.3 for details).

116 Chapter 8. Automated generation of hard feature models

8.3.2 Experiment #2: Maximizing memory consumption

In this experiment, we evaluated the ability of our evolutionary program to generate input
feature models maximizing the memory consumption of a solver. In particular, we measured
the memory consumed by a BDD solver when finding out the number of products represented
by the model. We chose this analysis operation because it is one of the hardest operations in
terms of complexity and it is currently the second operation most quoted in the literature [21].
We decided to use a BDD-based reasoner for this experiment since it has proved to be the most
efficient option to perform this operation [21].

Experimental setup. This experiment consisted of a number of iterative steps. At each step, we
generated 5,000 random models and compiled each of them into a BDD for counting the num-
ber of solutions measuring its size. We then executed our evolutionary program and allowed
it to run for 5,000 executions of the fitness function looking for feature models maximizing the
size of the BDD and compared the results. Again, this process was repeated with different com-
bination of features, {50, 100, 150, 200, 250} and percentage of constraints, {10%, 20%, 30%} to
evaluate the scalability of our approach. For each size of the model, we repeated the process 20
times to get statistics from the data. In total, we performed about 3 million executions of the
fitness function for this experiment. We may remark that we generated smaller feature models
than those presented in previous experiment in order to reduce BDD building time and make
the experiment affordable. Measuring memory usage in Java is difficult and computationally
expensive since memory profilers usually add a significant overload to the system. To simplify
the fitness function, we decided to measure the fitness of a model as the number of nodes of
the BDD representing it. This is a natural option used in the research community to compare
the space complexity of BDD tools and heuristics [110]. For the analysis, we used the solver
JavaBDD integrated into the feature model analysis tool SPLOT. We chose SPLOT because it
integrates highly efficient ordering heuristics specifically designed for the analysis of feature
models using BDDs. In particular, we used the heuristic ‘Pre-CL-MinSpan’ presented by Men-
donca et al. in [110]. As in our previous experiment, we set a maximum timeout of 30 minutes
for the fitness function to prevent the experiment from getting stuck when finding too good
solutions. We found, however, that this timeout was constantly exceeded by the feature models
found by our algorithm in the range of 250 features and 30% of constraints. To simplify the
evaluation in this size range, we made our algorithm stop as soon as it found a better fitness
than those produced by random models.

Analysis of results. Table §8.4 depicts the number of BDD nodes of the hardest feature models
found using random techniques and our evolutionary program. For each size range, the table
also shows the computation time (BDD building time + execution time) invested by SPLOT to
analyse the model. As illustrated, our evolutionary program found better results than random
techniques in all size ranges. On average, the BDD size found by our evolutionary approach
was between 2 and 12.5 times higher than those obtained with random models. The largest
BDD generated from random models had 25.3 million nodes while the largest BDD obtained
using our evolutionary program had 27.9 million nodes. The results suggest, however, that the
maximum found by evolutionary search would be much higher if we would not have limited
the improvement factor in the range of 250 features (30% constraints) to make the experiment
affordable. As expected, the superiority of our evolutionary program was also observed in
the computation times required by each model to be compiled and analysed. This suggests
that our approach can also deal with optimization criteria involving compilation time. Overall,
our evolutionary program found feature models producing higher memory consumption than
random models in 99.3% of the executions.

8.3. Evaluation 117

10% CTC 20% CTC 30% CTC

Random Evolutionary Random Evolutionary Random Evolutionary

#Feat. BDD size Time (s) BDD Size Time (s) BDD size Time (s) BDD Size Time (s) BDD size Time (s) BDD Size Time (s)

50 781 0 1,963 0 2,074 0 8,252 0.01 2,455 0.01 10,992 0.01

100 7,629 0.01 20,077 0.02 33,522 0.03 161,157 0.20 95,587 0.08 419,835 0.73

150 65,627 0.10 188,985 0.31 374,675 0.91 3,060,590 12.80 673,410 1.28 11,221,303 24.22

200 203,041 0.09 924,832 0.86 2,735,005 4.34 19,698,780 75.05 3,394,435 58.22 23,398,161 380.52

250 1,720,983 3.69 7,170,121 25.94 25,392,597 82.28 27,970,630 253.32 20,579,015 343.72 22,310,416 431.62

Table 8.4: BDD size and computation time of the hardest feature models found using
random techniques and our evolutionary program.

Figure §8.6 shows the frequency with which each fitness value was found during the search
of a feature model producing the largest BDD. The data presented corresponds to the hardest
feature models generated in the range of 50 features and 10% of cross-tree constraints. We chose
this size range because it produced the smallest BDD sizes and facilitated the comparison of the
results of both techniques using the same scale. For random models (Figure §8.6(a)), a narrow
Gaussian-like curve is obtained with more than 99% of the executions producing fitness values
under 300 BDD nodes. During evolutionary execution (Figure §8.6(b)), however, a wider curve
is obtained with 39% of the execution producing values over 300 nodes. Both histograms clearly
show how evolutionary programming performed a more exhaustive search in a larger portion
of the solution space than that explored by random models. This trend was also observed in
the rest of size ranges.

During this experiment, we found that the fitness function was not deterministic, that is,
different executions with the same input feature model produced different number of BDD
nodes. We found, however, that the variations in the number of nodes were small and did not
affect the effectiveness of our evolutionary program.

8.3.3 Additional results and discussion

As a part of our evaluation, we performed some extra experiments to be reported in an
external technical report. Among other results, we studied the ability of our algorithm to gen-
erate input models maximizing execution time in a SAT solver. The setup and results of this
experiment were similar to those presented in Sections §8.3.1 and §8.3.2. In the experiment,
our evolutionary approach succeeded in finding harder feature models than those generated
randomly in 91.2% of the executions. We may remark, however, that the differences in the ex-
ecution times obtained using random and evolutionary techniques were not significant. This
was expected since it has been proved that the analysis of feature models with simple cross-tree
constraints (i.e. those involving three features or less) using SAT solvers is highly efficient [109].

During our experimental work we noticed that the number of executions of the fitness func-
tion (i.e. stop criteria) had a great impact in the results of our evolutionary program. In order to
evaluate this impact, we partially repeated Experiments #1 and #2 varying gradually the num-
ber of executions of the fitness function from 2,000 to 25,000. The results revealed that the ef-
fectiveness of our algorithm was over 90% when the number of executions was 5,000 or higher.
More importantly, we found that the results provided by evolutionary search were better and
better as the number of executions was increased without reaching a clear peak meanwhile the

118 Chapter 8. Automated generation of hard feature models

úûúüúúüûúýúúýûúþúúþûúÿúúÿûúûúú

üú þüú �üú �üú üýüú üûüú ü�üú

úûúüúúüûúýúúýûúþúúþûúÿúúÿûúûúú

üú þüú �üú �üú üýüú üûüú ü�üú

Fitness value (number of BDD nodes)

Fitness value (number of BDD nodes)

N
um

be
r

of
 e

xe
cu

tio
ns

N
um

be
r

of
 e

xe
cu

tio
ns

a) Distribution of fitness values for random models

b) Distribution of fitness values for our evolutionary approach

Maximum
fitness value

99% exec. 1% exec.

61% exec. 39% exec.

���

����Maximum
fitness value

Figure 8.6: Distribution of fitness values for random and evolutionary search.

results of random search showed little or no improvement at all. In the execution with the CSP
solver, for instance, our evolutionary program produced a new maximum fitness of more than
13.2 million backtracks (obtained in 6.7 minutes) meanwhile random search found a maximum
value of only 4,616 backtracks (obtained in 0.2 seconds). Similarly, the maximum fitness pro-
duced in our experiment with BDD in the range of 25,000 executions was five times higher than
the maximum obtained when using 5,000 executions as stop criteria.

As a part our evaluation, we also studied the characteristics of the hardest feature models
generated using our evolutionary approach in the experiments with CSP, SAT and BDD solvers,
presented in Table §8.5. The data reveals that the models generated have a fair proportion of
all different relationships and constraints. This is interesting since the algorithm is free to re-

8.3. Evaluation 119

move any type of relationship or constraints from the model if this helps to make it harder, but
this did not happen in our experiments. We recall that the only constraints imposed by our
algorithm are those regarding the number of features, number of constraints and maximum
branching factor. Another piece of evidence is that differences between the minimum and max-
imum percentages of each modelling element are considerably small especially in the hardest
models for the CSP solver. Furthermore, the average percentages found are very similar to
those of feature models found in the literature. In [155], She et al. studied the characteristic
of 32 published feature models and reported that they contain, on average, 25% of mandatory
features (between 17.5% and 27.7% in our models), 44% of set subfeatures (between 37.8% and
41.8% in our models), 16% of set relationships (between 13.4% and 14.4% in our models), 6%
of or-relationships (between 6.9% and 8.1% in our models) and 9% of alternative relationships
(between 6.3% and 7% in our study). As a result, we conclude that the models generated by
our algorithm are by no means unrealistic. On the contrary, in the context of our study, they
are a fair reflection of the realistic models found in the literature. This suggests that the long
execution times and high memory consumption detected by our algorithm could be therefore
reproduced when using real models with the consequent negative effect in the user.

CSP Solver SAT Solver BDD Solver

Modelling element Min Avg Max Min Avg Max Min Avg Max

% relative to no. of features

Mandatory 26.8 27.7 29.2 20.5 25.0 27.5 8.0 17.5 23.2

Optional 32.0 33.8 34.9 34.0 35.8 39.0 33.6 37.8 40.0

Set subfeatures 36.0 37.8 39.5 36.3 38.5 40.0 37.5 41.8 48.0

Set relationships 13.5 14.2 14.5 9.5 13.4 14.6 13.5 14.4 16.0

- Or 6.7 7.1 7.5 5.0 6.9 7.5 7.2 8.1 10.0

- Alternative 6.5 7.0 7.4 4.5 6.5 7.2 6.0 6.3 7.6

% relative to no. of constraints

Requires 44.7 49.7 61.1 45.0 49.4 54.7 25.0 45.5 52.1

Excludes 38.9 50.3 55.3 45.3 50.6 55.0 47.8 54.4 75.0

Table 8.5: Statistics of the hardest feature models found in our experiments.

In another experiment, we checked whether the hard feature models generated by our evo-
lutionary approach were also hard for other heuristics. In particular, we repeated the analysis
of the hardest feature models found in Experiment #1 using the other seven heuristics available
in the CSP solver JaCoP. The results revealed that the hardest feature models found in our ex-
periment, using the heuristic MostConstrainedDynamic, were trivially solved by some of the
others heuristics. This finding supports our working hypothesis: feature models that are hard
to analyse by one tool or technique could be trivially processed by others and vice-versa. Hence,
we conclude that using standard set of problems, random or not, is therefore not sufficient for a
full evaluation of the performance of different tools. Instead, as in our approach, the character-
istics of the techniques and tools under evaluation must be carefully examined to identify their
strengths and weaknesses providing helpful information for both users and developers.

Finally, we may remark that the effectiveness of our approach ranged from 88.7% to 99.2%
in all the experiments. As expected from an evolutionary algorithm, we found that these varia-
tions in the effectiveness were caused by the characteristics of the search spaces of each problem.

120 Chapter 8. Automated generation of hard feature models

In particular, the algorithm behaves better when the search space is heterogeneous and there
are many different fitness values, i.e. it is easy to compare the quality of the individuals. How-
ever, results get worse in homogeneous search spaces in which most fitness values are equal.
This was observed in Experiment #1 (range 10% of constraints) in which the number of back-
tracks was almost always zero hindering the search of promising individuals that could lead
to optimal solutions. A common strategy to alleviate this problem is to use a larger population
increasing the chances of the algorithm to find promising individuals during initialization.

For a more rigorous and exhaustive validation of our approach, we performed a statistical
analysis on the experimental results. The data obtained from this analysis clearly confirmed
the superiority of our algorithm when compared to random mechanisms. The description and
results of our statistical study are presented in Appendix §D.

8.4 Threats to validity

We briefly discuss the threats to validity of our work:

• Experimental procedure. In order to ensure validity of the experimental approach, exper-
iments were performed in a randomized order on the same computer and were replicated
20 times for each experimental configuration. Additionally, the results were formally val-
idated by means of statistical tests that clearly showed the superiority of our algorithm
when compared to random search. More specifically, as detailed in Appendix §D, Mann-
Withney U tests were performed on the results obtained with random and evolutionary
search.

• Limitations of the approach. Experiments showed no significant improvements when
using our algorithm with problems of low complexity, i.e. feature models with 10% of
constraints in Experiment #1. As stated in section §8.3.1, this limitation is due to the
extremely flat shape of fitness landscape found in simple problems in which most fitness
values are equal or close to zero. Another limitation of the experimental approach is
that experiments for extremely hard feature models become unfeasible. We may remark,
however, that this limitation is intrinsic to the problem of looking hard feature models
and thus it also affects to random search. In fact, we emphasize that in the worst case our
algorithm behave randomly equalling the strategies for the generation of hard feature
models used in the current state of the art.

• Generalizability of the conclusions. In our experiments, we used two different analysis
operations which could seem not sufficient to generalize the conclusions of our study.
We remark, however, that these operations are currently the most quoted in the litera-
ture, have significantly different complexity and, more importantly, are the base for the
implementation of many other analysis operations on feature models [21]. Thus, feature
models that are hard to analyze for these operations would certainly be hard to analyse
by those operations that use them as an auxiliary function making our results extensible
to other analyses. Similarly, we just used two different analysis tools for the experiments,
FaMa and SPLOT. We remark, however, that these tools are developed and maintained by
independent laboratories providing the sufficient degree of heterogeneity for our study.
Finally, the results obtained reveal that the shape and properties of the hard feature mo-
dels generated are similar to those found in the literature and therefore there is no threat

8.5. Summary 121

to validity due to the lack of realism of the generated models. We may mention that we
imposed a constraint to our algorithm to make it simpler: features cannot have more than
one alternative and one or relationship with their children. We remark, however, that this
does not affect the feasibility of the results since the models generated are still realistic.
Besides, we also imposed this constraint to the random feature models generated in order
to make the results of our random and evolutionary programs comparable.

8.5 Summary

In this chapter, we have presented a novel evolutionary algorithm to solve optimization
problems on feature models and showed how it can be used for the automated generation of
computationally–hard feature models. Experiments using our evolutionary approach on differ-
ent analysis operations and independent tools successfully identified input models producing
much longer executions times and higher memory consumption than random models of iden-
tical or even larger size. In total, more than 50 million executions of analysis operations were
performed to configure and evaluate our approach. When compared to previous works, our
approach is the first one using a search–based strategy to exploit the internal weaknesses of
the tools and techniques under test rather than simply using large–scale random models. This
allows developers to focus on the search of tough models of realistic size that could reveal defi-
ciencies in their tools rather than using huge feature models out of their scope. Similarly, users
are provided with more information about the expected behaviour of the tools in pessimistic
cases helping them to choose the tool or technique that better meets their needs. In view of the
positive results obtained, we expect this work to be the first of many others research contribu-
tions exploiting the benefits of evolutionary computation in the field of feature modelling.

122 Chapter 8. Automated generation of hard feature models

Part IV

Final Remarks

Chapter 9

Conclusions and future work

There w ill com e a tim e w hen you believe everything is finished.
That w ill be the beg inning.

Louis D earborn , 1908–1988
American w riter

9.1 Conclusions

The automated analysis of feature models is an active research topic. The extended use of
feature models together with the many applications derived from their analysis has allowed
this discipline to gain importance among researchers in software product lines. As a result,
a number of analysis operations and approaches providing automated support for them are
rapidly proliferating. In this context, the rapid progress of the discipline is leading to a increas-
ing concern about the quality of analysis tools in terms of absence of faults and performance.
However, current testing mechanisms in this domain are immature and guided by intuition
rather than by well-established testing methods. This weakens the value and scope of research
proposals and hinder the development of feature model analysis tools affecting their quality
and reliability.

In this dissertation, we have presented a set of algorithms, techniques and tools to sup-
port functional and performance testing on the analysis of feature models. These contributions
are the result of the application of popular techniques from the software testing community to
the analysis of feature models. Our main results are a test suite, FaMa TeS, and a framework,
BeTTy, enabling the efficient detection of faults in feature model analysis tools and the exhaus-
tive study of their performance. To show the feasibility of our approach, we have presented
extensive experimental results showing the efficacy and efficiency of our contributions. Among
other results, we detected two faults in FaMa and another two in SPLOT, two popular analysis
tools widely used in the community of automated analysis of feature models. These results
support the success of our dissertation in providing a solid background for the development
of automated support for the analysis of feature models contributing to the progress of the
discipline and leading it to a new level of maturity.

126 Chapter 9. Conclusions and future work

9.2 Discussion, limitations and extensions

We next discuss some of the decisions that we have made in this dissertation highlighting
its main limitations and possible extensions.

• Feature modelling notations supported. The testing techniques and tools presented in
this dissertation were specifically designed to validate those analysis performed on basic
feature models. (see Chapter §2). We chose this notation for its simplicity and extended
use in the software product line community. In fact, basic feature models are by far the
most used notation according to our literature review on the analysis of feature models
[21]. Nevertheless, our review also showed that the analysis of cardinality–based and ex-
tended feature models is rapidly gaining popularity. Thus, the analysis support for these
types of feature models could certainly benefit from the testing approaches presented in
this dissertation.

Extension: Extend the FaMa Test Suite and the test data generators integrated into
BeTTy to support the testing of analysis tools dealing with cardinality–based and
extended feature models.

• Analysis operations supported. The contributions presented in this dissertation support
the testing of 16 out of the 30 analysis operations on feature models. These operations
were mainly chosen for its extended use in the community of automated analysis [21].
However, there are still several operations with no specific testing support. This could
probably hinder the implementation of these operations in feature model analysis tools.

Extension: Extend the FaMa Test Suite and the BeTTy framework to support the testing
of more analysis operations.

• Test data generation constraints. In testing, it is often useful to generate test data with
specific properties. For instance, our metamorphic test data generator supports the gen-
eration of feature models with a specific number of features, percentage of each type
of relationship, maximum branching factor, etc. Our evolutionary algorithm, however,
deals with only a few configuration options for simplicity. Improving the flexibility of
our algorithm would be desirable in order to deal with stricter structural constraints, e.g.
enabling the generation of hard models with a given percentage of mandatory features.

Extension: Refine our evolutionary algorithm to allow the generation of feature models
with specific properties.

9.3 Other future work

In addition to the aforementioned extensions to our work, we identify a number of motivat-
ing topics to be explored in our future research, namely:

• Metamorphic testing. In this dissertation, we have presented a novel application of meta-
morphic testing enabling the automated generation of test data. However, we envision
that the same procedure could be applied in a number of domains in which an input
artefact is analysed to extract information from it. Consider, as an example, the CNF files
used as input in SAT solvers.

9.3. Other future work 127

Future work: Generalize our metamorphic testing approach and provide generic guide-
lines for the definition of metamorphic relations in similar domains.

• Evolutionary testing. We have presented a novel evolutionary algorithm for feature mo-
dels and we have used it for the generation of computationally–hard feature models.
However, further applications of our algorithm are still to be explored. Some promising
applications are those dealing with the optimization of other non–functional properties in
analysis operations. Additionally, it would also possible to use our approach to verify the
time constraints of real time systems dealing with variability like those of mobile phones
or context–aware pervasive systems. Also, we should study how our algorithm behaves
when dealing with minimization problems. Last, but not least, we plan to study the hard
feature model generated and try to understand what make them hard to analyse. From
the information obtained, more refined applications and heuristics could be developed
leading to a more efficient tool support for the analysis of feature models.

Future work:

⋄ Study new applications of our evolutionary algorithm dealing with other opti-
mization criteria.

⋄ Use our algorithm to verify the time constraints of real time system dealing
with variability.

⋄ Evaluate the behaviour of our algorithm when dealing with minimization prob-
lems.

⋄ Study the characteristics of the hard feature model generated to understand
what make them hard to analyse. Then, using the information obtained, design
heuristics to determine which analysis solution is more efficient for a given
input model.

• Tool support. The contributions presented in this dissertation have been integrated into
a framework, BeTTy, supporting benchmarking and testing on the analysis of feature
models. Extending the framework with new features will certainly be part of our future
work. Some motivating features to be added are described below.

Future work:

⋄ Extend BeTTy to support the testing of analysis tools dealing with other vari-
ability models, e.g. Orthogonal Variability Models (OVMs) [129].

⋄ Extend BeTTy with test data generators for cardinality–based and extended fea-
ture models.

⋄ Implement an user Web interface for BeTTy.

• Testing variability-intensive systems. Current trends in software development such
as Software Product Lines (SPL), Service-Oriented Applications (SOA) or Dynamically
Adaptive Systems (DAS) respond to an increasing demand for highly configurable (and
reconfigurable) software, i.e. so–called variability–intensive systems. These paradigms
provide powerful mechanisms to manage variability but also pose important problems
in terms of testing. One of the main challenges is that variability exponentially increases
the number of tests required. As a consequence, new techniques and adequacy criteria
should be defined. In this scenario, it would be interesting to know how the contributions
presented in this dissertation could help in this endeavour.

Future work: Study how the ideas presented in this dissertation could be applied or
reused to address the testing of variability–intensive systems.

128 Chapter 9. Conclusions and future work

Part V

Appendices

Appendix A

BeTTy Framework

I n this dissertation, we have motivated the need for automated support for both functional
and performance testing of feature model analysis tools. In response to this need, we

have presented several prototypes tools for the automated generation of test data. In order
to make our contributions accessible to the feature modelling community and encourage other
researchers and practitioners to use, evaluate and extend our work, we have integrated all these
prototypes in a framework called BeTTy. This appendix describes the BeTTy framework. In
Section §A.1, we provide a general overview of the tool. The architecture of BeTTy is explained
in Section §A.2. Some fragments of source code illustrating the usage of the framework are
listed in Section §A.3. In Section §A.4, we present the related tools found in the literature and
compare them to BeTTy. Finally, a summary of the appendix is presented in Section §A.5.

132 Appendix A. BeTTy Framework

A.1 General overview

BeTTy is an extensible and highly configurable tool supporting BEnchmarking and TestTing
on the analYses of feature models. It is written in Java and is distributed as a jar file facilitating
its integration into external projects. BeTTy has been developed on top of some of the core
components of FaMa which make it part of the FaMa ecosystem. Current version of BeTTy
provides the following features:

• Random generation of basic feature models. The generation can be highly configured
through a number of input parameters such as number of features, percentage of cross–
tree constraints, percentage of each type of relationship or maximum branching factor
of the models to be generated. Users can optionally use a “seed ” number to make the
generation reproducible in later experiments.

• Metamorphic generation of feature models and their products. The framework allows
users to generate not only random feature models but also the set of products that these
represents. This is done transparently to the user by using the metamorphic relations
presented in Section §7.2.1. The resultant model and set of products can be then used for
functional testing as described in Chapter §7.

• Evolutionary generation of feature models. BeTTy integrates the evolutionary algorithm
for feature model described in Chapter §8. This allows users to generate feature model
maximizing or minimizing certain properties of the model or their analyses. For instance,
we could search for a feature model with a given number of features minimizing the
height of the tree or maximizing the execution time required for its analysis. This is done
by simply defining an objective function and using it as an input of the framework. This
function determines the quality of a feature model with respect to a given optimization
criteria.

• Feature model’s characteristics extractor. Given a feature model, BeTTy support the ex-
traction of a good number of structural data from the model. These data include basic
information such as the number of features or percentage of cross-tree constraints but
also more complex data such as the cross–tree constraints ratio [21]. This feature allows
users to examine the generated models and rule out those that do not fulfil certain prop-
erties.

• FaMa feature model metamodel. BeTTy integrates the feature model metamodel located
at the core of the FaMa Ecosystem. This is a powerful implementation of a feature model
metamodel highly tested and used in the feature modelling community. This component
enables an intuitive representation of feature models and their manipulation.

• Feature model readers and writers. The framework supports loading and saving feature
models and their products from/to files in different formats. Among others, these for-
mats include XML, Simple XML feature model format (SXFM) [159] and dot format (for
the visual representation of the models in the graph visualization tool Graphviz [69]).

• Benchmarking. BeTTy includes a set of classes to facilitate performance evaluation and
comparison of feature model analysis tools. In particular, these classes provide support
for the classical tasks of generating experiments, executing them and saving the results
in format that facilitate their later processing in spreadsheets (e.g. Comma Separated
Values, CSV). The framework also includes an instantiation of these classes for the FaMa
framework making performance evaluations with this tool straightforward.

A.2. Architecture 133

The BeTTy framework is freely distributed under LGPL v3 license and can be downloaded
from the BeTTy Web site (see Figure §A.1).

Figure A.1: BeTTy Web Site (http://www.isa.us.es/betty).

A.2 Architecture

Figure §A.2 presents a high level representation of the architecture of BeTTy . As illustrated,
the framework is composed of two main blocks, the core and the extensions. The BeTTy core
contains the set of interfaces and classes used to extend the framework and build applications
on top of it. This mainly consists of the following components:

• FaMa feature model meta model. This is the set of classes used to represent feature mo-
dels and manipulate them.

• FM generation. This component contains support methods and classes to facilitate the
development of feature model generators.

• Reader and writers. This component consists of a set of ready–to–use feature model read-
ers and writers for different formats.

• Benchmarking. This components contains the interfaces and basic classes to facilitate the
generation, execution and saving of results during performance evaluation of analysis
tools.

134 Appendix A. BeTTy Framework

The BeTTy extensions comprise the set of testing and performance tools developed on top
of BeTTy. These mainly consist of:

• Random feature model generator. This is a highly configurable random generator for
feature models. The algorithm used for the generation is inspired in the one described by
Thüm et al. [164].

• Metamorphic feature model generator. It supports the generation of feature models and
their products using the metamorphic testing approach described in Chapter §7.

• Evolutionary feature model generator. This component allows the guided generation of
feature models fulfilling a given optimization criteria. For its implementation, we used
the evolutionary algorithm presented in Chapter §8.

• FaMa Benchmark. This consists of a set of classes to facilitate the performance evaluation
of the feature model analysis tools integrated into the FaMa ecosystem.

Figure A.2: BeTTy framework architecture.

A.3 Code examples

Listing §A.1 illustrates how to use BeTTy to generate a random feature model and save it
in FaMa XML format (other formats are also available). In the example, the number of features
and percentage of cross–tree constraints are given as input.

Listing A.1: Random feature model generation

public static void main(String[] args) throws Exception, BettyException {

// STEP 1: Specify the user’s preferences for the generation (so-called characteristics)
GeneratorCharacteristics characteristics = new GeneratorCharacteristics();
characteristics.setNumberOfFeatures(100);

A.3. Code examples 135

characteristics.setPercentageCTC(30); .

// STEP 2: Generate the model with the specific characteristics (FaMa FM metamodel is used)
AbstractFMGenerator generator = new FMGenerator();
FAMAFeatureModel fm = (FAMAFeatureModel) generator.generateFM(characteristics);

// STEP 3: Save the model
FMWriter writer = new FMWriter();
writer.saveFM(fm, "./model.xml"); // Other valid formats: .splx, .afm, .dot

}

Listing §A.2 depicts a more detailed example in which both a random feature model and
the set of products that it represents are generated. First, the generator object is created and
a set input parameters are provided specifying the user’s preferences for the generation. A
reasonable limit for the number of products must be provided to avoid memory overflows.
Once the generation has been completed, the code shows how to extract and print detailed
statistics about the structural data of the model generated. Finally, both the model and its set of
products are saved in XML format.

Listing A.2: Random generation of a feature model and its set of products

public static void main(String[] args) throws Exception, BettyException {

// STEP 1: Specify the user’s preferences for the generation (characteristics)
GeneratorCharacteristics characteristics = new GeneratorCharacteristics();
characteristics.setNumberOfFeatures(40);
characteristics.setPercentageCTC(30);
characteristics.setProbabilityMandatory(25);
characteristics.setProbabilityOptional(25);
characteristics.setProbabilityOr(25);
characteristics.setProbabilityAlternative(25);
characteristics.setMaxBranchingFactor(12);
characteristics.setMaxSetChildren(6);

// Max number of products of the feature model to be generated.
characteristics.setMaxProducts(10000);

// STEP 2: Generate the model with the specific characteristics
AbstractFMGenerator generator = new FMGenerator();
FAMAFeatureModel fm = (FAMAFeatureModel) generator.generateFM(characteristics);

// OPTIONAL: Show detailed statistics of the feature model generated
FMStatistics statistics = new FMStatistics(fm);
System.out.println(statistics);

// STEP 3: Save the model and the products
FMWriter writer = new FMWriter();
writer.saveFM(fm, "./model.xml"); // Other valid formats: .splx, .fm, .dot
writer.saveProducts(generator.getPoducts(), "./products.csv");

}

Listing §A.3 shows how to use our evolutionary algorithm to generate a feature model max-
imizing the execution time invested by FaMa when retrieving the set of products represented
by the model. As illustrated, the optimization criteria is provided to the generator as an input
fitness function (shown in Listing §A.4).

Listing A.3: Random generation of a feature model maximizing the cross-tree constraint ratio

public static void main(String[] args) throws BettyException, Exception {

// STEP 1: Specify the user’s preferences for the generation (characteristics)
GeneratorCharacteristics ch = new GeneratorCharacteristics();
ch.setNumberOfFeatures(100);

136 Appendix A. BeTTy Framework

ch.setPercentageCTC(30);

// STEP 2: Create a fitness function determining the optimization criteria (e.g. maximize
CTCR)

CTCRFitness fitnessFunction = new CTCRFitness();

// STEP 3: Search for a feature model with the size constraints maximizing the CTC ratio.
EvolutionaryFMGenerator generator = new EvolutionaryFMGenerator();
generator.setFitnessFunction(fitnessFunction);
FAMAFeatureModel fm = (FAMAFeatureModel) generator.generateFM(ch);

// OPTIONAL: Show detailed statistics of the feature model generated
FMStatistics statistics = new FMStatistics(fm);
System.out.println(statistics);

// STEP 4: Save the model
FMWriter writer = new FMWriter();
writer.saveFM(fm, "./model.xml");
}

}

Listing A.4: Fitness function measuring the analysis time of a feature model in FaMa

public class TimeFitness implements FitnessFunction {

@Override
public double fitness(FAMAFeatureModel fm) {
double stime=System.currentTimeMillis();
QuestionTrader qt = new QuestionTrader();
ProductsQuestion pq = (ProductsQuestion) qt.createQuestion("Products");
qt.setVariabilityModel(fm);
qt.ask(pq);
return System.currentTimeMillis()-stime;

}
}

In this dissertation, we have mainly focused on optimization problems dealing with time
and memory consumption. However, we may remark that our evolutionary algorithm is flex-
ible enough to deal with other optimization criteria by simply defining adequate fitness func-
tions. As an example, Listing §A.5 depicts a fitness function measuring the cross-tree constraint
ratio of a feature model, i.e. ratio between the number of features involved in cross-tree con-
straints and the total number of features [21]. Using this function together with the code pre-
sented in Listing §A.3, we could easily generate feature models maximizing their cross-tree
constraint ratio.

Listing A.5: Fitness function measuring the cross-tree constraints ratio of a feature model

public class CTCRFitness implements FitnessFunction {

@Override
public double fitness(FAMAFeatureModel fm) {
FMStatistics statistics= new FMStatistics(fm);
return statistics.getCTCR();

}
}

A.4. Related tools 137

A.4 Related tools

During our revision of related works, we found a good number of approaches using ran-
dom feature models to test the performance of their tools (see Chapter §5). However, in most of
the cases, these were generated using ad–hoc tools not publicly available. We found that only
the SPLOT website [159] provides a standalone Java application for the generation of random
feature models and their storage in Simple XML format. The tool, not extensible, receives sev-
eral parameters constraining the size and properties of the feature model to be generated (e.g.
number of features or percentage of mandatory features).

When compared to related works, BeTTy is the first extensible framework specifically de-
sign for functional and performance testing of feature model analysis tools. In addition to
random generation of feature models, it also provides extra and novel features including the
generation of products using metamorphic relations, guided generation of feature models using
optimization criteria and support classes for benchmarking. Also, BeTTy support most popular
formats for feature models and is distributed as a jar file facilitating its interoperability with
other tools.

A.5 Summary

In this appendix, we have presented the BeTTy framework, an extensible and highly con-
figurable tool supporting benchmarking and testing on the analyses of feature models. BeTTy
integrates most of the contributions presented in this thesis. In fact, its main goal is to make
our work accessible to the feature modelling community and encourage other researchers and
practitioners to use and extend it. BeTTy uses some of the core components of FaMa and thus
it is part of the FaMa ecosystem.

The framework is written in Java, distributed under LGPL v3 license and freely available at
http://www.isa.us.es/betty.

138 Appendix A. BeTTy Framework

Appendix B

Mutation operators

B.1 Traditional mutation operators

Operator Description

AODS Arithmetic Operator Deletion (Short-cut)

AODU Arithmetic Operator Deletion (Unary)

AOIS Arithmetic Operator Insertion (Short-cut)

AOIU Arithmetic Operator Insertion (Unary)

AORB Arithmetic Operator Replacement (Binary)

AORS Arithmetic Operator Replacement (Short-cut)

ASRS Assignment Operator Replacement (Short-cut)

COD Conditional Operator Deletion

COI Conditional Operator Insertion

COR Conditional Operator Replacement

LOD Logical Operator Deletion

LOI Logical Operator Insertion

LOR Logical Operator Replacement

ROR Relational Operator Replacement

SOR Shift Operator Replacement

Table B.1: Traditional mutation operators.

140 Appendix B. Mutation operators

B.2 Class–level mutation operators

Language feature Operator Description

Inheritance IHD Hiding variable deletion

IHI Hiding variable insertion

IOD Overriding method deletion

IOP Overriding method calling position change

IOR Overriding method rename

IPC Explicit call of a parent’s constructor deletion

ISD super keyword deletion

ISI super keyword insertion

Overloading OAC Arguments of overloading method call change

OMD Overloading method deletion

OMR Overloading method contents replace

Polimorphism PCC Cast type change

PCD Type cast operator deletion

PCI Type cast operator insertion

PNC new method call with child class type

PMD Member variable declaration with parent class type

PPD Parameter variable declaration with child class type

PRV Reference assignment with other comparable variable

Java-specific JTI this keyword insertion

features JTD this keyword deletion

JSI static modifier insertion

JSD static modifier deletion

JID Member variable initialization deletion

JDC Java-supported default constructor creation

Common EOA Reference assignment and content assignment replacement

programming EOC Reference comparison and content comparison replacement

mistakes EAM Acessor method change

EMM Modifier method change

Table B.2: Class-level mutation operators.

Appendix C

Mutation testing report

A s shown in previous chapters, we made an extensive use of mutation testing to eval-
uate the effectiveness of our suite and our automated test data generator. During our

work with mutation, we came up with some interesting findings and we had to overcome sev-
eral difficulties that hindered the practical application of mutation to our domain. We felt that
these findings could be of interest for the mutation community and thus we decided to shared
this with them. This appendix reproduces the content of an experience report written by the
authors and accepted for publication in the Information and Software Technology special issue
on mutation testing [152]. This article was the result of a collaboration with Professor Robert
M. Hierons who supervised our work during our research stay in his lab.

142 Appendix C. Mutation testing report

C.1 Introduction

Mutation testing [53] is a fault-based testing technique that measures the effectiveness of
test cases. First, faults are introduced in a program creating a collection of faulty versions,
called mutants. The mutants are created from the original program by applying changes to its
source code (e.g. i + 1 ⇒ i - 1). Each change is determined by a mutation operator. Test cases are
then used to check whether the mutants and the original program produce different responses,
detecting the fault. The number of mutants detected provides a measure of the quality of the
test suite called mutation score.

Mutation testing has traditionally been applied to procedural programs written in lan-
guages like Fortran or C. However, the increasing presence of Object–Oriented (OO) programs
in industrial systems is progressively drawing the attention of mutation researchers toward this
paradigm [82]. Contributions in this context mainly focus on the development of new tools and
mutation operators (class-level operators) specifically designed to create faults involving typ-
ical OO features like inheritance or polymorphism. However, little research has been done to
study the effectiveness and limitations of OO mutation in practice.

The high cost of mutation has traditionally hindered its application in empirical studies, in-
cluding those involving OO systems. To make it affordable, some researchers apply it to basic
or teaching programs [5, 89, 156, 157] rather than real-world applications. Others, save effort
by mutating only a part of the system [5, 90, 95, 100, 156, 157] or using a subset of mutation op-
erators [55, 72, 89, 100, 123]. In both cases, the representativeness of the results is therefore only
partial. Beside this, related studies are in most cases reported by mutation experts rather than
practitioners, whose experiences could probably provide more insights about the applicability
of the approach. Finally, although some interesting results have been provided, these are often
isolated since they are extracted from a single system. This leads authors to concede the need
for more practical experiences that support, contrast or complement their results [90, 95, 157].

In this article, we report our experience using mutation testing to measure the effectiveness
of an automated test data generator for the analysis of feature models. Our work contributes to
the field of practical experimentation with mutation as follows:

• We conducted the experiments using FaMa [58, 168], an open source Java OO framework
for the analysis of feature models. FaMa is a widely-used tool of significant size under
continuous development. It is already integrated into the feature modelling tool MOSKitt
[113] and is being integrated into the commercial tool pure::variants†1 [131]. We are also
aware of its use in different universities and laboratories for teaching and research pur-
poses.

• We fully mutated three of the analysis components (so-called reasoners) integrated into
FaMa using both traditional and class–level mutation operators for Java.

• We compared and contrasted our mutation results with the data from some motivating
faults found in the literature and recent releases of FaMa and SPLOT [159], two real tools
for the analysis of feature models. We are not aware of any other related work on muta-
tion reporting results of real faults in OO programs.

†1This integration is being performed in the context of the DiVA European project (http://www.ict-
diva.eu/)

C.2. FaMa framework 143

• Equivalent mutants were detected and examined manually, rather than using partially-
effective automated mechanisms [96, 123], providing helpful feedback about the detec-
tion effort and equivalence causes.

• To the best of our knowledge, this is the first work reporting the experience with mutation
testing from a user perspective, leading to a number of lessons learned that could be
helpful for both researchers and practitioners in the field.

The rest of this article is structured as follows. Section §C.2 provides an overview of the
analysis of feature models and the FaMa Framework. The experimental setup used in our study
and the analysis of results obtained are detailed in Sections §C.3 and §C.4 respectively. Section
§C.5 compares and contrasts the mutation results with the data obtained when using our test
data generator to detect some real faults in FaMa and SPLOT. In Section §C.6, we report our
main findings in a number of lessons learned. The threats to validity of our study are presented
in Section §C.7. Section §C.8 provides an overview of related studies. Finally, we summarize
our main conclusions in Section §C.9.

C.2 FaMa framework

A feature model defines the valid combinations of features in a domain. These are widely
used to represent the commonalities and variabilities within the products of a software product
line [11]. The automated analysis of feature models is an active research area that deals with the
computer–aided extraction of information from feature models. These analyses are generally
performed in two steps. First, the model is translated into a specific logic representation (e.g.
propositional formula). Then, off-the-shelf solvers are used to automatically perform a variety
of analysis operations [21] on the logic representation of the model.

FaMa [58, 168] is an open source Java framework for the automated analysis of feature
models. FaMa provides a number of extension points to plug in new analysis components
called reasoners. A reasoner is an extension of the framework implementing one or more anal-
ysis operations using a specific paradigm. Currently, FaMa integrates ready-to-use reasoners
enabling the analysis of feature models using SAT solvers (SAT), Binary Decision Diagrams
solvers (BDD) and Constraint Programming solvers (CP). A simplified version of the FaMa
architecture is shown in Figure §C.1.

FaMa is a widely-used tool of significant size under continuous development†2. It is al-
ready integrated into the feature modelling tool MOSKitt [113] and is being integrated into the
commercial tool pure::variants [131]. We are also aware of its use in different universities and
laboratories for teaching and research purposes. These reasons, coupled to our familiarity with
the tool as leaders of the project, made us choose FaMa as a good candidate to be mutated.
More specifically, we used three of the reasoners integrated into FaMa as subject tools for our
study.

†2Lines of code: 22,723. Developers: 6. Total releases: 8. Frequency of releases: 5 months.

144 Appendix C. Mutation testing report

Figure C.1: FaMa Architecture.

C.3 Experimental setup

We next provide a full description of the mutation tool, mutation operators, subject pro-
grams, test data generator and experimental procedure used in the evaluation of our automated
test data generator.

C.3.1 Mutation tool

For the generation of mutants, we used the MuClipse Eclipse plug-in v1.3 [157]. MuClipse
is a visual Java tool for object-oriented mutation testing based on MuJava (Mutation System for
Java) [95, 100]. We found this tool to provide helpful features for its use in our work, namely:
i) wide range of mutation operators (including both traditional and class-level operators), ii)

visual interface, especially useful for the examination of mutants and their statuses (i.e. alive
or killed), iii) full integration with the development environment, and iv) support for the gen-
eration and execution of mutants in two clearly separated steps. Despite this, we found some
limitations in the current version of the tool. Firstly, it does not support Java 1.5 code features.
This forced us to make slight changes in the code, basically removing annotations and generic
types when needed. Secondly, the tool did not support jar files. This was solved by manually
placing the binary code of the application in the corresponding folder prior to the generation of
mutants.

Regarding the execution of mutants, we found that MuClipse and other related tools were
not sufficiently flexible, providing as results mainly mutation score and a list of alive and killed
mutants. To address our needs, we developed a custom execution module providing some extra
functionality, namely: i) custom results such as time required to kill each mutant and number
of mutants generated by each operator, ii) results in Comma Separated Values (CSV) format for
its later processing in spreadsheets, and iii) fine-grained filtering capabilities to specify which

C.3. Experimental setup 145

mutants should be considered or ignored during the execution. For each class under evaluation,
our execution module works in two iterative steps. First, the binary file of the original class is
replaced by the corresponding file of the current mutant. Then, test cases are run and results
collected using the programmatic API of JUnit 4 [84].

C.3.2 Mutation operators

There are two types of mutation operators for OO systems: traditional and class-level op-
erators. The former are those adapted from procedural languages such as C or Fortran. These
mainly mutate traditional programming features such as algebraic or logical operators (e.g. i
⇒ i++). The latter are specifically designed to introduce faults affecting OO features like in-
heritance or polymorphism (e.g. super keyword deletion). In our study, we applied all 15
traditional and 28 class-level operators for Java available in MuClipse, listed in Appendix §B.
For details about these operators we refer the reader to [98, 99].

C.3.3 Experimental data

We chose three of the reasoners integrated into the FaMa Framework as subject tools for
our experiments, namely: the Sat4jReasoner v0.9.2 (using satisfiability problems by means of
Sat4j solver [138]), the JavaBDDReasoner v0.9.2 (using binary decision diagrams by means of
JavaBDD solver [80]) and the JaCoPReasoner v0.8.3 (using constraint programming by means
of JaCoP solver [79]). Each of these reasoners uses a different paradigm to perform the analyses
and was coded by different developers, providing the required heterogeneity for the evaluation
of our approach.

For each reasoner, we selected the classes extending the framework and implementing the
analyses capabilities. Table §C.1 shows the number of classes selected from each reasoner to-
gether with the total number of lines of code†3 (LoC) and the average number of methods and
attributes per class. The size of the 27 subject classes included in our study ranged between 35
and 220 LoC. These metrics were computed automatically using the plug-in Metrics 1.3.6 for
Eclipse [112].

Reasoner LoC Classes Av Methods Av Attributes

Sat4jReasoner 743 9 6.5 1.8

JavaBDDReasoner 625 9 6.3 2.1

JaCoPReasoner 686 9 6.3 2.3

Total 2,054 27 6.4 2.1

Table C.1: Size statistics of the three subject reasoners.

For each reasoner, the implementations of six different analysis operations were tested. A
description of these operations is given in Table §C.2.

†3LoC is any line within the Java code that is not blank or a comment.

146 Appendix C. Mutation testing report

Operation Description

VoidFM Informs whether the input feature model is void or not (i.e. it represent no products)

ValidProduct Informs whether the input product belongs to the set of products of a given model

Products Returns the set of products of a feature model

#Products Returns the number of products represented by a feature model

Variability Returns the variability degree of a feature model

Commonality Returns the percentage of products represented by the model in which a given feature appears

Table C.2: Analysis operations tested.

C.3.4 Test data generator

Test cases were automatically generated using the automated test data generator presented
by the authors in [151]. This is designed to detect faults in the implementations of the analysis
operations on feature models regardless of how these are implemented. Thus, it uses a black-
box testing approach relying on the inputs and outputs of the analysis operations under test.
Given an initial test case, the tool automatically generates random follow-up test cases using
known relations between the input feature models and their expected outputs (so-called meta-
morphic relations). The test generation process was parameterised by a number of factors such
as the number of features or the percentage of constraints of the input models to be generated.
For each operation under test, we used our generator to generate and run test cases until a fault
was found or a timeout was exceeded.

C.3.5 Mutants execution

Traditionally, classes are considered the units of functionality during mutation testing in
OO systems (Figure §C.2(a)). That is, each class is first mutated and then their mutants are ex-
ecuted against a test set. In our study, however, the nature of FaMa and our generator forced
us to revise the notion of unit testing. The goal of our test data generator is to detect faults
in the implementation of analysis operations regardless of how these are implemented. Thus,
we consider a testing unit as a black-box component providing the functionality of an analysis
operation (Figure §C.2(b)). No knowledge is assumed about the internal structure of the com-
ponent, only about the interface of the operation that it implements. Note that this means that
a testing unit could therefore be composed of more than one class.

As an example, consider the partial class diagram of Sat4jReasoner showed in Figure §C.3
(some associations are omitted for simplicity). As previously explained, we can only assume
knowledge about the classes extending the public interfaces of the operations provided by the
framework i.e. these are the only classes we generated test data for. Note that the functionality
of the operations is not provided by a single class, but several of them that are often reused by
different operations. For instance, class Reasoner participates in the implementation of all the
operations under test. Once all classes in the reasoner were mutated, we evaluated the ability
of our generator to kill the mutants in a three-step process as follows:

i. We grouped those classes providing the functionality of each analysis operations, i.e.

C.3. Experimental setup 147

(a) Class-level testing. (b) Component-level testing.

Figure C.2: Class-level vs. component-level testing.

FaMa Core

<<Interface>>
VoidFM

<<Interface>>
ValidProduct

<<Interface>>
Products

<<Interface>>
#Products

<<Interface>>
Variability

<<Interface>>
Commonality

ReasonerFilter Set

VoidFM ValidProduct Products #Products Variability Commonality

S
at

4j
R

ea
so

ne
r

Figure C.3: Partial class diagram of Sat4jReasoner.

this could be considered a testing unit, a component. For instance, in Figure §C.3, classes
{Variability+Reasoner+#Products} provide the functionality of the operation Variability.

ii. For each operation, we performed a set of executions trying to kill the mutants of the
classes implementing the operation. On each execution, we mutated a single class
and left the rest in the original form. For instance, let us use CT to denote the set
of mutants of a given class C. Tests in the operation Variability were evaluated by
trying to kill mutants when testing the operation with the following combination of
classes {VariabilityT + Reasoner + #Products}, {Variability + ReasonerT + #Products} and
{Variability + Reasoner + #ProductsT}.

148 Appendix C. Mutation testing report

iii. To work out the results of each operation, we considered the results obtained on each of
the executions associated to it.

The previous process raised new challenges to be solved during the execution and compu-
tation of results. To illustrate this, consider the simplified class diagram depicted in Figure §C.4.
The Reasoner class is reused in the implementation of the operations ValidProduct and Com-
monality, i.e. it is shared by two different testing units. A label is inserted in those methods
where a change was introduced generating a mutant, M < i >. We felt the need to distinguish
clearly between the following terms:

• Generated mutants. These are the mutants generated in the source code, a total of
5 in Figure §C.4, i.e. ValidProductM1, ReasonerM2, ReasonerM3, CommonalityM4 and
CommonalityM5.

• Executed mutants. These are the mutants actually executed when considering the mu-
tants in reusable classes. In the example, mutants in the reused class Reasoner (i.e.
ReasonerM2 and ReasonerM3) are executed against the test data of the operations Valid-
Product and Commonality resulting in 7 mutants executed listed in the table of Figure
§C.4.

In addition, we identified two new mutant statuses to be considered when processing our
results, namely:

• Uncovered mutants. We say a mutant in a reusable class is uncovered by a given oper-
ation if it cannot be exercised by that operation. For instance, let us suppose that class
ValidProduct in Figure §C.4 does not use method2 of the class Reasoner. We would then
say that mutant ReasonerM3 is not covered by the operation ValidProduct (see executed
mutant 3 in Figure §C.4). Uncovered mutants are a type of equivalent mutants and were
manually identified and omitted for the computation of results on each operation.

• Partially equivalent mutants. We say a mutant in a reusable class is partially equivalent
if it is equivalent for a subset of the operations using it (but not all of them). For in-
stance, ReasonerM2 is alive when tested against the tests of the operation ValidProduct
(i.e. {ValidProduct + ReasonerM2}) but equivalent when tested with the test data of the
operation Commonality (i.e. {Commonality + ReasonerM2}). In contrast to conventional
equivalent mutants, partially equivalent mutants were not excluded from our study. In-
stead, they were included and omitted only in those operations where they were identi-
fied as equivalent.

C.3.6 Experimental procedure

For the application of mutation testing in FaMa, we followed four steps, namely:

i. Reasoners testing. Prior to their analysis, we checked whether the original reasoner
passed all the tests. A timeout of 600 seconds was used. As a result, we detected and
fixed a defect in the JaCoPReasoner. We found this fault to be especially motivating since
it was also present in the studied release of FaMa (see Section §C.5.2 for details).

C.4. Analysis of results 149

Figure C.4: Example of mutation in reusable classes.

ii. Mutants generation. We generated two sets of mutants by applying all traditional and
class–level operators available in MuClipse (listed in Appendix §B).

iii. Mutants execution. For each executed mutant, we ran our test data generator until find-
ing a test case that kills it or until a timeout of 600 seconds was exceeded. We chose this
value for the timeout because it had proved to be effective in similar experiments with
mutants and automated metamorphic testing [68].

iv. Results processing. We classified mutants into different categories. Generated mutants
were classified into equivalent, not equivalent, undecided and discarded mutants. We
marked as undecided those mutants whose equivalence we could not conclude in a rea-
sonable time (more details in Section §C.4.3). Discarded mutants were those changing
parts of the programs exercised by the tests (they were not uncovered) but that were of
no interest for our study since they affected secondary functionalities not addressed by
our test data generator (e.g. execution time measurement). Executed mutants were clas-
sified into killed, alive, uncovered and partially equivalent mutants. Finally, test data
generation and execution results were processed for each operation.

All our experiments were performed on a laptop machine equipped with an Intel Pentium
Dual CPU T2370@1.73GHz and 2048 MB of RAM memory running Windows Vista Business
Edition and Java 1.6.0_05.

C.4 Analysis of results

In this section, we report the analysis of our results. We first outline the data obtained with
both traditional and class-level mutation operators. Then, we describe our experience detecting
equivalent mutants.

150 Appendix C. Mutation testing report

C.4.1 Analysis of results with traditional mutants

Table §C.3 depicts information about the mutants obtained when applying traditional muta-
tion operators. We distinguish between “Generated Mutants” and “Executed Mutants”, where
a generated mutant is a mutated class and an executed mutant is a component (i.e. set of classes
implementing an operation) that contains one mutated class (see Section §C.3.5 for details). In
procedural programs, the number of generated mutants is typically large. For example, a sim-
ple Fortran program of 29 LoC computing the days between two dates results in 3,010 mutants
[121]. In FaMa, however, the total number of generated mutants for the 27 subject classes was
749. This occurs because traditional mutants mainly modified features that the FaMa classes
barely contained (e.g. arithmetic operators). Out of the total 749 mutants, 101 (13.4%) were
identified as semantically equivalent. This percentage is within the boundaries reported in sim-
ilar studies with procedural programs which suggest that between 5% and 15% of generated
mutants are equivalent [54, 62, 120–123]. In addition to these, we also discarded 87 mutants
(11.6%) affecting other aspects of the program not related to the analysis of feature models and
therefore not addressed by our test data generator. These were mainly related to the computa-
tion of statistics (e.g. execution time) and exception handling.

Executed mutants only include killable mutants, i.e. not equivalent. The number of exe-
cuted mutants was nearly twice the number of generated mutants. That means that many of
the generated mutants were in reusable classes.

Operator
Generated Mutants Executed Mutants

Score (%)
Total Equivalent Discarded Total Alive Killed

AOIS 296 66 32 547 11 536 97.9

ROR 106 9 3 230 0 230 100

LOI 93 5 13 180 0 180 100

COI 87 5 3 180 0 180 100

AORB 68 7 24 58 0 58 100

AOIU 53 5 7 84 0 84 100

COD 19 0 5 21 0 21 100

AORS 18 0 0 57 0 57 100

COR 8 4 0 7 0 7 100

AODU 1 0 0 1 0 1 100

Total 749 101 87 1,365 11 1,354 99.1

Table C.3: Traditional mutants for FaMa classes.

Operators AODS, SOR, LOR, LOD and ASRS did not generate any mutants since they mu-
tate language operators that the subject programs did not employ (e.g. unary logic). The opera-
tor AOIS produced the most mutants (39.5% of the total) followed by ROR (14.15%), LOI (12.4%)
and COI(11.6%). The dominance of these four operators was also observed in related studies
with Java programs [156, 157]. Regarding individual mutation scores, the operator AOIS, with
a score of 97.9%, was the only one introducing faults not detected by our generator. Hence, this
was the only operator providing helpful information to improve the quality of our tool.

C.4. Analysis of results 151

Tables §C.4, §C.5 and §C.6 show the results obtained when using our test data generator to
try to kill traditional mutants in the three subject reasoners. For each operation, the number of
classes involved, number of executed mutants, test data generation results and mutation score
are presented. Test data generation results include average and maximum time required to kill
each mutant and average and maximum number of test cases generated before killing a mutant.
These results provide us with quantitative data to measure and compare the effectiveness of
our generator when killing mutants. Besides this, the average time and number of test cases
generated before killing a mutant gives an idea of how difficult it was to detect faults in a
certain operation. For instance, operations Products, #Products, Variability and Commonality
showed a mutation score of 100% in all the reasoners with an average number of test cases
required to kill each mutant under 2. This suggests that faults in these operations are easily
killable. On the other hand, faults in the operations VoidFM and ValidProduct appeared to be
more difficult to detect. We found that mutants on these operations required input models to
have a very specific pattern in order to be revealed. As a consequence of this, the average time
and number of test cases in these operations were noticeable higher than in the rest of analyses
tested.

The maximum average time to kill a mutant was 7.4 seconds. In the worst case, our test
data generator spent 566.5 seconds before finding a test case that killed the mutant (operation
VoidFM in Table §7.3). In this time, 414 different test cases were generated and run. This gave
us an idea of the minimum timeout that should be used when applying our approach in real
scenarios.

Operations Executed Mutants Test Data Generation
Score (%)

Name Classes Total Alive Av Time (s) Max time (s) Av TCs Max TCs

VoidFM 2 55 0 37.6 566.5 95.1 414 100

ValidProduct 5 109 3 4.3 88.6 12 305 97.2

Products 2 86 0 0.6 3.4 1.5 12 100

#Products 2 57 0 0.7 2.4 1.8 8 100

Variability 3 82 0 0.6 1.7 1.3 5 100

Commonality 5 109 0 0.6 3.8 1.5 13 100

Total 19 498 3 7.4 566.5 18.9 414 99.3

Table C.4: Test data generation results using traditional operators in Sat4jReasoner.

C.4.2 Analysis of results with class mutants

Table §C.7 shows information about the mutants obtained from class–level mutation opera-
tors. The total number of mutants is nearly 60% lower than the number of traditional mutants.
This suggest that the OO features that these operators modify are less frequent than those fea-
tures addressed by traditional operators such as arithmetic or relational operators. Out of the
total 310 mutants, 141 (45.4%) were identified as semantically equivalent, far more than the 5%
to 15% found in related studies with procedural programs. In certain cases, we could not con-
clude whether a mutant was equivalent or not. We marked these mutants, a total of 10 (3.2%),
as “undecided”. Finally, we discarded 10 (3.2%) mutants affecting secondary functionality of
the programs not related to the analyses and not addressed by our test data generator.

152 Appendix C. Mutation testing report

Operations Executed Mutants Test Data Generation
Score (%)

Name Classes Total Alive Av Time (s) Max time (s) Av TCs Max TCs

VoidFM 2 75 3 6.6 111.7 29.3 350 96

ValidProduct 5 129 5 1 34.6 3.8 207 96.1

Products 2 130 0 0.7 34.6 1.4 12 100

#Products 2 77 0 0.5 1.4 1.6 6 100

Variability 3 104 0 0.5 2.4 1.6 12 100

Commonality 5 131 0 0,5 3 1.5 16 100

Total 19 646 8 1.6 111.7 6.5 350 98.7

Table C.5: Test data generation results using traditional operators in JavaBDDReasoner.

Operations Executed Mutants Test Data Generation
Score (%)

Name Classes Total Alive Av Time (s) Max time (s) Av TCs Max TCs

VoidFM 2 8 0 1.5 8.3 11.3 83 100

ValidProduct 5 61 0 0.7 1.2 1.3 5 100

Products 2 37 0 0.5 0.7 1 1 100

#Products 2 13 0 0.5 0.7 1 1 100

Variability 3 36 0 0.5 0.7 1 1 100

Commonality 5 66 0 0.5 0.7 1.1 3 100

Total 19 221 0 0.7 8.3 2.8 83 100

Table C.6: Test data generation results using traditional operators in JaCoPReasoner.

Class–level operators IHD, IOR, ISI, ISD, IPC, PMD, PPD, PCC, OMR, OMD, OAN, JSD,
JID, EOA and EOC did not generate any mutants and therefore they are not showed in the
table. We found that these operators mainly mutate inheritance and polymorphism features
that the subject classes did not use. The operator PCI produced the most mutants with nearly
40% of the total. This operator inserts type casting to variables (e.g. feature ⇒ (GenericFeature)
feature) and therefore is likely to be applied more frequently than other operators. Operators
PCI and PNC generated the highest percentages of equivalent mutants with 78.8% and 57.8%
respectively.

Operators PCI, IOD, EAM, JDC, PNC, PRV, JTI, JTD, IHI and IOP got a mutation score of
100%. This suggests that the mutants generated by these operators in FaMa can be easily killed
with the same test cases generated for traditional mutants. These operators were therefore
useless in terms of providing information to improve the quality of our tests. On the other
hand, operators JSI and EMM got a mutation score of 0% providing us with information to
improve our tool. For instance, we learned that using sequences of calls to several instances
of the same class (instead of one instance per test case) would allow us to kill those mutants
generated by the operator JSI (static modifier insertion), and related faults, making our test
suite stronger.

Tables §C.8, §C.9 and §C.10 show the results obtained when using our test data generator

C.4. Analysis of results 153

Operator
Generated Mutants Executed Mutants

Score (%)
Total Equivalent Undecided Discarded Total Alive Killed

PCI 118 93 0 0 108 0 108 100

IOD 55 13 0 0 60 0 60 100

JSI 47 14 0 0 52 52 0 0

EAM 20 2 0 6 44 0 44 100

JDC 19 11 0 0 14 0 14 100

PNC 12 2 6 0 12 0 12 100

EMM 10 0 4 0 12 12 0 0

PRV 9 0 0 2 26 0 26 100

JTI 6 0 0 1 5 0 5 100

PCD 5 5 0 0 0 0 0 N/A

JTD 4 0 0 1 3 0 3 100

IHI 3 1 0 0 3 0 3 100

IOP 2 0 0 0 3 0 3 100

Total 310 141 10 10 342 64 278 81.2

Table C.7: Class mutants for FaMa classes.

to try to kill the class mutants. The mutation scores on each solver ranged from 69.6% to 91.9%.
This means that our generator, despite not being specifically designed to detect OO faults, was
able to detect a majority of the class mutants introduced in FaMa. The average time to kill each
mutant was between 0.7 and 1.5 seconds. Similarly, the average number of test cases generated
before killing each mutant was between 4.4 and 4.7. These results are better than the ones
obtained when using our generator with traditional mutants. This reveals that class mutants
that were killed, were also easier to kill than traditional ones.

Operations Executed Mutants Test Data Generation
Score (%)

Name Classes Total Alive Av Time (s) Max time (s) Av TCs Max TCs

VoidFM 2 10 3 5,7 37 21 141 70

ValidProduct 5 31 9 1.2 5.7 3 20 71

Products 2 12 3 0.7 0.9 1 1 75

#Products 2 10 3 0.6 0.7 1 1 70

Variability 3 12 4 0.6 0.9 1.2 2 66.7

Commonality 5 27 9 0.5 0.7 1 1 66.7

Total 19 102 31 1,5 37 4.7 141 69.6

Table C.8: Test data generation results using class-level operators in Sat4jReasoner.

154 Appendix C. Mutation testing report

Operations Executed Mutants Test Data Generation
Score (%)

Name Classes Total Alive Av Time (s) Max time (s) Av TCs Max TCs

VoidFM 2 7 1 1.4 5.1 19.8 112 85.7

ValidProduct 5 26 7 0.5 1.1 1.4 4 73.1

Products 2 7 1 0.6 1 1.7 3 85.7

#Products 2 7 1 0.7 1 2.5 4 85.7

Variability 3 9 2 0.5 1 1.6 4 77.8

Commonality 5 24 8 0.5 0.9 1.4 3 66.7

Total 19 80 20 0.7 5.1 4.7 112 75

Table C.9: Test data generation results using class-level operators in JavaBDDReasoner.

Operations Executed Mutants Test Data Generation
Score (%)

Name Classes Total Alive Av Time (s) Max time (s) Av TCs Max TCs

VoidFM 2 21 0 3 31.2 20.5 226 100

ValidProduct 5 35 4 0.6 1.5 1.5 9 88.6

Products 2 22 1 0.6 1.3 1 1 95.5

#Products 2 21 1 0.6 1 1.3 5 95.2

Variability 3 24 2 0.7 1.1 1.3 5 91.7

Commonality 5 37 5 0.6 1.4 1.1 4 86.5

Total 19 160 13 1 31.2 4.4 226 91.9

Table C.10: Test data generation results using class-level operators in JaCoPReasoner.

C.4.3 Equivalent mutants

The detection of equivalent mutants was performed by hand investing no more than 15
minutes per mutant in the worst case. If this time was exceeded without reaching a conclusion
the mutants was marked as “undecided". In many cases, equivalent mutants were caused by
similar structures in different classes. Once an equivalent mutant was detected, we found that
detection of similar equivalent mutants was easier and faster. This suggests that the effort
required to identify equivalent mutants is affected by the commonalities of the subject classes.

Regarding hardness, we found it especially difficult to determine the equivalence in those
mutants replacing methods calls. In our study, these were generated by the class–level oper-
ators EMM and PNC. As an example, consider the following mutant generated by the opera-
tor PNC in Sat4jReasoner: new DimacsReader(solver) ⇒ new CardDimacsReader(solver). The
mutant changes the default reader used by Sat4j (off-the-shelf solver used by Sat4jReasoner)
to process input files. Determining whether the functionality of the new reader is equivalent
to the original one for any input problem was not trivial, even when checking the available
documentation of Sat4j. This and other related mutants were therefore marked as “undecided".

C.5. Real faults 155

C.5 Real faults

For a further evaluation of our approach, we checked the effectiveness of our tool in detect-
ing real faults. This allowed us to study the representativeness of mutants when compared to
faults identified in real scenarios. In particular, we first studied a motivating fault found in the
literature. Then, we used our generator to test recent releases of two tools, FaMa and SPLOT,
detecting two defects in each of them. These results are next reported.

C.5.1 A motivating fault found in the literature

Consider the work of Batory in SPLC’05 [11], one of the seminal papers in the community of
automated analysis of feature models. The paper included a bug (later fixed†4) in the mapping
of feature models to propositional formulas. Although this is not a real fault (i.e. it was not
found in a tool), it represents a real type of fault likely to appear in real scenarios. This fault
is motivational for two main reasons, namely: i) it affects all the analysis operations using the
wrong mapping and ii) it is difficult to detect since it can only be revealed with input feature
models containing a very specific pattern. For more details about this fault we refer the reader
to [151]. We implemented this wrong mapping into a mock reasoner for FaMa using JavaBDD
and tried to detect the fault using our test data generator.

Table §C.11 depicts the results of the evaluation. The testing procedure was similar to the
one used with mutation testing. A maximum timeout of 600 seconds was used. All the results
are the average of 10 executions. The fault was detected in all operations remaining latent in
50% of the tests performed in the ValidProduct operation. When examining the data, we con-
cluded that this was due to the basic strategies used in our test data generator for the selection
of inputs products for this operation. We presume that using more complex heuristics for this
purpose would improve the results.

Operation Av Time (s) Max Time (s) Av TCs Max TCs Score (%)

VoidFM 78.2 229.1 515.8 905 100

ValidProduct 38.4 43.7 268.4 322 50

Products 1.1 2.9 5.7 19 100

#Products 1.0 2.7 5.4 16 100

Variability 1.2 2.1 6.4 13 100

Commonality 1.4 3 7.8 20 100

Total 20.2 229.1 134.9 905 91.6

Table C.11: Test data generation results using a motivating fault reported in the litera-
ture (averages of 10 executions).

The average time to detect the fault (20.2 s) was far higher than the average times obtained
when killing mutants, ranging between 0.7 and 7.4 seconds. Similarly, the average number of
test cases generated before detecting the fault (134.9) exceeded the averages obtained in the

†4ftp://ftp.cs.utexas.edu/pub/predator/splc05.pdf

156 Appendix C. Mutation testing report

execution of mutants ranging between 4.4 and 18.9. Thus, our results reveal that detecting the
fault in our mock tool was harder than killing the FaMa mutants.

C.5.2 FaMa Framework

We also evaluated our tool by trying to detect faults in a recent release of the FaMa Frame-
work, FaMa v1.0 alpha. A timeout of 600 seconds was used for all the operations since we did
not know a priori the existence of faults. Tests revealed two defects. The first one, also detected
during our experimental work with mutation, was caused by an unexpected behaviour of Ja-
CoP solver when dealing with certain heuristics and void models in the operation Products. In
these cases, the solver did not instantiate an array of variables raising a null pointer exception.
The second fault affected the operations ValidProduct and Commonality in Sat4jReasoner. The
source of the problem was a bug in the creation of propositional clauses in the so-called staged
configurations, a new feature of the tool.

Table §C.12 shows the results of our tests in FaMa. The results are the average of the data ob-
tained in 10 executions. As illustrated, the defect in Sat4jReasoner was easy to detect in almost
all cases with just one test case. On the other hand, the fault in JaCoPReasoner was harder to
detect with a detection time of 160.9 seconds and 391.1 test cases generated on average. These
results are again much higher than the averages obtained with mutation suggesting that this
fault was harder to detect than mutants.

Operation Av Time (s) Max Time (s) Av TCs Max TCs Score (%)

JaCoPReasoner - Products 160.9 214.9 391.1 535 100

Sat4jReasoner - ValidProduct 0.9 1.2 1 1 100

Sat4jReasoner - Commonality 0.9 1.3 1.1 2 100

Total 54.2 214.9 131.1 535 100

Table C.12: Test data generation results in FaMa 1.0 alpha (averages of 10 executions).

C.5.3 SPLOT

Software Product Lines On-line Tools (SPLOT) [159] is a Web portal providing a complete
set of tools for on-line editing, analysis and storage of feature models. It supports a number
of analyses on cardinality-based feature models using propositional logic by means of the Sat4j
and JavaBDD solvers. The authors of SPLOT kindly sent us a standalone version†5 of their
system to evaluate our automated test data generator. In particular, we tested the operations
VoidFM, #Products and DeadFeatures in SPLOT. As with FaMa, we used a timeout of 600
seconds and tested each operation 10 times to get averages. Tests revealed two defects in all
the executions. The first one affected all operations on the SAT-based reasoner. With certain
void models, the reasoner raised an exception (org.sat4j.specs.ContradictionException) and no
result was returned. The second bug was related with cardinalities in the BDD-based tool.

†5SPLOT does not use a version naming system. We tested the tool as it was in February 2010.

C.6. Discussion and lessons learned 157

We found that the reasoner was not able to process cardinalities other than [1,1] and [1,*]. As
a consequence of this, input models including or-relationships specified as [1,n] (n being the
number of subfeatures) caused a failure in all the operations tested.

Table §C.13 depicts the results of our tests in SPLOT. Notice that the DeadFeatures operation
was only implemented in the SAT-based reasoner. Detection times were even lower than those
found with traditional mutants in FaMa suggesting that the bugs were easier to detect than
mutants. We may remark, however, that SPLOT was much faster than FaMa in executing test
cases and therefore time does not provide a fair comparison. From the average number of test
cases, however, we found that the fault in the SAT-based reasoner required the generation of
more test cases (between 26.7 and 38.3 on average) than FaMa mutants suggesting that this fault
was slightly harder to detect than mutants in general. The fault in the BDD-based reasoner, on
the other hand, was trivially detected in all cases.

Operation Av Time (s) Max Time (s) Av TCs Max TCs Score (%)

Sat4jReasoner - VoidFM 0.7 1.3 26.7 66 100

Sat4jReasoner - #Products 1 2 26.1 66 100

Sat4jReasoner - DeadFeatures 0.9 2.2 38.3 134 100

JavaBDDReasoner - VoidFM 0.4 0.5 1.5 2 100

JavaBDDReasoner - #Products 0.4 0.5 1.9 5 100

Total 0.7 2.2 18.9 134 100

Table C.13: Test data generation results in SPLOT (averages of 10 executions).

Faults detected in the standalone version of the tool were also observed in the online version
of SPLOT. We may remark that authors confirmed the results and told us they were aware of
these limitations.

C.6 Discussion and lessons learned

Our results can be summarized in the following lessons learned:

The number of mutants was lower than in procedural programs. The number of mutants
generated by traditional mutation operators in FaMa was much lower than the number of mu-
tants generated in smaller procedural programs [54, 62, 120–122]. This was also observed in
related studies with OO systems [90, 95, 156, 157]. Like FaMa, the OO systems used in related
studies do not perform many arithmetic or logical operations keeping the number of tradi-
tional mutants lower than in procedural programs. This suggests that mutation testing could
be affordable when applied to OO applications with a reduced number of these features. This
suggests that it would be useful to have a prediction model (e.g. equation) that practitioners
could use to estimate the cost of mutation according to the characteristics of their programs.
While some progress has been made in predicting the number of mutants in procedural lan-
guages [121], this seems to remain a challenge in the context of OO programs in which only
some preliminary analysis has been proposed. [97].

158 Appendix C. Mutation testing report

The number of class mutants was lower than the number of traditional mutants. The
number of mutants generated by class–level mutation operators was lower (about 60%)
than traditional mutants. This trend was also observed in related studies with OO systems
[55, 90, 95, 96, 100, 123]. This suggests that the OO features mutated by class-level operators
occur less frequently than those addressed by traditional ones. It is worth remarking that even
if we consider both traditional and class mutants in our study, there were still far fewer mutants
than have been reported with smaller procedural programs. This also supports the applicabil-
ity of mutation testing in OO systems.

Class–level operators generated more equivalent mutants than traditional ones. Our results
show that the percentage of equivalent mutants generated by class–level operators (i.e. 45.4%)
is much higher than the one generated with traditional operators (i.e. 13.4%). This result is also
higher than the percentages reported in similar studies with procedural programs suggesting
that between 5% and 15% of generated mutants are equivalent. This makes class-level mutation
operators less attractive for experimentation since they generate fewer mutants than traditional
operators and a larger percentage of equivalent ones reducing the total portion of useful (i.e.
killable) mutants. Having said this, we may remark that we found contradictory results in the
literature. On the one hand, studies conducted by Kim et al. [90] and Ma et al. [95] reported
percentages of equivalent mutants of 4.9% (23 out of 466) and 0.4% (3 out of 691) respectively,
much less than the percentage found in our study. On the other hand, a more recent experiment
conducted by Ma et al. [96] revealed that at least 86% of the class mutants were equivalent, far
more than the percentage found in our evaluation. We may mention that their experiment was
performed on six open source programs with a total of 49,071 mutants studied which makes
their results stronger than previous findings. When studying this work, we found that 9 of
the mutation operators that generated higher percentages of equivalent mutants in their study
(73.1% on average) did not generate any mutants in our work. We think this explains why
the percentage of equivalent mutants in our work is lower supporting their result. Neverthe-
less, the heterogeneous data found in the literature suggest that a more extensive experiment
using a wider number of subject programs would be highly desirable to shed light on this issue.

A majority of the class mutants were killed with the same kind of test cases designed for

traditional mutants. Over 80% of the class mutants were killed with the same type of test data
generated to kill traditional mutants. This was also observed by Ma et al. [95] in the BCEL
system who found that more than 50% of the class mutants were killed with the same test cases
used to kill traditional mutants. A further result in our study is that class mutants that were
killed, were also easier to kill than traditional ones in terms of time invested by our generator to
detect them. These results reveal that most class–level operators generated easily killable faults
and therefore were not helpful in providing information to improve the quality of our test data
generator. Only a small subset of these, JSI and EMM in our study, showed to be effective in
providing feedback for the refinement of our tests.

Real faults were harder to detect than artificial ones. Three out of the five real faults studied in
our work had average detection times or average number of test cases generated significantly
higher than those of traditional and class mutants. Operation ValidProduct, for instance, got
the lowest score (50%) when studying the motivating fault found in the literature (see Section
§C.5.1). This suggests that real faults (based in our study) were, on average, harder to detect
than mutants. We may remark, however, that this was not the case for all mutants. Hence, the

C.6. Discussion and lessons learned 159

highest detection time (566.5 seconds) was obtained when evaluation a mutant in the opera-
tion VoidFM of Sat4jReasoner (see Table §7.3). This means that mutants were able to represent
faults as hard to detect as real ones. More importantly, the mutation scores obtained when
studying real faults were similar (100% in the case of tests in FaMa 1.0 alpha and SPLOT) to
those obtained with mutation in FaMa reasoners. This supports the “competent programmer
assumption" that underlies the theory of mutation testing. That is, the assumption that faults
made by programmers will be detected by those test suite able to kill mutants.

Relative cost of detecting equivalence mutants. The detection of equivalent mutants was eas-
ier and faster as we progressed and we found equivalent mutants similar to those previously
identified. This means that the effort required to detect equivalent mutants was influenced by
the similarities found in the subject programs. In our study, commonalities were frequent since
the three reasoners implemented common interfaces provided by the framework. It would be
interesting to know to what extent this happens in other tools and what impact this has on the
cost of mutation testing.

Mutation testing on non–trivial testing units. Mutation testing in OO systems is traditionally
applied at the class level, i.e. each single class is considered a unit of functionality. In our study,
however, we consider a testing unit as a black–box component providing the functionality of an
analysis operation. No knowledge is assumed about the internal structure of the component,
only about the interface that it implements. Although possible, we concluded that the applica-
tion of mutation testing in this context is hard and time–consuming. A lot of manual work was
required to mutate each class individually, classify its mutants and compute the results of each
operation afterward. This was even more challenging when considering reusable classes par-
ticipating in the implementation of different operations. This introduced two new statuses for
mutants, uncovered and partially equivalent mutants, and this made the processing of results
even more difficult. Emerging works studying the application of mutation testing at the system
and functional levels are a promising starting point to address this issue [104].

Limitations in current mutation tools. Mutation tools for Java include ExMan [31], Javalanche
[72], JavaMut [43], Jester [81], Jumble [83], MuJava [95, 100] and MuClipse [157]. At the time of
writing this article, we found that MuJava and its plug-in for Eclipse, MuClipse, were the only
publicly available tools that provided support for class–level mutation operators in Java. When
used in our study, we found this and other related tools had several practical limitations. In the
following, we summarize those features that we missed during our study as well as those that
we found more useful and that we consider should be part of any successful mutation tool:

• Highly automated. From a user perspective, we missed a major degree of automation
in current tools particularly when concerning the computation of results. In addition
to basic results such as the mutation score and list of alive and killed mutants, detailed
statistics for each operator would be highly desirable. A deep analysis of these statistics
would help users in taking decisions like detecting candidate operators to be omitted or
selected in future evaluation or refinements of a test suite.

• Flexible. Tools should be able to work with real-world applications. Note that this not
only means support for a large number of files or lines of code but also support for con-
ventional library formats (e.g. jar files) as well as different versions of Java, features that
we missed in our study.

160 Appendix C. Mutation testing report

• Configurable. Mutation tools should provide configuration utilities and extension points.
Adding new mutation operators and result formats should be possible. Filters are also a
helpful feature that we missed in our work. During generation, it would have been useful
to have filters to specify fragments of code not to be mutated as this would have saved
us the time of discarding mutants manually. During execution, our custom filter assisted
us in selecting the set of mutants to be considered or omitted. This was especially useful
when studying mutant equivalence.

• Usable. Mutation tools must be intuitive and easy to use. Visual interfaces (e.g. for
examining mutants), configuration wizards and integration with the development envi-
ronment proved to be helpful features in our study.

• Automated detection of equivalent mutants. Although the detection of equivalent mu-
tants is an undecidable problem, some techniques have been proposed to automate it,
at least partially [75, 120, 122, 123]. The development, improvement and integration of
these techniques in mutation tools is undoubtedly one the main points to make mutation
testing affordable in real scenarios.

C.7 Threats to validity

Our mutation results apply only to three of the reasoners integrated into FaMa framework
and therefore may not extrapolate to other programs. Similarly, the number of real faults stud-
ied was not large enough to allow us to draw general conclusions. We may remark, however,
that 4 out of the 5 real faults studied were found in current releases of two real tools which
make them especially motivating for our study. Furthermore, we emphasize that our results
may be helpful in supporting and complementing the results obtained in similar studies with
OO applications.

The detection of equivalent mutants, an undecidable problem in general, was performed
by hand resulting in a tedious and error-prone task. Thus, we must concede a small margin
of error in the data regarding equivalence. We remark, however, that these results were taken
from three different reasoners providing a fair confidence in the validity of the average data.

C.8 Related studies

Several researchers have reported the result of experimentation with mutation in OO sys-
tems. Kim et al. [89] were the first to introduce Class Mutation as a means to introduce faults
targeting OO specific features in Java. In their work, the authors presented three mutation oper-
ators and applied them to three simple classes (Queue, Dequeue and PriorityQueue) resulting
in 23 mutants studied. Later, in [90], the authors presented a larger empirical study using mu-
tation testing to evaluate the effectiveness of three different OO testing methods. They applied
both traditional (unspecified number) and 15 class–level mutation operators. As subject pro-
gram, they used a subset of five classes (690 LoC) from the experimental system Product Starter
Kit for Java of IBM. Results included the mutation scores for each testing technique under eval-
uation together with killed rates for each class–level operator. As a final remark, the authors
concluded that their work was not extensive and further experimental work would be useful.

C.8. Related studies 161

Ma et al. [100] presented a method to reduce the execution cost of mutation testing. The au-
thors used MuJava to mutate the 266 classes of BCEL, a popular byte code engineering library,
and collected data on the number of mutants generated by 24 class–level mutation operators.
They also selected seven BCEL classes and studied them in depth comparing the performance
of different techniques for the generation and execution of mutants. In a later work [95], the
authors conducted two empirical studies to evaluate the usefulness of class–level mutation op-
erators. They applied 5 traditional and 23 class–level mutants to the BCEL system collecting
generation statistics for each operator. They also reported some conclusions based on a further
study on 11 BCEL classes including killing rates and number of equivalent mutants. Again, the
authors conceded that the study was conducted on one sample program and thus the result
may not be representative.

Smith et al. [156] conducted an empirical study using the MuClipse mutation tool in the
back–end of a small Java web–based application, iTrust, developed for academic purposes. In
their study, the authors studied the behaviour of mutation operators and tried to identify pat-
terns in the implementation code that remained untested. They applied all 15 traditional and
28 class–level operators available in MuClipse to three of the classes of the iTrust system. De-
tailed statistics for each operator were reported and analysed. In a later work [157], the authors
extended their empirical study by mutating three of the classes of the open source library Html-
Parser 1.6.

Offutt et al. [123] studied the number of mutants generated when applying mutation to the
866 classes of six open source Java projects. They applied 29 class–level operators using MuJava
mutation tool. Generation statistics were presented for each operator including approximate
percentage of equivalent mutants calculated using an automated technique. No results about
execution of mutants were provided. Later, in [96], Ma et al. extended the work by studying
the class-level operators that generated less mutants and concluded that some of them could be
eliminated.

Alexander et al. [5] proposed an object mutation approach along with a set of mutation op-
erators for inserting faults into objects implementing well–known Java interfaces (e.g. Iterator).
To show the feasibility of their approach, they applied their mutation operators to five open
source and classroom programs. They mutated, however, only a few locations in one class for
each program resulting in 128 mutants studied.

Grün et al [72] study the impact of equivalent mutants. For their study, the authors mutated
the JAXEN XPATH query engine (12,449 LoC), a popular open source project, resulting in 9,819
mutants. The authors used a custom mutation tool for Java, Javalanche, implementing a small
set of sufficient traditional operators as proposed by Offutt [121] and later adapted by Andrews
et al. [7]. They selected a subset of 20 mutants and studied them in depth reporting result about
the number of equivalent mutants as well as the causes that made them to be equivalent.

Derezinska et al. [55] studied the application of mutation testing in C# programs. In their
work, the authors applied 5 out of 40 mutation operators proposed for C# to nine available
programs with a total size of 298,460 LoC (including comments). Mutation was performed
using their tool CREAM (CREAtor of Mutants). As results, generation and execution statistics
were given for each mutation operator.

When compared to previous studies, our work contributes to the field of practical experi-
mentation with mutation in different ways. We used a real–world application as subject tool for
the mutation instead of using sample or teaching programs [5, 89, 156, 157]. We fully mutated

162 Appendix C. Mutation testing report

three of the reasoners integrated into FaMa rather than selecting a subset of classes from them
[5, 90, 95, 100, 156, 157]. Similarly, we selected a complete set of traditional and class-level op-
erators for Java instead of using a subset of these [55, 72, 89, 100, 123]. Equivalent mutants were
detected and examined manually, rather than using partially effective automated mechanisms
[96, 123], providing helpful feedback about the detection effort and equivalence causes. In ad-
dition to this, we complement our mutation results with the results of some real faults found
in the literature and two real tools for the analysis of feature models. Our results include the
time invested by our generator to detect each fault which provides interesting information to
compare mutants and real bugs. We are not aware of any other work reporting results of real
faults in OO programs in the context of mutation. Similarly, we are not aware of any other ex-
perience report providing results of mutation applied at a functional level considering testing
unit as black-boxes instead of a single class. Finally, to the best of our knowledge, this is the
first work reporting the experience with mutation testing from a user perspective, leading to
a number of lessons learned helpful for both researcher and practitioner in the field following
our steps.

C.9 Conclusions

This article reports our experience gained from using mutation testing to measure the effec-
tiveness of an automated test data generator for the automated analysis of feature models. We
applied both traditional and class–level mutation operators to three of the reasoners integrated
into FaMa, an open source Java framework currently used for teaching, research and commer-
cial purposes. We also compared and contrasted our results with the data obtained from some
motivating faults found in the literature and recent releases of two real tools, FaMa and SPLOT.
A key contribution of our study is that it is reported from a user perspective focusing on how
mutation can help when evaluating a test mechanism. Our results are summarized in a number
of lessons learned emphasizing important issues concerning the effectiveness and limitations
of OO mutation in practice. These may be the seed for further research in the field.

Overall, the mutation scores obtained in our study were supported by the results obtained
when detecting real faults in FaMa and SPLOT. This shows the effectiveness of mutation test-
ing in measuring the ability of our generator in detecting faults. Also, the number of mutants
generated in our subject classes was much lower than the number of mutants generated in pro-
cedural programs supporting the applicability of mutation testing in OO systems. Regarding
drawbacks, we found several practical limitations in the current tool support for mutation that
hindered our work. We also found that development of techniques and tools for the application
of mutation at a system level is a challenging open issue in the mutation testing community.

Appendix D

Statistical analysis data

This appendix describes the statistical analysis of the experimental data obtained during
the evaluation of our evolutionary algorithm presented in Chapter §8. The goal of statistical
analysis is to provide formal and quantitative evidences showing that the algorithm works
and that the results were not obtained by mere chance. The statistical analysis of the data was
performed using the SPSS 17 statistical package [77].

Statistical analysis is usually performed by formulating two contrary hypothesis. The first
hypothesis is referred to as null hypothesis and assume that the algorithm has no impact at all
on the goodness of the results obtained, i.e. there is no difference between our algorithm and
random search. Opposite to the null hypothesis, an alternative hypothesis is formulated, stat-
ing that the algorithm has a significant effect in the quality of the results obtained. Statistical
tests provide a probability (named p-value) ranging in [0,1]. The lower the p-value of a test
is, the more likely that the null hypothesis is false and the alternative hypothesis is true, i.e.
the algorithm works. Alternatively, high p-values indicates more chances of the null hypoth-
esis being true i.e. the algorithm does not work. Researchers have established by convention
that p-values under 0.05 or 0.01 are statistically significant and are sufficient to reject the null
hypothesis, i.e. prove that the algorithm is actually working.

The techniques used to perform the statistical analysis and obtain the p-values depend on
whether the data follow a normal frequency distribution or not. The former assumes that data
has come from a type of probability distribution and makes inferences about the parameters.
The latter makes no assumptions at all. After some preliminary tests (Kolmogorov-Smirnov
and Shapiro-Wilk tests) we concluded that our data did not follow a normal distribution and
thus our tests required the use of so-called non–parametric techniques. In particular, we applied
the Mann-Withney U non–parametric test to the experimental results obtained with our evolu-
tionary algorithm and random search. Tables §D.1 and §D.2 show the results of these tests in
SPSS for the experiments #1 and #2 respectively. For each number of features and percentage of
cross-tree constraints, the values of the test are provided. The p-values are those labelled in the
tables as “Asymp. Sig. (2-tailed)”. As illustrated, tests rejected null hypotheses with extremely
low p-values (zero in most of the cases) for nearly all experimental configurations of both exper-
iments. This, coupled to the results shown in Chapter §8, clearly shows the great superiority
of our algorithm when compared to random search. Only when the percentage of cross tree
constraints (CTC) was 10% in Experiment #1, statistical test accepted some null hypotheses. As
explained in Section §8.4, this problem is due to the small complexity of the analysis on those
models. This problem makes our fitness landscape extremely flat, with scarce and disperse

164 Appendix D. Statistical analysis data

points of high fitness, where a random algorithm can find solutions nearly as good as those
found by our evolutionary algorithm.

We may remark that the statistical results reported in this appendix were obtained with
the help of J. A. Parejo, member of our research group and experienced researcher in the field
of metaheuristics. Together, we plan to prepare a journal article to present our evolutionary
algorithm and the associated experimental evaluation.

For more details about statistical tests and their meaning we refer the reader to [175].

Features CTC Test results

200 10 Mann-Whitney U/Wilcoxon W 103/313

Z -2.631

Asymp. Sig. (2-tailed) 0.009

20 Mann-Whitney U/Wilcoxon W 26.5/236.5

Z -4.704

Asymp. Sig. (2-tailed) 0

30 Mann-Whitney U/Wilcoxon W 22/232

Z -4.834

Asymp. Sig. (2-tailed) 0

40 Mann-Whitney U/Wilcoxon W 42.5/252.5

Z -4.268

Asymp. Sig. (2-tailed) 0

400 10 Mann-Whitney U/Wilcoxon W 73.5/283.5

Z -3.425

Asymp. Sig. (2-tailed) 0.001

20 Mann-Whitney U/Wilcoxon W 36/246

Z -4.44

Asymp. Sig. (2-tailed) 0

30 Mann-Whitney U/Wilcoxon W 33/243

Z -4.522

Asymp. Sig. (2-tailed) 0

40 Mann-Whitney U/Wilcoxon W 8/218

Z -5.21

Asymp. Sig. (2-tailed) 0

600 10 Mann-Whitney U/Wilcoxon W 169.5/379.5

Z -0.826

Asymp. Sig. (2-tailed) 0.409

20 Mann-Whitney U/Wilcoxon W 32.5/242.5

Z -4.532

Asymp. Sig. (2-tailed) 0

165

Features CTC Test results

30 Mann-Whitney U/Wilcoxon W 10.5/220.5

Z -5.131

Asymp. Sig. (2-tailed) 0

40 Mann-Whitney U/Wilcoxon W 4.5/214.5

Z -5.303

Asymp. Sig. (2-tailed) 0

800 10 Mann-Whitney U/Wilcoxon W 141.5/351.5

Z -1.584

Asymp. Sig. (2-tailed) 0.113

20 Mann-Whitney U/Wilcoxon W 69/279

Z -3.545

Asymp. Sig. (2-tailed) 0

30 Mann-Whitney U/Wilcoxon W 9/219

Z -5.172

Asymp. Sig. (2-tailed) 0

40 Mann-Whitney U/Wilcoxon W 18/228

Z -4.928

Asymp. Sig. (2-tailed) 0

1000 10 Mann-Whitney U/Wilcoxon W 93/303

Z -2.896

Asymp. Sig. (2-tailed) 0.004

20 Mann-Whitney U/Wilcoxon W 42.5/252.5

Z -4.261

Asymp. Sig. (2-tailed) 0

30 Mann-Whitney U/Wilcoxon W 51.5/261.5

Z -4.021

Asymp. Sig. (2-tailed) 0

40 Mann-Whitney U/Wilcoxon W 8.5/218.5

Z -5.192

Asymp. Sig. (2-tailed) 0

(a). Not corrected for ties.

(b). Grouping Variable: Algorithm (random or evolutionary)

Table D.1: Experiment #1 Test Statistics

Features CTC Test results

50 10 Mann-Whitney U/Wilcoxon W 0/210

166 Appendix D. Statistical analysis data

Features CTC Test results

Z -5.41

Asymp. Sig. (2-tailed) 0

20 Mann-Whitney U/Wilcoxon W 0/210

Z -5.411

Asymp. Sig. (2-tailed) 0

30 Mann-Whitney U/Wilcoxon W 0/210

Z -5.41

Asymp. Sig. (2-tailed) 0

40 Mann-Whitney U/Wilcoxon W 2/212

Z -5.356

Asymp. Sig. (2-tailed) 0

100 10 Mann-Whitney U/Wilcoxon W 0/210

Z -5.41

Asymp. Sig. (2-tailed) 0

20 Mann-Whitney U/Wilcoxon W 0/210

Z -5.41

Asymp. Sig. (2-tailed) 0

30 Mann-Whitney U/Wilcoxon W 2/212

Z -5.356

Asymp. Sig. (2-tailed) 0

40 Mann-Whitney U/Wilcoxon W 0/210

Z -5.41

Asymp. Sig. (2-tailed) 0

150 10 Mann-Whitney U/Wilcoxon W 6/216

Z -5.248

Asymp. Sig. (2-tailed) 0

20 Mann-Whitney U/Wilcoxon W 1/211

Z -5.383

Asymp. Sig. (2-tailed) 0

30 Mann-Whitney U/Wilcoxon W 0/210

Z -5.41

Asymp. Sig. (2-tailed) 0

40 Mann-Whitney U/Wilcoxon W 0/210

Z -5.41

Asymp. Sig. (2-tailed) 0

200 10 Mann-Whitney U/Wilcoxon W 0/210

Z -5.41

167

Features CTC Test results

Asymp. Sig. (2-tailed) 0

20 Mann-Whitney U/Wilcoxon W 4/214

Z -5.302

Asymp. Sig. (2-tailed) 0

30 Mann-Whitney U/Wilcoxon W 0/210

Z -5.41

Asymp. Sig. (2-tailed) 0

250 10 Mann-Whitney U/Wilcoxon W 12/222

Z -5.085

Asymp. Sig. (2-tailed) 0

20 Mann-Whitney U/Wilcoxon W 22/232

Z -4.815

Asymp. Sig. (2-tailed) 0

30 Mann-Whitney U/Wilcoxon W 75/285

Z -3.381

Asymp. Sig. (2-tailed) 0.001

(a). Not corrected for ties.

(b). Grouping Variable: Algorithm (random or evolutionary)

Table D.2: Experiment #2 Test Statistics

168 Appendix D. Statistical analysis data

Appendix E

Acronyms

BDD. Binary Decision Diagram.

BeTTy. BEnchmarking and TesTing on the analYsis of feature models.

CNF. Conjunctive Normal Form.

CSP. Constraint Satisfaction Problem.

FaMa. FeAture Model Analyzer.

FM. Feature Model

SAT. Satisfiability Problem.

SPL. Software Product Line.

SPLOT. Software Product Lines Online Tools.

RACER. Renamed ABox and Concept Expression Reasoner.

SXFM. Simple XML Feature Model format.

XML. eXtensible Mark–up Language.

170 Appendix E. Acronyms

Bibliography

[1] L. Abo, F. Kleinermann, and O. D. Troyer. Applying semantic web technology to feature
modeling. In Proceedings of the ACM Symposium on Applied Computing (SAC), pages
1252–1256, New York, NY, USA, 2009. ACM. DOI: 10.1145/1529282.1529563

[2] D. Ackley. A connectionist machine for genetic hillclimbing. Kluwer Academic Publish-
ers, Norwell, MA, USA, 1987

[3] W. Afzal, R. Torkar, and R. Feldt. A systematic review of search-based testing for non-
functional system properties. Information and Software Technology, 51(6):957–976, 2009.
DOI: 10.1016/j.infsof.2008.12.005

[4] AHEAD Tool Suite. http://www.cs.utexas.edu/users/schwartz/ATS.html, accessed October
2010

[5] R. T. Alexander, J. Bieman, S. Ghosh, and B. Ji. Mutation of java objects. International
Symposium on Software Reliability Engineering, 0:341, 2002. DOI: 10.1109/ISSRE.2002.
1173285

[6] Alloy Analyzer, http://alloy.mit.edu/, accessed January 2010

[7] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing ex-
periments? In Proceedings of the 27th International Conference on Software Engineering
(ICSE), pages 402–411, New York, NY, USA, 2005. ACM. DOI: 10.1145/1062455.1062530

[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
description logic handbook: theory, implementation, and applications. Cambridge Uni-
versity Press, New York, NY, USA, 2003

[9] R. Bachmeyer and H. Delugach. A conceptual graph approach to feature modeling. In
Proceedings of the 15th International Conference on Conceptual Structures (ICCS), pages
179–191, Berlin, Heidelberg, 2007. Springer-Verlag. DOI: 10.1007/978-3-540-73681-3_14

[10] T. Back, D. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Computation.
IOP Publishing Ltd., Bristol, UK, UK, 1997

[11] D. Batory. Feature models, grammars, and propositional formulas. In Software Product
Lines Conference (SPLC), volume 3714 of Lecture Notes in Computer Sciences, pages
7–20. Springer–Verlag, 2005. DOI: 10.1007/11554844_3

172 Bibliography

[12] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated analysis of feature models:
Challenges ahead. Communications of the ACM, December:45–47, 2006. DOI: 10.1145/
1183236.1183264

[13] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. IEEE Transac-
tions on Software Engineering, 30(6):355–371, 2004

[14] B. Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New York,
NY, USA, 1990

[15] D. Benavides. On the Automated Analyisis of Software Product Lines using Feature
Models. A Framework for Developing Automated Tool Support. PhD thesis, University
of Seville, 2007

[16] D. Benavides, A. Ruiz-Cortés, R. Corchuelo, and A. Durán. Seeking for extra-functional
variability. In Proceedings of the ECOOP Workshop on Modeling Variability for Object-
Oriented Product Lines, Darmstadt, Germany, 2003

[17] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Coping with automatic reasoning on soft-
ware product lines. In Proceedings of the 2nd Groningen Workshop on Software Vari-
ability Management, November 2004

[18] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on feature mo-
dels. In 17th International Conference on Advanced Information Systems Engineering
(CAiSE), volume 3520 of Lecture Notes in Computer Sciences, pages 491–503. Springer–
Verlag, 2005. DOI: 10.1007/11431855_34

[19] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Using constraint programming to reason
on feature models. In The Seventeenth International Conference on Software Engineering
and Knowledge Engineering (SEKE), pages 677–682, 2005

[20] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Segura. A survey on the automated
analyses of feature models. In Jornadas de Ingeniería del Software y Bases de Datos
(JISBD), pages 367–376, Sitges, Barcelona, Spain, 2006

[21] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models 20
years later: A literature review. Information Systems, 35(6):615 – 636, 2010. DOI: 10.1016/
j.is.2010.01.001

[22] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A first step towards a frame-
work for the automated analysis of feature models. In Managing Variability for Software
Product Lines: Working With Variability Mechanisms, 2006

[23] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Using Java CSP solvers in
the automated analyses of feature models. LNCS, 4143:389–398, 2006. DOI: 10.1007/
11877028

[24] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. FAMA: Tooling a framework
for the automated analysis of feature models. In Proceeding of the First International
Workshop on Variability Modelling of Software-intensive Systems (VAMOS), pages 129–
134, 2007

[25] BeTTy Framework. http://www.isa.us.es/betty, accessed November 2010

Bibliography 173

[26] S. Beydeda. Self-metamorphic-testing components. In Computer Software and Ap-
plications Conference, Annual International, pages 265–272, September 2006. DOI:
10.1109/COMPSAC.2006.161

[27] BigLever. Biglever software gears. http://www.biglever.com/, accessed June 2010

[28] R. V. Binder. Testing object-oriented systems: models, patterns, and tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999

[29] B. Bollig and I. Wegener. Improving the variable ordering of OBDDs is NP-complete.
IEEE Transactions on Computers, 45(9):993–1002, 1996. DOI: 10.1109/12.537122

[30] J. Bosch. From software product lines to software ecosystems. In Proceedings of the 13th
International Software Product Line Conference (SPLC), pages 111–119, Pittsburgh, PA,
USA, 2009. Carnegie Mellon University

[31] J. Bradbury, J. Cordy, and J. Dingel. Exman: A generic and customizable framework
for experimental mutation analysis. Mutation Analysis, Workshop on, 0:4, 2006. DOI:
10.1109/MUTATION.2006.5

[32] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, 35(8):677–691, 1986

[33] W. Chan, S. Cheung, and K. Leung. A metamorphic testing approach for online testing of
service-oriented software applications. International Journal of Web Services Research, 4
(2):61–81, 2007

[34] W. Chan, T. Chen, and H. Lu. A metamorphic approach to integration testing of context-
sensitive middleware-based applications. In Proceedings of the Fifth International Con-
ference on Quality Software (QSIC), pages 241–249, Washington, DC, USA, 2005. IEEE
Computer Society. DOI: 10.1109/QSIC.2005.3

[35] W. Chan, S. Cheung, and K. Leung. Towards a metamorphic testing methodology for
service-oriented software applications. In Proceedings of the Fifth International Con-
ference on Quality Software (QSIC), pages 470–476, Washington, DC, USA, 2005. IEEE
Computer Society. DOI: 10.1109/QSIC.2005.67

[36] T. Chen, J. Ho, H. Liu, and X. Xie. An innovative approach for testing bioinformatics
programs using metamorphic testing. BMC Bioinformatics, 10(1), 2009. DOI: 10.1186/
1471-2105-10-24

[37] T. Chen, S. Cheung, and S. Yiu. Metamorphic testing: a new approach for generating next
test cases. Technical report HKUST-CS98-01, University of Science and Technology, Hong
Kong, 1998

[38] T. Chen, J. Feng, and T. Tse. Metamorphic testing of programs on partial differential
equations: a case study. In Proceedings of the 26th International Computer Software and
Applications Conference, pages 327–333, 2002

[39] T. Chen, D. Huang, T. Tse, and Z. Zhou. Case studies on the selection of useful relations in
metamorphic testing. In Proceedings of the 4th Ibero-American Symposium on Software
Engineering and Knowledge Engineering (JIISIC), pages 569–583, 2004

[40] T. Chen, F. Kuo, Y. Liu, and A. Tang. Metamorphic testing and testing with special values.
In Proceedings of the 5th International Conference on Software Engineering, Artificial
Intelligence, Networking and Paralell/Distributed Computing, 2004

174 Bibliography

[41] T. Chen, T. Tse, and Z. Zhou. Semi-proving: an integrated method based on global sym-
bolic evaluation and metamorphic testing. In Proceedings of the ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, pages 191–195. ACM, 2002

[42] T. Chen, T. Tse, and Z. Zhou. Fault-based testing without the need of oracles. Information
and Software Technology, 45(1):1–9, 2003

[43] P. Chevalley and P. Thévenod-Fosse. A mutation analysis tool for java programs. Interna-
tional Journal on Software Tools for Technology Transfer (STTT), 5(1):90–103, November
2003. DOI: 10.1007/s10009-002-0099-9

[44] Choco solver. http://choco.emn.fr/, accessed October 2010

[45] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. SEI Series
in Software Engineering. Addison–Wesley, August 2001

[46] S. Cook. The complexity of theorem-proving procedures. In Conference Record of Third
Annual ACM Symposium on Theory of Computing, pages 151–158, 1971

[47] L. Copeland. A Practitioner’s Guide to Software Test Design. Artech House, Inc., Nor-
wood, MA, USA, 2003

[48] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques, and
Applications. ADDISON, May 2000

[49] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using feature models.
In Third Software Product Line Conference (SPLC), pages 266–282. Springer, LNCS 3154,
2004

[50] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing cardinality-based feature models
and their specialization. Software Process: Improvement and Practice, 10(1):7–29, 2005

[51] K. Czarnecki and P. Kim. Cardinality-based feature modeling and constraints: A progress
report. In Proceedings of the International Workshop on Software Factories At OOPSLA,
2005

[52] M. Dean and G. Schreiber. OWL web ontology language reference. W3C recommenda-
tion, W3C, February 2004

[53] R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34–41, 1978. DOI: 10.1109/C-M.1978.218136

[54] R. DeMillo and A. Offutt. Constraint-based automatic test data generation. IEEE Trans-
actions on Software Engineering, 17(9):900–910, 1991. DOI: 10.1109/32.92910

[55] A. Derezinska and A. Szustek. Tool-supported advanced mutation approach for veri-
fication of C# programs. In Proceedings of the Third International Conference on De-
pendability of Computer Systems DepCoS-RELCOMEX, pages 261–268, Washington,
DC, USA, 2008. IEEE Computer Society. DOI: 10.1109/DepCoS-RELCOMEX.2008.51

[56] O. Djebbi, C. Salinesi, and D. Diaz. Deriving product line requirements: the red-pl guid-
ance approach. Asia-Pacific Software Engineering Conference, 0:494–501, 2007. DOI:
10.1109/ASPEC.2007.63

Bibliography 175

[57] L. Etxeberria, G. Sagardui, and L. Belategi. Modelling variation in quality attributes.
In First International Workshop on Variability Modelling of Software–intensive Systems
(VaMoS), 2007

[58] FaMa Tool Suite. http://www.isa.us.es/fama/, accessed October 2010

[59] S. Fan and N. Zhang. Feature model based on description logics. In Knowledge-Based
Intelligent Information and Engineering Systems, 2006

[60] D. Fernandez-Amoros, R. Heradio, and J. Cerrada. Inferring information from feature
diagrams to product line economic models. In Proceedings of the Sofware Product Line
Conference, 2009

[61] Feature Modeling Plug-in. http://gp.uwaterloo.ca/fmp/, accessed October 2010

[62] P. Frankl, S. Weiss, and C. Hu. All-uses vs mutation testing: an experimental comparison
of effectiveness. Journal of Systems and Software, 38(3):235–253, 1997. DOI: 10.1016/
S0164-1212(96)00154-9

[63] J. Galindo, D. Benavides, and S. Segura. Debian packages repositories as software product
line models. towards automated analysis. In Proceedings of the 1st International Work-
shop on Automated Configuration and Tailoring of Applications (ACoTA), Antwerp, Bel-
gium, 2010

[64] R. Gheyi, T. Massoni, and P. Borba. A theory for feature models in alloy. In Proceedings
of the ACM SIGSOFY First Alloy Workshop, pages 71–80, Portland, United States, nov
2006

[65] R. Gheyi, T. Massoni, and P. Borba. Algebraic laws for feature models. Journal of Univer-
sal Computer Science, 14(21):3573–3591, 2008. DOI: 10.3217/jucs-014-21-3573

[66] GNU Prolog, http://www.gprolog.org, accessed October 2010

[67] D. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic
algorithms. In G. J. E. Rawlins, editor, Foundations of Genetic Algorithms, pages 69–93.
San Francisco, CA: Morgan Kaufmann, 1991

[68] A. Gotlieb and B. Botella. Automated metamorphic testing. In Computer Software and
Applications Conference, 2003. COMPSAC 2003. Proceedings. 27th Annual International,
pages 34 – 40, 3-6 2003

[69] Graphviz. . http://www.graphviz.org/, accessed October 2010

[70] M. Grindal, J. Offutt, and S. Andler. Combination testing strategies: a survey. Software
Testing, Verification and Reliability, 15(3):167–199, 2005. DOI: 10.1002/stvr.319

[71] M. Griss, J. Favaro, and M. d’Alessandro. Integrating feature modeling with the RSEB.
In Proceedings of the Fifth International Conference on Software Reuse, pages 76–85,
Canada, 1998

[72] B. Grün, D. Schuler, and A. Zeller. The impact of equivalent mutants. In Proceedings of
the 4th International Workshop on Mutation Testing, 2009

[73] G. Halmans and K. Pohl. Communicating the variability of a software–product family to
customers. Journal on Software and Systems Modeling, 2(1):15–36, 2003

176 Bibliography

[74] A. Hemakumar. Finding contradictions in feature models. In First International Work-
shop on Analyses of Software Product Lines (ASPL), pages 183–190, 2008

[75] R. Hierons, M. Harman, and S. Danicic. Using program slicing to assist in the detection
of equivalent mutants. Software Focus, 9(4):233–262, 1999

[76] J. Holland. Adaptation in natural and artificial systems: An introductory analysis with
applications to biology, control, and artificial intelligence. University of Michigan Press,
1975

[77] IBM. SPSS 17 Statistical Package. http://www.spss.com/, accessed November 2010

[78] 829-2008. IEEE standard for software and system test documentation. Technical report,
2008. DOI: 10.1109/IEEESTD.2008.4578383

[79] JaCoP. http://jacop.osolpro.com/, accessed October 2010

[80] JavaBDD. http://javabdd.sourceforge.net/, accessed October 2010

[81] Jester. http://jester.sourceforge.net/, accessed May 2010

[82] Y. Jia and M. Harman. An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering, 99, 2010. DOI: 10.1109/TSE.2010.62

[83] Jumble. http://jumble.sourceforge.net/, accessed May 2010

[84] JUnit. http://www.junit.org/, accessed October 2010

[85] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented Domain Anal-
ysis (FODA) Feasibility Study. Technical report CMU/SEI-90-TR-21, SEI, 1990

[86] K. Kang, J. Lee, and P. Donohoe. Feature–Oriented Product Line Engineering. IEEE
Software, 19(4):58–65, August 2002

[87] G. Kapfhammer. The Computer Science Handbook, chapter Software Testing. CRC Press,
edition 2nd, June, 2004

[88] A. Karatas, H. Oguztüzün, and A. Dogru. Mapping extended feature models to con-
straint logic programming over finite domains. In 4th International Software Product
Lines Conference, pages 286–299, 2010

[89] S. Kim, J. Clark, and J. Mcdermid. Assessing test set adequacy for object-oriented pro-
grams using class mutation. In Proceedings of the 3rd Symposium on Software Technol-
ogy (SoST), pages 72–83, Buenos Aires, Argentina, September 1999

[90] S. Kim, J. Clark, and J. Mcdermid. Investigating the effectiveness of object-oriented test-
ing strategies with the mutation method. Software Testing, Verification and Reliability,
11:207–225, 2001

[91] P. Klint. A meta-environment for generating programming environments. ACM Trans-
actions on Software Engineering and Methodology, 2(2):176–201, April 1993. DOI:
10.1145/151257.151260

[92] J. Koza. Genetic programming: on the programming of computers by means of natural
selection. MIT Press, Cambridge, MA, USA, 1992

Bibliography 177

[93] S. Lau. Domain analysis of e-commerce systems using feature–based model templates.
master’s thesis. Dept. of ECE, University of Waterloo, Canada, 2006

[94] F. Loesch and E. Ploedereder. Optimization of variability in software product lines. In
Proceedings of the 11th International Software Product Line Conference (SPLC), pages
151–162, Washington, DC, USA, 2007. IEEE Computer Society. DOI: 10.1109/SPLINE.
2007.31

[95] Y. Ma, M. Harrold, and Y. Kwon. Evaluation of mutation testing for object-oriented pro-
grams. In Proceedings of the 28th International Conference on Software Engineering
(ICSE), pages 869–872, New York, NY, USA, 2006. ACM. DOI: 10.1145/1134285.1134437

[96] Y. Ma, Y. Kwon, and S. Kim. Statistical investigation on class mutation operators. ETRI
Journal, 31:140–150, 2009

[97] Y. Ma, Y. Kwon, and J. Offutt. Inter-class mutation operators for java. In Proceedings of
the 13th International Symposium on Software Reliability Engineering (ISSRE), page 352,
Washington, DC, USA, 2002. IEEE Computer Society

[98] Y. Ma and J. Offutt. Description of class mutation operators for java, http://cs.gmu.edu/
~offutt/mujava/mutopsClass.pdf, 2005

[99] Y. Ma and J. Offutt. Description of method-level mutation operators for java, http://cs.
gmu.edu/~offutt/mujava/mutopsMethod.pdf, 2005

[100] Y. Ma, J. Offutt, and Y. Kwon. Mujava: An automated class mutation system. Software
Testesting, Verification and Reliability, 15(2):97–133, 2005. DOI: 10.1002/stvr.v15:2

[101] M. Mannion. Using first-order logic for product line model validation. In Proceedings
of the Second Software Product Line Conference (SPLC), LNCS 2379, pages 176–187, San
Diego, CA, 2002. Springer

[102] M. Mannion and J. Camara. Theorem proving for product line model verification. In
Software Product-Family Engineering (PFE), volume 3014 of Lecture Notes in Computer
Science, pages 211–224. Springer Berlin / Heidelberg, 2003. DOI: 10.1007/b97155

[103] F. Marić. Formalization and implementation of modern sat solvers. Journal of Automated
Reasoning, 43(1):81–119, June 2009. DOI: 10.1007/s10817-009-9127-8

[104] P. R. Mateo, M. Usaola, and A. Offutt. Mutation at system and functional levels. In Pro-
ceedings of the 5th International Workshop on Mutation Analysis (MUTATION), Paris,
France, 6 April 2010

[105] P. McMinn. Search-based software test data generation: a survey: Research articles. Soft-
ware Testing Verification and Reliability., 14(2):105–156, 2004. DOI: 10.1002/stvr.v14:2

[106] M. Mendonca, T. Bartolomei, and D. Cowan. Decision-making coordination in col-
laborative product configuration. In Proceedings of the 2008 ACM symposium on
Applied computing (SAC), pages 108–113, New York, NY, USA, 2008. ACM. DOI:
10.1145/1363686.1363715

178 Bibliography

[107] M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T.: Software Product Lines Online
Tools. In Companion to the 24th ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 761–
762, Orlando, Florida, USA, October 2009. ACM. DOI: 10.1145/1639950.1640002

[108] M. Mendonca, D. Cowan, W. Malyk, and T. Oliveira. Collaborative product configura-
tion: Formalization and efficient algorithms for dependency analysis. Journal of Soft-
ware, 3(2):69–82, 2008

[109] M. Mendonca, A. Wasowski, and K. Czarnecki. SAT–based analysis of feature models is
easy. In Proceedings of the International Sofware Product Line Conference (SPLC), 2009

[110] M. Mendonca, A. Wasowski, K. Czarnecki, and D. Cowan. Efficient compilation tech-
niques for large scale feature models. In 7th International Conference on Generative
Programming and Component Engineering (GPCE), pages 13–22, 2008. Available at
10.1145/1449913.1449918

[111] D. Messerschmitt and C. Szyperski. Software Ecosystem: Understanding an Indispens-
able Technology and Industry, volume 1. The MIT Press, edition 1, 2005

[112] Metrics, http://metrics.sourceforge.net/, accessed May 2010

[113] Moskitt Feature Modeler. http://www.pros.upv.es/mfm, accessed October 2010

[114] C. Murphy and G. Kaiser. Metamorphic runtime checking of non-testable programs.
Technical report cucs-012-09, Dept. of Computer Science, Columbia University, 2009

[115] C. Murphy, K. Shen, and G. Kaiser. Automatic system testing of programs without test
oracles. In Proceedings of the eighteenth International Symposium on Software Testing
and Analysis (ISSTA), pages 189–200, New York, NY, USA, 2009. ACM. DOI: 10.1145/
1572272.1572295

[116] C. Murphy, K. Shen, and G. Kaiser. Using JML runtime assertion checking to automate
metamorphic testing in applications without test oracles. In Conference on Software Test-
ing, Verification, and Validation, volume 0, pages 436–445, Los Alamitos, CA, USA, 2009.
IEEE Computer Society. DOI: 10.1109/ICST.2009.19

[117] G. J. Myers and C. Sandler. The Art of Software Testing. John Wiley & Sons, 2004

[118] S. Nakajima. Non-clausal encoding of feature diagram for automated diagnosis. In 14th
International Software Product Lines Conference, pages 420–424, 2010

[119] S. Nakajima. Semi-automated diagnosis of foda feature diagram. In Proceedings of the
2010 ACM Symposium on Applied Computing (SAC), pages 2191–2197, New York, NY,
USA, 2010. ACM. DOI: 10.1145/1774088.1774550

[120] A. Offutt and W. Craft. Using compiler optimization techniques to detect equivalent
mutants. Journal of Software Testing, Verification, and Reliability, 4:131–154, 1994

[121] A. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf. An experimental determination of
sufficient mutant operators. ACM Transactions on Software Engineering Methodology,
5(2):99–118, 1996. DOI: 10.1145/227607.227610

[122] A. Offutt and J. Pan. Automatically detecting equivalent mutants and infeasible paths.
Software Testing, Verification and Reliability, 7(3):165–192, 1997. DOI: 10.1002/(SICI)
1099-1689(199709)7:3%3C165::AID-STVR143%3E3.0.CO;2-U

Bibliography 179

[123] J. Offutt, Y. Ma, and Y. Kwon. The class-level mutants of mujava. In Proceedings of the
2006 international workshop on Automation of Software Test (AST), pages 78–84, New
York, NY, USA, 2006. ACM. DOI: 10.1145/1138929.1138945

[124] OPL studio, http://www.ilog.com/products/oplstudio/, accessed January 2010

[125] A. Osman, S. Phon-Amnuaisuk, and C. Ho. Knowledge based method to validate feature
models. In First International Workshop on Analyses of Software Product Lines, pages
217–225, 2008

[126] A. Osman, S. Phon-Amnuaisuk, and C. Ho. Using first order logic to validate feature
model. In Third International Workshop on Variability Modelling in Software-intensive
Systems (VaMoS), pages 169–172, 2009

[127] J. Peña, M. Hinchey, A. Ruiz-Cortés, and P. Trinidad. Building the core architecture of
a multiagent system product line: With an example from a future nasa mission. In 7th
International Workshop on Agent Oriented Software Engineering. LNCS, 2006

[128] Pellet: the open source OWL reasoner, http://clarkparsia.com/pellet/, accessed October
2010

[129] K. Pohl, G. Böckle, , and F. van der Linden. Software Product Line Engineering: Founda-
tions, Principles, and Techniques. Springer–Verlag, 2005

[130] R. Pressman. Software Engineering: A Practitioner’s Approach. McGrap-Hill, edition
fifth, 2001

[131] pure::variants. http://www.pure-systems.com/, accessed October 2010

[132] RACER, http://www.racer-systems.com/, accessed January 2010

[133] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95,
1987. DOI: 10.1016/0004-3702(87)90062-2

[134] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow. Extending feature diagrams with
uml multiplicities. In 6th World Conference on Integrated Design & Process Technology
(IDPT), June 2002

[135] M. Riebisch, D. Streitferft, and I. Pashov. Modeling variability for object-oriented product
lines. In ECOOP 2003 Workshop Reader. Springer LNCS, 2003

[136] F. Roos-Frantz and S. Segura. Automated analysis of orthogonal variability models. a first
step. In S. Thiel and K. Pohl, editors, In proceedings of the First Workshop on Analyses
of Software Product Lines (ASPL), pages 243–248, Limerick, Ireland, September 2008

[137] M. Sannella. The skyblue constraint solver and its applications. In Proceedings of the
1993 Workshop on Principles and Practice of Constraint Programming, pages 385–406.
MIT Press, 1993

[138] Sat4j. http://www.sat4j.org/, accessed May 2010

[139] S. Schach. Testing: principles and practice. ACM Comput. Surv., 28(1):277–279, 1996.
DOI: 10.1145/234313.234422

[140] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Generic semantics of feature
diagrams. Computer Networks, 51(2):456–479, Feb 2007. DOI: 10.1016/j.comnet.2006.
08.008

180 Bibliography

[141] D. Schuler and A. Zeller. (un-)covering equivalent mutants. In Proceedings of the 2010
Third International Conference on Software Testing, Verification and Validation (ICST),
pages 45–54, Washington, DC, USA, 2010. IEEE Computer Society. DOI: 10.1109/ICST.
2010.30

[142] S. Segura. Automated analysis of feature models using atomic sets. In First Workshop on
Analyses of Software Product Lines (ASPL), pages 201–207, Limerick, Ireland, September
2008

[143] S. Segura, D. Benavides, and A. Ruiz-Cortés. Functional testing of feature model analysis
tools. a first step. In P. Knauber, A. Metzger, and J. McGregor, editors, Fifth International
Workshop on Software Product Lines Testing (SPLiT), pages 36–39, Limerick, Ireland,
September 2008

[144] S. Segura, D. Benavides, A. Ruiz-Cortés, and M. Escalona. From requirements to web
system design. an automated approach using graph transformations. In A. Estévez,
V. Pelechano, and A. Vallecillo, editors, Actas de Talleres de Ingeniería del Software y
Bases de Datos, volume 1, pages 61–69, Zaragoza. Spain, Semptember 2007

[145] S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Open source tools for software
product line development. In Open Source and Product Lines (OSSPL), Kyoto. Japan,
September 2007

[146] S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trinidad. A taxonomy of variability in
web service flows. In S. Cohen and R. Krut, editors, Service Oriented Architectures and
Product Lines (SOAPL), Kyoto. Japan, September 2007

[147] S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Toward automated refactoring
of feature models using graph transformations. In E. Pimentel, editor, VII Jornadas sobre
Programación y Lenguajes (PROLE), pages 275–284, Zaragoza. Spain, September 2007

[148] S. Segura, D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated merging of feature
models using graph transformations. Post-proceedings of the Second Summer School
on Generative and Transformational Techniques in Software Engineering, LNCS, 5235:
489–505, 2008

[149] S. Segura, D. Benavides, and A. Ruiz-Cortés. FaMa Test Suite v1.2. Technical report
ISA-10-TR-01, ISA Research Group, 2010. Available at http://www.isa.us.es/

[150] S. Segura, D. Benavides, and A. Ruiz-Cortés. Functional testing of feature model analysis
tools: A test suite. IET Software, 2010 (in press)

[151] S. Segura, R. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated test data generation
on the analyses of feature models: A metamorphic testing approach. In International
Conference on Software Testing, Verification and Validation, pages 35–44, Paris, France,
2010. IEEE press. DOI: 10.1109/ICST.2010.20

[152] S. Segura, R. Hierons, D. Benavides, and A. Ruiz-Cortés. Mutation testing on an object-
oriented framework: An experience report. Information and Software Technology Special
Issue on Mutation Testing, 2010 (in press)

[153] S. Segura, R. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated metamorphic testing
on the analyses of feature models. Information and Software Technology, 53:245–258,
2011. DOI: 10.1016/j.infsof.2010.11.002

Bibliography 181

[154] S. Segura and A. Ruiz-Cortés. Benchmarking on the automated analyses of feature mo-
dels: A preliminary roadmap. In Third International Workshop on Variability Modelling
of Software-intensive Systems, pages 137–143, Seville, Spain, 2009

[155] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. The variability model of
the linux kernel. In Fourth International Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), Linz, Austria, January 2010

[156] B. Smith and L. Williams. An empirical evaluation of the mujava mutation operators.
Testing: Academic and Industrial Conference Practice and Research Techniques - MUTA-
TION, 0:193–202, 2007. DOI: 10.1109/TAIC.PART.2007.12

[157] B. Smith and L. Williams. On guiding the augmentation of an automated test suite via
mutation analysis. Empirical Software Engineering, 14(3):341–369, 2009. DOI: 10.1007/
s10664-008-9083-7

[158] SMV system , http://www.cs.cmu.edu/~modelcheck, accessed January 2010

[159] S.P.L.O.T.: Software Product Lines Online Tools. http://www.splot-research.org/, accessed
October 2010

[160] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and S. Ferber. Introducing pla
at bosch gasoline systems: Experiences and practices. In International Sofware Product
Line Conference (SPLC), pages 34–50, 2004

[161] D. Streitferdt, M. Riebisch, and I. Philippow. Details of formalized relations in feature
models using ocl. In Proceedings of 10th IEEE International Conference on Engineering of
Computer–Based Systems (ECBS 2003), Huntsville, USA. IEEE Computer Society, pages
45–54, 2003

[162] V. Sugumaran, S. Park, and K. Kang. Software product line engineering. Commun. ACM,
49(12):28–32, 2006. DOI: 10.1145/1183236.1183260

[163] J. Sun, H. Zhang, Y. Li, and H. Wang. Formal semantics and verification for feature
modeling. In Proceedings of the 10th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS), 2005

[164] T. Thüm, D. Batory, and C. Kästner. Reasoning about edits to feature models. In Inter-
national Conference on Software Engineering, pages 254–264, 2009. DOI: 10.1109/ICSE.
2009.5070526

[165] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro. Automated error
analysis for the agilization of feature modeling. Journal of Systems and Software, 81
(6):883–896, 2008. DOI: 10.1016/j.jss.2007.10.030

[166] P. Trinidad, D. Benavides, and A. Ruiz-Cortés. Improving decision making in software
product lines product plan management. In J. Dolado, I. Ramos, and J. Cuadrado-
Gallego, editors, Proceedings of the V ADIS Workshop on Decision Support in Software
Engineering, volume 120. CEUR Workshop Proceedings (CEUR-WS.org), 2004

[167] P. Trinidad, D. Benavides, and A. Ruiz-Cortés. A first step detecting inconsistencies in
feature models. In CAiSE Short Paper Proceedings, 2006

[168] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A.Jimenez. Fama framework.
In 12th Software Product Lines Conference (SPLC), page 359, 2008. DOI: 10.1109/SPLC.
2008.50

182 Bibliography

[169] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and M. Toro. Explanations for agile
feature models. In Procceedings of the 1st International Workshop on Agile Product Line
Engineering (APLE), Baltimore, Maryland, USA, 2006

[170] P. Trinidad, D. Benavides, S. Segura, and A. Ruiz-Cortés. Fama: hacia el análisis au-
tomático de modelos de características. In Actas de las XII Jornadas de Ingeniería del
Software y Bases de Datos (demostración de herramientas)., 2007

[171] P. Trinidad, A. Ruiz-Cortés, D. Benavides, and S. Segura. Three-dimensional feature dia-
grams visualization. In 2nd International Workshop on Visualisation in Software Product
Line Engineering (ViSPLE 2008), Limerick, Ireland, 2008

[172] P. Trinidad and A. R. Cortés. Abductive reasoning and automated analysis of feature mo-
dels: How are they connected? In Third International Workshop on Variability Modelling
of Software-Intensive Systems. Proceedings, pages 145–153, 2009

[173] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1995

[174] M. Tseng and J. Jiao. Handbook of Industrial Engineering: Technology and Operations
Management, chapter Mass Customization, page 685. Wiley, 2001

[175] I. Valiela. Doing science: design, analysis, and communication of scientific research. Ox-
ford University Press New York, 2001

[176] P. van den Broek and I. Galvao. Analysis of feature models using generalised feature
trees. In Third International Workshop on Variability Modelling of Software-intensive
Systems, number 29. In ICB-Research Report, pages 29–35, Essen, Germany, January 2009.
Universität Duisburg-Essen

[177] T. van der Storm. Variability and component composition. In 8th International Confer-
ence on Software Reuse: Methods, Techniques and Tools (ICSR), volume 3107 of Lecutre
Notes in Computer Sciences, pages 157–166. Springer, July 2004

[178] T. van der Storm. Generic feature-based software composition. In Software Composition,
volume 4829 of LNCS, pages 66–80. Springer, 2007

[179] A. van Deursen and P. Klint. Domain–specific language design requires feature descrip-
tions. Journal of Computing and Information Technology, 10(1):1–17, 2002

[180] T. von der Massen and H. Lichter. Requiline: A requirements engineering tool for soft-
ware product lines. In F. van der Linden, editor, Proceedings of the Fifth International
Workshop on Product Family Engineering (PFE), LNCS 3014, Siena, Italy, 2003. Springer
Verlag

[181] T. von der Massen and H. Litcher. Determining the variation degree of feature models.
In Software Product Lines Conference, LNCS 3714, pages 82–88, 2005

[182] S. Voß. Meta-heuristics: The state of the art. In Proceedings of the Workshop on Lo-
cal Search for Planning and Scheduling-Revised Papers in ECAI, pages 1–23. Springer-
Verlag, London, UK, 2001

[183] B. Wang, Z. Hu, Y. Xiong, H. Zhao, W. Zhang, and H. Mei. Tolerating inconsistency in fea-
ture models. In 3rd Workshop on Living With Inconsistency in Software Development,
held with 25th IEEE/ACM International Conference on Automated Software Engineer-
ing, 2010

Bibliography 183

[184] B. Wang, Y. Xiong, Z. Hu, H. Zhao, W. Zhang, and H. Mei. A dynamic-priority based
approach to fixing inconsistent feature models. In D. Petriu, N. Rouquette, and O. Hau-
gen, editors, Model Driven Engineering Languages and Systems, volume 6394 of Lecture
Notes in Computer Science, pages 181–195. Springer Berlin / Heidelberg, 2010. DOI:
10.1007/978-3-642-16145-2_13

[185] H. Wang, Y. Li, J. Sun, H. Zhang, and J. Pan. A semantic web approach to feature mod-
eling and verification. In Workshop on Semantic Web Enabled Software Engineering
(SWESE), November 2005

[186] H. Wang, Y. Li, J. un, H. Zhang, and J. Pan. Verifying Feature Models using OWL. Journal
of Web Semantics, 5:117–129, June 2007. DOI: 10.1016/j.websem.2006.11.006

[187] J. Wegener, K. Grimm, M. Grochtmann, and H. Sthamer. Systematic testing of real-time
systems. In Proceedings of the Fourth International Conference on Software Testing and
Review (EuroSTAR), 1996

[188] J. Wegener, H. Sthamer, B. Jones, and D. Eyres. Testing real-time systems using genetic al-
gorithms. Software Quality Control, 6(2):127–135, 1997. DOI: 10.1023/A:1018551716639

[189] E. Weyuker. On testing non-testable programs. The Computer Journal, 25(4):465–470,
1982

[190] J. White, D. Benavides, D. Schmidt, P. Trinidad, B. Dougherty, and A. Ruiz-Cortes. Au-
tomated diagnosis of feature model configurations. Journal of Systems and Software, 83
(7):1094–1107, 2010. DOI: 10.1016/j.jss.2010.02.017

[191] J. White, B. Doughtery, and D. Schmidt. Selecting highly optimal architectural feature
sets with filtered cartesian flattening. Journal of Systems and Software, 82(8):1268–1284,
2009. DOI: 10.1016/j.jss.2009.02.011

[192] J. White, B. Doughtery, D. Schmidt, and D. Benavides. Automated reasoning for multi-
step software product-line configuration problems. In Proceedings of the Sofware Prod-
uct Line Conference, pages 11–20, 2009

[193] J. White and D. Schmidt. Filtered cartesian flattening: An approximation technique for
optimally selecting features while adhering to resource constraints. In First International
Workshop on Analyses of Software Product Lines (ASPL), pages 209–216, 2008

[194] J. White, D. Schmidt, D. B. P. Trinidad, and Ruiz-Cortés. Automated diagnosis of product-
line configuration errors in feature models. In Proceedings of the 12th Sofware Product
Line Conference (SPLC), Limerick, Ireland, September 2008

[195] X. Xie, W. Wong, T. Chen, and B. Xu. Spectrum-Based Fault Localization Without Test Or-
acles. Technical report, Technical Report, UTDCS-7-10, Department of Computer Science,
University of Texas at Dallas, 2010

[196] H. Yan, W. Zhang, H. Zhao, and H. Mei. An optimization strategy to feature models’
verification by eliminating verification-irrelevant features and constraints. In ICSR, pages
65–75, 2009. DOI: 10.1007/978-3-642-04211-9_7

[197] W. Zhang, H. Mei, and H. Zhao. Feature-driven requirement dependency analysis and
high-level software design. Requirements Engineering, 11(3):205–220, June 2006. DOI:
10.1007/s00766-006-0033-x

184 Bibliography

[198] W. Zhang, H. Zhao, and H. Mei. A propositional logic-based method for verification of
feature models. In J. Davies, editor, ICFEM 2004, volume 3308, pages 115–130. Springer–
Verlag, 2004. DOI: 10.1007/b102837

[199] W. Zhang, H. Yan, H. Zhao, and Z. Jin. A bdd–based approach to verifying clone-
enabled feature models’ constraints and customization. In 10th International Confer-
ence on Software Reuse (ICSR), LNCS, pages 186–199. Springer, 2008. DOI: 10.1007/
978-3-540-68073-4_18

[200] Z. Zhou, D. Huang, T. Tse, Z. Yang, H. Huang, and T. Chen. Metamorphic testing and
its applications. In Proceedings of the 8th International Symposium on Future Software
Technology, pages 346–351, 2004

[201] H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy. ACM Comput.
Surv., 29(4):366–427, 1997. DOI: 10.1145/267580.267590

This document was typeset on // using RC–BOOK α. for LATEX2ǫ. Should you want
to use this document class, please send mail to contact@tdg-seville.info.

