
Constraint-based Planning and Scheduling
Techniques for the Optimized Management of

Business Processes

Irene Barba Rodrı́guez, 48861238-S

irenebr@us.es

Supervised by Dr. Carmelo Del Valle Sevillano

Thesis Dissertation submitted to the Department of Computer Languages
and Systems of the University of Sevilla in partial fulfilment

of the requirements for the degree of Ph.D. in Computer Science.

(Thesis Dissertation)

irenebr@us.es

Agradecimientos

A través de estas lı́neas quiero expresar mi agradecimiento a todas aquellas per-
sonas que me han apoyado durante estos años.

En especial, agradecer al Dr. Carmelo Del Valle Sevillano, director de esta
tesis, la orientación, el seguimiento y la supervisión continua de la misma, además
de su paciencia y el apoyo recibido a lo largo de esta investigación.

Agradezco especialmente a la Dra. Barbara Weber la gran ayuda desintere-
sada recibida, el interés mostrado por mi trabajo, sus valiosas aportaciones a esta
investigación, y los buenos consejos recibidos.

Quisiera hacer extensiva mi gratitud a mis compañeros y amigos del Depar-
tamento de Lenguajes y Sistemas Informáticos por tantas risas, confidencias, y
momentos compartidos tanto dentro como fuera del trabajo. Un sincero agradec-
imiento a los miembros del grupo de investigación Quivir por su amistad, apoyo,
ayuda en todo momento, y colaboración.

Un agradecimiento muy especial merece la comprensión, paciencia y el ánimo
recibidos de mi familia y amigos, que me han acompañado tanto en los momentos
de crisis como en los momentos de felicidad. El desarrollo deesta tesis nunca
hubiera sido posible sin el amparo incondicional de mis padres, Manolo y Carmen,
de mi hermano Dani y Josefi, y sin las continuas sonrisas de misniños Rocı́o, Sara
y Dani Jr. Gracias a Rafa que, de forma incondicional, entendió mis ausencias y
mis malos momentos siempre con una sonrisa, gracias por hacer fácil lo difı́cil.

Muchas gracias a todos.

i

Acknowledgements

Through these lines I want to express my gratitude to all those who have supported
me over these years.

Especially thank Dr. Carmelo Del Valle Sevillano, advisor of this thesis, for
his guidance and continuous supervision of the thesis, as well as for his patience
and support during this research.

I am especially grateful to Dr. Barbara Weber for her disinterested help, her
interest in my work, her valuable contributions to this research, and her good
advices.

I would like to extend my gratitude to my colleagues and friends of the Depar-
tamento de Lenguajes y Sistemas Informáticos for many laughter, confidences,
and shared moments both inside and outside of work. A sincerethanks to the
members of Quivir research group for their friendship, support, help at all time,
and collaboration.

A special thanks to my family and friends for their understanding, patience and
encouragement, who have accompanied me both in times of crisis and in times of
happiness. The development of this thesis would never have been possible without
the unconditional support of my parents, Manolo and Carmen,my brother Dani
and Josefi, and without the constant smiles of my children Rocio, Sara and Dani
Jr. Thanks to Rafa who, unconditionally, understood my absences and my bad
times always with a smile, thanks for making the difficult easy.

Thank you very much everyone.

iii

Resumen

Un proceso de negocio (business process, BP) se puede definircomo un conjunto
de actividades que se ejecutan de forma coordinada en un entorno organizativo y
técnico, y que conjuntamente alcanzan un objetivo de negocio. Hoy en dı́a, existe
un interés creciente en la alineación de los sistemas de información de forma ori-
entada a procesos, y por lo tanto se considera de vital importancia la gestión eficaz
de los BPs (business process management, BPM). Una instancia de un proceso de
negocio es análoga a un plan en inteligencia artificial (AI). Además, en BPM,
un plan también debe incluir una asignación adecuada de recursos a las activi-
dades del proceso (scheduling). Por lo tanto, existe un interés creciente en aplicar
técnicas de planning y scheduling (P&S) para la mejora del ciclo de vida de BPM.
Teniendo en cuenta que en general los problemas de P&S incluyen restricciones
y la optimización de ciertas funciones objetivo, la programación con restricciones
(constraint programming, CP) proporciona un framework adecuado para mode-
lar y resolver este tipo de problemas. Además, existe bastante paralelismo entre
CP y los lenguajes de modelado de BPs basados en restricciones. En la presente
memoria de Tesis, se aplican técnicas de P&S basadas en restricciones en difer-
entes etapas del ciclo de vida de BPM de forma coordinada paramejorar ası́ el
proceso completo de gestión de los BPs.

Concretamente, en primer lugar, se propone la aplicación de técnicas de P&S
a especificaciones de procesos de negocio declarativas paragenerar planes opti-
mizados de ejecución de BPs. Dichos planes pueden ser utilizados para asistir a
los usuarios durante diferentes etapas del ciclo de vida de BPM, de forma que cier-
tas funciones objetivos sean optimizadas. Estos planes de ejecución optimizados
pueden ser utilizados en varias aplicaciones innovadoras,por ejemplo, (1) asistir
a los usuarios durante la ejecución de BPs flexibles en la optimización de ciertas
funciones objetivo mediante la generación de recomendaciones, ya que incremen-
tar la flexibilidad tı́picamente implica decrementar la gu´ıa para el usuario, y por
tanto la ejecución de BPs declarativos supone en general unreto significativo para
los usuarios que lo ejecutan; y (2) generar automáticamente modelos de BPs op-
timizados, ya que la especificación imperativa y manual de los modelos de los
BPs puede ser un problema muy complejo, consumir gran cantidad de recursos

v

vi

temporales y humanos, causar algunos errores, y puede dar lugar a modelos no
optimizados.

En segundo lugar, la presente memoria de Tesis incluye una propuesta para el
modelado y la ejecución de BPs que conllevan la selección yel orden de las activi-
dades a ejecutar (planning), además de la asignación adecuada de recursos (sche-
duling), considerando la optimización de varias funciones objetivo y el alcance
de ciertos objetivos. La principal novedad es que todas las decisiones (incluso la
selección de actividades) se toman en run-time considerando los valores reales de
ejecución, y por lo tanto los BPs se gestionan de forma flexible y eficiente.

Abstract

A business process (BP) consists of a set of activities whichare performed in coor-
dination in an organizational and technical environment, and which jointly realize
a business goal. Nowadays, there exists a growing interest in aligning informa-
tion systems in a process-oriented way as well as in the effective management of
BPs (Business Process Management, BPM). An instance of a BP is analogous to
a plan in Artificial Intelligence (AI). In BPM, a plan also includes allocation of
resources and target start and end times (scheduling). Therefore, the application
of planning and scheduling (P&S) techniques to enhance the BPM life cycle has
been analyzed in many research works in past years. Since P&Sproblems in-
clude constraints and certain objective functions need to be optimized, constraint
programming (CP) supplies a suitable framework for modelling and solving these
problems. Furthermore, several parallels between CP and constraint-based BP
modelling languages exist. In the current Thesis Dissertation, constraint-based
P&S techniques are applied at different stages of the BPM life cycle in a coordi-
nated way to improve overall system functionality.

Specifically, in a first place, the application of P&S techniques to declara-
tive process specifications to generate optimized BP enactment plans is proposed.
These optimized plans can then be used in several interesting and innovative ap-
plications, e.g., (1) assisting users during flexible process execution to optimize
performance goals of the processes through recommendations, since increasing
flexibility typically implies decreased user guidance by the BPM and thus poses
significant challenges to its users; and (2) automatic generation of optimized BP
models, since the manual specification of imperative BP models can form a very
complex problem, can consume a great quantity of time and human resources,
may cause some failures, and may lead to non-optimized models.

Secondly, the current Thesis Dissertation presents a proposal for modelling
and enacting BPs that involve the selection and the orderingof the activities to be
executed (planning), besides the resource allocation (scheduling), considering the
optimization of several objective functions and the reach of some goals. The main
novelty of this proposal is that all decisions (even the activity selection) are taken

vii

viii

in run-time considering the actual parameters of the execution, and hence the BP
is managed in an efficient and flexible way.

Contents

List of Figures xii

List of Tables xvii

1 Introduction 1
1.1 Generalities. 1
1.2 Motivation and Contributions. 2
1.3 Structure. 5
1.4 Publications. 6
1.5 Research Projects. 8

2 Background 9
2.1 Business Process Management. 9

2.1.1 BPM Life Cycle . 10
2.1.2 Process Modelling. 12

2.2 Planning & Scheduling. 19
2.2.1 Scheduling. 19
2.2.2 Planning . 22
2.2.3 Integrating P&S . 24

2.3 Constraint Programming. 24
2.3.1 Constraint Satisfaction Problems. 25
2.3.2 Solving the CSP. 27
2.3.3 Constraint Programming for Planning and Scheduling. . 30

2.4 AI Planning and Scheduling for BPM. 31
2.4.1 P&S for the Process Design & Analysis Phase. 33
2.4.2 P&S for the Process Enactment Phase. 33

3 From Constraint-based Specifications to Optimized BP Enactment
Plans 35
3.1 Introduction. 35

3.1.1 Motivation . 35

ix

x CONTENTS

3.1.2 Contribution . 35
3.2 ConDec-R. 37

3.2.1 Extending ConDec with Estimates and Resource Availa-
bilities . 38

3.2.2 Extending ConDec with Parallel Execution of Activities . 39
3.3 From ConDec-R to Optimized Enactment Plans. 41

3.3.1 Translating the ConDec-R Model as a CSP Model. . . . 41
3.3.2 Global Constraints and Filtering Rules. 45
3.3.3 Solving the COP. 48

3.4 Empirical Evaluation. 49
3.4.1 Experimental Design. 49
3.4.2 Experimental Results and Data Analysis. 52

3.5 Related Work. 54

4 User Recommendations for the Optimized Execution of BPs 55
4.1 Introduction. 55

4.1.1 Motivation . 55
4.1.2 Contribution . 55

4.2 Method for Generating Recommendations. 56
4.2.1 Generating Recommendations on Possible Next Execu-

tion Steps. 57
4.3 A Running Example . 60

4.3.1 Build-time Phase. 62
4.3.2 Run-time Phase. 62

4.4 Empirical Evaluation. 64
4.4.1 Search Algorithms. 65
4.4.2 Experimental Design. 71
4.4.3 Experimental Results and Data Analysis. 76

4.5 Discussion and Limitations. 80
4.6 Related Work. 81

5 From Optimized BP Enactment Plans to Optimized BP Models 83
5.1 Introduction. 83

5.1.1 Motivation . 83
5.1.2 Contribution . 84

5.2 From Optimized Enactment Plans to Optimized Business Process
Models . 86

5.3 A Running Example . 88
5.3.1 The Travel Agency Problem. 88
5.3.2 ConDec-R Specification for the Travel Agency Problem. 88

CONTENTS xi

5.3.3 Optimized Enactment Plan and Optimized BP Model for
the Travel Agency Problem. 89

5.3.4 Dynamic Programming for Combining Solutions of the
Travel Agency Problem 92

5.4 Empirical Evaluation. 94
5.4.1 Experimental Design. 94
5.4.2 Experimental Results and Data Analysis. 96

5.5 Discussion and Limitations. 99
5.6 Related Work. 100

6 Planning and Scheduling of Business Processes in Run-Time 103
6.1 Introduction. 103

6.1.1 Motivation . 103
6.1.2 Contribution . 103

6.2 Framework for the Enactment of BPs Involving P&S Decisions . . 106
6.3 A Case of Study. 108

6.3.1 The Multi-mode Repair Planning Problem. 108
6.3.2 BPMN Model for the Multi-mode Repair Planning Problem117

6.4 Empirical Evaluation. 121
6.4.1 Experimental Design. 121
6.4.2 Experimental Results and Data Analysis. 124

6.5 Related Work. 127

7 Conclusions 129

8 Future Work 133

Appendices 137

A ConDec-R Templates 137

B Filtering Rules for ConDec-R Templates 143
B.1 Existence(A, N). 143
B.2 Absence(A, N) . 144
B.3 Exactly(A, N) . 144
B.4 Responded Existence(A, B). 145
B.5 CoExistence(A, B) . 145
B.6 Precedence(A, B). 146
B.7 Response(A, B). 147
B.8 Succession(A, B). 147
B.9 Alternate Precedence(A, B). 148
B.10 Alternate Response(A, B). 148

xii CONTENTS

B.11 Alternate Succession(A, B). 151
B.12 Chain Precedence(A, B). 151
B.13 Chain Response(A, B). 152
B.14 Chain Succession(A, B). 154
B.15 Responded Absence(A, B) and Not CoExistence (A, B). 154
B.16 Negation Response, Precedence, Succession. 155
B.17 Negation Alternate Precedence(A, B). 155
B.18 Negation Alternate Response(A, B). 156
B.19 Negation Alternate Succession(A, B). 157
B.20 Negation Chain Succession(A, B). 157

C Algorithms for Generating BPMN Models 159
C.1 Complexity Analysis . 166

D AI Techniques for Solving the Multi-mode Repair Planning Problem 169
D.1 Constraint-based Approach. 169

D.1.1 Variables of the CSP. 169
D.1.2 Constraints of the CSP. 171

D.2 PDDL Specification. 175

Bibliography 181

List of Figures

2.1 Typical BPM Life Cycle. 11
2.2 Simple Constraint-based Model.. 15
2.3 Some BPMN elements.. 18
2.4 Example of BPMN model.. 19
2.5 A disjunctive graph for a job shop problem.. 20
2.6 Constraint Programming.. 25
2.7 Map coloring problem.. 27

3.1 AI P&S techniques for the generation of optimized BP enactment
plans. 37

3.2 ConDec-R process model specification.. 38
3.3 From ConDec-R specification to BP enactment plan.. 40
3.4 RepeatedActivity and SchedulingActivity types. 42
3.5 Filtering Rule for the Existence Template. 45
3.6 Filtering Rule for the Precedence Template. 46
3.7 Filtering Rule for the Alternate Precedence Template. 47

4.1 Generating Recommendations on Possible Next ExecutionSteps.. 58
4.2 Build-time for the Running Example.. 61
4.3 Run-time for the Running Example.. 63
4.4 Generic ConDec Models.. 72
4.5 Experimental results regarding build-time phase.. 77
4.6 Experimental results regarding run-time phase.. 80
4.7 Average quality of solutions which are found by any technique

after 0%, 25%, 50% and 75% of the BP enactment.. 81

5.1 AI P&S techniques for the generation of optimized BP models. . . 85
5.2 ConDec-R Specification for the Travel Agency Problem.. 90
5.3 Optimized Gantt chart and BPMN for the Travel Agency Problem

for #P = 4, #A = 1 and #B = 1.. 92

xiii

xiv LIST OF FIGURES

5.4 Optimized Gantt chart and BPMN for the Travel Agency Problem
for #P = 4, #A = 2 and #B = 2.. 93

5.5 Overall completion time depending on #A #B.. 98

6.1 Planning & Scheduling of general BPs in run-time.. 104
6.2 Planning & Scheduling of Repair Planning BP in run-time.. . . . 105
6.3 Architecture for enacting BPs which involve P&S decisions. . . . 107
6.4 Connection graph representing the reparable system ABCDE. . . . 109
6.5 The And/Or graph for a reparable system made of five components.112
6.6 The simplified repair And/Or graph for a reparable systemmade

of five components.. 113
6.7 Types of Relations . 114
6.8 The extended simplified repair And/Or graph with relations (5)

and (6) between tasks. 115
6.9 Transformation from And/Or Graph relations to BPMN relations . 117
6.10 Example of the repair And/Or graph for a reparable system made

of three components.. 119
6.11 BPMN diagram of the repair problem of Fig. 6.10.. 120

A.1 Precedence templates whennt(B)> 0. 138

B.1 Filtering Rule for the Existence Template. 143
B.2 Filtering Rule for the Absence Template. 144
B.3 Filtering Rule for the Exactly Template. 144
B.4 Filtering Rule for the Responded Existence Template. 145
B.5 Filtering Rule for the CoExistence Template. 146
B.6 Filtering Rule for the Precedence Template. 146
B.7 Filtering Rule for the Response Template. 147
B.8 Filtering Rule for the Alternate Precedence Template. 149
B.9 Filtering Rule for the Alternate Response Template. 150
B.10 Filtering Rule for the Chain Precedence Template. 152
B.11 Filtering Rule for the Chain Response Template. 153
B.12 Filtering Rule for the Responded Absence Template. 154
B.13 Filtering Rule for the Negation Response Template. 155
B.14 Filtering Rule for the Negation Alternate Precedence Template . . 156
B.15 Filtering Rule for the Negation Alternate Response Template . . . 156
B.16 Filtering Rule for the Negation Chain Succession Template 158

C.1 UML Diagram of Types for the Optimized BPMN Generation.. . 161

D.1 The extended simplified repair And/Or graph with relations (5)
and (6) between tasks. 171

LIST OF FIGURES xv

D.2 PDDL specification for theconnection, repair anddisconnection-
to-connectionactions.. 177

D.3 PDDL specification for themoveandchange-configurationactions.178
D.4 PDDL Problem specification of Fig. D.1.. 178

List of Tables

2.1 Concepts mapping between AI P&S and BPM.. 32

3.1 Results on a set of ConDec-R problems from JSS instances. . . . 53

4.1 BP activities. 61
4.2 Generic constraint-based BP models.. 73
4.3 Type and Complexity of ConDec-R Filtering Rules.. 74
4.4 Independent variables.. 75
4.5 Response variables in build-time.. 75
4.6 Response variables in run-time.. 76
4.7 ID for the considered Relation-Negation.. 76
4.8 Average percentage of optimal solutions found in 5-minutes time

limit when considering all techniques.. 78

5.1 Activities of the travel agency problem.. 89
5.2 Templates of the travel agency problem.. 91
5.3 Response variables. 94
5.4 %OCT of the best solution found and method (CP or DP) that

reaches it . 95
5.5 %Busy A versus #P. 99
5.6 %Busy B versus #P. 99

6.1 Number of And, Or nodes (average). 121
6.2 Fraction of Optimal solutions which are found by CBP. 122
6.3 Execution time (average) with CBP. 123
6.4 Fraction of better solutions for problems including 10%multi-

mode activities with CBP. 124
6.5 Execution time (average) with SGPlan. 125
6.6 Fraction of better solutions for problems including 10%multi-

mode activities with SGPlan. 125
6.7 Fraction of SGPlan better or equal solutions (compared to CBP) . 126

xvii

xviii LIST OF TABLES

D.1 Cost Constraints. 174
D.2 Predicates for the repair planning problem. 175
D.3 Functions for the repair planning problem. 176

Chapter 1

Introduction

1.1 Generalities

Nowadays, a growing interest in aligning information systems in a process-oriented
way exists (Dumas et al., 2005; Weske, 2007) as well as in the effective manage-
ment of business processes (BPs). A BP consists of a set of activities which are
performed in coordination in an organizational and technical environment (Weske,
2007), and which jointly realize a business goal. Business Process Management
(BPM) can be seen as supporting BPs using methods, techniques, and software
to design, enact, control and analyze operational processes involving humans, or-
ganizations, applications, and other sources of information (van der Aalst et al.,
2003). Similarly, Workflow Management Systems (van der Aalst and van Hee,
2002; Georgakopoulos et al., 1995) consist of methods and technologies for mana-
ging the flow of work in organizations. In a related way, BPM Systems (BPMSs)
are software tools that support the management of the BPs.

Traditional BPM life cycle (Weske, 2007) includes several phases: (1) Process
Design & Analysis, i.e., BPs are identified, reviewed, validated, and represented
by business process models, (2) System Configuration, i.e.,BPs are implemented
by configuring a BPM system, (3) Process Enactment, i.e., theBPM system con-
trols the execution of BP instances as defined in the BP model,and (4) Evaluation,
i.e., information regarding the BP enactment is evaluated in order to identify and
improve the quality of the BP model and their implementations.

An instance of a business process is analogous to a plan in AI.In AI planning
(Ghallab et al., 2004), the activities to be executed are not established, i.e., before
generating a plan. Therefore, it is necessary to select the activities to be executed
from a set of alternatives and to establish an ordering.

Moreover, the execution of most BPs entails, in some way, scheduling deci-
sions since the activities to be executed may compete for some shared resources.

1

2 CHAPTER 1. INTRODUCTION

In these cases, it is necessary to allocate the resources in asuitable way, usually
optimizing some objectives. During process execution, scheduling decisions are
typically made by the BPM systems (BPMSs), by automaticallyassigning activi-
ties to resources (Russell et al., 2005). The area of scheduling (Brucker and Knust,
2006; Pinedo, 2008) includes problems in which it is necessary to determine an
enactment plan for a set of activities related by temporal constraints. Furthermore,
the execution of every activity requires the use of resources, hence they may com-
pete for limited resources.

Taking into account the parallels between Planning & Scheduling (P&S) and
BPM, currently there exists a growing interest in the application of P&S tech-
niques to enhance different stages of the BPM life cycle. However, from our point
of view, several connections between both disciplines remain to be exploited. In
the current Thesis Dissertation, P&S techniques are applied at different stages of
the BPM life cycle in a coordinated way to improve overall system functionality.

Since a P&S problem includes constraints and the optimization of certain ob-
jective functions, constraint programming (CP) (Rossi et al., 2006) supplies a
suitable framework for modelling and solving problems involving P&S aspects
(Salido, 2010). Furthermore, a wide scope of BP constraint-based modelling lan-
guages are used and analyzed in many research works. Severalparallels between
CP and constraint-based BP modelling languages exist, and hence CP seems to
be promising for modelling and solving problems related to BPM. In the current
Thesis Dissertation, several constraint-based proposalsare analyzed for modelling
and solving P&S problems related to BPM.

1.2 Motivation and Contributions

Typically, business processes are specified in an imperative way, i.e., an activity
sequence that will result in obtaining the related corporate goal is defined. How-
ever, declarative BP models are increasingly used and theirusage allows the user
to specify what has to be done instead of having to specify howit has to be done.
Declarative BP model specifications facilitate the human work involved, avoid
failures, and obtain a better optimization, since the tacitnature of human know-
ledge is often an obstacle to eliciting accurate process models (Ferreira and Fer-
reira, 2006).

The advantages of using declarative languages for BP modelling instead of
imperative languages are discussed in several studies, e.g., (Wainer et al., 2004;
Pesic et al., 2007; Rychkova et al., 2008a; Fahland et al., 2009, 2010; Pichler
et al., 2011). Such advantages includes support for partial workflows (Wainer
et al., 2004), absence of over-specification (Pesic et al., 2007), and provision of
more maneuvering room for end users (Pesic et al., 2007).

1.2. MOTIVATION AND CONTRIBUTIONS 3

Due to their flexible nature, frequently several ways to execute declarative
process models exist, i.e., different enactment plans can be related to the same
declarative BP model. Each one of these plans leads, in general, to get different
values for several objective functions (e.g., overall completion time or cost) so
that certain enactment plans are considered optimal regarding to some objective
functions.

In this way, an AI-based method forgenerating optimized BP enactment
plans from declarative process specifications(cf. Chapter3) is proposed in or-
der to optimize the performance of a process, according to objective functions
like minimizing the overall completion time. For the generation of these op-
timized enactment plans, activities to be executed have to be selected and or-
dered (planning problem (Ghallab et al., 2004)) considering both control-flow
and resource constraints (scheduling problem (Brucker and Knust, 2006; Pinedo,
2008)). For P&S the activities such that the process objective function is opti-
mized, a constraint-based approach is proposed which is in charge of determining
how it has to be done in order to satisfy the constraints imposed by the declarative
problem specifications, and to attain an optimization of certain objective func-
tions. The generation of optimized BP enactment plans from declarative process
specifications can greatly improve the overall BPM life cycle (Weske, 2007), e.g.,
the optimized plans can be used for simulation (Rozinat et al., 2009), time pre-
diction (van der Aalst et al., 2011), recommendations (Schonenberg et al., 2008;
Haisjackl and Weber, 2010; Barba et al., 2011), and generation of optimized BP
models (R-Moreno et al., 2007; Alves et al., 2008; González-Ferrer et al., 2009;
Barba and Del Valle, 2011b), which are innovative and interesting topics to be
addressed in BPM environments nowadays.

Specifically, these optimized BP enactment plans are used for giving users
of flexible BPMSs recommendations during run-time(cf. Chapter4) in the
Process Enactment phase so that performance objective functions of processes are
optimized. As mentioned, due to their flexible nature, frequently several ways to
execute declarative process models exist. Typically, given a certain partial trace
(reflecting the current state of the process instances), users can choose from seve-
ral enabled activities which activity to execute next. Thisselection, however, can
be quite challenging since performance goals of the processshould be considered,
and users often do not have an understanding of the overall process. Moreover, op-
timization of objective functions requires that resource capacities are considered.
Therefore, recommendation support is needed during BP execution, especially for
inexperienced users (van Dongen and van der Aalst, 2005). In our proposal, re-
commendations on possible next steps are generated taking the partial trace and
the optimized plans into account. Furthermore, in the proposed approach, replan-
ning is supported if actual traces deviate from the optimized enactment plans.

4 CHAPTER 1. INTRODUCTION

Other interesting application of the generated optimized BP enactment plans
which is addressed in the current work is supporting processanalysts in the BP
Design & Analysis phase by automaticallygenerating optimized imperative BP
models(cf. Chapter5). The BP Design & Analysis phase has the goal to gene-
rate a BP model, i.e., to define the set of activities and the execution constraints
between them (Weske, 2007), by formalizing the informal BP description using a
particular BP modelling notation. This phase plays an important role in the BPM
life cycle, since it greatly influences the remaining phasesof this cycle. Busi-
ness process models are usually defined manually by businessanalysts through
imperative languages considering activity properties, constraints imposed on the
relations between the activities as well as different performance objectives. Fur-
thermore, allocating resources is an additional challengesince scheduling may
significantly impact business process performance. Therefore, the manual speci-
fication of process models can be very complex and time-consuming, potentially
leading to non-optimized models or even errors can be generated. Moreover, the
result of process modelling is typically a static plan of actions, which is diffi-
cult to adapt to changing procedures or to different business goals. To overcome
these problems, the automatic generation of optimized imperative BP models from
constraint-based specifications is proposed through creating optimized BP enact-
ment plans (cf. Chapter3). In this way, process models can be adapted to chang-
ing procedures or to different business goals, since imperative process models can
dynamically be generated from static constraint-based specifications. Moreover,
the automatic generation of BP models can deal with complex problems of great
size in a simple way. Therefore, a wide study of several aspects can be carried
out, such as those related to the requirement of resources ofdifferent roles, or
the estimated completion time for the BP enactment, by starting from different
declarative specifications.

On the other hand, the execution of most BPs entails, in some way, schedu-
ling decisions since the activities to be executed may compete for some shared
resources. In these cases, it is necessary to allocate the resources in a suitable
way, usually optimizing some objectives. During process execution, scheduling
decisions are typically made by the BPM systems (BPMSs), by automatically as-
signing activities to resources (Russell et al., 2005). To lesser measure, planning
problems are present in BP executions when, in some points, several possible exe-
cution branches exist, and the selection of the suitable onedepends on the BP
goal and/or on the optimization of some functions. Since BP models are typically
specified in an imperative way, most of the planning decisions are taken in the
modelling phase. Specifically, the ordering and the selection of the activities to
be executed (planning) in the BP enactment are specified in the BP design time,
when only estimated values for several parameters can be analyzed. However,
there are BPs which entail complex planning decisions whichcan greatly be in-

1.3. STRUCTURE 5

fluenced by the values of several unpredictable parameters,whose actual value
is known in run time. In this way, a proposal formodelling and enacting BPs
that involve P&S decisions(cf. Chapter6) is presented. The main contribu-
tion is that both P&S decisions are taken in BP run-time, providing the process
management with efficiency and flexibility, and avoiding thedrawbacks of taking
these decisions during the design phase. As an example, a complex and represen-
tative problem including P&S, the repair planning problem,is managed through
the proposed approach. For solving this problem, a constraint-based approach is
proposed. Moreover, a PDDL specification together with the results obtained by
a generic planer are analyzed.

1.3 Structure

The rest of the document is organized as follows:

• Chapter2 includes background related to the areas which are addressed
in the current Thesis Dissertation, i.e., (1) business process management,
(2) planning & scheduling, and (3) constraint programming.Moreover, the
connections and parallels which are given between these areas are analyzed.

• Chapter3 details the constraint-based approach which is used for P&S
the BP activities so that optimized enactment plans are generated from
constraint-based specifications.

• Chapter4 includes how the generated optimized enactment plans are used
to improve the Process Enactment phase by generating recommendations
during run-time.

• Chapter5 describes how the generated optimized BP enactment plans are
used to enhance the Process Design & Analysis phase by automatically ge-
nerating optimized imperative BP models.

• Chapter6 details our proposal for modelling and enacting BP that involve
planning and scheduling decisions in run-time so that Process Design &
Analysis and Process Enactment phases are leveraged.

• Chapter7 summarizes the main conclusions which were obtained during
the development of this thesis.

• Lastly, Chapter8 shows some future work which is intended to be ad-
dressed.

6 CHAPTER 1. INTRODUCTION

1.4 Publications

During the development of the current Thesis Dissertation,some research works
have been published in different Workshops, Conferences and Journals. These
publications1 support the validation of the scientific quality of this thesis.

1. Irene Barba, Barbara Weber, Carmelo Del Valle.”Supporting the Opti-
mized Execution of Business Processes through Recommendations”. 7th
International Workshop on Business Process Intelligence (BPI 2011,Ran-
ked as CORE C in ERA Conference Ranking), BPM 2011 Workshops,
Part I, Springer LNBIP Vol. 99, pp. 135-140, 2012.

2. Irene Barba, Carmelo Del Valle.”A Constraint-based Approach for Plan-
ning and Scheduling Repeated Activities”. ICAPS 201121st International
Workshop on Constraint Satisfaction Techniques for Planning and Sche-
duling Problems (COPLAS 2011, Ranked as CORE B in ERA Confe-
rence Ranking), pp. 55-62, 2011.

3. Irene Barba, Carmelo Del Valle.”A Planning and Scheduling Perspective
for Designing Business Processes from Declarative Specifications”. 3rd
International Conference on Agents and Artificial Intelligence (ISBN:
978-989-8425-40-9) (ICAART 2011, Ranked as CORE C in ERA Con-
ference Ranking), Vol. 1, pp. 562-569, 2011.

4. Irene Barba, Carmelo Del Valle.”Planning and Scheduling of Business
Processes in Run-Time: A Repair Planning Example”. 19th International
Conference on Information Systems Development (ISD 2010,Ranked as
CORE A in ERA Conference Ranking), Information Systems Deve-
lopment, Business Systems and Services: Modeling and Development
(ISBN: 978-1-4419-9645-9 e-ISBN: 978-1-4419-9790-6), Springer, pp.
75-88, 2011.

5. Carmelo Del Valle, Antonio Ḿarquez, Irene Barba.”A CSP Model for
Simple Non-reversible and Parallel Repair Plans”.Journal of Intelligent
Manufacturing (ISSN: 0956-5515 e-ISSN: 1572-8145, ImpactFactor:
1.081 (15/38 Q2)), Vol. 21(1), pp. 165-174, 2010.

6. Irene Barba, Carmelo Del Valle.”A Job-Shop Scheduling Model of Soft-
ware Development Planning for Constraint-based Local Search”. Inter-
national Journal of Software Engineering and Its Applications (ISSN:
1738-9984), Vol. 4(4), pp. 1-16, 2010.

1The publications has been chronologically ordered starting from the most recent publications,
and ending with the oldest publications.

1.4. PUBLICATIONS 7

7. Irene Barba, Carmelo Del Valle.”Una Propuesta PDDL para la Planifi-
cación de la Reparación como Proceso de Negocio”. Apoyo a la Decisión
en Ingenierı́a del Software (ADIS2010)Actas de los Talleres de las Jor-
nadas de Ingenieŕıa del Software y Bases de Datos (ISSN: 1988-3455),
Vol. 4(1), pp. 11-22, 2010.

8. Irene Barba, Carmelo Del Valle, Diana Borrego.”A Multiobjective Cons-
traint Optimization Model for Multimode Repair Plans”.Proceedings of
the 6th International Conference on Informatics in Control, Automa-
tion and Robotics (ISBN: 978-989-8111-99-9) (ICINCO 2009), INSTICC
Press, Vol. 1, pp. 355-358, 2009.

9. Irene Barba, Carmelo Del Valle, Diana Borrego.”A Constraint-based Model
for Multi-objective Repair Planning”.14th IEEE International Confe-
rence on Emerging Technologies and Factory Automation (ISBN: 978-
1-4244-2728-4, ISSN: 1946-0759) (ETFA 2009), art. no. 5347038, 2009.

10. Diana Borrego, Rafael M. Gasca, Marı́a Teresa Ǵomez-Ĺopez, Irene Barba.
”Choreography Analysis for Diagnosing Faulty Activities in Business-to-
Business Collaboration”.20th International Workshop on Principles of
Diagnosis (DX 2009), pp. 171-178, 2009.

11. Irene Barba, Carmelo Del Valle, Diana Borrego.”PDDL Specification for
Multi-objective Repair Planning”.CAEPIA 2009 Workshop on Planning,
Scheduling and Constraint Satisfaction, Springer LNCS Vol. 1548, pp.
21-33, 2009.

12. Irene Barba, Carmelo Del Valle, Diana Borrego.”A Constraint-based Job-
Shop Scheduling Model for Software Development Planning”.Apoyo a la
Decisión en Ingenierı́a del Software (ADIS2010)Actas de los Talleres de
las Jornadas de Ingenieŕıa del Software y Bases de Datos (ISSN 1988-
3455), Vol. 3(1), pp. 1-12, 2009.

13. Irene Barba, Carmelo Del Valle, Diana Borrego.”A Job-Shop Scheduling
Model for Constraint-Based Local Search”.IBERAMIA 2008 Workshop
on Planning, Scheduling and Constraint Satisfaction (ISBN: 972886207-
5), pp. 7-18, 2008.

14. Diana Borrego, Rafael M. Gasca, Marı́a Teresa Ǵomez-Ĺopez, Irene Barba.
”Diagnosing Business Processes Execution using Choreography Analysis”.
Apoyo a la Decisión en Ingenierı́a del Software (ADIS2010)Actas de los
Talleres de las Jornadas de Ingenierı́a del Software y Bases de Datos
(ISSN 1988-3455), Vol. 2, No. 3, pp. 13-24, 2008.

8 CHAPTER 1. INTRODUCTION

15. Irene Barba, Diana Borrego, Carmelo Del Valle, Rafael M. Gasca. ”In-
ferencia de Crónicas Temporales con Programación Lógica Inductiva para
Predicción de Evoluciones”.XII Conferencia de la Asociacíon Espãnola
para la Inteligencia Artificial (ISBN: 978-84-611-8846-8)(CAEPIA 2007),
Vol. 1, pp. 347-356, 2007.

16. Rafael M. Gasca, Carmelo Del Valle, Vı́ctor Cejudo, Irene Barba.”Im-
proving the Computational Efficiency in Symmetrical Numeric Constraint
Satisfaction Problems”.XI Conferencia de la Asociacíon Espãnola para
la Inteligencia Artificial (CAEPIA 2005), Springer LNAI Vol . 4177, pp.
269-279, 2006.

1.5 Research Projects

The development of the current Thesis Dissertation has beenframed in and funded
by some research projects2.

1. Técnicas para la diagnosis, confiabilidad y optimización en los sistemas
de gestíon de procesos de negocio.Ministerio de Ciencia e Innovación
TIN2009-13714(01/01/2010 - 31/12/2012).

2. OPBUS: Mejora de la calidad de procesos mediante tecnologı́as de op-
timización y tolerancia a fallos.Consejerı́a de Innovación, Ciencia y Em-
presa(13/01/2009 - 12/01/2011).

3. Automatización de la deteccíon, diagnosis y tolerancia a fallos en sis-
temas con incertidumbre y en sistemas distribuidos.Ministerio de Edu-
cación y Ciencia DPI2006-15476-C02-00(01/10/2006 - 30/09/2009).

4. TELMEDIA: Monitorizaci ón y deteccíon remota de desviaciones en
terapias con t́ecnicas inteligentes.CITIC (15/06/2005 - 30/05/2006).

2The research projects has been chronologically ordered starting from the most recent projects,
and ending with the oldest projects.

Chapter 2

Background

The current Thesis Dissertation combines aspects of Planning and Scheduling
(P&S) and Constraint Programming (CP) in order to improve different stages of
the Business Process Management (BPM) life cycle. Section2.1 provides back-
grounds regarding BPM, Section2.2 gives an overview of planning and schedu-
ling, and Section2.3 describes the constraint programming paradigm. Finally,
Section2.4 includes how P&S techniques can be applied in order to enhance dif-
ferent stages of a typical BPM life cycle, and summarizes themost related works.

2.1 Business Process Management

In the last years, the effective management of business processes (cf. Def.1) in
organizations became more important, since they need to adapt to the new com-
mercial conditions, as well as to respond to competitive pressures, considering the
business environment and the evaluation of their information systems. Moreover,
in enterprizes an increasing interest in the management of businesses by using
processes exists.

Definition 1. A Business Process(BP) can be defined as a set of related struc-
tured activities whose execution produce a specific serviceor product required by
a particular customer.

In order to use and manage business processes, business analysts need to spe-
cify the BPs through BP models (cf. Def.2) by using a BP modelling language.
In the literature, a wide spectrum of paradigms for BP modelling are presented,
each one entailing different levels of accuracy in the BP elicitation, e.g., declara-
tive and imperative paradigms (cf. Sect.2.1.2). Some examples of BP models are
shown in Figs.2.2, 2.3, which are explained later.

9

10 CHAPTER 2. BACKGROUND

Definition 2. A business process modelconsists of a set of activity models and
execution constraints between them (Weske, 2007).

The modelling of the processes plays an important role in theoverall manage-
ment of BPs (Business Process Management, BPM, cf. Def.3) (Davenport, 1993;
Georgakopoulos et al., 1995). In the current business world, the economic success
of an enterprize increasingly depends on its effectivenessin the management of
its BPs, and hence BPM is an interesting research area which is being widely ana-
lyzed nowadays. In a related way, BPM Systems (cf. Def.4) are software tools
that support the management of the BPs.

Definition 3. Business Process Management(BPM) can be seen as supporting
BPs using methods, techniques, and software to design, enact, control and analyze
operational processes involving humans, organizations, applications, documents
and other sources of information (van der Aalst et al., 2003).

Definition 4. A Business Process Management System(BPMS) is a generic soft-
ware system that is driven by explicit process representations to coordinate the
enactment of business processes (Weske, 2007).

Similarly to BPMSs, Workflow Management Systems (van der Aalst and van
Hee, 2002; Georgakopoulos et al., 1995) consist of methods and technologies that
allow managing the flow of work in organizations. In some cases, the software
BP management tools use temporal information and ignore, insome ways, the
resources to be used, considering them unlimited. This may not be adequate in
different situations, for example when limited resources can be required by dif-
ferent activities at overlapped periods of time. In this way, resource allocation is
only considered to a limited degree in existing BPMSs, and istypically done du-
ring run-time by assigning work to resources. In this ThesisDissertation, resource
perspective is also considered in the BP modelling step, since resource allocations
and scheduling may significantly impact business process performance.

2.1.1 BPM Life Cycle

Traditional BPM Life Cycle (Weske, 2007) (cf. Fig. 2.1) includes several stages
which are related to each other. These stages are organized in a cyclical structure
which shows the logical dependencies between them:

• Process Design & Analysis: In this stage, BPs are identified,reviewed, va-
lidated, and represented by business process models (cf. Def. 2), so that
the informal BP description is formalized using a particular BP modelling
notation. Two steps are considered to create a BP model: (1) draw an initial

2.1. BUSINESS PROCESS MANAGEMENT 11

Process Design

& Analysis

Evaluation

System

Configuration

Process

Enactment

Figure 2.1: Typical BPM Life Cycle.

BP model, and (2) improve this initial model by simulation orBP redesign
techniques. Traditionally, this phase is mostly a human activity. In some
cases, process models can be verified against inconsistencies and errors (van
Dongen, 2007).

• System Configuration: In this phase, BP models are implemented by con-
figuring a BPM system. There are different ways to do so, e.g.,by stating
a set of policies and procedures. Service-oriented architectures as well as
web services for their implementation have gained increasing popularity for
BPMSs implementations recently. Moreover, data-driven approaches to the
flexible enactment of BPs are considered for enactment of human interac-
tion BPs using data dependencies to control process enactment.

• Process Enactment: After completing system configuration stage, BP ins-
tances can be enacted. In this stage, the BPM system controlsthe execution
of BP instances as defined in the BP model. As execution proceeds, the
enactment information must be analyzed due to the possible appearance of
unexpected events.

• Evaluation: In this stage, information regarding the BP enactment is evalua-
ted in order to identify and improve the quality of the BP model and their
implementations. Traditionally, enactment logs are analyzed by using BP
activity monitoring and BP mining techniques.

After the Evaluation phase, BP models are corrected and improved in the BP
Design & Analysis phase if necessary by considering the evaluation information,
and hence closing the cycle which shows the logical dependencies between the
phases of the BPM life.

12 CHAPTER 2. BACKGROUND

In this Thesis Dissertation, the BP Design & Analysis phase is widely analy-
zed since this phase plays an important role in the BPM life cycle for any improve-
ment initiative, and it greatly influences the remaining phases of this cycle. The
BP Design & Analysis phase has the goal to generate a BP model,i.e., to define
the set of activities and the execution constraints betweenthem (Weske, 2007), by
formalizing the informal BP description using a particularBP modelling notation.
Section2.1.2introduces the main paradigms which are used for BP modelling.

2.1.2 Process Modelling

In the literature, a wide spectrum of paradigms for BP modelling are presented.
These different paradigms can be roughly categorized into the two following
classes:

• The declarative BP paradigm focuses on what has to be done instead of
having to specify how it has to be done. Declarative BP modelscapture
the regulatory and internal directives of the business processes in order to
restrict possible options of activity execution. Due to their flexible nature,
frequently several ways to execute declarative process models exist. Dif-
ferent declarative approaches have been proposed, such as the use of cons-
traints, rules, event conditions or other (logical) expressions (e.g., (Dourish
et al., 1996; Joeris, 2000; Wainer and De Lima Bezerra, 2003; van der Aalst
et al., 2009; Goedertier and Vanthienen, 2009)).

• The imperative BP paradigm focuses on defining a precise activity sequence
which establishes how a given set of tasks has to be performed(e.g., (Zis-
man, 1977; Ellis and Nutt, 1993; BPMN, 2011)).

In our proposals, we consider declarative and imperative models. Regarding
declarative models, we focus on constraint-based models, and regarding impera-
tive languages, we consider BPMN.

Constraint-based BP Models

Recently, constraint-based approaches have received increased interest (Vander-
feesten et al., 2008; Pesic, 2008), since they suggest a fundamentally different
way of describing BPs which seems to be promising in respect of the support of
highly dynamic processes (Vanderfeesten et al., 2008; Pesic, 2008). Irrespective
of the chosen approach, requirements imposed by the BPs needto be reflected by
the process model. This means that desired behavior must be supported by the
process model, while forbidden behavior must be prohibited(Pesic et al., 2007;

2.1. BUSINESS PROCESS MANAGEMENT 13

van der Aalst et al., 2009; Montali, 2009). While imperative process models spe-
cify exactly how things have to be done, declarative processmodels focus on what
should be done.

In the literature, several rule-based and constraint-based languages for decla-
rative BP modelling are proposed, among which the work (Glance et al., 1996)
proposes BP grammars for the definition of rules in order to deal with activities
and documents. In (Dourish et al., 1996), the prototype Freeflow is presented,
which includes a constraint-based process modelling formalism, and the use of
declarative dependency relationships. Moreover, (Wainer and De Lima Bezerra,
2003) presents a constraint-based proposal for rules which constrain the BP enact-
ment through preconditions and postconditions of the activities, together with ad-
ditional conditions which must hold in general. In a similarway, (Joeris, 2000)
presents a flexible workflow enactment based on event-condition-action (ECA)
rules. Furthermore, (Lu et al., 2006) proposes a temporal constraint network for
BP execution in order to define selection and scheduling constraints through the
use of temporal intervals.

In our proposal we use ConDec (van der Aalst and Pesic, 2006a) as a basis
for the BP control-flow specification. ConDec is a graphical language based on
Linear Temporal Logic (LTL) (Clarke Jr. et al., 1999) for modelling and enacting
dynamic business processes. It uses an open set of templates, i.e., parameteri-
zed graphical representations of LTL formulas, for the definition of relationships
between activities. These relationships related to the templates must be satisfied
during the execution phase. Each template has a name, a graphical representation
and a semantics given by a LTL formula. LTL (Clarke Jr. et al., 1999) is a widely
used temporal logic for specifying temporal properties that includes four opera-
tors in addition to classical logical operators, i.e.,always, eventually, until and
next time. Besides ConDec (Pesic, 2008), some research works concerning BPs
based on LTL can be found. As an example, (Liu et al., 2007) proposes a method
for the automatic verification of BP models that are translated to finite state ma-
chines through compliance rules that are translated to LTL.Similarly, (Hallé and
Villemaire, 2008) presents an algorithm for the runtime monitoring of BP proper-
ties, expressed in an extension of LTL. Moreover, (Awad et al., 2011) proposes
an approach for synthesizing process templates out of compliance requirements
expressed in LTL, and these templates are used as a basis for negotiation among
business and compliance experts. Furthermore, (Elgammal et al., 2011) performs
a comparative analysis between three languages (LTL, CTL and FCL) which can
be used as the formal foundation of BP compliance requirements.

We consider ConDec to be a suitable language, since it allowsthe specifi-
cation of BP activities together with the constraints whichmust be satisfied for
correct BP enactment and for the goal to be achieved. Moreover, ConDec allows
to specify a wide set of BP models of varied nature, flexibility and complexity in

14 CHAPTER 2. BACKGROUND

a simple way. Furthermore, ConDec has been widely referenced in past years in
the context of BPM (e.g., (Lamma et al., 2007; Ly et al., 2008; Montali, 2009;
Chesani et al., 2009)). ConDec is based on constraint-based BP models (cf. Def.
5), i.e., including information about (1) activities that can be performed as well as
(2) constraints prohibiting undesired process behavior.

Definition 5. A constraint-based process modelS= (A,CBP) consists of a set of
activities A1, and a set of constraints CBP prohibiting undesired execution beha-
vior. For each activity a∈ A, resource constraints can be specified by associating
a role with that activity. The activities of a constraint-based process model can be
executed arbitrarily often if not restricted by any constraints.

Constraints can be added to a ConDec model to specify forbidden behavior,
restricting the desired behavior (for a description of the complete set of cons-
traints, cf. (van der Aalst and Pesic, 2006a)). ConDec basic templates can be
divided into 3 groups:

1. Existenceconstraints: unary relationships concerning the number oftimes
one activity is executed. As an example, Exactly(N, A) specifies that A
must be executed exactly N times.

2. Relation constraints: positive binary relationships used to establish what
should be executed. As an example, Precedence(A, B) specifies that to exe-
cute activity B, activity A needs to be executed before.

3. Negationconstraints: negative binary relationships used to forbidthe exe-
cution of activities in specific situations. As an example, NotCoexistence(A,
B) specifies that if B is executed, then A cannot be executed, and vice versa.

An interesting extension which has been considered for ConDec templates
is the inclusion ofChoice constraints (Pesic, 2008), which are n-ary constraints
expressing the need of executing some activities belongingto a set of possible
choices, independently of the other constraints.

In ConDec, while unary relationships describe constraintsrelated to one ac-
tivity (e.g., existence constraints), binary constraintsdescribe relationships bet-
ween activities (e.g., precedence constraints). Binary templates are composed by
a source activity (cf. Def.6) and a sink activity (cf. Def.7), which correspond
to the beginning and the end of the arrow related to the specific template in the
graphical notation of ConDec, respectively.

1In this Thesis Dissertation, the BP activities are considered to be primitive, i.e., they are not
composed by other BP activities.

2.1. BUSINESS PROCESS MANAGEMENT 15

�

�
�

�

�����	�
��

��
������
�
��

����������	
����
����� ������

� � �

����������
�

�����������
�

��

��

��

��

� �

� �

���
	�����

�
�����������

�
��
�����

��������
����
���
�������
���
���

��	��
����������
�	��������

���������
���������
������

�
�
� �!�������"

�����������
���������
������

�
�
� �!�������"

�
�
� �!����������"

�
�
� �!�������"����������������#�
�	

�
$
� �!����"��������������������#�
�	

�
%
� �!�������"����������������#�
�	

�

�
&���
#�
��'��
���������
�	�����
#�
��
�'���

Figure 2.2: Simple Constraint-based Model.

Definition 6. A source activity of a binary template is an activity which appears in
the first parameter of the template. For templates which state precedence relations
between activities, a source activity is a predecessor activity.

Definition 7. A sink activity of a binary template is an activity which appears
in the second parameter of the template. For templates whichstate precedence
relations between activities, a sink activity is a successor activity.

Figure2.2 shows a simple constraint-based model which is composed by ac-
tivities A, B, andC, and constraintsC1 (Exactly(N,A)),C2 (Precedence(A, B)),
C3 (Precedence(A, C)), andC4 (NotCoexistence(B, C)).

In ConDec, binary constraints can be extended by defining branched tem-
plates, as described in (Pesic, 2008). The branched templates for the binary tem-
plates can be established between several BP activities in the following way:

• The branched constraint is established between several source activities and
one sink activity, so that the relation is given betweenat leastone of the
sources and the sink2.

• The branched constraint is established between one source activity and se-
veral sink activities, so that the relation is given betweenthe source andat
leastone of the sinks3.

2These branched templates consider only the disjunction of conditions related to the sources,
since the conjunction can be obtained by including the associated non-branched template between
each source and the sink activity.

3These branched templates consider only the disjunction of conditions related to the sinks,
since the conjunction can be obtained by including the associated non-branched template between
the source and each sink activity.

16 CHAPTER 2. BACKGROUND

In ConDec (van der Aalst and Pesic, 2006a), the fact of considering atomic ac-
tivities is recognized as being a major problem. Similar to ConDec, the languages
ConDec++ (Montali, 2009) (an extension of ConDec) and Saturn (Demeyer et al.,
2010) are constraint-based workflow definition languages based on LTL which,
unlike ConDec, consider non-atomic activities that can be started, completed or
cancelled at a later time, and overlapped with other activities.

Once a BP is modelled through a constraint-based modelling language, the BP
can be executed. As the execution of a BP model proceeds, information regarding
the executed activities can be recorded in an execution trace (cf. Def. 8). Infor-
mation related to past process execution can be very valuable, since it can be used
for many purposes, e.g., process mining (van der Aalst et al., 2011) or generating
estimates (cf. Chapter3).

Definition 8. Let S= (A,CBP) be a constraint-based process model with activity
set A and constraint set CBP. Then: Atrace σ is composed by a sequence of
starting and completing events< e1,e2, ...en > regarding activity executions ai ,
a∈ A, i.e., events can be:

1. start(ai, r jk, t), i.e., the i-th execution of activity a using k-th resource with
role j is started at time t.

2. comp(ai , t), i.e., the i-th execution of activity a is completed at time t.

Related to the process execution trace, is the concept of process instance. Spe-
cifically, a process instance (cf. Def.9) represents a concrete execution of a
constraint-based model and its execution state is reflectedby the execution trace.

Definition 9. Let S= (A,C) be a constraint-based process model with activity set
A and constraint set C. Then: Aprocess instanceI = (S,σ) on S is defined by S
and a corresponding traceσ.

A running process instanceI is in statesatisfied if its current partial traceσ
satisfies all constraints stated inC. Furthermore, an instance is in stateviolated,
if the partial trace violates any constraint stated inC and there is no suffix that can
be added to satisfy them. Figure2.2 includes examples of traces of satisfied and
violated instances4 for a constraint-based model.

During the BP enactment, considering a constraint-based model and a spe-
cific related process instance, only certain activities areenabled to be executed
next (cf. Def. 10). This selection, however, can be quite challenging since per-
formance goals of the process (e.g., minimization of overall completion time)

4For the sake of clarity, only completed events for activity executions are included in the trace
representation.

2.1. BUSINESS PROCESS MANAGEMENT 17

should be considered, and users often do not have an understanding of the over-
all process. Moreover, optimization of performance goals requires that resource
capacities are considered. Therefore, recommendation support is needed during
BP execution, especially for inexperienced users (van Dongen and van der Aalst,
2005) (cf. Chapter4).

Definition 10. Let S= (A,C) be a constraint-based process model with activity
set A and constraint set C, and I= (S,σ) be a corresponding process instance
with partial traceσ. Then: An activity ai of instance I isenabledat time T iff
ai can be started and the instance state of I is not violated afterwards; i.e., for
σ =< e1,e2, ...en >, we obtainσ′l =< e1,e2, ...en,start(ai,R jk,T) > afterwards
and instance(S,σ′) is not in state violated.

For example, for the partial traceσ1 of Fig. 2.2, B is enabled, whileA is not
enabled due toC1, andC is not enabled due toC4.

Due to the flexible nature of constraint-based models, frequently several ways
to execute constraint-based process models exist. Therefore, there are different
ways to executed a constraint-based process model in such a way that all cons-
traints are fulfilled, i.e., the process goal is reached (cf.Def. 11). For example,
traces5 < AAB> and< AAC> are two valid ways of executing the constraint-
based model of Fig.2.2, while trace< AABC> is invalid due toC4.

Definition 11. Thegoal of a BP is specified through the constraints which must
be satisfied in the BP enactment.

The different valid execution alternatives, however, can vary greatly in respect
to their quality, i.e., how well different performance objective functions (cf. Def.
12) like minimizing cycle time can be achieved.

Definition 12. The objective functionof a BP is the function to be optimized
during the BP enactment.

An objective function which is considered in this Thesis Dissertation is the
overall completion time of processes, i.e., time needed to complete all process
instances which were planned for a certain period.

Business Process Model and Notation

The Business Process Model and Notation (BPMN) (BPMN, 2011) is a standard
for modelling BP flows and web services, and provides a graphical notation for

5For the sake of clarity, traces represent sequences of activities so that no parallelism is consi-
dered in the examples, i.e., only completed events for activity executions are included in the trace
representation.

18 CHAPTER 2. BACKGROUND

��������	�
��

�
�������
����������
�������

���������	� �
�����	�

��������
�������

� ���������

Figure 2.3: Some BPMN elements.

the specification of BP models. A BPMN model is composed of events, gate-
ways, activities and swim lanes, among other elements (cf. Fig. 2.3). An event
represents something that happens during the enactment of aBP and affects its
execution flow, specifically the start event initiates the flow of the process, while
the end event finishes this flow. Gateways are in charge of controlling how se-
quence flows interact as they converge or diverge within a process. Specifically,
theexclusive data-based gatewaycan either be used as a decision point where se-
veral outgoing sequence flows are possible but only one sequence will be selected
for the execution, or as a way to merge several sequence flows into one; while the
parallel gatewayprovides a mechanism to both fork and synchronize the flows.
Swim lanes are graphical ways of organizing and categorizing the BP activities,
whereby pools represent the participants in a BP, and lanes are used to organize
the activities within a pool according to roles and resources.

Figure2.4shows a toy example of a BPMN model, which contains three lanes,
S, BM1 and BM2. After starting the enactment, the activity Receive Request is
executed using the resourceS. After that, two activities are executed in paral-
lel (parallel gateway): (1) activity Hotel Search using theresource BM1, and (2)
activity Airline Search using the resource BM2. After executing Hotel Search ac-
tivity, only one of the following activities is executed (exclusive data-based gate-
way): (1) activity Failed Hotel using resource BM1, or (2) activity Book Hotel
using resource BM1. In a similar way, after executing Airline Search activity,
only one of the following activities is executed (exclusivedata-based gateway):
(1) activity Failed Airline using resource BM2, or (2) activity Book Airline using
resource BM2. Moreover, after Failed Airline activity, only one of the following
flows is given (exclusive data-based gateway): (1) activities Compensation and
Notify Failure are executed using resource S, or (2) the BP enactment finishes.
Furthermore, if at least one of the activities Book Hotel or Book Airline is execu-
ted (exclusive data-based gateway), activities Credit Card and Notify Booked are
then executed. After that, the BP enactment finishes.

2.2. PLANNING & SCHEDULING 19

�
��
�
�
��
�
	

�
�
�

�������

�������

�	���

������

�������

������

������

�	���

�		�

�	���

���

����

�		�

�������

������

�������

����

���

������

����

�	
���

����	�

�	���

�		���

�	���

�������

���

�

!

�

"

�

Figure 2.4: Example of BPMN model.

2.2 Planning & Scheduling

Planning (cf. Sect.2.2.2) and scheduling (cf. Sect.2.2.1) are two rather related
areas, and hence many actual problems involve both of them (cf. Sect. 2.2.3).
However, these areas also present some differences. Both the similarities and the
main differences are discussed in the current section.

2.2.1 Scheduling

The area of scheduling (Brucker and Knust, 2006; Pinedo, 2008) includes pro-
blems in which it is necessary to determine an enactment planfor a set of known
activities related by temporal constraints. Moreover, theexecution of every acti-
vity requires the use of resources, hence they may compete for limited resources.
In general, the goal in scheduling is to find a feasible plan which satisfies both
temporal and resource constraints. Resource constraints lead to establish a spe-
cific ordering between activities which share the same resource, providing the
problem with NP-hard complexity (Garey and Johnson, 1979). Several objective
functions are usually considered to be optimized, in most cases related to temporal
measures (e.g., minimization of completion time), or considering the optimal use
of resources.

In scheduling, an activity refers to a task which needs to be executed during a
specific amount of time units, usually without interruption(i.e., preemptive sche-
duling), and using certain specific resources.

A quite general scheduling problem is called Resource-Constrained Project
Scheduling Problem (RCPSP, cf. (Brucker and Knust, 2006)). RCPSPs are speci-
fied by a set of activities which are related by precedence constraints6. Moreover,
for the execution of each activity, several units of many resources may be required.

6”Activity a precedes activity b” means that activity b cannot start before a is finished

20 CHAPTER 2. BACKGROUND

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

Figure 2.5: A disjunctive graph for a job shop problem.

An extension of RCPSPs is the Multi-mode Resource-Constrained Project Sche-
duling Problem (cf. (Drexl and Gruenewald, 1993)). This problem is a RCPSP in
which the activities can be executed in more than one operating mode, each one
potentially using different resources, and usually presenting different values for
certain properties, e.g., duration or cost of the activity.

In many scheduling problems, the activities are organized in jobs, i.e., se-
quence of activities which establishes precedence relations between the activities
so that an activity can start only when all its predecessors have been executed.

Many variants of scheduling problems exist. Some of them arelisted as fol-
lows:

• Job Shop (cf. (Brucker and Knust, 2006; Pinedo, 2008)): Each activity can
only be executed using a specific resource.

• Flow Shop (cf. (Brucker and Knust, 2006)): It is a special case of the job
shop problem in which each job is composed by exactly the samenumber
of activities (which is equal to the number of resources). Inthis way, each
job contains exactly one activity to be executed using each resource, and
hence each job uses each resource exactly once. Moreover, all jobs use the
resources in the same ordering.

• Flexible Job Shop (cf. (Brandimarte, 1993): Many job centers exist, each
one containing the same number of resources. In this way, an activity can
be executed in any job center using the suitable resource).

• Cumulative Job Shop (cf. (Nuijten and Aarts, 1996): It is a generalization of
the Job Shop in which the resources have a finite capacity and the activities
may require several unities of several kinds of resources).

• Open Shop (cf. (Pinedo, 2008)): Unlike in job shop problems, in open shop
problems the jobs do not have a predetermined fixed route.

2.2. PLANNING & SCHEDULING 21

Typically, the so-called disjunctive graph (Blazewic et al., 2000) is used to
represent schedules for the job shop problem (cf. Fig.2.5). A disjunctive graph
G= (V,C,D) is composed by:

• A setV of nodes, each one representing an activity.

• A set of edges which link the nodes. Two kinds of edges can be distin-
guished:

– Precedence edgesC (conjunctions), which correspond to the prece-
dence constraints. They are directed arcs which link activities which
are included in the same job.

– Resource edgesD (disjunctions), which correspond to the resource
constraints. They are non-directed arcs which link the activities which
are executed using the same resource.

In this way, a solution to the problem consists of establishing a direction for
the undirected arcs, being feasible if there are no cycles. As an example, Fig.
2.57 shows the disjunctive graph representation for a simple jobshop scheduling
problem which includes 3 jobs, each one containing 3 activities.

There are many typical objective functions to be consideredin scheduling pro-
blems. Some of them are listed as follows:

• Makespan: It refers to the time in which the execution of all activities have
finished.

• Tardiness: It refers to the delay of all jobs or activities regarding a specific
due date.

• Total Weighted Tardiness: It consists of a generalization of the tardiness, in
which ∑ j∈Jobsw j ×Tj is minimized, wherew j usually refers to an impor-
tance factor related to jobj, e.g., holding cost per unit time, andTj refers to
the delay of jobj regarding a specific due date.

• Number of Tardy Jobs: It refers to the number of jobs which do not meet
their due dates.

• Total Weighted Completion Time: It consists on minimizing∑ j∈Jobsw j ×
Cj , wherew j usually refers to an importance factor related to jobj, andCj

refers to the completion time of jobj.

• Objectives related to the use of the resources by the activities, e.g., balanced
use of resources.

7ai j refers to the j-th activity of the job i.

22 CHAPTER 2. BACKGROUND

2.2.2 Planning

In a wider perspective, in Artificial Intelligence (AI) planning (Ghallab et al.,
2004), the activities to be executed are not established a priori, hence it is nece-
ssary to select them from a set of alternatives and to establish an ordering. In
planning problems, usually the optimization of certain objective functions is con-
sidered.

Taking the goals to be achieved into account, different planning strategies can
be used for representing and reasoning about planning scenarios, e.g., Classical
Planning (Fikes and Nilsson, 1971; Lekavy and Návrat, 2007), Hierarchical Task
Network (HTN) (Erol et al., 1994), Decision-Theoretic Planning (Joshi et al.,
2011), Case-based Planning (Hammond, 1990) and Reactive Planning (Fernan-
des et al., 1983).

In order to reuse the same algorithms for solving different kinds of problems,
and to solve the same problem using different algorithms, (1) domains for repre-
senting the problems, and (2) algorithms for solving the problems are specified in
a separated way (domain-independent planning). For solving a specific problem,
a domain-independent planner takes as input the problem specification and the
domain information.

The first strategy which was proposed for representing and reasoning about
planning scenarios was Classical Planning (Fikes and Nilsson, 1971; Lekavy and
Návrat, 2007). The basic idea of Classical Planning consists of finding a sequence
of actions which will modify the initial state of the world into a final state where
the goal holds. The specification of Classical Planning problems is composed by:

• A set of literals from the propositional calculus which can be positive or
negative and which represent the goal to be achieved.

• A set of literals from the propositional calculus which can be positive or
negative and which represent the initial state, also known as initial condi-
tions.

• A set of actions which are characterized by STRIPS operators. A STRIPS
operator is a parameterized template used for stating a set of possible ac-
tions. Each action is composed by:

– A set of preconditions: set of positive or negative literalswhich must
be true for executing a specific action.

– A set of effects: set of positive or negative literals which become true
after the execution of the action.

As mentioned before, for executing an activity, all the literals included in the
precondition of the activity need to be true. Therefore, at each stage, there is a set

2.2. PLANNING & SCHEDULING 23

of possible activities to be executed which depends on the literals which are true
in that moment (state of the world, i.e., a set of atoms or literals that define how
the objects of the model relate to each other and their properties). Each time a
specific activity is executed, the set of literals which are true changes, and hence
the set of possible activities to be executed also changes. In this way, the state of
the world evolves.

A solution for a planning problem is determined by a sequenceof activities
which reaches the final state from the initial state.

Planning Domain Definition Language

The Planning Domain Definition Language (PDDL) (Ghallab and et al., 1998) is
a language for the definition of classical planning domains and problems which is
used by the planning community. Specification in PDDL includes two separated
items: a domain file for predicates and actions, and a problemfile for objects, ini-
tial state and goal specification. Moreover, PDDL supports several characteristics,
such as basic STRIPS-style actions, conditional effects, universal quantification
over dynamic universes, specification of safety constraints, etc.

PDDL 2.2 (Hoffmann and Edelkamp, 2005), an extension of PDDL, includes
more characteristics: it allows handling of numeric values, the actions can have a
duration, and it is capable to deal with plan objective functions, derived predicates
and timed initial literals.

In 2006, PDDL 3.0 (Gerevini and Long, 2006) was developed as an extension
of PDDL, by allowing the user to express strong and soft constraints about the
structure of the desired plans, as well as strong and soft problem goals.

The definition of thedomain for a PDDL specification contains different
items:

• Predicates: Outstanding properties of objects; can be trueor false.

• Functions (Fluents): Allow handling of numeric values. They are used in
actions preconditions or effects and their values are givenin the problem
file.

• (Durative) Actions/Operators: Ways of changing the state of the world.

The PDDLproblem defines the next items:

• Objects: Outstanding things in the world.

• Initial state: Initial state of the world.

• Goal specification: Things that must be true.

24 CHAPTER 2. BACKGROUND

• Objective function: Plan quality measures (metrics).

Once a problem is modelled through PDDL, a generic or specialized planner
can be used to obtain the required solution, e.g., UCPOP (Weld, 1994), Graph-
plan (Blum and Furst, 1997), SHOP2 (Nau et al., 2003), VHPOP (Younes and
Simmons, 2003) or SGPlan (Chen et al., 2006).

2.2.3 Integrating P&S

Planning and scheduling are rather related areas since bothdeal with the temporal
planning of activities. The main difference between both areas is that in schedu-
ling the activities to be planned are known and that it alwaysinvolves the resource
perspective, while in planning the activities which will beincluded in the plan
need to be determined and resource constraints are not always considered.

Many works which combined P&S can be found, since several actual problems
involve both of them. A problem involving P&S is characterized by: (1) there is
a goal to be reached through the execution of a sequence of activities which are
unknown a priori (planning), and (2) each of these activities has a specific dura-
tion and requires a specific resource to be executed, so that temporal constraints
exist between the execution of activities, and certain (temporal) objective function
needs to be optimized (scheduling).

Some of the extensions to scheduling that have been considered, such as alter-
native resources and process alternatives, lead to models that are closer to plan-
ning, as problems involving choice of actions are often regarded as planning pro-
blems (Smith et al., 2000).

Some planning techniques are not able to represent or reasonwith resources,
metric quantities or continuous time. Moreover, planning techniques do not ty-
pically consider optimization. Therefore, there are many works which extend
classical planning techniques in order to deal with resources (Drabble and Tate,
1994; Laborie and Ghallab, 1995), metric quantities (Koehler, 1998; Penberthy
and Weld, 1994), and optimization criterions (Wolfman and Weld, 1999; Vossen
et al., 1999). Furthermore, there exist works which extend planning techniques in
order to allow working with continuous time and temporal constraints (Penberthy
and Weld, 1994; Smith and Weld, 1999).

2.3 Constraint Programming

Constraint Programming (CP, cf. Fig.2.6) is a software technology which is used
for modelling and solving a wide scope of problems of varied nature which pursue

2.3. CONSTRAINT PROGRAMMING 25

Solver

Feasible solutions (no constraint is violated)

Infeasible solutions (some constraints are violated)

Optimal solutions (feasible solutions optimizing objectives)

COP

Objectives

CSP

Variables

Constraints

Domains
SOLUTIONS

(assignment of values

to all the variables)

Figure 2.6: Constraint Programming.

different goals (Dechter, 2003; Rossi et al., 2006). CP can be used, among others,
for planning and scheduling purposes (Salido, 2010).

In order to solve a problem through constraint programming,the process is
divided into two steps:

1. Modelling the problem as a Constraint Satisfaction Problem, CSP (cf. Sect.
2.3.1), i.e., defining variables, domains for the variables, and constraints
which relate the variables.

2. Solving the CSP (cf. Sect.2.3.2). This step can be developed through many
different techniques, e.g., search algorithms, consistency techniques, and
hybrid techniques.

In constraint programming, dissociating the modelling of the problem from the
solving technique is desirable, so that the problem is completely specified through
a model which can be solved by using a wide scope of different techniques.

2.3.1 Constraint Satisfaction Problems

In order to solve a problem through constraint programming,it needs to be mo-
delled as a constraint satisfaction problem (CSP) (cf. Def.13).

Definition 13. A CSPP = (V,D,CCSP)
8 is composed by a set of variables V , a

domain of values D for each variable vari ∈ V, and a set of constraints CCSP

between variables, so that each constraint represents a relation between a subset
of variables and specifies the allowed combinations of values for these variables.

8CCSP andCBP are used for relating a set of constraints of a CSP and of a constraint-based BP
model, respectively.

26 CHAPTER 2. BACKGROUND

In general, the same problem can be modelled in different ways. The selection
of a specific model is essential since, in most cases, it greatly influences the stra-
tegy which must be followed in the search process as well as the execution time
which is needed for finding the required solution.

A solution for a CSP (cf. Def.14) consists of assigning values to all the CSP
variables.

Definition 14. A solution S=< (var1,val1),(var2,val2), ...(varn,valn) > for a
CSP P= (V,D,R) is an assignment of a value vali to each variable vari ∈V. A
solution ispartial if there exist one or more CSP variables which are not instan-
tiated. A solution isfeasiblewhen the assignments variable-value satisfy all the
constraints.

In a similar way, a CSP is feasible if there exists at least onefeasible solution
for this CSP. From now on,Svar refers to the value assigned to variablevar in the
(partial) solutionS.

Similar to CSPs, in constraint optimization problems (COPs, cf. Def. 15), a
solution which meets the constraints and also optimize a specific objective func-
tion is pursued. The complexity of solving a satisfiability problem is, in general,
NP-complete, while in the case of optimization problems is usually NP-hard.

Definition 15. A COPPO = (V,D,R,o) is a CSP which also includes an objective
function o to be optimized.

A feasible solutionS for a COP isoptimal when no other feasible solution
exists with a better value for the variable related too (varo). Many problems can
involve multiple conflicting objectives that should be considered at the same time
(multi-objective optimization problems).

Once a problem is modelled as a CSP, several goals can be pursued, e.g.:

• Finding any feasible solution for the CSP.

• Finding several feasible solutions for the CSP.

• Finding all the feasible solutions for the CSP.

• Finding the optimal (or optimized) solution for a COP.

• Finding a set of optimal (or optimized) solutions for a COP.

A classic problem which can be modelled as a CSP is the map coloring pro-
blem. This problem consists of coloring a map which is divided in a set of regions
so that a color need to be assigned to each region, taking intoaccount that regions
sharing a boundary line do not have the same color and only specific colors can

2.3. CONSTRAINT PROGRAMMING 27

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

������� �������

������� �������

Figure 2.7: Map coloring problem.

be used. The modelling of this problem as a CSP is made so that each region is a
CSP variable, the domain of each variable is composed by the set of allowed co-
lors, and the constraints establish inequality relations between the variables which
represent adjoining regions. Figure2.7 shows an example for this problem in
which there are 4 regions,Ra, Rb, Rc andRd, and 3 allowed colors, red (r), green
(g) and yellow (y).

2.3.2 Solving the CSP

As mentioned before, constraint programming allows to separate the models from
the search algorithms, so that once a problem is modelled in adeclarative way as
a CSP, a generic or specialized constraint-based solver canbe used to obtain the
required solution. In this way, the same solving methods canbe used for different
problems. Several mechanisms are available for the solution of CSPs and COPs,
which can be classified as search algorithms, consistency techniques and hybrid
techniques.

Search Algorithms

Search algorithms are based on the exploration of the solution space, i.e., set of
all the possible assignments of values to variables, until asolution is reached or
that none exists is proved.

There are several ways to classify the search algorithms. One of the most used
is classifying the search algorithms in complete and incomplete search.

Complete Search Complete search algorithms (which are also called systematic
algorithms) guarantee that a solution will be found if one exists, and can be used to
show that a CSP does not have a solution and to find a optimal solution in COPs.

The possible combinations of assignments of values to the CSP variables lead
to a space state which can be represented by a tree o search graph. Each node

28 CHAPTER 2. BACKGROUND

of the search tree represents a partial assignment of valuesto a set of variables.
The root node of the search tree represents the case in which any variable is ins-
tantiated, while the leaf nodes represent the cases in whichall the variables are
instantiated.

There are many systematic search algorithms, most of them are based on
chronological backtracking (Mouhoub et al., 2003).

Incomplete Search Incomplete search algorithms consist of exploring only cer-
tain regions of the state space so that, in general, the reachof a (optimal) solution
can not be guaranteed. They are widely used due to the complete search usu-
ally requires a high cost. Local or stochastic search algorithms are examples of
incomplete algorithms.

Local search algorithms typically start generating a first solution of a given
problem instance (in a random or a heuristic way), which may be infeasible, sub-
optimal or incomplete. This initial solution is iteratively improved so that the
value for the objective function is optimized in the case of COPs, or the number
of inconsistencies are reduced in the case of CSPs. In most cases, these algorithms
finish after certain tries or iterations have been completed, or when the required
solution is found.

A wide scope of local search algorithms can be found in the literature, e.g., ge-
netic algorithms (Mitchell, 1998), simulated annealing (Kirkpatrick et al., 1983),
taboo search (Glover, 1989), and Greedy Randomized Adaptive Search Procedure
(GRASP) (Feo and Resende, 1989, 1995). Different local search algorithms vary
in the way in which improvements are achieved, and in particular, in the way in
which situations are handled when no direct improvement is possible.

Moreover, some algorithms combine systematic and local search techniques,
e.g, Large Neighborhood Search (LNS) (Pisinger and Ropke, 2010).

Consistency Techniques

They are also called constraint propagation techniques, and refer to any reasoning
which consists in explicitly forbidding values or combinations of values for some
variables of a problem because a given subset of its constraints cannot be satisfied
otherwise (Rossi et al., 2006). In a related way, the inference process consists of
evolving from a problem P to an equivalent problem P’, i.e., exactly having the
same set of feasible solutions, which presents a smaller solution space, and hence,
which is easier to solve.

Concepts related to different grades of consistency (cf. Defs. 16, 17, 18, and
19) typically have a great relevancy in consistency techniques.

2.3. CONSTRAINT PROGRAMMING 29

Definition 16. A CSP= (V,D,CCSP) presentsnode consistencyiff every unary
constraint∈ CCSP on a variable is satisfied by all values in the domain of the
variable, and vice versa.

Definition 17. A CSP= (V,D,CCSP) presentsarc consistencyiff for all pairs of
CSP variables(var1,var2)|var1,var2 ∈ V, for each value of var1 in the domain
of var1 there is some value in the domain of var2 that satisfy all the constraints
stated in CCSPbetween var1 and var2, and vice versa.

Definition 18. A CSP= (V,D,CCSP) presentspath consistencyiff all pairs of
CSP variables(var1,var2)|var1,var2 ∈ V present path consistency with all the
other variables∈V. A pair of variables var1 and var2 presents path consistency
with a third variable var3 iff for every pair of values(val1,val2) that satisfies the
binary constraint between var1 and var2, there exists a value val3 in the domain
of var3 such that(val1,val3) and (val2,val3) satisfy the constraint between var1

and var3 and between var2 and var3, respectively.

Definition 19. A CSP= (V,D,CCSP) presentsi-consistencyiff all tuples of i-1
variables present i-consistency with all the other variables. A tuple of i-1 va-
riables is i-consistent with another variable if every consistent evaluation of the
i-1 variables can be extended with a value of the other variable while preserving
consistency. In a related way, strong i-consistency is given when all j≤ i present
j-consistency.

In this way, 2-consistency coincides with arc consistency if the problem is
node-consistent, while 3-consistency coincides with pathconsistency only if all
constraints are binary.

Many algorithms has been proposed in literature for establishing arc consis-
tency in a CSP, e.g., the pioneersAC1, AC2 andAC3 (Mackworth, 1977) or the
recentAC3bit (Lecoutre and Vion, 2008).

Consistency techniques can be complete or incomplete, as explained as fol-
lows.

Complete Inference The inference is called complete when after performing
the inference process, the problem has a direct solution, e.g., adaptive consistency
algorithm (Larrosa and Meseguer, 2003).

Incomplete Inference The inference is called incomplete when after perfor-
ming the inference process, the problem does not have a direct solution, and hence
a search for finding a solution needs to be performed, e.g., arc consistency.

To improve the modelling of the problems and to efficiently handle the cons-
traints in the search for solutions, constraint-based proposals may includeglobal

30 CHAPTER 2. BACKGROUND

constraints implemented throughfiltering rules or propagators (i.e., responsible
for removing values which do not belong to any solution). These global cons-
traints facilitate the specification of the problem at the same time as the related
filtering rules enable the efficiency in the search for solutions to increase since
during search process these filtering rules remove inconsistent values from the
domains of the variables.

Hybrid Techniques

Hybrid techniques are based on the search of solutions through the combination
of search algorithms + consistency techniques, so that the best aspects from both
techniques try to be combined in order to get a good solving mechanism.

Hybrid techniques can be classified in:

• Combination of systematic search and incomplete inference: In each node
of the search subtree, the local consistency of the subproblem which is re-
presented by that node is dealt with, so that the inconsistent partial tuples
are detected. These inconsistent tuples are removed, and hence the state
space is reduced and even inconsistency can be detected if the domain be-
comes empty. Examples of these techniques are conflict-directed backjum-
ping (Prosser, 1993), learning (Frost and Dechter, 1994), and maintaining
arc consistency (MAC) (Sabin and Freuder, 1994).

• Combination of systematic search and complete inference: In general, com-
plete inference is very costly due to the high computationaleffort which it
requires. However, taking into account the value of some parameters, there
are certain situations in which the application of completeinference is sui-
table combined with a search algorithm. An example of this technique is
called variable elimination search, VES (Larrosa, 2000).

2.3.3 Constraint Programming for Planning and Scheduling

Scheduling problems have been successfully addressed for awide scope of ap-
plications using constraint-based techniques. Most of those problems can be mo-
delled in a natural way, so that, since the actions are set, variables are chosen to
correspond to the temporal unknowns (mainly start and end times) or to the or-
dering of tasks, and constraints gather precedence and resource constraints (Beck
and Fox, 1998). Typical CSP modelings for the job shop problem states the start
times of the activities as the variables of the CSP, and the constraints are divided
in two groups:

2.4. AI PLANNING AND SCHEDULING FOR BPM 31

• The precedence constraints are a set of inequalities involving the variables
corresponding to the start times of the activities of the same job or related by
precedence relations, and taking into account the durations of the activities.

• The resource constraints may be defined as disjunctions between the start
time of the activities using the same resource. However, other approaches
have been used, as representing the use of each resource by all the activities
with global constraints, which may allow more efficient filtering algorithms.

Moreover, CP has been used in several recent AI planners (Nareyek et al.,
2005; Vidal and Geffner, 2006; Tu et al., 2007; Gabriel and Grandcolas, 2009;
Bao et al., 2011), since this paradigm is at the core for combining planning and
scheduling techniques.

On the other hand, many constraint-based proposals for solving P&S problems
exist in the literature, e.g., (Timpe, 2002; Liu and Jiang, 2006; Gomes et al., 2006;
Garrido et al., 2008; Moura et al., 2008; Garrido et al., 2009). Furthermore, se-
veral filtering algorithms for specialized scheduling constraints have been deve-
loped. Specifically, (Beck and Fox, 2000) and (Barták and Cepek, 2010) model
scheduling problems which include alternative and optional tasks respectively, to-
gether with their filtering rules. Moreover, the work (Barták and Cepek, 2008)
proposes filtering rules for both precedence and dependencyconstraints in order
to solve log-based reconciliation (P&S) problems in databases. In those studies,
the precedence constraints signify the same as in P&S problems, while the de-
pendency constraints are given between optional activities which can potentially
be included in the final schedule. The work (Laborie et al., 2009) introduces new
types of variables (time-interval, sequence, cumulative,and state-function varia-
bles) for modelling and reasoning with optional schedulingactivities. In addition,
(Lombardi and Milano, 2010) presents a set of filtering rules for cumulative cons-
traint propagation when solving an extension of the resource-constrained project
scheduling problem which includes time lags and uncertain,bounded activity du-
rations. Furthermore, (Monette et al., 2009) includes a constraint-based approach
for the Just-In-Time Job Shop Scheduling, i.e., each activity has an earliness and
a tardiness cost with respect to a due date. This approach includes a filtering
algorithm which uses a machine relaxation to produce a lowerbound, and dedi-
cated heuristics. This work also includes pruning rules which update the variable
bounds and detect precedence constraints.

2.4 AI Planning and Scheduling for BPM

In recent years, interest has grown in the integration of P&Stechniques with
BPMSs, e.g., (Ha et al., 2006; R-Moreno et al., 2007; González-Ferrer et al., 2009;

32 CHAPTER 2. BACKGROUND

Rhee et al., 2010; Hoffmann et al., 2010; Tsai et al., 2010; Barba and Del Valle,
2010; PLANET, 2003; Berry and Drabble, 2000; Goldmann et al., 2000; Jarvis
and et al., 2000), since there are several points where P&S tools can be effectively
applied to BPMSs. However, from our point of view, several connections between
these two disciplines remain to be explored.

P&S techniques can be used to enhance different stages of thetraditional BPM
Life Cycle (Weske, 2007) (cf. Fig. 2.1), as outlined below:

• Process Design & Analysis: As stated, traditionally, this phase is mostly
a human activity. However, this phase can be extended so thatP&S tech-
niques can be leveraged to automate the generation of optimized BP models
by taking into account some information, such as dependencies between
activities, activity durations, resource availabilitiesand objective functions.

• Process Enactment: In this phase, P&S techniques can be usedto automa-
tically adopt the execution of BP models to changing circumstances, e.g.,
resource unavailability, differences between an actual activity duration and
expected duration, failures, etc.

• Evaluation: In this phase, P&S techniques can be used to improve BP mo-
dels by considering the information stored in the executionlogs.

Table2.1(R-Moreno et al., 2007) describes at a high level the concepts which
AI P&S share with the BPM community (for a more detailed description cf. Work-
flow Management PLANET TCU (PLANET, 2003) roadmap).

Table 2.1: Concepts mapping between AI P&S and BPM.

P&S BPM
Modelling + Planning and Scheduling Modelling and Scheduling
Execution Enactment
Re-planning Exceptions
Monitoring Monitoring
Operators Activities, tasks, ...
Initial State Organization, resources
Goals Business goals, service provision, ...

Most related work integrates P&S with BPMS in the enactment phase in order
to make dispatching decisions as to which activity should beexecuted using a
resource when it becomes free (dynamic scheduling) (cf. Sect. 2.4.2), while very
few integrations are carried out during the modelling phase(cf. Sect.2.4.1).

2.4. AI PLANNING AND SCHEDULING FOR BPM 33

2.4.1 P&S for the Process Design & Analysis Phase

In (González-Ferrer et al., 2009), the BP information is provided through an exe-
cution/interchange language, XPDL. The XPDL file is analyzed to obtain a work-
flow pattern decomposition, which is translated into the HTN-PDDL language.
This is used as the input of a planner, and the resulting planscould be interpreted
as workflow instances. In a similar way, (Alves et al., 2008) presents a proposal
for the automatic generation of BP models in workflow systems, based on ge-
netic techniques for the optimized planning and schedulingof BP activities. In
(Alves et al., 2008), the BP information is provided through the XPDL language,
which is translated into PDDL, and the generated BP model is also specified in
XPDL. The XPDL language lacks some power for the correct representation of
complex workflow patterns (van der Aalst, 2003). Specifically, only serial, parallel
split-join, and parallel exclusive-OR templates are considered in (González-Ferrer
et al., 2009).

In a related way, in (R-Moreno et al., 2007), planning tools are used for the
semi-automatic generation of BP models, by considering theknowledge intro-
duced through BP Reengineering languages. This knowledge is translated into
predicate logic terms in order to be handled by a planner, andan updated BP
model is obtained. The process information is provided through an object-oriented
structure modelling tool that follows a rule-based approach.

Additionally, (Hoffmann et al., 2010) proposes a planning formalism for the
modelling of BPs through an SAP specification (Status and Action Management,
SAM), which is a variant of PDDL.

Furthermore, (Ferreira and Ferreira, 2006) proposes to refine BP models by
combining learning and planning techniques, starting fromprocesses which are
not fully described. (Ferreira and Ferreira, 2006) needs past process executions
and examples provided by the user to apply learning techniques. Moreover, (Fer-
reira and Ferreira, 2006) does not considered the optimization of any objective
function in the generation of the plans.

2.4.2 P&S for the Process Enactment Phase

Most of the related works integrate scheduling tools in BPM systems for the enact-
ment phase, in order to take dispatching decisions as to which activity should be
executed using a resource when it becomes free (dynamic scheduling). As fol-
lows, a representative set of them are briefly summarized.

One of the first works, (Zhao and Stohr, 1999), develops a framework for
temporal workflow management, including turnaround-time predication, time al-
location, and task prioritization.

34 CHAPTER 2. BACKGROUND

In a related way, the work (Son and Kim, 2001) proposes a schema for ma-
ximizing the number of workflow instances satisfying a predetermined deadline,
based on a method to determine the critical activities.

Moreover, the work (Ha et al., 2006) proposes a set of process execution rules
based on individual worklists, and develops algorithms forthe task assignment in
order to maximize the overall process efficiency, while taking resource capacities
into account.

Furthermore, the work (Rhee et al., 2010) presents a Theory of Constraints
(TOC)-based method for the improvement of the efficiency of BPs.

Recently, the work (Tsai et al., 2010) proposes distributed server architecture
for the management of the BP workflow, and presents techniques for the dynamic
allocation of the resources.

Related to decision support systems, (Özbayrak and Bell, 2003) develops a
knowledge-based decision support system (KBDSS) for short-term scheduling
in flexible manufacturing systems (FMS). This work considers the optimization
of the efficient use of the machining cells by using a knowledge-based expert
system in order to support the decision making process. Moreover, (Chaturvedi
et al., 1993) manages multiple objectives in a hierarchical way. In a related way,
(Thompson and Goodale, 2006) addresses the scheduling of a group of employees
which present different productivity considering the stochastic nature of customer
arrivals and replans during run-time when estimates are incorrect.

Chapter 3

From Constraint-based
Specifications to Optimized BP
Enactment Plans

3.1 Introduction

3.1.1 Motivation

Typically, business processes are specified in an imperative way, i.e., an activity
sequence that will result in obtaining the related corporate goal is defined. How-
ever, declarative BP models are increasingly used and theirusage allows the user
to specify what has to be done instead of having to specify howit has to be done.
Declarative BP model specifications facilitate the human work involved, avoid
failures, and obtain a better optimization, since the tacitnature of human know-
ledge is often an obstacle to eliciting accurate process models (Ferreira and Fer-
reira, 2006).

The advantages of using declarative languages for BP modelling instead of
imperative languages, i.e., support for partial workflows (Wainer et al., 2004),
absence of over-specification (Pesic et al., 2007), and provision of more maneu-
vering room for end users (Pesic et al., 2007), are discussed in several studies,
e.g., (Rychkova et al., 2008a; Fahland et al., 2009, 2010; Pichler et al., 2011).

3.1.2 Contribution

Due to their flexible nature, frequently several ways to execute declarative process
models exist. Therefore, there are several enactment plansrelated to a specific de-
clarative model, each one presenting specific values for different objective values,

35

36 CHAPTER 3. DECLARATIVE MODELS TO OPTIMIZED PLANS

e.g., overall completion time, i.e., time needed to complete all process instances
which were planned for a certain period.

In this chapter, generating optimized BP enactment plans from declarative
specifications is proposed in order to optimize the performance of a process, ac-
cording to objective functions like minimizing the overallcompletion time. The
generated optimized BP enactment plans can leverage the BPMlife cycle (Weske,
2007), since they can be used for simulation (Rozinat et al., 2009), time prediction
(van der Aalst et al., 2011), recommendations (Schonenberg et al., 2008; Haisjackl
and Weber, 2010; Barba et al., 2011), and generation of optimized BP models (R-
Moreno et al., 2007; Alves et al., 2008; González-Ferrer et al., 2009; Barba and
Del Valle, 2011b), which are innovative and interesting topics nowadays. Specifi-
cally, in this Thesis Dissertation, the optimized plans areused for:

1. Giving users of flexible BPMSs assistance during the process execution (cf.
Chapter4).

2. Generating optimized BPMN models (cf. Chapter5).

For the generation of these optimized enactment plans, activities to be execu-
ted have to be selected and ordered (planning problem (Ghallab et al., 2004)) con-
sidering both control-flow and resource constraints (scheduling problem (Brucker
and Knust, 2006)) imposed by the declarative specification.

For planning and scheduling (P&S) the activities such that the process goal is
optimized, a constraint-based approach is proposed since Constraint Programming
(CP) (Rossi et al., 2006) supplies a suitable framework for modelling and solving
problems involving P&S aspects (Salido, 2010). For this, the declarative model
is complemented with information related to estimates regarding the number of
instances, activity durations, and resource availabilities.

For the declarative specification of BP models, ConDec (Pesic and van der
Aalst, 2006; van der Aalst and Pesic, 2006b) (cf. Sect.2.1.2) is considered to be
a suitable base language, since it allows the specification of BP activities together
with the constraints which must be satisfied for correct BP enactment and for
the goal to be achieved. In this work, an extension of ConDec which includes
reasoning with resources and parallel executions, named ConDec-R (Barba and
Del Valle, 2011a) (cf. Sect.3.2), is considered.

The main contributions of this chapter can be summarized as follows:

• The definition of a language for the constraint-based specification of BPs
which extends ConDec (Pesic and van der Aalst, 2006; Pesic et al., 2007),
named ConDec-R (cf. Sect.3.2, Step 1 in Fig.3.1), to enable the reasoning
about resources.

3.2. CONDEC-R 37

���������	�
��
���

�����

�����������
����������

��
�����

�	����������
�����
��

�����
��

�����������
���

�����
�

��
��������
��
!�"� �����

��#
!�
���

�����
�$

�����
�$

���
���������
�

!%�����������

!��	��
&�������

���
������

'�(����	�

��������

������

'%����)�
��

*+�������
����

�

�

Figure 3.1: AI P&S techniques for the generation of optimized BP enactment plans.

• Automatic planning and scheduling of the BP activities for the generation of
optimized BP enactment plans from the ConDec-R specifications, through
a constraint-based approach (cf. Sect.3.3, Step 2 in Fig.3.1) (Barba and
Del Valle, 2011a). The proposed constraint-based approach includes new
global constraints for the definition of the high-level relations between ac-
tivities which can be executed several times, i.e., repeated activities, and
the corresponding filtering rules (cf. AppendixB). The developed global
constraints facilitate the specification of the problem at the same time as
the related filtering rules enable the efficiency in the search for solutions to
increase. The developed filtering rules deal with a combination of several
aspects, and, in most cases, result in new complex filtering rules.

• Validation of the proposed approach through the analysis ofdifferent per-
formance measures related to a range of test models of varying complexity
(cf. Sect.3.4).

It should be emphasized that the proposed constraint-basedapproach (cf. Sect.
3.3) can be used to help the modelling and the solving of further planning and
scheduling problems which include similar relations between repeated activities,
and which are unrelated to business process environments.

This chapter is organized as follows: Section3.2introduces the declarative BP
language which is proposed, i.e., ConDec-R, Section3.3details the generation of
optimized BP enactment plans from ConDec-R specifications,Section3.4 deals
with the evaluation of the proposed approach, and finally, Section3.5summarizes
related work.

3.2 ConDec-R: Constraint-based Specification of Bu-
siness Processes

In order to plan and schedule the BP activities, ConDec is used as a basis. As
stated in Sect.2.1.2, ConDec allows the specification of BP activities together

38 CHAPTER 3. DECLARATIVE MODELS TO OPTIMIZED PLANS

(2)
 Estimates
 (3)
 Resource Availabilities

ConDec-R Specification

(1)
 ConDec

control-flow

resource

requirements

Figure 3.2: ConDec-R process model specification.

with the constraints which must be satisfied for correct BP enactment and for the
goal to be achieved. ConDec is based on constraint-based BP models (cf. Def.
5 on page14), and resource constraints can be specified for each BP activity by
associating a role with that activity. Constraints can be added to a ConDec model
to specify forbidden behavior, restricting the desired behavior (for a description
of the complete set of constraints, cf. (van der Aalst and Pesic, 2006a)). In this
way, ConDec basic templates can be divided into existence, relation and negation
constraints.

The basic ConDec-R templates, extending the ConDec templates (van der
Aalst and Pesic, 2006a), together with its formal specification through constraints
and some examples of valid and invalid traces are listed inAppendix A.

To make ConDec usable for our concrete application, an extension of Con-
Dec (named ConDec-R) is defined in this chapter, as detailed in Sect.3.2.1and
Sect. 3.2.2. ConDec-R supports all constraints described in (van der Aalst and
Pesic, 2006a) and additionally provides extended support for branched templates,
as described in (Montali, 2009).

3.2.1 Extending ConDec with Estimates and Resource Availa-
bilities

To support the direct reasoning of resources (which is not possible in ConDec)
ConDec is extended with estimates of activity durations andthe specification of
resource availabilities. In short, a ConDec-R process model specification (cf. Def.
20on page39, Fig. 3.2) extends a ConDec model (cf. Fig.3.2(1)), i.e., specifying
control-flow and resource requirements, by including:

• The estimated duration of each activity (cf. Fig.3.2(2)). Estimates can
be obtained by interviewing business experts or by analyzing past process
executions (e.g., by calculating the average values of the parameters to be
estimated from event logs). Moreover, both approaches can be combined to
get more reliable estimates.

3.2. CONDEC-R 39

• The available resourcesof each role (cf. Fig.3.2(3)). This information
is independent of the ConDec-R activities, and hence it can be changed
without affecting the specification of the activities, and vice versa.

Notice that the resource availabilities can be unknown until starting the gene-
ration of the optimized plans. This can be tackled by the current proposal since
the most static information, i.e., the control-flow and resource requirements (cf.
Fig. 3.2(1)), is complemented with more changing information, i.e., the estimates
(cf. Fig. 3.2(2)), and finally the most dynamic data, i.e., information onresource
availabilities (cf. Fig.3.2(3)), is included. In this way, the same BP constraint-
based specification can be easily adapted to changing conditions, e.g., different
resource availabilities or activity durations.

In this way, a ConDec-R model (cf. Def.20) extends a ConDec model (cf.
Def. 5 on page14) by including resource availabilities and extended BP activities,
i.e., BP activities including resource requirements plus estimated duration.

Definition 20. A ConDec-R process modelCR= (Acts,CBP,Res) related to a
constraint-based process model S= (A,CBP) is composed by a set of extended
BP activities Acts, which contains tuples(a, role,dur) which includes for each
BP activity a∈ A the role of the required resource (i.e., role) and the estimated
duration (i.e., dur); a set of ConDec constraints CBP; a set of available resources
Res, and composed by tuples(role,#role) which includes for each role (i.e., role)
the number#role of available resources.

An example of a ConDec-R process model is depicted in Fig.3.3(1), where
Acts= {(A,R1,5),(B,R2,3),(C,R1,4)},CBP= {Exactly(2,A),Precedence(A,B),
Precedence(A,C), NotCoexistence(B,C)}, andRes= {(R1,2), (R2,1)}.

3.2.2 Extending ConDec with Parallel Execution of Activities

In ConDec no parallelism is considered in the execution of activities which are re-
lated by ordering constraints since ConDec activities are atomic. In this work, non
atomic activities, i.e., durative activities, are considered, and hence the ConDec
templates are extended so that the relations which are stated in Allen’s interval
algebra (Allen, 1983) are allowed in order to deal with temporal reasoning. In
ConDec-R, the relationactivity b must be executed after acan imply four diffe-
rent meanings:

• st(b)≥ et(a) (default option)

• st(b)≥ st(a)

• et(b)≥ et(a)

40 CHAPTER 3. DECLARATIVE MODELS TO OPTIMIZED PLANS

���������	
���
��
��

��

�
��

�
��

�� ��

��

��	
��
��������

��	
��
��������

��	
��
��������

�

�
�

�

�	��������

�����
���

��	����	����
�

��	����	����
�

��	����	����
�

��������	������	���	�
���

�	��������

�
�

�
� ��

�����

�
���	
���!"
����#$���%��
��
�

&�
�
����

&�
�
����

���
�	����'
�(
"�(�����

����������
��
�������������	�� �
��!

�	
�"�
��������#
�����)�*�++�,

����
��	�� ���	
�"�
$�����#
����

�
�)*�++��,-����

�
�)*�++��,

	����
�
�)*�++�,-��(��

�
�)*�++�,

��%� ��	�� ���	
�"�
$�����#
����

�
�)*�++��,-����

�
�)*�++��,

	����
�
�)*�++�,-��(��

�
�)*�++�,

�������������	�� �
��!

�	
�"�
���������

������)�*�++�,

����
��	�� ���	
�"�
$������

����
�
�)*�++��,-����

�
�)*�++��,

	����
�
�)*�,-��(��

�
�)*�++�,

��%� ��	�� ���	
�"�
$������

����
�
�)*�++��,-����

�
�)*�++��,

	����
�
�)*�,-��(��

�
�)*�++�,

�������������	�� �
��!

�	
�"�
���������

�����)�*�++�,

����
��	�� ���	
�"�
$������

����
�
�)*�++��,-����

�
�)*�++��,

	����
�
�)*�++�,-��(��

�
�)*�++�,

��%� ��	�� ���	
�"�
$������
����

�
�)*�++��,-����

�
�)*�++��,

	����
�
�)*�++�,-��(��

�
�)*�++�,

��&��	
����
��'�
���(�
.�/)�*�++��,

��������
����
�

��#����	���	

�)�	�
��������

�����
� ��	
�"�
$

���	� ���
�����)

�)�	�
�������
��

������	
�"�
$

����
�
��0������

�
�

����
�
��0������

�
�

����
�
��0������

�
�

�����"�����
����

 ���	

$���
�
� �
�

�������"�����
�����

�������	��
�

�	�� ���	
�"�
���

��(��
�
�����������1���

��(��
�
�����������1���

��(��
�
�����������1���

��(��
�
�����������1���

��(��
�
�����������1���

��(��
�
�����������1���

��&�����	�������	

	���
����
��

	���
����
����� �

� ���������2��

�	����������2��

�	����������2��

�
��
� ���������2��

%������
����
����� �#�����	� *��������
�
���

����������
��
�������������	�� �
��!

�	
�"�
��������#
�����)��

����
��	�� ���	
�"�
$�����#
����

�
�)�-����

�
�)�

	����
�
�)�-��(��

�
�)�

��%� ��	�� ���	
�"�
$�����#
����

�
�)�-����

�
�)��

	����
�
�)�-��(��

�
�)�

�������������	�� �
��!

�	
�"�
���������

������)��

����
��	�� ���	
�"�
$������

����
�
�)!-����

�
�)!

	����
�
�)!-��(��

�
�)!

��%� ��	�� ���	
�"�
$������

����
�
�)!-����

�
�)!

	����
�
�)!-��(��

�
�)!

�������������	�� �
��!

�	
�"�
���������

�����)��

����
��	�� ���	
�"�
$������

����
�
�)�-����

�
�)3

	����
�
�)�-��(��

�
�)�

��%� ��	�� ���	
�"�
$������
����

�
�)!-����

�
�)!

	����
�
�)!-��(��

�
�)!

��&��	
����
��'�
���(�
.�/)��+

Figure 3.3: From ConDec-R specification to BP enactment plan.

• et(b)≥ st(a)

In this way, in ConDec-R some of the ConDec templates (Pesic and van der
Aalst, 2006; Pesic et al., 2007) are adapted and extended by considering the pos-
sible parallelism in the execution of those activities thatare related by ordering
constraints. This leads to four variants for the same temporal relation between
two activitiesa andb, which is represented by an additional label at the end of the
template name. This label represents: first, the time related toa which is constrai-
ned (start, S, or end, E), and the time related tob which is constrained (start, S, or
end, E) through the inclusion of the template1. Therefore, the four variants for the
same template are: SS, ES, SE, EE. As an example, ResponseSS(A,B) means that
after starting the last execution of A, at least one execution of B must be started.
A case of study which include some examples of this kind of extension is detailed
in Sect.5.3.

Notice that the ConDec-R language allows those typical constraints which are
considered in literature to be specified, i.e. (Sadiq et al., 2005; van der Aalst and
Pesic, 2006a):

• Constraints which restrict the selection of activities.

• Constraints which restrict the ordering of activities.

1In a similar way, ConDec++ (Montali, 2009) and Saturn (Demeyer et al., 2010) also consider
constraints imposed on the start and the completion times ofnon-atomic activities.

3.3. FROM CONDEC-R TO OPTIMIZED ENACTMENT PLANS 41

• Constraints which restrict the requirements of resources.

3.3 From ConDec-R to Optimized Enactment Plans

In this section, the complete process which is proposed to generate BP enactment
plans from a ConDec-R specification through constraint programming is detailed
(cf. Fig. 3.3). As stated, BP activities and constraints are specified in aConDec-R
model (cf. Step 1 in Fig.3.3, Sect.3.2) so that frequently several feasible ways to
execute this model exist. Each specific feasible execution of a ConDec-R model
leads to a specific value for the function to optimize. In general, there can be more
than one optimal execution, i.e., feasible solution leading to a minimal completion
time2. In order to generate optimal (or optimized) execution plans for a specific
ConDec-R model3, a constraint-based approach for P&S the BP activities (cf.
Step 2 in Fig. 3.3) is proposed. The obtained plans, i.e., solutions to the COP
(cf. Step 3 in Fig.3.3), optimize the specified objective function (cf. Def.12
on page17) and satisfy all the constraints which are stated in the specification of
the problem, i.e., reaches the specified goal (cf. Def.11 on page17). Lastly,
the generated plans are visualized as Gantt chart (Gantt, 1913) (cf. Step 4 in Fig.
3.3) which illustrates the start and the end times of the activities together with the
assigned resource.

3.3.1 Translating the ConDec-R Model as a CSP Model

As first step of the constraint-based approach, the Condec-Rmodel needs to be
translated to a CSP. Regarding the CSP model of the proposed constraint-based
approach, BP activities (repeated activities, cf. Def.21), which can be executed
arbitrarily often if not restricted by any constraints, aremodelled as a sequence of
optional scheduling activities (cf. Def.22). This is required since each execution
of a BP activity is considered as one single activity which needs to be allocated
to a specific resource and temporarily placed in the enactment plan, i.e., stating
values for its start and end times.

In this way, there are two main types in the proposed CSP model(cf. Fig. 3.4):

1. A type representing the BP activities, namedRepeatedActivity.

2In this chapter the overall completion time as objective function is considered. However, note
that the proposal can be easily extended to support further objective functions like cost.

3Notice that although the generation of optimal solutions isdesirable, optimized solutions are
acceptable for problems which present NP-complexity, suchas the considered problems, since
finding the optimal solution cannot been ensured in all cases.

42 CHAPTER 3. DECLARATIVE MODELS TO OPTIMIZED PLANS

1

*

-role: Rol

-dur: int

-nt: var{int}={0..maxExecutions}

RepeatedActivity

SchedulingActivity

-st: var{int}={0..maxOCT}

-et: var{int}={0..maxOCT}

-res: var{int}={1..maxRes}

-sel: var{int}={0..1}

Figure 3.4: RepeatedActivity and SchedulingActivity types

2. A type representing each execution of the BP activity, namedScheduling-
Activity.

Definition 21. A repeated activityra = (role,dur,nt) is a BP activity which can
be executed several times. The properties of a repeated activity are:

• role: it represents the role of the required resource for theactivity execu-
tion4.

• dur: it is related to the estimated duration of the BP activity5.

• nt: it is a CSP variable which represents the number of times the BP activity
can be executed6.

Given a ConDec-R process modelCR= (Acts,CBP,Res) (cf. Def. 20), the set
of related repeated activities is composed by{(role,dur,nt),(a, role,dur)∈Acts}.
For example, activitiesA, B andC of the constraint-based model of Fig.3.3(1) are
repeated activities. ActivityA, for example, requires resource of roleR1 and has
an estimated duration of 5. Moreover, the maximum number of activity executions
for A is between 0 and 2.

Since a repeated activity can be executed several times, a scheduling activity
(cf. Def. 22) refers to a specific execution of a repeated activity. In this way,
for each repeated activity,nt scheduling activities exist, which are added to the
CSP problem specification, apart from including a variablent (cf. Fig. 3.3(2)).
For example, for repeated activityA in Fig. 3.3 two scheduling activities exist
(referred to asA1 andA2).

4For sake of simplicity, the same required resource is considered for all the executions of a BP
activity. Note that the proposed approach can also deal withBP activities which require several
resources of various kinds of roles.

5The same estimated duration is considered for all the executions of a BP activity.
6Lower and upper bounds are related to the domain of each integer CSP variablevar, represen-

ting minimum and maximum value which can be given tovar in a feasible solution, respectively.
Thereby,LB(var) andUB(var) refer to the lower and upper bounds of the domain ofvar.

3.3. FROM CONDEC-R TO OPTIMIZED ENACTMENT PLANS 43

Definition 22. Ascheduling activitysa= (st,et, res,sel) represents a specific exe-
cution of a repeated activity, where:

• st: it is a CSP variable indicating the start time of the activity execution
(each execution of a BP activity needs to be temporarily placed in the enact-
ment plan).

• et: it is a CSP variable indicating the end time of the activity execution (each
execution of a BP activity needs to be temporarily placed in the enactment
plan).

• res: it is a CSP variable representing the resource used for the execution
(identified by a number between 1 and #role(role(res))).

• sel: it is a CSP variable indicating whether or not the scheduling activity is
selected to be executed (cf. Fig.3.3(2)).

Moreover, an additional CSP variable representing the objective function to be
optimized, i.e., the overall completion time in the contextof the current proposal,
namedOCT, is also included in the CSP model:OCT= maxa∈Acts(et(ant(a)))

7.
In order to ensure the consistency between the CSP variables, several cons-

traints have to be added to the CSP (cf. Fig.3.3(2)):

• ∀i : 1 ≤ i < UB(nt(a)) : et(ai) ≤ st(ai+1), i.e., a specific execution of a
repeated activity precedes the next execution of the same activity.

• ∀i : 1 ≤ i ≤ UB(nt(a)) : sel(ai) = nt(a) >= i, i.e., thent variable of the
repeated activity is directly related to thesel variables of the associated
scheduling activities, e.g., ifnt(a) = 2, thensel(a1) = 1, sel(a2) = 1 and
∀i : nt(a)< i ≤UB(nt(a)),sel(ai) = 0.

Furthermore, for each ConDec template, a global constraintis added to the
CSP model, i.e.,Existence(2,A), Precedence(A,B), Precedence(A,C), andNot−
Coexistence(B,C) for the constraint-based model depicted in Fig.3.3.

Definition 23. A CSP-ConDec problemrelated to a ConDec-R process model
CR= (Acts,CBP,Res) (cf. Def. 20 on page39) is a COP Po = (V,D,CCSP,o) (cf.
Def. 15 on page26) where:

• The set of variables V is composed by all the CSP variables included in the
presented CSP model plus the CSP variable related to the overall comple-
tion time (OCT), i.e., V= {nt(a),a∈Acts}∪{st(ai),et(ai), res(ai),sel(ai),
a∈ Acts, i ∈ [1..UB(nt(a))]}∪OCT.

7ai refers to the scheduling activity related to the i-th execution of the repeated activitya.

44 CHAPTER 3. DECLARATIVE MODELS TO OPTIMIZED PLANS

• The set of domains D is composed by the domain of each CSP variable v,
D(v), i.e.:

D = {D(nt(a)) = {0..MC}, a∈ Acts}∪

{D(st(ai)) = {0..MC× ∑
a∈Acts

dur(a)},a∈ Acts, i ∈ [1..UB(nt(a))]}∪

{D(et(ai)) = {0..MC× ∑
a∈Acts

dur(a)},a∈ Acts, i ∈ [1..UB(nt(a))]}∪

{D(res(ai)) = {1..#role(role(a))},a∈ Acts, i ∈ [1..UB(nt(a))]}∪

{D(sel(ai)) = {0..1},a∈ Acts, i ∈ [1. . .UB(nt(a))]}

where MC is the maximum cardinality for the BP activities (established by
existence relations in the constraint-based model).

• The set of constraints CCSP is composed by the global constraints (imple-
mented by the filtering rules, cf. AppendixB) related to the ConDec-R cons-
traints included in CBP together with the constraints from the proposed CSP
model, i.e.:

– ∀i : 1≤ i < nt(a) : et(ai)≤ st(ai+1)

– ∀i : 1≤ i ≤UB(nt(a)) : sel(ai) = nt(a)≥ i

for each repeated activity a∈ Acts.

• The objective function o is minimizing the OCT variable.

Figure3.3 includes the translation from a ConDec-R specification intoa CSP
so that the CSP variables and constraints are stated as explained in Def. 23 (cf.
Step 2). In general, for each repeated activitya, a CSP variablent is added to the
CSP model. Thereby, the value forLB(nt(a)) is initially set to 0 (it will be auto-
matically updated during the solving process if an existence constraint is added
through the corresponding filtering rule, cf. AppendixB), and forUB(nt(a))
a rough initial estimate is made by considering the maximum obligatory cardi-
nality of all repeated activities which is stated by existence constraints. For the
constraint-based model depicted in Fig.3.3, for example, the upper bound for
all repeated activities is initially set to 2 (due to the existence constraint related
to activity A). This value states the minimumnt for all BP activities ensuring a
feasible solution (the optimal solution, however, in general includes lower values
of nt for several activities).

Moreover,LB(OCT) is initially set to 08, andUB(OCT) is estimated as the
maximum cardinality times the sum of the duration of all the BP activities, i.e.,

8LB(OCT) can be also initialized to other different values, e.g., maximum duration of all the
mandatory activities.

3.3. FROM CONDEC-R TO OPTIMIZED ENACTMENT PLANS 45

2× (5+3+4) in the example of Fig.3.3. This is since a trivial solution which
can be obtained results in a plan which includes the execution of each BP activity
the maximum number of times when all activities are sequentially executed.

For similar reasons, for each scheduling activityai , lower and upper bounds
for st andet are set to the lower and the upper bounds ofOCT. Furthermore, in
general,D(res(ai))= {1..#role(role(a))}, i.e.,D(res(Ai))= {1..2} andD(res(Ci))
= {1..2} for anyi since #R1 = 2, andD(res(Bi)) = {1} for anyi since #R2 = 1 for
the constraint-based model depicted in Fig.3.3. In addition, for each scheduling
activity ai, D(sel(ai)) = {0..1}, sincesel is a binary variable indicating whether
or not the scheduling activity is selected to be executed.

3.3.2 Global Constraints and Filtering Rules

To improve the modelling of the problems and to efficiently handle the constraints
in the search for solutions, the proposed constraint-basedapproach includes for
each ConDec template a related global constraint which is implemented through
a filtering rule (responsible for removing values which do not belong to any solu-
tion) for the definition of the high-level relations betweenthe BP activities. In this
way, the constraints stated in the ConDec-R specification (cf. Def. 20 on page
39) are included in the CSP model through the related global constraints. These
global constraints facilitate the specification of the problem at the same time as the
related filtering rules enable the efficiency in the search for solutions to increase
since during search process these filtering rules remove inconsistent values from
the domains of the variables. Notice that in the CSP model specification, initial
estimates are made for upper and lower bounds of variable domains (cf. Sect.
3.3.1), and these values are refined during the search process.

As examples, three filtering rules of varied complexity are presented as follows
(for a detailed description of all the developed filtering rules cf.Appendix B).

Existence(A, N)

Existence(A,N) means thatA must be executed more than or equal toN times,
nt(A)≥ N.

Existence(A,N) is added ->
If N > LB(nt(A)) then

LB(nt(A)) <- N

Figure 3.5: Filtering Rule for the Existence Template

The Existencerule (Fig. B.1) is invoked when the template is added to the
constraint model, hence its trigger ”Existence(A,N) is added”.

46 CHAPTER 3. DECLARATIVE MODELS TO OPTIMIZED PLANS

Proposition 1. If implemented properly, the time complexity of the rule Existence,
which includes all possible recursive calls, isΘ(1).

Proof. TheExistencerule is fired only when the constraint is added, and the time
complexity of its execution is constant, hence the complexity of this rule isΘ(1).

Precedence(A, B)

Precedence(A,B) means that before the execution ofB, A must have been execu-
ted,nt(B)> 0⇒ (nt(A)> 0)∧ (et(A1) ≤ st(B1)). As can be seen in Fig.A.1(a)
(cf. AppendixA), this relation implies thatA1 must precedeB1 in the case that
nt(B)> 0.

Precedence(A,B) is added OR bounds of
nt(A) changed OR bounds of nt(B) changed OR bounds of st(B1)
changed OR bounds of et(A1) changed ->

If LB(nt(B)) > 0 then
nt(A) <- nt(A) - {0}

If UB(nt(A)) == 0 then
VAL(nt(B)) <- 0

If LB(et(A1)) > LB(st(B1))then
LB(st(B1))) <- LB(et(A1))

If UB(et(A1)) > UB(st(B1)) then
UB(et(A1)) <- UB(st(B1))

Figure 3.6: Filtering Rule for the Precedence Template

The Precedencerule (Fig. 10) is invoked when the template is added to the
constraint model or when the domain bounds of some variablesare updated.

Proposition 2. If implemented properly, the worst-case time complexity ofthe
rule Precedence, which includes all possible recursive calls, is O(n), where n is
the number of Repeated (ConDec-R) Activities of the problem.

Proof. ThePrecedencerule can be fired, at most, 3×n times. This is due to the
fact that only a change in the first execution (st andet variables ofAct1) or in the
nt variable of a repeated activity can fire this rule. Moreover,the time complexity
of thePrecedencerule execution is constant, and hence the worst-case complexity
of this rule isO(n).

Alternate Precedence(A, B)

AlternatePrecedence(A,B) means that before the execution ofB, A must have
been executed, and between each two executions ofB, A must be executed. It
implies that:

3.3. FROM CONDEC-R TO OPTIMIZED ENACTMENT PLANS 47

Alternate Precedence (A,B) is added OR
bounds of nt(A) changed OR bounds of nt(B) changed OR bounds of
st(Ai) for any i changed OR bounds of et(Ai) for any i changed OR
bounds of st(Bi) for any i changed OR bounds of et(Bi) for any i
changed ->

if (LB(nt(A)) < LB(nt(B))) {LB(nt(A)) <- LB(nt(B))}
if (UB(nt(B)) > UB(nt(A))) {UB(nt(B)) <- UB(nt(A))}
for (int i = 1; i <= UB(nt(B)); i++){

SchedulingActivity a = Ai;
SchedulingActivity b = Bi;
if (LB(et(a)) > LB(st(b))) {LB(st(b)) <- LB(et(a))}// Ai -> Bi
if (UB(st(b)) < UB(et(a))) {UB(et(a)) <- UB(st(b))}// Ai -> Bi

}
for (int i = 1; i < LB(nt(B)); i++){

int dif = UB(nt(A)) - LB(nt(B));
SchedulingActivity a = Ai+dif+1;
SchedulingActivity b = Bi;
if (LB(et(b)) > LB(st(a))) {LB(st(a)) <- LB(et(b))}// Bi -> Ai+dif+1
if (UB(st(a)) < UB(et(b))) {UB(et(b)) <- UB(st(a))}// Bi -> Ai+dif+1

}
for (int i = 2; i <= UB(nt(B)); i++){ // force exists A between Bi-1 and Bi

int dif = UB(nt(A)) - max(i,LB(nt(B)));
SchedulingActivity b1 = Bi-1;
SchedulingActivity b2 = Bi;
int j = i; // Candidate As between Bi-1 and Bi
SchedulingActivity aFor;
int possible = 0;
while (j <= (i + dif) && possible < 2) {

SchedulingActivity aPos = Aj;
//If Bi-1->aPos->Bi possible

if (UB(st(aPos))>=LB(et(b1)) && LB(et(aPos))<=UB(st(b2))){
possible++;
aFor = aPos;

}
j++;

} // end while j
if (possible == 1){ // force Bi-1 -> aFor -> Bi

// Bi-1 -> aFor
if (LB(et(b1))>LB(st(aFor))){LB(st(aFor)) <- LB(et(b1))}
if (UB(st(aFor))<UB(et(b1)) {UB(et(b1)) <- UB(st(aFor))}
// aFor -> Bi
if (LB(et(aFor))>LB(st(b2))){LB(st(b2) <- LB(et(aFor))}
if (UB(st(b2))<UB(et(aFor))){UB(et(aFor)) <- UB(st(b2))}

} // end if
if(possible == 0)

return Failure;
}//end for i

Figure 3.7: Filtering Rule for the Alternate Precedence Template

1. The number of times thatA is executed must be greater than or equal to the
number of times thatB is executed:nt(A)>= nt(B).

2. Between each two executions ofB, A must be executed at least once. Spe-
cifically, between the(i−1)-th and thei-th execution ofB, the earliest exe-
cution of A that can exist isi, and henceAi−1 must precedeBi−1 (as can
be seen in Fig.A.1(b), cf. AppendixA). In a similar way, between the
(i−1)-th and thei-th execution ofB, the latest execution ofA that can exist

48 CHAPTER 3. DECLARATIVE MODELS TO OPTIMIZED PLANS

is i +nt(A)−nt(B), and henceBi must precedeAi+nt(A)−nt(A)+1. This can
also be seen in Fig.A.1(b), where the possible activities to be executed
between the(i−1)-th and thei-th execution ofB are framed within the dot-
ted rectangle.∀i : 2≤ i ≤ nt(B) : ∃ j : i ≤ j ≤ i +nt(A)−nt(B) : st(A j) ≥
et(Bi−1)∧et(A j))≤ st(Bi).

3. BeforeB, A must be executed:st(B1)≥ et(A1).

Proposition 3. If implemented properly, the worst-case time complexity ofthe rule
AlternatePrecedence, which includes all possible recursive calls, is O(n×nt3),
where n is the number of Repeated Activities of the problem, and nt is the upper
bound of the variable nt(Act) domain. This upper bound obtains the same value
for all the ConDec-R activities.

Proof. TheAlternatePrecedencerule can be fired, at most,n+2×n×nt times.
This is due to the fact that a change in any execution of any activity (st andet
variables ofActi) or in thent variable of an activity can fire this rule. Moreover,
the time complexity of theAlternatePrecedencerule execution isO(nt2), and
hence the worst-case time complexity of this rule isO(n×nt3).

3.3.3 Solving the COP

Once the problem is modelled, several constraint-based mechanisms can be used
to obtain the solution for the COP, i.e., optimized enactment plans (cf. Def.24).
Since the generation of optimized plans presents NP-complexity (Garey and John-
son, 1979), it is not possible to ensure the optimality of the generated plans for all
the cases. The developed constraint-based approach, however, allows solving the
considered problems in an efficient way, as demonstrated in Sect.3.4.

Definition 24. A BP enactment planis composed by:

1. The number of times each BP activity is executed.

2. The start and the completion times for each activity execution.

3. The resource which is used for each activity execution.

In general, when optimizing a CSP variable, if a feasible solution which is
known exists, the value of the variable to optimize in the known solution can
be used for discarding large subsets of fruitless candidates by using upper and
lower estimated bounds of the quantity being optimized during the search process.
Thus, if a known feasible solutionS for the problem to solve exists, the objective
value for this solution (SOCT) is a valuable information which can be added to the

3.4. EMPIRICAL EVALUATION 49

constraint model through the constraintOCT < SOCT. Thus, some non optimal
candidates, i.e., candidates whoseOCT value cannot be less thanSOCT in any
case, are discarded during the search, increasing the efficiency in the search for
solutions.

Moreover, in the proposed approach, during the search process, some of the
values which only lead to non-feasible solutions, i.e., inconsistent values, are re-
moved from the domains of the CSP variables through the developed filtering
rules (cf. AppendixB) in order to reduce the search space by maintaining arc
consistency (cf. Def.17on page29).

In the proposed approach, the developed filtering rules and CSP modelling (cf.
Sect. 3.3.1) are implemented such that they maintain the arc consistency for all
pairs of CSP variables during all the search process.

There are a wide scope of search algorithms of varied nature which can be used
for finding optimal/optimized solutions to the COPs. In general, the suitability and
efficacy of each search algorithm highly depend on the specific problem to solve.
For this reason, different search strategies are tested in the empirical evaluation of
each chapter related to the generation of optimized enactment plans from ConDec-
R specifications (cf. Sect.3.4, Sect.4.4, and Sect.5.4).

A proof-of-concept prototype has been implemented througha web-based ap-
plication, which allows for the generation of optimized enactment plans from
ConDec-R specifications, and it can be accessed at:

http://regula.lsi.us.es/OptBPPlanner9

3.4 Empirical Evaluation

In order to evaluate the effectiveness of the proposal, a controlled experiment is
conducted. Section3.4.1 describes the design underlying the experiment, and
Section3.4.2shows the experimental results and the data analysis.

3.4.1 Experimental Design

Purpose: The purpose of the experimental evaluation is to determine the efficacy
of the proposed constraint-based approach for generating optimized plans. As far
as the developed filtering rules greatly influence and improve the efficiency of the
search, it has been considered suitable to compare the results obtained by: first,
the proposal with propagators (i.e., filtering rules) and the related high-level global

9Only non-branched templates and the default option in the ordering constraints, i.e., ES, are
considered in this prototype.

50 CHAPTER 3. DECLARATIVE MODELS TO OPTIMIZED PLANS

constraints; and secondly, with neither propagators nor global constraints (in this
case, the equivalent local constraints are included)10.

Experimental Design: The behavior of five representative propagators are
tested: Exactly, Existence, Precedence, Alternate and Chain Precedence. The
results obtained with two proposals, which use the same variables, are compared
to study the efficiency:

1. With propagators: the user-defined constraints are used for the establish-
ment of the high-level relations between the ConDec-R activities. In this
case, the proposed filtering algorithms are responsible forremoving incon-
sistent values from the domain of the variables.

2. Without propagators: the relations between the activities are established
directly through basic constraints, as shown in AppendixA.

Objects: Due to the use of a specific and new language, it has been impossible
to find a set of public benchmarks for ConDec-R problems.

ConDec-R problems can be modelled as an extension of scheduling problems.
In this way, a set of well-known job shop scheduling (cf. Sect. 2.2.1) benchmarks
(FT06 (6x6), FT10 (10x10), ABZ06 (10x10), LA21 (15x10), LA36 (15x15)) have
been extended for use in the empirical evaluation in the following way:

• In a job shop scheduling problem, the activities are executed only once. For
this evaluation, the cardinality of a random percentagep% of activities has
been set to a valuec greater than one, in order to test the behavior of the
proposal when some repeated activities are executed several times. In Table
3.1, the columnCard= c(p%) refers to extensions to job shop scheduling
problems in a way that the cardinality of a random percentagep% of ac-
tivities has been set to a valuec. In order to minimize the influence of the
random component in the performance measures which are considered, 50
random instances are generated for each problem so that average values are
reported.

• In a job shop scheduling problem, all the temporal relationsbetween activi-
ties are precedence relations, i.e., ”A precedes B” means that A must finish
before B starts. This relation can be modelled through several ConDec-R
templates, e.g., Precedence, Response, or Succession. Formodelling the
temporal relations of job shop scheduling problems in ConDec, the Prece-
dence template has been selected although other options canalso be used.
Moreover, in order to consider more complex relations between the repeated

10Due to the fact that the analyzed relations are introduced inthis work for the first time, there
has not been possible to find a previously developed solver which deals with these relations.

3.4. EMPIRICAL EVALUATION 51

activities, the alternate and chain precedence relations11 are also considered
in the following way: in the original problemP, all the precedence relations
between the activities of the same job are changed to alternate precedence
relations (this is represented byPAlt. in Table3.1) and chain precedence
relations (this is represented byPChainin Table3.1).

Setting the cardinality ofp% activities to a valuev> 1, can result in a solution
where there arep′% activities (p′ > p) with cardinalityv. For example, each ac-
tivity a with nt(a) = v implies that for allb whereAlternatePrecedence(b,a) or
ChainPrecedence(b,a) hold, thennt(b)≥ nt(a) must be satisfied (the same logic
applies for all the activitiescsuch thatAlternatePrecedence(c,b)orChainPrece−
dence(c,b), etc).

Notice that the scheduling benchmarks with the lowest complexity are those
that only include precedence relations and have the lowest cardinality for the ac-
tivities.

Independent Variables:For the empirical evaluation, the random percentage
of activities set to a cardinality higher than 1,p%, and the value for this cardinality,
c are taken as independent variables.

Response Variables:Some performance measures are reported (Table3.1):

• BM
P : Number of instances for which the makespan found by the proposal

with propagators is shorter than the makespan found withoutpropagators.

• BM: Number of instances for which the makespan found by the proposal
without propagators is shorter than the makespan found withpropagators.

• BT
P: Number of instances for which the solutions found by both proposals

obtain the same makespan value, but the proposal with propagators is faster.
The values related to this variable appear between bracketsin Table3.1, and
it is only included in the case that it is greater than one.

• BT : Number of instances for which the solutions found by both proposals
obtain the same makespan value, but the proposal without propagators is
faster. The values related to this variable appear between brackets in Table
3.1, and it is only included in the case that it is greater than one.

Experimental Execution: For both proposals, a complete search approach
has been applied: first, the variables related to the number of times that each
activity is executed are instantiated. The search procedure then determines the

11Alternate Precedence(A, B) means that before the executionof B, A must have been executed,
and between each two executions ofB, A must be executed. In a similar way, Chain Precedence(A,
B) means that immediately beforeB, A must be executed. For more details, cf. AppendixA.

52 CHAPTER 3. DECLARATIVE MODELS TO OPTIMIZED PLANS

order of execution of the activities within each resource ateach step, such that
the next resource to be ranked is selected depending on its slack. Within each
resource, the activities are ranked in a non-deterministicway.

For the experiments, each algorithm is run until it finds the optimal solution
or until a 5-minute CPU time limit has been reached. The machine for all ex-
periments is an Intel Core2, 2.13 GHz, 1.97 GB memory, running Windows XP.
In order to solve the constraint-based problems (cf. Sect.3.3), the developed al-
gorithms have been integrated with the system COMET (Dynadec, 2011), which
is able to generate high-quality solutions for highly constrained problems in an
efficient way.

3.4.2 Experimental Results and Data Analysis

As stated before, several experimental results are shown inTable3.1. After ana-
lyzing these values, some conclusions can be obtained:

• For problems with only precedence relations, the solutionsfor the two pro-
posals are very similar. In this case, the problem is simply aJob Shop pro-
blem, and COMET includes efficient mechanisms for solving scheduling
problems.

• For problems with alternate and chain precedence relations, the proposal
without propagators obtains better solutions for problemswith lower com-
plexity (or cardinality). When the percentage of activities with greater car-
dinality increases, the proposal with propagators proves better than the other
proposal in almost all instances.

In short, the proposal without propagators obtains better solutions for pro-
blems of lower complexity (only precedence relations, low cardinality), while the
proposal with propagators is much better for more complex problems, and hence
it seems to be better for general cases12.

12Notice that a limited empirical evaluation is carried out, and hence the conclusions which are
obtained are dependent on the considered problems.

3.4.
E

M
P

IR
IC

A
L

E
VA

LU
AT

IO
N

5
3

Table 3.1: Results on a set of ConDec-R problems from JSS instances

Card = 2 (5%) Card = 2 (10%) Card = 3 (5%) Card = 3 (10%)

Problem BM
P (BT

P) BM (BT) BM
P (BT

P) BM (BT) BM
P (BT

P) BM (BT) BM
P (BT

P) BM (BT)

FT06 Prec. 0 0 (1) 0 0 (2) 0 0 0 0 (2)
FT06 Alt. 6 (1) 20 (22) 7 (2) 36 (4) 37 0 (3) 50 0
FT06 Chain 7 (1) 23 (19) 6 (2) 37 (4) 37 0 (3) 50 0
FT10 Prec. 0 0 0 0 0 0 0 0
FT10 Alt. 11 36 5 44 50 0 50 0
FT10 Chain 13 35 3 46 50 0 50 0
ABZ06 Prec. 0 0 0 0 0 0 0 0
ABZ06 Alt. 13 30 6 42 50 0 50 0
ABZ06 Chain 10 36 3 44 50 0 50 0
LA21 Prec. 0 0 0 0 0 0 0 0
LA21 Alt. 11 39 2 48 50 0 50 0
LA21 Chain 3 47 2 48 50 0 50 0
LA36 Prec. 0 0 0 0 0 0 0 0
LA36 Alt. 3 47 1 49 50 0 50 0
LA36 Chain 0 50 0 50 50 0 50 0

54 CHAPTER 3. DECLARATIVE MODELS TO OPTIMIZED PLANS

3.5 Related Work

In recent years, several filtering algorithms for specialized scheduling constraints
have been developed. Specifically, (Beck and Fox, 2000) and (Barták and Cepek,
2010) model scheduling problems which include alternative and optional tasks
respectively, together with their propagators. Furthermore, the work (Barták and
Cepek, 2008) proposes propagators for both precedence and dependency cons-
traints in order to solve log-based reconciliation (P&S) problems in databases.
In those studies, the precedence constraints mean the same as in P&S problems,
while the dependency constraints are given between optional activities which can
potentially be included in the final schedule. The work (Laborie et al., 2009)
introduces new types of variables (time-interval, sequence, cumulative, and state-
function variables) for modelling and reasoning with optional scheduling activi-
ties. In the current chapter, the proposed model and propagation for the optional
activities are very similar to the proposal presented in (Laborie et al., 2009).

Regarding the works (Beck and Fox, 2000), (Barták and Cepek, 2008), (Barták
and Cepek, 2010) and (Laborie et al., 2009), the main contribution from the de-
veloped propagators is the complex reasoning about severalcombined innovative
aspects, such as the alternating executions of repeated activities together with the
variable number of times which these activities are executed (i.e. alternate and
chain relations). Furthermore, the areas of application ofthose studies are unre-
lated to those of the presented proposal.

Additionally, there exist some proposals which could be used to generate opti-
mized enactment plans for BPs from constraint-based process specifications. Spe-
cifically, (Pesic, 2008) proposes the generation of a non-deterministic finite state
automaton from constraint-based specifications based on Linear Temporal Logic
(LTL) which represents exactly all traces that satisfy the LTL formulas. When
extending this approach by including estimates, the overall completion time of all
the traces could then be calculated (e.g., (van der Aalst et al., 2011)). However,
the big disadvantage following such an approach would be that the process of ge-
nerating the automaton from the declarative specificationsis NP complete, and,
unlike the proposed approach, no heuristic can be used. In a similar way, CLIMB
(Montali, 2009) could be used to generate quality traces from declarative specifi-
cations, and calculate its completion time. Then, the best traces could be selected.
Unlike the proposed approach, (Montali, 2009) does neither consider optimality
nor resource availabilities. Therefore, this would only cover the planning part of
the current proposal, but not the scheduling aspects addressed by the proposed
approach.

Chapter 4

User Recommendations for the
Optimized Execution of BPs

4.1 Introduction

4.1.1 Motivation

In the current dynamic business world the economic success of an enterprize in-
creasingly depends on its ability to react to changes in its enterprize in a quick and
flexible way. Therefore, flexible BPMSs (cf. Def.4 on page10) are required to
allow companies to rapidly adjust their BP (cf. Def.1 on page9) to changes in
the environment (van der Aalst and Jablonski, 2000). The specification of process
properties in a declarative way is an important step towardsthe flexible manage-
ment of BPMSs (van der Aalst et al., 2009).

As mentioned, due to their flexible nature, frequently several ways to execute
declarative process models exist. Typically, given a certain partial trace (reflecting
the current state of the process instances), users can choose from several enabled
activities which activity to execute next. This selection,however, can be quite
challenging since performance goals of the process (e.g., minimization of overall
completion time) should be considered, and users often do not have an understan-
ding of the overall process. Moreover, optimization of performance goals requires
that resource capacities are considered. Therefore, recommendation support is
needed during BP execution, especially for inexperienced users (van Dongen and
van der Aalst, 2005).

4.1.2 Contribution

In order to support users of flexible BPMSs during process execution in opti-
mizing performance goals like minimizing the overall completion time (i.e., time

55

56 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

needed to complete all process instances which were plannedfor a certain pe-
riod), in this chapter the use of optimized enactment plans which are generated
from declarative BP specifications (cf. Chapter3) is proposed for giving recom-
mendations.

Recommendations on possible next steps are then generated taking the partial
trace and the optimized plans into account. In the proposed approach, replanning
is supported if actual traces deviate from the optimized enactment plans (e.g.,
because estimates turned out to be inaccurate).

In order to evaluate the effectiveness of the proposed recommendation system,
different constraint-based algorithms are applied to a range of test models of vary-
ing complexity. The suitability of the proposed approach istested regarding both
(1) build-time, i.e., for the generation of complete optimized plans before starting
the BP enactment; and (2) run-time, i.e., for the generationof partial, optimized
plans by considering the actual partial trace of the processas the execution of the
process proceeds (replanning). The results indicate that the proposed approach
produces a satisfactory number of suitable solutions, i.e., solutions which are op-
timal in most cases and quite good in other cases1.

The main contributions of this chapter can be summarized as follows:

• Method for generating recommendations to users of flexible BPMSs during
run time (cf. Sect.4.2 (Barba et al., 2011)). For this, optimized enactment
plans which are generated from constraint-based specifications (cf. Chapter
3) are used.

• Validation of the proposed approach through the analysis ofdifferent per-
formance measures related to a range of test models of varying complexity
(cf. Sect.4.4).

This chapter is organized as follows: Sect.4.2 includes an overview of the
proposed approach, Sect.4.3 shows the application of the proposed approach to
a running example, Sect.4.4shows some experimental results, Sect.4.5presents
a critical discussion of the proposed approach, and finally,Sect.4.6 summarizes
related work.

4.2 Method for Generating Recommendations

As stated, constraint-based processes offer much flexibility. Typically, given a
constraint-based process model and a certain partial trace, users can choose from

1Notice that a limited empirical evaluation is carried out, and hence the conclusions which are
obtained are dependent on the considered problems.

4.2. METHOD FOR GENERATING RECOMMENDATIONS 57

several enabled activities which activity to execute next,which is a challenging
selection in most cases. In order to address this challenge,an approach to assist
users during process execution in optimizing performance goals like minimizing
the overall completion time is proposed. Specifically, users of flexible BPMSs are
supported during process execution by a recommendation service which provides
recommendations on how to proceed best with the execution. Hereby, a recom-
mendation (cf. Def.25) is composed by one or more enabled activities (cf. Def.
10 on page17) to be executed next, together with their resource allocations since
both control-flow and resource perspectives are considered.

Definition 25. A recommendationis composed by a set of pairs(ai,Rjk) sugges-
ting to start the i-th execution of activity a using resourceRjk

2.

For example, the recommendation< (A1,R01),(B2,R12) > suggests to start
the first execution of activityA using resourceR01 and the second execution of
activity B using resourceR12.

The recommendation service is based on optimized enactmentplans which are
already generated during build-time by P&S all BP activities (cf. Chapter3) and
further optimized during run-time (cf. Fig.4.1). Recommendations are suggested
during the BP execution at timeT when the partial trace of the BP is part of one of
the considered optimized enactment plans which contains one or more activities
which start right at timeT. In this way, at specific times of the process execution,
the recommendation system generates the recommendations by considering: (1)
the optimized enactment plans, (2) the partial traces (cf. Def. 8 on page16) of
the process instances to be optimized, and (3) the resource availabilities (cf. Sect.
4.2.1). Thereby, the recommendation service ensures that not only single process
instances get optimized, but the whole set of instances which is planned to be
executed within a certain timeframe, hence allowing for a global optimization.

4.2.1 Generating Recommendations on Possible Next Execu-
tion Steps

This section describes how the generated optimized plans (cf. Chapter3) are then
used for assisting users during process execution. At run-time, process instances
(cf. Def. 9 on page16) are executed by authorized users (a in Fig. 4.1). At any
point during the execution of a process instance, the user can select from the set
of enabled activities (cf. Def.10 on page17) what to do next. However, to guide
the user to optimize the overall process goals, recommendations (cf. Def.25) are

2Rjk refers to the k-th resource with rolej.

58 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

��������	�
���

��������
���
���������	��
�

�����������

�����	�
���

��������
�����

�����	�����

��
���
��

�����
������

�����
���������

	
����
���

�	�����

��

���

�
�����

!�������

����	
�

�������

����������������

���������������������

����� ������

����������
���

�	����

�������

��������

��������

������������

�
 �
���

�����
������

�����
���������

�����
������

�����
���������

��������������

������

"�
�	
"#
�
$%�

&�
$

"����"#
�
$$

"'��
�
$

���

(!

��

�!

���

���

���

���������!������

�����
��������	������)��
�����

����������������

�����������������������

����� ������

��������

���������

���������

*�����

����

��

���������������

������� �*�����

�

	

�

! �

�

�

�

�

"

Figure 4.1: Generating Recommendations on Possible Next Execution Steps.

provided by the recommendation service (b in Fig. 4.1), i.e., proposing the most
suitable activity to execute next3.

Algorithm 1 shows how the recommendations are generated. As input data
some information is required: (i) the ConDec-R specification of the problem (cf.
Def. 20 on page39) and (ii) the initial optimized enactment plans (cf. Def.24
on page48) generated during the build-time phase. As stated, for a particular
timeframe a BP enactment plan for a set of instances (cf. Def.9 on page16) is
generated. Algorithm1 starts at the beginning of such a timeframe and lasts until
all the planned instances have completed (line 15 in Alg.1).

Algorithm1 continuously generates recommendations (line 11) on how topro-
ceed with process execution considering (1) the best available enactment plan (d
in Fig. 4.1) meeting the constraints imposed by the constraint-based specification
(e in Fig. 4.1), and (2) all events that occurred during process execution(i.e.,
allEvents). This includes (1) the current partial traces of the process instances (c
in Fig. 4.1), and (2) the current information about resource availabilities (c in Fig.
4.1), e.g.,(¬Rjk,T) means that k-th resource with role j becomes unavailable at
time T (cf. Fig. 4.3). In the case that a recommendation is suggested (line 12),
the recommendation system sends it to the user (line 13).

3For the current work, the durations of the recommendation generation is considered negligible
compared to the duration of the process activities.

4.2. METHOD FOR GENERATING RECOMMENDATIONS 59

Algorithm 1 : Provide Recommendations
input : ConDec-R Specificationcr

set<EnactmentPlan> plans

Recommendationrec;1

Set<Event> allEvents← /0;2

Set<Event> newEvents;3

int T ← currentTime();4

repeat5

if event(newEvents,T) then6

allEvents← allEvents∪newEvents;7

plan← update(cr, plans,allEvents);8

if optimizerPlan(cr, plans,allEvents)! = null then9

plan← optimizerPlan(cr, plans,allEvents);10

rec← generateRecommendation(plans,allEvents);11

if rec! = null then12

send(rec);13

T← currentTime();14

until ¬CompleteTrace(cr,allEvents) ;15

As execution proceeds, the BP enactment and the resource availabilities are
monitored (f in Fig. 4.1). If there are new events at timeT (line 6 in Alg. 1),
i.e., activities get started/completed or resources become available/unavailable (g
in Fig. 4.1), then the set of eventsallEvents, which includes both the partial trace
and the resource availability events, is updated (line 7 in Alg. 1).

Whenever events are updated the Replanning Module (h in Fig. 4.1) analyzes
the optimized plans (i in Fig. 4.1) as well as the events. In particular, it checks if
the current execution traces match up with any of the optimized enactment plans
(and if a recommendation can be suggested) or whether updates of the execution
plans are needed (j in Fig. 4.1). In general, updates of the execution plan can
become necessary due to deviations (line 8 in Alg.1), i.e., (i) the execution trace
is not part of one of the optimized enactment plans (e.g., theuser is not always
following the recommendations), (ii) estimates are incorrect (e.g., when activity
executions take longer/shorter than estimated, or more or less instances than ex-
pected get executed), or (iii) resource availabilities change (i.e., resources become
unavailable). Note that not every deviation requires replanning (some examples
are given in Sect.4.3).

Moreover, plan updates are conducted whenever the replanning module finds
a solution which is better than the current optimized plans (lines 9 and 10 in Alg.

60 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

1). The Replanning Module is continuously searching for a better plan by con-
sidering the event log during BP execution, provided that the current plan is not
optimal. If plan updates are required, the Replanning Module needs to access
the extended constraint-based specification of the process(k in Fig. 4.1) to gene-
rate new optimized plans considering both the estimates andthe constraint-based
specification. If necessary, the replanning, i.e., the generation of new optimized
enactment plans, is carried out by applying a constraint-based approach for P&S
the BP activities (cf. Chapter3).

Despite the NP-complexity of the considered problems, in general replanning
is less time consuming than initial planning, since most of the information about
previous generated plans can usually be reused, and CSP variable values become
known as execution proceeds (cf. Sect.4.4).

A running example illustrating the complete process is detailed in Sect.4.3.

4.3 A Running Example

In this section, the proposed approach is used for managing recommendations
during a hypothetical execution of a running example which represents a travel
agency. This agency manages holiday bookings by offering clients the following
three services: transport, accommodation, and guided excursions. After the client
request is carried out, the agency must write a report which contains the infor-
mation in answer to the request, which will then be sent to theclient. Besides
managing the client requests, people who work in the agency must perform fur-
ther activities related to management, and accounting tasks. The number of client
requests (P), management tasks (M) and accounting tasks (A)which must be dealt
with during a working day is known at the beginning of the day,hence it is ne-
cessary to organize the work considering the estimated workload. The objective
to be considered by the agency is to minimize the overall completion time of the
daily processes. However, this example can easily be extended in order to consider
the optimization of further objective functions, such as cost. In the travel agency,
optimized BP enactment plans must be created every day to generate recommen-
dations about the activities to be executed and the correct ordering. The activities
which must be executed to deal with the client requests, management and account-
ing tasks are detailed in Table4.1. For activities which are executed more than
once, each execution must finish before the next execution can start. Moreover,
in order to simplify the analyzed problem, all the executions of the same activity
require a resource of the same role with the same duration is assumed4.

4Note that the proposed approach can deal with BP activities which require several resources
of various kinds of roles, since the considered problems aremodeled as scheduling problems with
optional activities, where the resources have a discrete capacity.

4.3.
A

R
U

N
N

IN
G

E
X

A
M

P
LE

6
1

Table
4.1:

B
P

activities.

ID
D

escrip
tio

n
R

o
le

D
u

ratio
n

G
T

h
e

clien
treq

u
estis

received
R

0
2

A
S

A
su

itab
le

acco
m

m
o

d
atio

n
is

search
ed

R
0

6
G

E
G

u
id

ed
excu

rsio
n

s
are

o
rg

an
ized

R
1

5
T

S
A

su
itab

le
tran

sp
o

rtatio
n

is
search

ed
R

0
7

W
R

A
rep

o
rtw

ith
th

e
an

sw
ers

to
th

e
req

u
ests

is
w

rittenR
1

5
M

T
M

an
ag

em
en

ttask
is

carried
o

u
t

R
0

4
A

T
A

cco
u

n
tin

g
task

is
carried

o
u

t
R

1
5

���������	
���
���
�����������������
����
����������

��

�

��

�

�

��

��

��

��

	
���
��

	����
��

	����
��

	�������

	�������

	�������

�

	�������

	�������

	�������

����������
�

���
�����

�
���
����

�
�����

�
 ���
�
���

�����
�������

������
�������

������
������

������
�������

������
������

������
�������

������
������

�������
�

�����

�����

�����

 ������

 �
����

!
�"#�$%	������

!
�"#�$%	�������

!
�"#�$%	�������

!
�"#�$%	�������

!
�"#�$%	�������

!
�"#�$%	�������

!
�"#�$%	�������

�����&�%��

!
"
��

� ' �$��(��
#���)��
%��&��#$�*���(��
#�&
*�+$��,

�

-
�("�#./-
��0
�#�*���(��
#�&
�("�#./���#�0��,

����$%��
� ' ��0
�#��1�%#
"../

��+$..$2�&�/���

�
������$%
� ' �$��(��
#���)��

%��&��#$�*�
�(��
#�&�*�+$��,��
0
�#��1�%#
"../�*�
+$..$2�&�*/���

��
�
3��4#5����$
����2�#5��$.����

���
�
3��4#5��(��
#�$%�$+�"�#�1�#/��	
�

F
igure

4.2:
B

uild-tim
e

for
the

R
unning

E
xam

ple.

62 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

4.3.1 Build-time Phase

To solve this problem through the proposed approach, the first step is the creation
of the related ConDec specification. The constraint-based specification includes
seven activities, G, AS, GE, TS, WR, MT and AT, and several relations (Con-
Dec templates (van der Aalst and Pesic, 2006a)) between the activities (cf. Fig.
4.2(1)): (i) after a client request (G), transport and accommodation search (TS
and AS), and guided excursions elaboration (GE), must be processed, and before
the execution of these services (AS, TS and GE), the client request (GR) must be
received (Relations (1), (2) and (3) in Fig.4.2(1)); (ii) before preparing the guided
excursion (GE), accommodation and transport must be known (Relation (4) and
(5) in Fig. 4.2(1)); (iii) any execution of activities related to client requests, i.e.,
AS, TS and GE, must be reported (Relation (6), (7) and (8) in Fig. 4.2(1)); and (iv)
the report cannot be written before a client request (Relation (9) in Fig.4.2(1)).

In a next step, the constraint-based specification is extended with resource
requirements, estimates for the number of instances to be executed, resource avai-
labilities, and the duration of the activities (cf. Fig.4.2(2)). Lastly, the constraint-
based approach is applied to generate optimized enactment plans for the specified
problem (cf. Fig.4.2(3)).

4.3.2 Run-time Phase

Figure4.3shows the behavior of the proposed recommendation service when hy-
pothetical process instances with given traces are executed for the constraint-based
specification, for three client requests (P = 3), three management tasks (M = 3) and
four accounting tasks (A = 4).

At the beginning of the execution, planP1 (which has already been generated
during build-time considering the estimates for P, M and A) is considered for the
generation of the recommendations. Initially, the partialtrace for all instances is
empty, which can be seen in column Partial Trace, where completed events for ac-
tivity executions are depicted. Furthermore, for all threeclient requests (i.e.,I1, I2
andI3), G is enabled (reflected by the white bars in columnsG1,G2,G3), whereas
AS, GE, TS, andWRof instancesI1, I2 andI3 are not yet enabled (reflected by the
black bars in columnsASi ,GEi,TSi ,WRi,∀i ∈ {1,2,3}). Moreover,MT andAT
are always enabled since there are not any constraints restricting their execution.
Activities AS, GE andTSare not enabled sinceG must be executed before exe-
cutingAS, GE andTSdue to the succession constraints. In a similar way, activity
WRis not enabled since the execution ofWRrequires a previous execution ofG.
At time 0, starting execution ofG1 usingR00, MT1 usingR01, andAT1 usingR11

is suggested. The user follows the recommendation. Due toExactly 1(G), G1

is not enabled anymore. At time 2,G1 is completed, henceAS1, TS1 andWR1

4.3.
A

R
U

N
N

IN
G

E
X

A
M

P
LE

6
3

0

2

4

6

8

10

12

14

16

18

20

22

24

26

Enabled Activities Recom-

mendations

R0
0

R0
1

R1
0

I
1

I
2

<start(G
1
,R0

0
),start(MT

1
,R0

1
),

start(AT
1
,R1

1
)>

Partial Trace
only completed activities depicted

I
1

I
2

G
1 -

G
2

<comp(G
1
),start(G

2
,R0

0
)> <G

1
>

<> <>

<comp(AT
1
),start(AT

2
,R1

1
)>

Events

G
1

WR
1TS

1
GE

1
AS

1
G

2
WR

2TS
2

GE
2

AS
2

MT AT

MT

MT
1

MT
3

MT
2

AT

AT
1

AT
4

AT
3

AT
2 R1

1

<comp(G
2
),comp(MT

1
),

start(G
3
,R0

0
),start(TS

1
,R0

1
)>

<comp(G
3
),start(AS

1
,R0

0
)>

<comp(TS
1
),start(TS

2
,R0

1
)>

<comp(AS
1
),start(GE

1
,R1

0
),

start(MT
2
,R0

0
)>

<comp(AT
2
),start(AT

3
,R1

1
)>

<comp(MT
2
),(!R0

0
)>

<comp(GE
1
),start(WR

1
,R1

0
)>

<comp(TS
2
),start(AS

2
,R0

1
)>

<comp(AT
3
),start(AT

4
,R1

1
)>

<comp(WR
1
),comp(AS

2
),

start(GE
2
,R1

0
),start(AS

3
,R0

1
)>

I
3

I
3

G
3

WR
3TS

3
GE

3
AS

3

MT
1

AT
1

<G
2
><G

1
> G

3
TS

1

AS
1

<G
3
><G

1
> <G

2
>

AT
2

<G
1
> <G

2
> <G

3
>

<G
1,

TS
1
> TS

2

GE
1

AS
2

AT
3

<G
2
>

AS
2

WR
1

<G
2
>

<AT
1
>

<AT
1
>

<AT
1
>

<AT
1,

AT
2
>

<MT
1
>

<MT
1
>

<MT
1
>

<MT
1
>

<MT
1
>

<MT
1
>

<MT
1,
MT

2
>

<G
2
>

<G
2
><G

1,
TS

1,
AS

1
>

<G
1,

TS
1,

AS
1
>

<G
1,

TS
1,
AS

1
>

<G
1,
TS

1,
AS

1,
GE

1
> <G

2
>

<G
2,
TS

2
>

<AT
1,

AT
2
>

<AT
1,

AT
2
>

<AT
1,

AT
2
>

<AT
1,

AT
2,

AT
3
>

AS
2

AT
4

AS
3
GE

2

<G
2,

TS
2
>

<G
2,

TS
2,

AS
2
>

<G
3
>

<G
3
>

<G
3
>

<G
3
>

<G
3
>

<G
3
>

<G
3
>

<G
3
>

<MT
1,
MT

2
>

<MT
1,
MT

2
>

<MT
1,

MT
2
>

<MT
1,

MT
2
><AT

1,
AT

2,
AT

3
>

<>

<>

<>

<>

<>

<>

<>

<>

<>

<>

<G
1,
TS

1,
AS

1,
GE

1
>

<G
1,
TS

1,
AS

1,
GE

1
>

<G
1,
TS

1,
AS

1,

GE
1,

WR
1
>

P
1

P
2

P
3

P
4

P
1

P
2

P
3 P

4

F
igure

4.3:
R

un-tim
e

for
the

R
unning

E
xam

ple.

b
eco

m
es

en
ab

led
,

an
d

th
e

p
artialtrace

o
f

I1
co

n
tain

sG
1 .

A
ctivity

G
E

1
is

n
o

tyet
en

ab
led

sin
ce

th
e

execu
tio

n
o

f
G

E
1

req
u

ires
a

p
revio

u
s

execu
tio

n
o

fb
o

th
A

S
1

an
d

T
S

1 .
F

u
rth

erm
o

re,attim
e

2
,startin

g
execu

tio
n

o
f

G
2

u
sin

g
R

00
is

su
g

g
ested

.
T

h
e

u
ser

fo
llow

s
th

e
reco

m
m

en
d

atio
n

.
D

u
e

to
Exactly

1(G),G
2

is
n

o
ten

ab
led

any-
m

o
re.

A
t

tim
e

4
,G

2
an

d
M

T
1

are
co

m
p

leted
,

h
en

ceAS
2 ,

T
S

2
an

d
W

R
2

b
eco

m
e

en
ab

led
.

F
u

rth
erm

o
re,attim

e
4

,startin
g

execu
tio

n
o

f
G

3
u

sin
gR

00
an

d
T

S
1

u
sin

g
R

01
is

su
g

g
ested

.
T

h
e

u
ser

fo
llow

s
th

e
reco

m
m

en
d

atio
n

.
D

u
e

to
Exactly

1(G),
G

3
is

n
o

ten
ab

led
anym

o
re.

A
ttim

e
6

,
G

3
is

co
m

p
leted

,h
en

ceAS
3 ,T

S
3

an
dW

R
3

b
eco

m
es

en
ab

led
.

F
u

rth
erm

o
re,

at
tim

e
6

,
startin

g
execu

tio
n

o
fA

S
3

u
sin

g
R

00
is

su
g

g
ested

.
T

h
e

u
ser

fo
llow

s
th

e
reco

m
m

en
d

atio
n

.
A

t
tim

e
1

0
,

A
T

1
is

co
m

p
leted

five
tim

e
u

n
its

laterth
an

exp
ected

.
S

in
ce

th
ere

w
as

n
o

slack
t

im
e

b
etw

eenA
T

1
an

d

64 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

AT2, P1 becomes outdated, and the replanning module generatesP2 considering
the new conditions.

At time 10, based onP2 starting execution ofAT2 usingR11 is suggested. The
user follows the recommendation. At time 11,TS1 is completed. Furthermore,
at time 11, starting execution ofTS2 usingR01 is suggested. The user follows
the recommendation. At time 12,AS1 is completed, henceGE1 becomes enabled.
Furthermore, at time 12, starting execution ofAS2 usingR00 andGE1 usingR10

is suggested. The user decides to partially follow the recommendation, so that,
instead of executingAS2 she decides to startMT2. After this unexpected decision,
P2 becomes invalid, and the replanning module generatesP3 considering the new
conditions.

At time 15,AT2 is completed. Furthermore, at time 15, based onP3, starting
execution ofAT3 usingR11 is suggested. The user follows the recommendation.
At time 16, MT2 is completed. Furthermore, at time 16, an unexpected event
occurs (i.e., resourceR00 became unavailable), henceP3 is no longer valid, and
the replanning module generatesP4 considering the new conditions.

At time 17,GE1 is completed. Furthermore, at time 17, based onP4, starting
execution ofWR1 usingR10 is suggested. The user follows the recommendation.
At time 18,TS2 is completed. Furthermore, at time 18, starting execution of AS2

usingR01 is suggested. The user follows the recommendation. At time 20, AT3

is completed. Furthermore, at time 20, starting execution of AT4 using R11 is
suggested. The user follows the recommendation. At time 24,WR1 is completed
two time units later than expected. Even with the occurrenceof this unexpected
event,P4 is still valid due to the slack time betweenWR1 andGE2. Moreover,
at time 24,AS2 is completed, henceGE2 becomes enabled. Furthermore, at time
24, starting execution ofAS3 usingR01 andGE2 usingR10 is suggested. The user
follows the recommendation. The remaining activities are executed as expected
by consideringP4.

In this way, the recommendation service supports users of flexible BPMSs
during process execution to optimize the overall process performance goals, by
considering optimized enactment plans which are updated when necessary.

4.4 Empirical Evaluation

In order to evaluate the effectiveness of the proposed approach, a controlled ex-
periment has been conducted. Section4.4.1describes efficient search algorithms
for solving the CSP used for the empirical evaluation of the current chapter, Sec-
tion 4.4.2describes the design underlying the experiment, and Sect.4.4.3shows
the experimental results and the data analysis.

4.4. EMPIRICAL EVALUATION 65

4.4.1 Search Algorithms

Once a CSP is modelled, several constraint-based mechanisms can be used to
obtain the required solution. In this section, some search algorithms which effi-
ciently deal with CSP-ConDec problems are introduced.

In the current chapter, existing methods are adapted and applied, specifically
complete search (Rossi et al., 2006), incomplete search (Rossi et al., 2006), and
GRASP (Feo and Resende, 1989, 1995) (cf. Sect. 2.2), for solving the specific
considered problems and their suitability for the generation of recommendations
is also evaluated.

In general, when optimizing a CSP variable, if a feasible solution which is
known exists, the value of the variable to optimize in the known solution can
be used for discarding large subsets of fruitless candidates by using upper and
lower estimated bounds of the quantity being optimized during the search process
(cf. Sect. 3.3.3). Thus, if a known feasible solutionS for the problem to solve
exists, the objective value for this solution (SOCT) is a valuable information which
can be added to the constraint model through the constraintOCT < SOCT. Thus,
some non optimal candidates, i.e., candidates whoseOCT value cannot be less
thanSOCT in any case, are discarded during the search, and hence increases the
efficiency in the search for solutions.

Moreover, in the proposed approach, during the search process, some of the
values which only lead to non-feasible solutions, i.e., inconsistent values, are re-
moved from the domains of the CSP variables in order to reducethe search space
through maintaining arc consistency (cf. Def.17 on page29).

In the proposed approach, the developed filtering rules (cf.AppendixB) and
CSP modelling (cf. Sect.3.3.1) are implemented such that they maintain the arc
consistency for all pairs of CSP variables during all the search process.

Proposition 4. Let S be the best complete solution, i.e., with fewest overall com-
pletion time, which can be obtained for a CSP-ConDec problemP by considering
certain fixed values for all nt variables (ntAct1,ntAct2, ...,ntAct#Act), i.e., Snt(Acti) =
ntActi ,∀i ∈ {1. . .#Act}. Let S′ be the best complete solution which can be obtained
for P by considering certain fixed values for all nt variables(ntAct1,ntAct2, . . . ,nt′Acti

,

. . . ,ntAct#Act, nt′Acti
= ntActi +1). Then: S′OCT < SOCT is not possible.

Proof. Let PO = (V,D,R,O) be a CSP-ConDec problem (cf. Def.23on page43)
related to a ConDec-R process modelCR= (Acts,C,Res) (cf. Def. 20 on page
39). Increasing the number of times a repeated activity is executed has different
effects depending on the kind of high-level constraints stated inC:

• Case 1: 6 ∃c ∈ C of type Alternateor Chain, i.e., including disjunctions
related to existential forms since these relations imply that between each

66 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

two executions of a specific BP activity, at least one execution of another
specific BP activity must exist (cf. AppendixA). In this case, the CSP
which is obtained after instantiating all thent variables can be represented
by a precedence graph, i.e., an acyclic directed graph wherenodes corre-
spond to activities and there is an arc fromA to B if A must precedeB. In
this way, the fact of increasing the value of anynt variable results in inclu-
ding one additional scheduling activity in the previous precedence graph.
Therefore, the new CSP, resulted from increasing one of thent variables
(i.e., adding a new scheduling activity), can be represented by a precedence
graph which extends the previous graph by including the precedence cons-
traints in which the new scheduling activity is involved. Taking into account
thatOCT= max(et(Actnt(Act))),∀Act∈ A, increasing the number of times a
repeated activity is executed does not make improving the optimal solution
possible.

• Case 2:∃c ∈C of typeAlternateor Chain, i.e., some disjunctions related
to the existential forms of alternate and chain templates (cf. AppendixA)
exist. These disjunctions can result in having a set of possible alternative
precedence graphsPGs, so that one of the graphs included in the setPGs
leads to the optimal solution of the problem. The fact of increasing one
of thent variables results in adding a new scheduling activity to theprece-
dence graph (together with the precedence constraints in which this activity
is involved in). Moreover, the existential relations can bemodified due to
adding this new activity. The fact of adding all these new relations between
activities implies that each graph which belongs to the new set of prece-
dence graphsPGs′ corresponds to a reinforcement of some of the original
graphs which belonged toPGs, and hence any graph belonging toPGs′ can
lead to a solution with lessOCT value.

As stated, the arc consistency for all pairs of CSP variablesis maintained du-
ring entire the search process. In the proposed approach, after posting all ConDec
relations between the BP activities, i.e., adding the arc consistent filtering rules,
all thent variables are instantiated toLB(nt). If the resulting CSP is feasible, then
the optimal solution for this CSP is also an optimal solutionfor the original CSP-
ConDec problem (Prop.4). Otherwise, when the resulting CSP is unfeasible,
the values of thent variables are increased step by step. In this way, the optimal
solution is searched by considering the CSP which is obtained as a result of instan-
tiatingnt variables in the first feasible solution which is found, i.e., for the fewest
feasible values ofnt. This optimal solution is also the optimum for the original
CSP-ConDec problem (Prop.4). Usually, the instantiation of allnt variables to

4.4. EMPIRICAL EVALUATION 67

LB(nt) is feasible due to the arc consistency which is maintained. However, this
may not be true for some combinations ofAlternateorChainrelations, and hence,
greater values fornt variables need to be considered.

After instantiating all thent variables to a fixed value, the search for the opti-
mal solution only entails the consideration of the remaining CSP variables.

Complete Search

As stated, complete search consists of exploring a search tree for the CSP problem
which is based on all possible combinations of assignments of values to the CSP
variables. In general, both the ordering of instantiation of the variables and the
ordering of selection of values for each variable have a great influence on the
efficiency of the search process and also on the quality of thesolutions which are
obtained.

Once thent variables of the repeated activities are instantiated, theconsidered
problem becomes an extension of the Cumulative Job Shop Scheduling Problem
(Baptiste et al., 1999), CJSSP. While CJSSP considers sequences of activities re-
lated by precedence constraints which require some shared discrete resources and
which must be scheduled in order to minimize some objectives, the proposed ex-
tension includes further kinds of relations, e.g., alternate or chain (van der Aalst
and Pesic, 2006a) which are not pure precedence relations considered in typical
scheduling problems. In the presented proposal for performing a complete search,
after generating a first feasible solution by using Alg.5 (detailed later), an ef-
ficient method for solving the CJSSPs, namedsetTimes(Le Pape et al., 1994),
based on (van Hentenryck, 1999) (cf. (Dynadec, 2011)) is used.

Iterative Bounded Greedy

Due to the NP-complexity of the considered problem, in addition to the complete
search, an incomplete search approach, named iterative bounded greedy (IBG), is
implemented including randomized components to achieve diversified results (cf.
Alg. 2). In Alg. 2, a greedy randomized algorithm (Alg.5) is used (line 3) for
iteratively improving the best solution found (line 4), until a time limit is reached.
The best solution over all iterations is returned as the result (line 5).

With the proposed incomplete search, all the solutions can be reached and the
search procedure efficiently explores a wide range of solutions from diversified
areas of the search space.

68 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

Algorithm 2 : Iterative Bounded Greedy
input : Set<RepeatedActivities> repAct

Set<Template> templates
output: SolutionbestSol

Solutionsol;1

while Iterative Bounded Greedy stopping criterion not satisfieddo2

sol←ConstructGreedyRandomizedSolution(repAct, templates);3

U pdateSolution(sol,bestSol);4

return bestSol;5

GRASP-LNS

In addition to complete and incomplete search, a hybrid approach is considered.
GRASP (Feo and Resende, 1989, 1995) (cf. Alg. 3) consists on an iterative
process in which each iteration includes two phases: (i) a construction phase (line
3), in which a feasible solution is built through Alg.5, and (ii) a local search
phase, i.e., incomplete search (line 4), in which the neighborhood of the generated
solution is explored to find a local optimum. The best solution over all GRASP
iterations (line 5) is returned as the result (line 6).

Algorithm 3 : GRASP-LNS
input : Set<RepeatedActivities> repAct

Set<Template> templates
output: SolutionbestSol

Solutionsol;1

while GRASP-LNS stopping criterion not satisfieddo2

sol←ConstructGreedyRandomizedSolution(repAct, templates);3

LocalSearch(sol);4

U pdateSolution(sol,bestSol);5

return bestSol;6

In the current approach, LNS (Pisinger and Ropke, 2010) is used for exploring
the neighborhood of current solutions in the GRASP algorithm (line 4 of Alg. 3),
resulting in an efficient hybrid technique, named GRASP-LNS. In a LNS algo-
rithm (cf. Alg. 4), in each iteration, a neighborhood is explored with CP trying
to improve the current best solution (bestSolvariable) in the following way: first,
part of the current solution is relaxed (line 5 of Alg.4) so that the domain of some
variables is restored to its initial range, while fixing the remaining variables to

4.4. EMPIRICAL EVALUATION 69

their current value; secondly, the restricted problem is re-optimized by using CP
with a limit on the number of failures (line 6 of Alg.4). The best solution over all
iterations (line 7 of Alg.4) is returned as the result (line 8 of Alg.4). In Alg. 4
the reason for setting a failure limit is to avoid exploring aneighborhood for too
long, allowing the search to explore a variety of neighborhoods.

Algorithm 4 : LocalSearch
input : Solutionsol
output: SolutionbestSol

PartialSolutionpSol;1

SolutiontempSol;2

bestSol← sol;3

while bestSol can be improved AND a failure limit does not occurdo4

pSol←Relax(bestSol);5

tempSol← Re−optimizeCP(pSol);6

U pdateSolution(tempSol,bestSol);7

return bestSol;8

Greedy Generation of a Feasible Solution

As follows, a greedy randomized algorithm which is used for the generation of a
feasible solutions is presented. This algorithm is invokedby the different proposed
searches, i.e., complete search, iterative bounded greedy, and GRASP-LNS, as
explained before. After instantiating allnt variables for all the repeated activities,
a feasible solution can be quickly generated by Alg.5.

The main idea of Alg.5 consists of instantiating the value of certain allowed
variables related to a specific P&S activity in each step, i.e., those variables which
can be instantiated by taking the P&S activities which have been already instan-
tiated and the set of relations (templates) into account. Inline 1 and 2, both the set
of activities allowed to be instantiated in the next step andthe set of activities pre-
viously instantiated are created and initialized. Furthermore, a map which relates
each repeated activityA to the last execution ofA which has already been instan-
tiated is created and initialized to 0 (line 3). In each step,the setallowedActsis
filled with the P&S activities which are allowed to be instantiated next (lines 5-
10), by considering that only one execution of each repeatedactivity is analyzed
to be included since the P&S activity related to the i-th execution of A can only
be instantiated after instantiating the P&S activity related to (i-1)-th execution of
A. In this way, for each repeated activityA (line 6), the index of the P&S acti-
vity related to the execution ofA to be instantiated next is stored in the variable

70 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

Algorithm 5 : ConstructGreedyRandomizedSolution
input : Set<RepeatedActivities> repAct

Set<Template> templates
output: Solutionsol

Set<SchedAct> allowedActs← /0;1

Set<SchedAct> actAlreadyInstantiated← /0;2

Map<RepeatedActivities,Integer> instantiatedN(repAct)←{0, . . . ,0};3

repeat4

allowedActs← /0;5

foreach A in repActdo6

int nextA← instantiatedN(A)+1;7

if nextA≤ nt(A) then8

if Allow(A,nextA, templates,actAlreadyInstantiated) then9

allowedActs← allowedActs∪AnextA;10

if allowedActs6= /0 then11

SchedActactToInst← Select(allowedActs);12

Instantiate(actToInst,sol);13

actAlreadyInstantiated← actAlreadyInstantiated∪actToInst;14

instantiatedN(actToInst)= instantiatedN(actToInst)+1;15

until allowedActs== /0 ;16

return sol;17

nextA(line 7). If there is any execution ofA which remains to be executed (line
8), then the methodAllow checks if this activity instance can be instantiated next
(line 9), i.e., is enabled (cf. Def.10 on page17). In affirmative case, the related
P&S activity is included in the setallowedActs(line 10). If there is any activity
allowed to be instantiated next (line 11), one of these activities is selected (line
12). After the selection of the P&S activity to be instantiated next, the start and
the end variables of this selected activity are instantiated to the minimum value
of its domains (line 13). These instantiations, in general,result in updating the
domain of some CSP variables (the developed filtering rules are in charge of car-
rying these updates out). Moreover, the instantiated activity is included in the set
actAlreadyInstantiated(line 14), and its related information is updated (line 15).
The lines 5-15 are repeated until a solution is completely constructed (line 16).
The generated solution is returned as the result (line 17).

A feasible good solution can be swiftly generated through Alg. 5 by conside-
ring different heuristics for the implementation of theSelectmethod (line 11 of
Alg. 5). In this proposal, for the IBG (cf. Alg.2) and GRASP-LNS (cf. Alg.3)

4.4. EMPIRICAL EVALUATION 71

searches, in order to get diversified results each time Alg.5 is invoked, theSelect
method is implemented (heuristic) so that the activities are selected by considering
the probabilityπ(A) of selecting an activityA as:

π(A) = 1/r(A)
∑B∈Acts1/r(B)

wherer(A) denote the rank ofA when all the candidates are ranked according
to their earliest start time.

On the other hand, for the complete search, the heuristic which is considered
selects the activity with the lowest starting time, i.e., the most promising one, since
for the considered complete search Alg.5 is only used for generating an initial
solution. In most cases, this initial solution will be improved as the complete
search proceed.

Notice that for a feasible combination ofnt values, Alg.5 always generates a
feasible solution, since the arc consistency is maintainedduring all the process by
the developed filtering rules.

4.4.2 Experimental Design

In this section, the design underlying the experiment is detailed.
Purpose: The purpose of the empirical evaluation is to analyze the behavior

of the proposed approach in the generation of optimal enactment plans from ex-
tended ConDec specifications (including estimates), in order to test the suitability
of the proposed approach for giving recommendations, in terms of performance
and quality of recommendations. In particular, to investigate in how far diffe-
rent search algorithms are suitable for solving the considered problems is aimed.
Specifically, three search algorithms are tested for solving the generated models
(cf. Sect.4.4.1), i.e., complete search (CP), iterative bounded greedy (IBG), and
hybrid search (GRASP-LNS). Since the underlying strategies of the considered
search techniques are completely different, to investigate under which circums-
tances each one is the most suitable for obtaining the solution of certain problems
is aimed. Moreover, to find out whether these techniques are complementary is
analyzed, and hence whether they can be used in a combined wayfor obtaining a
good solution. The suitability of the proposed approach is tested regarding both
(1) build-time, i.e., generation of complete optimized plans before starting the
BP enactment; and (2) run-time, i.e., generation of (partial) optimized plans by
considering the actual partial trace of the process as the execution of the process
proceeds.

Objects: The empirical evaluation considers different ConDec models taking
some important characteristics into account in the generation of the models: (i)
correctness, i.e., the ConDec models must represent feasible problems without
conflicts (i.e., there are some traces that satisfy the model) and must not include

72 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

Figure 4.4: Generic ConDec Models.

any dead activities (i.e., none of the traces that satisfies the model contains this ac-
tivity), (ii) representativeness, i.e., the ConDec modelsmust represent problems
which are similar to actual BPs. Consequently, the test models to be of medium-
size (i.e., including 10-20 activities) and comprise all three types of ConDec tem-
plates, i.e., existence, relation, and negation (cf. Sect.2.1.2) are required. Overall,
6 generic test models are considered with 10 and 20 activities respectively and a
varying number of constraints (cf. Table4.2). Figure4.4 shows the ConDec re-
presentation of the generic models 10A, 10B, 10C, 20A, 20B, and 20C. During the
experiment, the generic relations are then instantiated with concrete constraints
leading to different ConDec problems. Since the filtering rules (cf. Appendix
B) for the different ConDec constraints significantly vary intheir computational

4.4. EMPIRICAL EVALUATION 73

Table 4.2: Generic constraint-based BP models.

Model #Acts Description

M10A 10 Includes 10 activities and 4 constraints
M10B 10 Extends M10A by including 3 constraints more
M10C 10 Extends M10B by including 4 constraints more
M20A 20 Includes 20 activities and 9 relations
M20B 20 Extends M20A by including 6 constraints more, similar to M10B
M20C 20 Extends M20B by including 8 constraints more, similar to M10C

complexity (cf. Table4.3 for the different complexity groups), the considered
ConDec problems cover all complexity groups is ensured5.

In this way, the generic ConDec models presented in Fig.4.4 are specified
by replacing the labelsRelationandNegationwith a concrete template of each
group. In order to generate all the possible combinations oftype and comple-
xity, several types of problems are considered by includingtemplates of the fol-
lowing groups (cf. Table4.3): {E1, R2, N4}, {E1, R2, N5}, {E1, R2, N6},
{E1, R3, N4}, {E1, R3, N5}, {E1, R3, N6}. Specifically, for each group of
templates, a representative item (in bold in Table4.3) is selected for the tests.
Moreover, in the case ofExistencetemplates, a value for labelN must be esta-
blished (N ∈ {10,20,30,40,50} is considered). In addition, different durations
and required resources for each BP activity are considered (game,G), since these
aspects have a great influence on the complexity of the searchof optimal solutions
due to the considered problems are an extension of typical scheduling problems.
Specifically, 30 instances are randomly generated for each specific ConDec model
by varying activity durations between 1 and 10 and role of required resources bet-
weenR1 andR2.

Regarding the number of available resources, in turn, for all the generated test
models, two available resources of two kinds of roles are considered.

Independent Variables: Considering the generated test models and search
algorithms (cf. Sect.4.4.1), Table4.4depicts the independent variables which are
considered for the empirical evaluation.

Response Variables:As stated, the suitability of the proposed approach is
tested regarding both build-time and run-time phases, analyzing different response
variables.

1. Build-time phase. For the build-time evaluation, a 5-minutes time limit is
established, since, in general, the initial optimized plans are generated prior

5Notice that in this chapter only the basic ConDec templates introduced in (van der Aalst and
Pesic, 2006a) are considered for the empirical evaluation.

74 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

Table 4.3: Type and Complexity of ConDec-R Filtering Rules.

Template Type Complexity Group

Existence(N,A) Existence Θ(1) E1
Absence(N,A) Existence Θ(1) E1
Exactly(N,A) Existence Θ(1) E1
Responded Existence(A,B) Relation O(n) R2
CoExistence(A,B) Relation O(n) R2
Precedence(A,B) Relation O(n) R2
Response(A,B) Relation O(n) R2
Succession(A,B) Relation O(n) R2
Alternate Precedence(A,B) Relation O(n×nt3) R3
Alternate Response(A,B) Relation O(n×nt3) R3
Alternate Succession(A,B) Relation O(n×nt3) R3
Chain Precedence(A,B) Relation O(n×nt3) R3
Chain Response(A,B) Relation O(n×nt3) R3
Chain Succession(A,B) Relation O(n×nt3) R3
Responded Absence(A,B) Negation O(n) N4
Negation Response(A,B) Negation O(n) N4
Negation Alternate Precedence(A,B) NegationO(n×nt2) N5
Negation Alternate Response(A,B) Negation O(n×nt2) N5
Negation Alternate Succession(A,B) NegationO(n×nt2) N5
Negation Chain Succession(A,B) Negation O(n×nt3) N6

to BP enactment, i.e., the search algorithms can be run for long time. The
optimality of the initially generated plans is considered as a relevant aspect
for giving good recommendations. Furthermore, the time spent for obtai-
ning the optimal plans is a rather relevant response variable to be analyzed.
The performance measures depicted in Table4.5are studied.

2. Run-time phase. For the run-time evaluation, a 5-secondstime limit is es-
tablished since the search algorithms for generating optimized plans during
run-time swiftly need to find a suitable solution due to the user is proba-
bly expecting for a recommendation. Therefore, the qualityof the genera-
ted plans during run-time is an important aspect to be analyzed in order to
check the suitability of the proposed approach. The performance measures
depicted in Table4.6are studied.

Thequality of a solutionS′ regardingS is stated by:SOCT/S′OCT.

For both build-time and run-time evaluation, the results which are obtained by
each search technique are compared in order to obtain information about which
technique is better in general, or to solve some specific kinds of problems.

4.4. EMPIRICAL EVALUATION 75

Table 4.4: Independent variables.

Name Description Values

Model Generic ConDec model (cf. Fig.
4.4)

{M10A, M10B, M10C, M20A,
M20B, M20C}

Relation Value for the labelRelation in
the specific ConDec model

{Response, AlternateResponse}

Negation Value for the labelNegationin
the specific ConDec model

{NegationResponse,
NegationAlternateResponse,
NegationChainSuccession}

N Value for the labelN in the spe-
cific ConDec model

{10,20,30,40,50}

G Game containing duration and
required resource for each BP
activity

{1,2, . . . ,30}

Search Search algorithms used for sol-
ving the generated models

{CP, IBG,GRASP-LNS}

Experimental Design: For each of the 6 generic models, 150 problem ins-
tances are generated considering different values for variable N (5 values) and G
(30 values) using each of the search algorithms. The response variables are then
calculated by considering average values for all 150 problem instances6.

Experimental Execution: The machine for all experiments is an Intel Core2,
2.13 GHz, 1.97 GB memory, running on Windows XP. In order to solve the
constraint-based problems, the system COMET (Dynadec, 2011) is used, which

6However, notice that problems stated by a simple model with ahigh value forN can entail a
higher complexity than complex models with lower value forN.

Table 4.5: Response variables in build-time.

Name Description

%Opt Average percentage of optimal solutions which are found by each tech-
nique (cf. Fig.4.5(a))

%OptANY Average percentage of optimal solutions which are found by any tech-
nique (Table4.8)

TOpt Average time for getting optimal solutions for each technique, conside-
ring the cases in which the optimal solution is found (cf. Fig. 4.5(b))

%Best Average percentage of cases in which a specific technique gets a better
solution (i.e., less overall completion time) than the other ones (cf. Fig.
4.5(c))

76 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

Table 4.6: Response variables in run-time.

Name Description

%QX ,X ∈ {0,25,50,75} Average quality of solutions which are found by each
technique regarding the best solution which is known for
each problem after X% of the optimized plan is executed
(cf. Fig. 4.6)

%QANY Average quality of solutions which are found by any tech-
nique regarding the best solution which is known for each
problem after 0%, 25%, 50% and 75% of the optimized
plan is executed (cf. Fig.4.7)

Table 4.7: ID for the considered Relation-Negation.

ID Relation-Negation

1 Response - Negation Response
2 Response - Negation Alternate Response
3 Response - Negation Chain Succession
4 Alternate Response - Negation Response
5 Alternate Response - Negation Alternate Response
6 Alternate Response - Negation Chain Succession

is able to generate high-quality solutions for highly constrained problems in an
efficient way.

4.4.3 Experimental Results and Data Analysis

Build-time. For the experiments of the build-time phase, the constraint-based
search algorithm is run until a 5-minutes CPU time limit is reached.

Figure4.5shows for each search algorithm: (a) the average percentageof op-
timal solutions which are found, (b) the average time for getting optimal solutions,
considering the cases in which the optimal solution is found, and (c) the average
percentage of cases in which a specific technique gets a better solution (i.e., less
overall completion time) than the other ones, (response variables %Opt, TOpt, and
%Bestrespectively) versus the problem to be solved. For all the tables and figures
presented in this section the considered problems are grouped according to the
generic model, i.e.,M10A, M10B, M10C, M20A, M20B, M20C, and the response
variable is represented versus specific problems which are obtained after instan-
tiating the relations and negations of the generic model as stated in Table4.7, i.e.,
6 specific problems ({1, . . . ,6}) for each generic model are considered.

4.4. EMPIRICAL EVALUATION 77

(a) Average percentage of optimal solutions

found (5-minutes time limit)

(b) Average time for getting optimal solutions

(c) Average percentage of cases a specific

technique gets a better solution than the other ones

Figure 4.5: Experimental results regarding build-time phase.

Figure4.5(a) shows that CP search reaches the optimum solution for a greater
number of problems than IBG and GRASP-LNS when the complexity of the pro-
blems is low, i.e., for models M10A, M10B and M10C. As the complexity of
the problem increases, IBG and GRASP-LNS reach the optimal solutions for a
greater number of problems than CP, i.e., M20A, M20B and M20C, presenting
the highest difference for model M20A. These results can be explained by the fact
that CP is a good strategy for getting the optimal solutions for problems which
present a low complexity, since for small problems almost entire the search space
can be explored. However, problems with high complexity, anexhaustive search
is not a good strategy for searching the optimal solution, since the search area
explored by CP is not diversified enough and hence only a part of the possible
solutions is analyzed in a limited time. Thus, incomplete techniques are better in
general. Furthermore, the evaluation shows that in most cases, IBG outperforms
GRASP-LNS. This result can be explained by the fact that the considered IBG
is implemented in an efficiency way due to the considered heuristic, and GRASP
techniques require greater parameter tuning (Feo and Resende, 1989, 1995), and
hence more tests need to be done to get the best setting for this technique.

78 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

Table 4.8: Average percentage of optimal solutions found in5-minutes time limit when
considering all techniques.

Relation-Negation M10A M10B M10C M20A M20B M20C

1 Resp.-Neg. Resp. 84 95.33 88.66 99.33 87.33 78.66
2 Resp.-Neg. Alt. Resp. 84 23.33 93.33 98 62 67.33
3 Resp.-Neg. Chain Succ. 84 86 83.33 99.33 93.33 87.33
4 Alt. Resp.-Neg. Resp. 89.33 100 80 41.33 50.66 58.66
5 Alt. Resp.-Neg. Alt. Resp. 89.33 92.66 77.33 43.33 30 32
6 Alt. Resp.-Neg. Chain Succ. 88.66 76.66 80.66 44 30 26.66

On the other hand, regarding the results which can be obtained by combining
all the search algorithms, Table4.8shows the average number of optimal solutions
which are found by any of the techniques (response variable %OptANY) versus
the problem to be solved. It can be seen that for modelsM10A andM10C, the
percentage of optimal solution which are found is rather high (more than 77%
in all cases), regardless of the relations which are given between the activities.
However, for modelsM20A, M20B, andM20C, this measure highly depends on
the relations which are given between the BP activities, finding the fewest values
when Alternate Response (relations 4-6) is given. On the other hand, for relations
1 and 3, the percentage of optimal solutions which are found is rather high (more
than 78% in all cases), regardless of the specific model. However, for relations 4,
5 and 6, this measure highly depends on the model, finding the fewest values for
models of 20 activities. Taking these results into account,in general, the specific
Relationand the number of activities of the BP model seems to be much more
influential than the other considered aspects. Furthermore, the average value for
all cases is 72.94%, minimum value is 23.33%, and maximum value is 100%,
which can be considered rather good results.

Figure4.5(b) shows that for all search algorithms, for the same model the res-
ponse variable greatly increases as the complexity of the filtering rules increases.
Furthermore, for the same filtering rules the response variable greatly increases
as the complexity of the models increases. Moreover, in mostcases,CP reaches
the optimum swifter than the other techniques. In turn,GRASP, seems to be the
slowest of the three techniques. ForCP search, most of these optimums are ob-
tained for the simplest models (cf. Fig.4.5(a)), and hence, less time is required.
In general, it can be seen that the average time for getting optimums is less than
100 seconds, which can be considered a rather good result.

Figure4.5(c) shows that for all search algorithms, for the same model the res-
ponse variable increases as the complexity of the filtering rules increases, i.e.,
all techniques present a similar behavior regarding getting optimums for low-

4.4. EMPIRICAL EVALUATION 79

complex filtering rules and this behavior highly differs as the complexity of the
filtering rules increases. Furthermore, for the same filtering rules the response
variable greatly increases as the complexity of the models increases, i.e., all tech-
niques present a similar behavior regarding getting optimums for low-complex
models and this behavior highly differs as the complexity ofthe models increases.
Therefore, the use of the considered techniques in a coordinated way is highly
recommendable for complex problems, since their behavior is highly different
and their result can be combined for obtaining solutions of high quality.

In brief, various conclusions can be drawn after analyzing the results:

• CP search obtains better results than IBG and GRASP-LNS for simple pro-
blems (cf. Fig.4.5(a)).

• IBG and GRASP-LNS searches obtain better results than CP forcomplex
problems (cf. Fig.4.5(a)).

• The percentage of optimum solutions is very high for almost all cases when
considering all techniques (Table4.8).

• The average time for getting optimums is quite low (cf. Fig.4.5(b)).

• The use a combination of all techniques in a coordinated way highly in-
creases the quality of the solutions, specially for complexproblems.

Run-time. For the experiments of the run-time phase, the constraint-based
search algorithm is run until a 5-seconds CPU time limit is reached.

Figures4.6and4.7show the average quality of solutions which is found when
compared with the best known solution for each problem, after 0%, 25%, 50%,
and 75% of the BP optimized enactment plan is executed (response variables %Q0,
%Q25, %Q50, %Q75, %QANY) versus the problem to be solved. When comparing
the different search techniques, similar results comparedto the build-time evalua-
tion are obtained due to the previously explained reasons. Moreover, for all search
algorithms, it is possible to see that for the same model the quality decreases as
the complexity of the filtering rules increases, obtaining the lowest values for re-
lations 5 and 6 in most cases. Furthermore, for the same filtering rules the quality
decreases as the complexity of the models increases, obtaining the lowest values
for models M20B and M20C. It should be emphasized that, as stated, in general
replanning is less time consuming than initial planning, since CSP variable va-
lues become known as execution proceeds. Therefore, the quality of the solutions
increases as BP execution proceeds (cf. Fig.4.7).

In general, the quality of the solutions which is obtained applying each tech-
nique individually is quite good (greater than 86% for all cases). However, the use

80 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

(a) Average quality of solutions which are found after

0% of the BP enactment

(b) Average quality of solutions which are found after

25% of the BP enactment

(c) Average quality of solutions which are found after

50% of the BP enactment

(d) Average quality of solutions which are found after

75% of the BP enactment

Figure 4.6: Experimental results regarding run-time phase.

of all techniques in a coordinated way increases the qualityof the solutions even
further (greater than 92% for all cases), specially for complex problems (cf. Fig.
4.7).

4.5 Discussion and Limitations

One advantage of the presented proposal is that the recommendation service is
based on optimized enactment plans which are generated by P&S all BP activi-
ties, hence it allows for a global optimization of the performance goal. In addition,
this approach allows modelling the considered problems in an easy way, since the
considered declarative specifications are based on high-level constraints. Further-
more, BPs are specified in a declarative way, which is an important step towards
the flexible management of BPMSs. Moreover, the proposed approach, as ex-
tension of other similar works (Schonenberg et al., 2008; Haisjackl and Weber,
2010), considers the resource perspective besides the control-flow perspective,
hence greater optimization can be obtained. Additionally,in order to consider de-

4.6. RELATED WORK 81

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6

75% PP

50% PP

25% PP

0% PP

M10A
 M10B
 M10C
 M20A
 M20B
 M20C

%Q
ANY

Group of Problem Instances

Figure 4.7: Average quality of solutions which are found by any technique after 0%, 25%,
50% and 75% of the BP enactment.

viations in the estimates, the optimized plans can be updated if necessary, allowing
to react to changes in a quick and flexible way.

On the other hand, the proposed approach presents some drawbacks. First, the
business analysts must deal with a not standard language forthe declarative spe-
cification of BPs, therefore a period of training is requiredto let the business ana-
lysts become familiar with ConDec specifications. Secondly, the optimized plans
are generated by considering estimated values for activitydurations and resource
availabilities, hence the presented proposal is only appropriate for processes for
which the duration of the activities and resource availabilities can be estimated.
However, as stated earlier, in the enactment phase, the replanning module can up-
date the current plan by considering the current values of the estimates. Moreover,
the considered constraint-based specifications deal with both control-flow and re-
source perspectives, but do not consider the non-temporal data perspective. It is
intended to consider this aspect in our future work. Furthermore, in this work,
only the basic ConDec templates introduced in (van der Aalst and Pesic, 2006a)
are considered for the empirical evaluation. In Chapter5 some extensions to the
basic ConDec templates are considered in the empirical evaluation, e.g., branched
templates (i.e., high-level relations given between more than two activities).

4.6 Related Work

Other authors use AI for exception handling during run-time(Russell et al., 2006;
Friedrich et al., 2010); our proposal, in turn, use a constraint-based modelling
approach and make suggestions to users. Furthermore, unlike the proposed ap-
proach, the related proposals rely on imperative specifications. Notice that inte-

82 CHAPTER 4. RECOMMENDATIONS FOR EXECUTING BPS

grating AI and BPM is not new. However, the use of AI P&S techniques for giving
user recommendations is a new application area.

Related to decision support systems, (Özbayrak and Bell, 2003) develops a
knowledge-based decision support system (KBDSS) for short-term scheduling in
flexible manufacturing systems (FMS). Unlike the presentedproposal, (̈Ozbayrak
and Bell, 2003) considers the optimization of the efficient use of the machining
cells by using a knowledge-based expert system in order to support the decision
making process. Moreover, (Chaturvedi et al., 1993) manages multiple objec-
tives in a hierarchical way. While both approaches (Özbayrak and Bell, 2003;
Chaturvedi et al., 1993) are based on the knowledge which has been learnt in
prior executions, the proposed approach is based on a constraint-based approach
for the generation of optimized plans by considering estimated values. Further-
more, (̈Ozbayrak and Bell, 2003; Chaturvedi et al., 1993) do not consider decla-
rative process specifications. In a related way, (Thompson and Goodale, 2006)
addresses the scheduling of a group of employees which present different pro-
ductivity considering the stochastic nature of customer arrivals and, unlike the
presented proposal, replans during run-time when estimates are incorrect.

Related to user recommendations, (Vanderfeesten et al., 2008) generates re-
commendations to select the next step to optimize some objective functions. While
(Vanderfeesten et al., 2008) is based on a product data model for generating the
recommendations, the proposed approach is based on optimized enactment plans.
In addition, (Schonenberg et al., 2008; Haisjackl and Weber, 2010) support users
during the execution of declarative process models by selecting among enabled ac-
tivities. Unlike the presented proposal, the recommendations are based on similar
past process executions, instead of optimized plans which are generated through
a constraint-based approach. Moreover, while the proposedapproach allows for
a global optimization of the performance goal, the recommendations described in
(Schonenberg et al., 2008; Haisjackl and Weber, 2010) bear the risk of creating lo-
cal optimums. Furthermore, (Vanderfeesten et al., 2008; Schonenberg et al., 2008;
Haisjackl and Weber, 2010) only consider the control-flow perspective, while the
proposed approach also deals with the resource perspective. All of the previously
mentioned approaches optimize the execution of single process instances. The
proposed approach, in turn, provides recommendations for optimizing the execu-
tion of several instances.

Chapter 5

From Optimized BP Enactment
Plans to Optimized BP Models

5.1 Introduction

5.1.1 Motivation

The Process Design & Analysis phase plays an important role in the BPM life cy-
cle for any improvement initiative, since it greatly influences the remaining phases
of this cycle. In addition, also run-time aspects are important for BP improvement,
e.g., resource allocation and scheduling may significantlyimpact business process
performance.

Traditionally, two steps are considered in the BP Design & Analysis phase
to create a BP model (Aguilar-Savén, 2004). The first step consists of analyzing
the business process, e.g., by interviewing stakeholders (people involved in the
process), in order to draw an initial BP model (as-is model).Secondly, in order
to improve this initial model, different techniques can be employed like simula-
tion (Barjis and Verbraeck, 2010) or BP redesign (Reijers, 2003), resulting in the
generation of a to-be model. Typically, different quality dimensions like time,
cost, flexibility and quality can be differentiated (Reijers, 2003) between which
trade-off decisions have to be made when creating a BP design. Once a certain
process design has been chosen and implemented, business processes are execu-
ted according to this design1. During process execution, scheduling decisions are
then typically made by the BPM systems (BPMSs), by automatically assigning
activities to resources (Russell et al., 2005).

In most cases, the overall process of creating a BP model is carried out manua-
lly by business analysts, who specify the BP information through an imperative

1In this chapter, the assumption that there is a BPMS executing the BPs is made.

83

84 CHAPTER 5. OPTIMIZED PLANS TO OPTIMIZED BP MODELS

language by choosing between several different alternative designs the one which
best meets the performance goals of the organization. Therefore, analysts must
deal with several aspects in order to generate a suitable BP model, such as: (1)
the activity properties, e.g., activity duration, resource or role which is required
for activity execution, (2) the relations between the activities, i.e., control-flow
of the BP, and (3) the optimization of several objectives, e.g., minimization of
completion time. The manual specification of imperative BP models can there-
fore form a very complex problem, i.e., it can consume a greatquantity of time
and human resources, may cause certain failures, and may lead to non-optimized
models since the tacit nature of human knowledge is often an obstacle to eliciting
accurate process models (Ferreira and Ferreira, 2006).

Moreover, the result of process modelling is typically a static plan of action,
which is difficult to adapt to changing procedures or to different business goals
(Ferreira and Ferreira, 2006).

Not only the process design, but also the allocation of resources during process
execution has a great influence on process performance. However, scheduling
is only considered to a limited degree in existing BPMSs, andis typically done
during run-time by assigning activities to resources.

5.1.2 Contribution

To support process analysts in the definition of optimized BPmodels, a method
for automatically generating imperative BP models using AIplanning techniques
from constraint-based specifications (which describe the activities to be execu-
ted as well as constraints to be considered) is suggested. Unlike imperative mo-
dels, the specification of process properties in a declarative way, e.g., using a
constraint-based specification, only requires process designers to state what has
to be done instead of having to specify how it has to be done. The proposed AI-
based approach, in turn, is in charge of determining how it isto be done in order
to satisfy the constraints imposed by de constraint-based problem specifications,
and to attain an optimization of certain objective functions (e.g., minimization of
completion time). For this optimization, scheduling is done on a short-term ba-
sis by considering the optimization of a set of instances, which is typically not
considered in most BPMSs.

Figure5.1 provides an overview of the proposed approach. Consideringthe
constraint-based specifications as a starting point (cf. Fig. 5.1(1)), enactment
plans can automatically be generated (cf. Fig.5.1(2)), as detailed in Chapter3.
The generated enactment plans are then automatically translated into a BPMN
model (BPMN, 2011) (cf. Fig. 5.1(3)), which can be then further improved by a
business analyst, where necessary. In most cases, BPMN models can be translated
into an execution language (Ouyang et al., 2006), such as BPEL (BPEL, 2007),

5.1. INTRODUCTION 85

Declarative Business Process

Information (ConDec-R)

Resource

Availability
Name: N1

Role: R1

translateBusiness

Analyst

Optimized Business

Process Model Workflow

Engine

AI Planning and Scheduling

BPM System

Name: N2

Role: R2

translate

Constraint-based

Specification

Solver
Variables

Constraints
Objective

function

Domains

Optimized BP

Execution Plan

1

2

3

Figure 5.1: AI P&S techniques for the generation of optimized BP models.

which enables BP designs to be deployed into BPM systems and let their instances
be executed by a BPM engine.

The main contributions of this chapter can be summarized as follows:

• Automatic generation of optimized business process modelsin BPMN from
optimized BP enactment plans (cf. Sect.5.2, Step 3 in Fig.5.1).

• Validation of the proposed approach through the analysis ofdifferent perfor-
mance measures related to a range of test models of varying complexity (cf.
Sect. 5.4). The proposed empirical evaluation deals with some extensions
to the basic ConDec templates, e.g., branched templates (i.e., high-level re-
lations given between more than two activities, cf. Sect.3.2).

In this way, the automatic generation of BP models simplifiesthe BP design
phase by facilitating the human work in most cases, preventing failures in the de-
veloped BP models, and enabling better optimization to be attained in the enact-
ment phase. Furthermore, the proposed approach is suitablefor adapting BP mo-
dels to changing procedures or to different business goals.This is since imperative
BP models can dynamically be generated from static constraint-based specifica-
tions just before starting the BP enactment, once some values for the enactment
parameters, e.g., resource availabilities, are known. Moreover, the automatic ge-
neration of BP models can deal with complex problems of greatsize in a simple
way (as will be demonstrated in Sect.5.4). Therefore, a wide study of several
aspects can be carried out, such as those related to the requirement of resources of
different roles, or the estimated completion time for the BPenactment, by gene-
rating several kinds of alternative specifications.

The remainder of this chapter is organized as follows: Section 5.2details the
approach for generating optimized BPMN models from optimized BP enactment
plans, Section5.3 explains a running example, Section5.4 deals with the eva-
luation of the proposed approach, Section5.5 presents a critical discussion of
the advantages and limitations of the proposed approach, and finally, Section5.6
summarizes related work.

86 CHAPTER 5. OPTIMIZED PLANS TO OPTIMIZED BP MODELS

5.2 From Optimized Enactment Plans to Optimized
Business Process Models

Section3.3 has described how optimized BP enactment plans can be generated
from ConDec-R specifications. This section describes how a BPMN model can
be generated from an optimized BP enactment plan. Notice that the imperative
BP model can be generated just before starting the BP enactment by considering
the actual values of the resource availabilities.

The generated BPMN model includes the same activities to be executed in the
same ordering and also using the same resources than the enactment plan. For
each role in the BP enactment plan, a BPMN pool (cf. Def.26) is created, which
contains as many lanes as number of available resources for that role.

Definition 26. A BPMN pool BPMNPool= (role,#role) is a pool of a BPMN
model, which is composed of#role lanes.

Moreover, for each scheduling activity in the BP enactment plan a BPMN
activity (cf. Def. 27) is created. Additionally, one start and one end activitiesare
included in the BPMN model.

Definition 27. A BPMN activity BPMNAct= (pool, lane,dur,st) is an activity
of a BPMN model placed in the lane named lane of the pool named pool, with
duration dur and start time st.

One of the most important aspects to be considered for the generation of op-
timized BPMN models are the precedence relations between the BPMN activities
(scheduling activities, cf. Def.22 on page43). For establishing these precedence
relations the values for the start and the end times of the scheduling activities in
the enactment plan are considered. These precedence relations are then used as a
basis for generating BPMN models (cf. Def.31) from BP enactment plans. Some
related definitions are given below:

Definition 28. In a BP enactment plan regarding a CSP solution S, a scheduling
activity ai is apredecessorof another scheduling activity bj , ai ∈ predecessors(b j),
if the relation Set(ai) ≤ Sst(b j) holds due to resource or template relations.

Definition 29. In a BP enactment plan, a scheduling activity ai is a direct prede-
cessorof another scheduling activity bj , ai ∈ DP(b j), if ai ∈ predecessors(b j) ∧
6 ∃ck ∈ predecessors(b j) | ai ∈ predecessors(ck).

Definition 30. In a BP enactment plan, a scheduling activity ai is anindirect pre-
decessorof another scheduling activity bj , ai ∈ IP(b j), if ai ∈ predecessors(b j)∧
∃ck ∈ predecessors(b j) | ai ∈ predecessors(ck).

5.2. FROM OPTIMIZED PLANS TO OPTIMIZED MODELS 87

Definition 31. ABPMN modelBPMN= (Pools,Activities,Predecessors) related
to a ConDec-R process model CR= (Acts,CBP,Res) (cf. Def.20on page39) and
to a solution S of the related CSP-ConDec problem (cf. Def.23 on page43) is a
BP model specified through the BPMN language, where:

• The set of pools is composed by:

Pools= {BPMNPool(role,#role),(role,#role)∈ Res}.

• The set of activities is composed by:

Activities=

{BPMNAct(role(a),Sres(ai),dur(a),Sst(ai)),a∈ Acts, i ∈ [1..nt(a)]}

∪ {start= BPMNAct(P0,L0,0,0)}

∪ {end= BPMNAct(P0,L0,0,maxa∈Acts,i∈[1..nt(a)]et(ai))}.

• The set of predecessors is composed by:

Predecessors=

{(start,ai),a∈ Acts, i ∈ [1..nt(a)],Sst(ai) = 0}∪{(ant(a),end),

a∈ Acts, 6 ∃bi , i ∈ [1..nt(b)],b∈ Acts, | ant(a) ∈ predecessors(bi)}∪

{(bi,c j), i ∈ [1..nt(b)],b∈ Acts, j ∈ [1..nt(c)],c∈ Acts, | bi ∈ DP(c j)}.

In this way, the precedence relations between activities are stated so that:

• The start activity is predecessor of all scheduling activities whosest value
is equal to 0.

• The activities which are not predecessors of any other activity, are prede-
cessor of the end activity.

• In general, one activitybi is predecessor of another activityc j iff bi is direct
predecessor ofc j .

The setPredecessorsis represented in the BPMN model by BPMN connec-
tions between a source activityai and a sink activityb j , in the case thatai is the
only predecessor ofb j , or by a parallel merging gateway between a set of source
activities Sourcesand a sink activityb j in the case thatb j has more than one
predecessor.

The pseudocode and complexity analysis of the algorithms which were de-
veloped for generating BPMN models from optimized BP enactment plans are
included inAppendix C.

88 CHAPTER 5. OPTIMIZED PLANS TO OPTIMIZED BP MODELS

5.3 A Running Example

In this section, a running example, the travel agency problem, is developed in
order to clarify the overall proposed approach. First, the proposed problem is de-
tailed (cf. Sect.5.3.1), together with its ConDec-R specification (cf. Sect.5.3.2).
The generated optimized enactment plan and the corresponding BP model repre-
sentation are then shown and explained (cf. Sect.5.3.3). The running example
deals with a set of representative templates in order to illustrate various kinds of
relations which can be given between activities of businessprocesses.

5.3.1 The Travel Agency Problem

The analyzed running example represents an agency which manages holiday boo-
kings by offering clients the following three services: transport, accommodation,
and guided excursions. For some of the services the travel agency can ask a travel
company to help in managing some client requests. After all the client requests
are carried out, the agency must write a report which contains the information in
answer to the requests, which will then be sent to the clients. For efficiency rea-
sons, the agency creates only one report a day, hence it must be written after all
the requests are carried out.

The activities which can be executed in order to deal with theclient requests
are detailed in Table5.1.

Assume that the travel agency wants to minimize the responsetime for the
clients (end time of the client-report activity). For this the agency not only con-
siders the number of client requests (#P), which is known at the beginning of each
working day, but also the number of resources available in the agency (role A, #A)
and the number of available resources in the company (role B,#B).

5.3.2 ConDec-R Specification for the Travel Agency Problem

In order to solve this problem through the proposed approach, the first step is the
creation of the related ConDec-R specification (cf. Fig.5.2). Since a ConDec-R
specification contains two parts which are independent, these parts can be speci-
fied separately fostering their reuse:

• Information about the BP activities (required resources, durations, as well
as unary templates) and the high-level relations which are given between
the BP activities2 (cf. Fig. 5.2A; Table5.2).

• Information about the roles and available resources (cf. Fig. 5.2B).

2ConDec-R relations are detailed in Section3.2.

5.3. A RUNNING EXAMPLE 89

Table 5.1: Activities of the travel agency problem.

Id Description Constraints Role Dur.

G The client request is received
by the agency

The following client request cannot be received
until the current request hasstarted to be pro-
cessed (both trip plan and transport search have
started)

A 1

TS The agency searches for a
suitable transportation

Can only be executed afterG has completed,
and if the agency and not the company deals
with the search of transport for this request

A 8

AS The agency searches for sui-
table accommodation

Must be executed after each TS A 6

TP The agency organizes a trip
plan

Can only be executed afterG has completed, if
the agency and not the company deals with the
creation of the trip plan for this request

A 5

CT&AS The company searches for
transport and accommoda-
tion

Can only be executed afterG has completed, if
the company and not the agency deals with the
search of transport for this request

B 12

CTP The company creates a trip
plan

Can only be executed afterG has completed, if
the company and not the agency deals with the
creation of the trip plan for this request

B 6

SReport The company sends a report
to the agency which includes
information about all the trip
requests

Must be executed after all the activities related
to the client request which are carried out by the
company have finished, when there is at least
one client request

B 3

RReport The agency receives the re-
port with all the trip requests

Must be executed after eachSReport A 1

CReports The agency writes a report
which includes information
about all handled requests

Must be executed after having completed all ac-
tivities. It is executed only once

A 4

5.3.3 Optimized Enactment Plan and Optimized BP Model for
the Travel Agency Problem

Using the ConDec-R specification of Fig.5.2, the related constraint problem is
generated and solved through the constraint-based proposal which is described in
Sect.3.3, resulting in an optimized enactment plan for the travel agency problem.
This plan is used for the generation of an optimized BP model.

As commented, in order to define an instance (#P, #A, #B) for the travel agency
problem, the following parameters must be stated: number ofclient requests (#P),
number of resources available in the agency (#A), and numberof resources avai-
lable in the company (#B).

In this section, two instances are studied as illustrations, specifically Problem
1 defined by (#P = 4, #A = 1, #B = 1), and Problem 2 defined by (#P = 4,#A =
2, #B = 2). For Problem 1, Fig.5.3shows both the optimized Gantt chart (overall
completion time = 47) and the BP model which are obtained through the proposed
approach. It can be seen that regarding the first client request, depicted by G1 in
the Gantt diagram), the trip plan is created by the agency (TP1 activity), while the
transport and accommodation search are carried out by the company (CT&AS1).

90 CHAPTER 5. OPTIMIZED PLANS TO OPTIMIZED BP MODELS

��������	
��

�
������������

�������

�������

�	

�	�
	�

�

�

�

���	�

�	���

�

�

�

��
	���
	

��	�	�	��	

�����

��
	���
	

��	�	�	��	

�����

��
	���
	

��	�	�	��	

�����

��
	���
	

��	�	�	��	

�����

��
	���
	

�	�����	

�����

��
	���
	

�	�����	

�����

��
	���
	

�
��	�����

�����

�	�����	

�	�����	

�	�����	
�	�����	

��
	���
	

�
��	�����

�����

����

����

�

��������

�	���!

�

"

��#�

�	���!

�

�$ ���
�

%

�	��

�	���

�

&
�	�	�'	

�	���

�

�

���

�	���!

�

%

������ �������

�	�����	

����������������������

Figure 5.2: ConDec-R Specification for the Travel Agency Problem.

Once both activities TP1 and CT&AS1start, the second client request can be
received (G2). The fact that an activity B can only start after another activity A
hasstarted is stated by considering the predecessors of A as predecessors of B.
In this case, the predecessor of TP1 and CT&AS1 (i.e., G1) must (directly o indi-
rectly) precede G2. Regarding the second Get Request activity (G2), the trip plan
is organized by the company (CTP2 activity), while the transport and accommo-
dation search are carried out by the agency (TS2 and AS2 activities). In this case,
activity AS2, which is related to the second request, is postponed until after the
end of the execution of other activities related to the thirdrequest (G3, TP3), for
efficiency reasons (notice that there is no constraint between the repeated activi-
ties TP and AS). Once both activities CTP2 and TS2 start, the third client request
can be received (G3). Regarding the third Get request (G3), the trip plan is crea-
ted by the agency (TP3 activity), while the transport and accommodation search
are carried out by the company (CT&AS3 activity). Once both activities TP3 and
CT&AS3 start, the fourth Get request can be received (G4). Regarding the fourth
request (G4), the trip plan is created by the company (CTP4 activity), while the
transport and accommodation search are carried out by the agency (TS4 and AS4
activities). After all the client requests which are carried out by the company are
finished, the Send Report (SR) activity can be executed. After this, the Receive
Report (RR) activity can be executed. Finally, after all activity executions, the
Client Reports (CR) activity is executed.

5.3. A RUNNING EXAMPLE 91

Table 5.2: Templates of the travel agency problem.

Relation Description

Exactly(#P,G) G must be executed each time a client request is received.
Exactly(1,CReports) CReportsmust be executed exactly once.
AltPrecSS−ES(G,TS) Before the first execution ofTS, G must be executed, and between two

executions ofTS(TSi−1 andTSi), G must also be executed.
Formally:
st(G j) ≥ st(TSi−1), i.e., the next client request can be received at the
same moment the previous requeststarts to be processed.
st(TSi) ≥ et(G j), i.e., a transport search cannot start until the client
request is completely received (finishes).

AltPrecSS−ES(G,CT&AS) Exactly the same thanAltPrecSS− ES(G,TS) by replacingTS by
CT&AS.

AltPrecSS−ES(G,TP) Exactly the same thanAltPrecSS−ES(G,TS) by replacingTSby TP.
AltPrecSS−ES(G,CTP) Exactly the same thanAltPrecSS−ES(G,TS) by replacingTSbyCTP.
AltRespES−SS(G,{TS,CT&AS}) After the last execution ofG, at least one ofTSorCT&ASmust be exe-

cuted, and between two executions ofG, at least one ofTSor CT&AS
must also be executed.

AltRespES−SS(G,{TP,CT P}) Exactly the same thanAltRespES−SS(G,{TS,CT&AS}) by replacing
{TS,CT&AS} by {TP,CTP}.

AltSucES−SS(TS,AS) Before the first execution ofAS, TSmust be executed, and between two
executions ofTS(TSi−1 andTSi), ASmust also be executed. Further-
more, after the last execution ofTS, ASmust be executed, and between
two executions ofAS(ASi−1 andASi), TSmust be executed.
Formally:
st(TSj) ≥ st(ASi−1), i.e., the next transport search can be received at
the same moment the previous onestarts to be processed.
st(ASi)≥ et(TSj), i.e., the accommodation search cannot start until the
transport search iscompleted.

Resp(CT&AS,SReport) After the last execution ofCT&AS, SReportmust be executed.
Resp(CTP,SReport) After the last execution ofCTP, SReportmust be executed.
AltSucES−SS(SReport,RReport) Exactly the same thanAltSucES− SS(TS,AS) by replacingTS by

SReport, andASby RReport.
Resp(RReport,CReports) After the last execution ofRReport, CReportsmust be executed.
Resp(AS,CReports) After the last execution ofAS, CReportsmust be executed.
Resp(TS,CReports) After the last execution ofTS, CReportsmust be executed.

In a similar way, for Problem 2, Fig.5.4 shows the optimized Gantt chart
(overall completion time = 33) and the BP model which are obtained with our pro-
posal. It can be seen that regarding the first reception of a client request (depicted
by G1 in the Gantt diagram), the trip plan, and the transport and accommoda-
tion search are carried out by the company (CTP1 and CT&AS1 activities). Once
both activities CTP1 and CT&AS1 start, the second client request can be received
(G2). Regarding the second request (G2), the trip plan is created by the company
(CTP2 activity), while the transport and accommodation search are carried out by
the agency (TS2 and AS2 activities). Once both activities CTP2 and TS2 start,
the third client request can be received (G3). Regarding thethird Get Request
(G3), the trip plan, and the transport and accommodation search are carried out
by the company (CTP3 and CT&AS3 activities). Once both activities CTP3 and
CT&AS3 start, the fourth Get Request can be received (G4). Regarding the fourth

92 CHAPTER 5. OPTIMIZED PLANS TO OPTIMIZED BP MODELS

10 50403020

B1

A1

CT&AS1 CT&AS3CTP2 CTP4 SR

RRG3G2 G4TP1 TS2 TP3 AS2 AS4TS4 CRepG1

T
ra

v
e

l
A

g
e

n
c
y

Get

Request1

Trip

Plan1

CReportsRReport

A
1

Get

Request3

Trans.

Search2

Accom.

Search2

C
o

m
p

a
n

y

Comp T&A

Search1
SReport

Comp Trip

Plan2

Get

Request2

Trip

Plan3

Comp T&A

Search3

Get

Request4

Trans.

Search4

Accom.

Search4

Comp Trip

Plan4

B
1

Figure 5.3: Optimized Gantt chart and BPMN for the Travel Agency Problem for #P = 4,
#A = 1 and #B = 1.

request (G4), the trip plan is created by the company (CTP4 activity), while the
transport and accommodation search are carried out by the agency (TS4 and AS4
activities). After all the client requests which are carried out by the company are
finished, the Send Report (SR) activity can be executed. After this, the Receive
Report (RR) activity can be executed. Finally, after all theactivity executions, the
Client Reports (CR) activity is executed.

5.3.4 Dynamic Programming for Combining Solutions of the
Travel Agency Problem

A feasible solution to a model of a number of instances can be easily obtained
by concatenating known solutions for the same model with a smaller number of
instances. The optimal way to perform this concatenation can be achieved by
Dynamic Programming (DP) (Bellman, 1957). For the current chapter, DP is
used to swiftly obtain a feasible solution, usually of good quality, which helps to
the CP search. This initial solution is built as result of theoptimal concatenation
of the available (optimal or good) solutions to smaller problems. In general, the
way in which solutions to problems of a given size can be combined to provide a
solution to a larger problem depends on the type of problem considered.

5.3. A RUNNING EXAMPLE 93

T
ra

v
e

l
A

g
e

n
c
y

Get

Request1

CReports

RReport

A
2

Get

Request3

Trans.

Search2

Accom.

Search2

C
o

m
p

a
n

y

Comp T&A

Search1

SReport

Comp Trip

Plan1

Get

Request2

Comp T&A

Search3

Get

Request4
Trans.

Search4

Accom.

Search4

Comp Trip

Plan2

A
1

B
2

B
1

Comp Trip

Plan3
Comp Trip

Plan4

10 50403020

B2

B1

A2

A1

CT&AS1 CT&AS3

TS2 AS2 CRepRR

SRCTP2CTP1 CTP4CTP3

G4G2 AS4TS4G3G1

Figure 5.4: Optimized Gantt chart and BPMN for the Travel Agency Problem for #P = 4,
#A = 2 and #B = 2.

For the travel agency problem, DP can be applied for obtaining good solu-
tions by joining optimal solutions to smaller problems. LetOCTa,b(p) be the best
overall completion time which is known for an instance(p, a, b) of the travel
agency problem. DP can be applied to the travel agency problem so that the best
overall completion time for(p, a, b) obtained through DP,OCT DPa,b(p), can
be defined by:

OCT DPa,b(p) = min1≤i≤p/2(OCTa,b(i)+OCTa,b(p− i)−dur(CReports))3

i.e., the best combination of two optimal/optimized solutions to smaller pro-
blems is chosen.

3CReports activity must be executed only once, and must be allocated after the execution of
all other activities.

94 CHAPTER 5. OPTIMIZED PLANS TO OPTIMIZED BP MODELS

Table 5.3: Response variables

Id Description

CP/DP(s1+s2) The way in which the best solution is found, which can be by means of
the proposed constraint-based approach, CP, or by dynamic programming
through combinings1 ands2, DP(s1+s2)

OCT Overall completion time for the generated optimized enactment plan
%BusyA Average percentage of use of resources of role A, regarding the overall

completion time
%BusyB Average percentage of use of resources of role B, regarding the overall

completion time

5.4 Empirical Evaluation

In order to evaluate the effectiveness of the proposal, a controlled experiment is
conducted. Section5.4.1 describes the design underlying the experiment, and
Section5.4.2shows the experimental results and the data analysis.

5.4.1 Experimental Design

Purpose: The purpose of the empirical evaluation is to analyze the proposed ap-
proach in the generation of optimal enactment plans from ConDec-R specifica-
tions, specifically, the goals are: (1) the comparison of theproposed constraint-
based proposal with Dynamic Programming (DP) (cf. Sect.5.4.2), and (2) the
demonstration of its use for simulation purposes (cf. Sect.5.4.2).

Objects: The travel agency problem is used as example for the current eva-
luation, since it includes various and representative relations of several types and
complexity from the set of all the ConDec-R templates4.

Independent Variables: For the empirical evaluation, the number of client
requests, #P, the number of resources of role A, #A, and the number of resources
of role B, #B, are taken as independent variables.

Response Variables:Some performance measures (cf. Table5.3) related to
the best generated plan are reported for the generated problems (Figs.5.5; Tables
5.4, 5.5, and5.6).

Experimental Design: Based on the travel agency problem, a wide set of
problem instances by varying the different independent variables are generated:
#P, #A and #B. For variable #P, the values 1..100 are considered, for #A, the
values 1..5 are considered, and for #B, the values 1..5 are considered.

4A tool for generating optimized BP models for the travel agency problem can be found at
http://regula.lsi.us.es/AgenciesOptimizedModels/, where some tests can be carried out.

5.4. EMPIRICAL EVALUATION 95

Table 5.4: %OCT of the best solution found and method (CP or DP) that reaches it

P (#A, #B) OCT CP/DP(s1+s2) P (#A, #B) OCT CP/DP(s1+s2)

1 (1, 1) 20 CP 11 (1, 1) 119 DP(5+6)
1 (2, 2) 19 CP 11 (2, 2) 72 CP
1 (3, 3) 19 CP 11 (3, 3) 68 CP
1 (4, 4) 19 CP 11 (4, 4) 68 CP
1 (5, 5) 19 CP 11 (5, 5) 67 CP
2 (1, 1) 27 CP 12 (1, 1) 128 DP(6+6)
2 (2, 2) 21 CP 12 (2, 2) 80 DP(5+7)
2 (3, 3) 21 CP 12 (3, 3) 71 CP
2 (4, 4) 21 CP 12 (4, 4) 70 CP
2 (5, 5) 21 CP 12 (5, 5) 70 CP
3 (1, 1) 38 CP 13 (1, 1) 139 DP(6+7)
3 (2, 2) 28 CP 13 (2, 2) 85 CP
3 (3, 3) 28 CP 13 (3, 3) 78 CP
3 (4, 4) 28 CP 13 (4, 4) 75 CP
3 (5, 5) 28 CP 13 (5, 5) 75 CP
4 (1, 1) 47 CP 14 (1, 1) 149 DP(6+8)
4 (2, 2) 33 CP 14 (2, 2) 92 DP(7+7)
4 (3, 3) 33 CP 14 (3, 3) 84 CP
4 (4, 4) 33 CP 14 (4, 4) 84 CP
4 (5, 5) 33 CP 14 (5, 5) 84 CP
5 (1, 1) 57 CP 15 (1, 1) 160 DP(7+8)
5 (2, 2) 36 CP 15 (2, 2) 98 DP(7+8)
5 (3, 3) 35 CP 15 (3, 3) 91 DP(5+10)
5 (4, 4) 35 CP 15 (4, 4) 88 CP
5 (5, 5) 35 CP 15 (5, 5) 88 CP
6 (1, 1) 66 CP 16 (1, 1) 170 DP(8+8)
6 (2, 2) 44 CP 16 (2, 2) 103 CP
6 (3, 3) 43 CP 16 (3, 3) 97 CP
6 (4, 4) 43 CP 16 (4, 4) 93 CP
6 (5, 5) 43 CP 16 (5, 5) 93 CP
7 (1, 1) 77 CP 17 (1, 1) 181 DP(8+9)
7 (2, 2) 48 CP 17 (2, 2) 110 DP(8+9)
7 (3, 3) 45 CP 17 (3, 3) 101 DP(7+10)
7 (4, 4) 45 CP 17 (4, 4) 99 CP
7 (5, 5) 45 CP 17 (5, 5) 99 CP
8 (1, 1) 87 CP 18 (1, 1) 190 DP(6+12)
8 (2, 2) 54 CP 18 (2, 2) 116 DP(9+9)
8 (3, 3) 52 CP 18 (3, 3) 104 CP
8 (4, 4) 52 CP 18 (4, 4) 104 CP
8 (5, 5) 52 CP 18 (5, 5) 104 CP
9 (1, 1) 98 CP 19 (1, 1) 201 DP(7+12)
9 (2, 2) 60 CP 19 (2, 2) 122 DP(8+11)
9 (3, 3) 57 CP 19 (3, 3) 112 DP(7+12)
9 (4, 4) 57 CP 19 (4, 4) 111 DP(7+12)
9 (5, 5) 57 CP 19 (5, 5) 111 DP(7+12)

10 (1, 1) 109 DP(4+6) 20 (1, 1) 211 DP(8+12)
10 (2, 2) 67 CP 20 (2, 2) 128 DP(9+11)
10 (3, 3) 60 CP 20 (3, 3) 116 DP(10+10)
10 (4, 4) 60 CP 20 (4, 4) 116 DP(10+10)
10 (5, 5) 60 CP 20 (5, 5) 116 DP(10+10)

Experimental Execution: By taking into account the NP-complexity of the
considered problems, anincomplete searchis adapted and applied for solving the
specific considered problems and also its suitability for the generation of BPMN

96 CHAPTER 5. OPTIMIZED PLANS TO OPTIMIZED BP MODELS

models from constraint-based specifications is evaluated.This incomplete search
includesrandomized componentsin order to diversify the search. By means of
this approach, a first feasible solution is quickly found by arandomized greedy
algorithm. The same greedy algorithm is used for iteratively improving the best
solution found until a time limit is reached. Through this incomplete search, all
the solutions can be reached and the search procedure efficiently explores a wide
range of solutions from diversified areas of the search space.

For the experiments, the constraint-based search algorithm is run until a 10-
minute CPU time limit is reached. The machine for all experiments is an Intel
Core2, 2.13 GHz, 1.97 GB memory, running on Windows XP. In order to solve
the constraint-based problems (cf. Sect.3.3, the developed algorithms have been
integrated with the system COMET (Dynadec, 2011), which is able to generate
high-quality solutions for highly constrained problems inan efficient way.

5.4.2 Experimental Results and Data Analysis

As commented, the purpose of the empirical evaluation is twofold, i.e., analy-
zing the suitability of the proposed approach through a comparison with DP, and
through the use for simulation.

Comparison with DP

Dynamic programming (Bellman, 1957), DP, is a widely used technique in sol-
ving optimization problems, leading to solutions of high quality in most cases.
Specifically, for the travel agency problem, DP can be applied (cf. Sect.5.3.4).
We would like to evaluate whether the constraint-based proposal usually improves
the solution of good quality which can be obtained by DP, i.e., works efficiently.
In this way, DP is used for generating a first feasible solution of good quality.
As discussed, CP tries to improve known solutions by taking advantages of the
information about their objective value.

Table5.4 shows the overall completion time for the best solutions which are
found for some representative instances, together with themethod (either dynamic
programming (DP) or constraint programming (CP)) which finds the best solution
(column CP/DP(s1+s2) in Table5.4). Thereby DP(s1+s2) means that the best
solution is found by dynamic programming through combinings1 ands2. It can
be observed that for 1≤ #P≤ 14, the constraint-based approach obtains better
solutions than DP for almost all of the instances. Moreover,for 15≤ #P≤ 18,
in some cases DP obtains the best solution, and in other casesCP obtains the best
solution. Moreover, for 19≤ #P≤ 20, DP obtains solutions that are better than
or equal to those obtained through CP for all the instances. Furthermore, it seems
that the solutions for #P ={6, 7, 8, 9, 10 and 12} are largely optimized since

5.4. EMPIRICAL EVALUATION 97

they widely appear in the DP solutions. The results (cf. Table 5.4) show that
the proposed constraint-based approach, i.e., CP, is able to improve the solution
obtained by DP in most of the cases. This shows that the proposed constraint-
based approach works efficiently in the generation of optimized enactment plans,
and hence, for the automatic generation of optimized BPMN models.

In short, the presented data indicates that for the generation of optimized BP
models, CP enables complex problems to be solved in a more efficient way than
they would be through other alternative methods, such as DP or the manual speci-
fication of BP models.

Additionally, when #P increases, the complexity of the problem rises sharply,
and hence the manual treatment of the problem would become almost inextricable.
In contrast, when using the presented approach an optimizedsolution for large
problems, such as for #P= 100 can be obtained in only 10 minutes.

Threats to validity: There are several factors which may threaten the validity
of the presented experiments for the attainment of generalizable conclusions:

• The specific characteristics of the running example, i.e., the empirical eva-
luation only considers a concrete problem with a specific number of BP
activities and specific relations between the BP activities.

• The way in which the optimal/optimized solutions for problems of a certain
size are combined in order to obtain solutions for larger problems is spe-
cific for the considered running example. In most cases, feasible solutions
for larger problems can be generated by concatenating solutions to smaller
problems through dynamic programming. However, the way in which solu-
tions to problems of a given size can be combined to provide a solution to a
larger problem depends on the type of problem considered.

Use for Simulation

The proposed approach can be used for simulation purposes inthe BP Design &
Analysis phase in order to study the relevance of several parameters in the quality
of the generated plans, e.g., resource availability. As an example, the relevance
of the number of available resources for the travel agency problem is analyzed as
follows.

Figure5.5 shows the completion time of the best BP enactment plan (over-
all completion time) which is generated through the proposed approach. In both
graphics of Fig.5.5, the overall completion time is shown depending on the num-
ber of resources of roles A and B. First, the considered resources are grouped
according to #A (Fig.5.5.(a)). Secondly, the considered resources are grouped
according to #B (Fig.5.5.(b)). It can be seen, in most cases, that the overall com-
pletion time greatly decreases as #A increases. Additionally, in most cases, the

98 CHAPTER 5. OPTIMIZED PLANS TO OPTIMIZED BP MODELS

��������	
�����
���
�	
��������

��������	
�����
���
�	
��������

�

���

���

���

���

����

����

����

�� �� �� �� �	 �� �� �� �� �	 �� �� �� �� �	 �� �� �� �� �	 �� �� �� �� �	

������

���
�

�����

�����

�����

���	�

�����

�����

�����

�����

�� ��������

�

���

���

���

���

����

����

����

�� �� �� �� �	 �� �� �� �� �	 �� �� �� �� �	 �� �� �� �� �	 �� �� �� �� �	

������

���
�

�����

�����

�����

���	�

�����

�����

�����

�����

�� ��������

�	
��
�	

���

���

�	
��
�	

������
���	
���������
�����

Figure 5.5: Overall completion time depending on #A #B.

overall completion time remains almost the same when #B increases. Therefore,
#A seems to be much more influential than #B for the overall completion time,
i.e., A is a more critical resource for the considered travelagency problem.

In Tables5.5 and5.6, the average percentages of use of the resources of role
A and role B, respectively, regarding the overall completion time, are shown. In
all cases, for the same value of #P, these percentages decrease as the number of
resources of the associated role increases. Moreover, as expected, the average
percentage of use of resources of role A is greater than the average percentage of
use of resources of role B for the same value of #P.

5.5. DISCUSSION AND LIMITATIONS 99

Table 5.5: %Busy A versus #P

#P

#A 10 20 30 40 50 60 70 80 90 100

1 95.2 95.1 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0
2 79.8 82.6 81.4 83.1 82.2 81.7 82.6 83.3 82.8 82.4
3 73.5 74.8 74.3 75.5 75.1 74.8 75.4 75.9 75.6 75.4
4 57.8 59.0 59.1 59.6 59.6 59.5 59.7 59.9 59.8 59.8
5 43.9 46.0 45.9 46.5 46.3 46.2 46.5 46.7 46.6 46.5

Table 5.6: %Busy B versus #P

#P

#B 10 20 30 40 50 60 70 80 90 100

1 78.6 80.8 80.3 82.0 81.4 81.0 81.9 82.6 82.2 81.9
2 72.7 71.1 75.3 72.2 74.6 76.2 74.3 72.8 74.1 75.1
3 46.7 48.1 49.1 48.9 49.3 49.6 49.4 49.3 49.5 49.7
4 30.5 30.7 31.3 31.2 31.4 31.6 31.5 31.4 31.5 31.6
5 26.4 27.2 27.5 27.7 27.7 27.8 27.8 27.9 27.9 27.9

5.5 Discussion and Limitations

In BP most environments, the Process Design & Analysis phaseis manually car-
ried out by business analysts, who must deal with several aspects, such as resource
allocation, the activity properties and the relations between them, and may even
have to handle the optimization of several objectives. Therefore, in some cases,
the manual specification of BP models can consume great quantity of resources,
cause failures, and lead to non-optimized models, resulting in a very complex
problem (Ferreira and Ferreira, 2006).

Hence, it should be emphasized that the automatic generation of BP models
facilitates the human work in most cases, prevents failuresin the developed BP
models, and enables better optimization to be attained in the enactment phase.

Furthermore, the specification of process properties in a declarative way al-
lows the user to specify what is to be done, and the proposed AI-based tool is in
charge of determining how it is to be done in order to satisfy the problem specifi-
cations, and to attain the optimization of certain objective functions.

Additionally, notice that in the BP design phase, BP models are traditionally
specified in a static way through an imperative language, which is difficult to
adapt to changing procedures or to different business goals(Ferreira and Ferreira,
2006). Conversely, the dynamic generation of imperative BP models from static

100 CHAPTER 5. OPTIMIZED PLANS TO OPTIMIZED BP MODELS

declarative specifications (specifically constraint-based specifications) just before
starting the BP enactment is proposed, once some values for the enactment pa-
rameters, e.g., resource availabilities, are known. In this way, the BP models can
dynamically be adapted to different environments.

Moreover, the automatic generation of BP models can deal with complex pro-
blems of great size in a simple way, as demonstrated in Sect.5.4. Therefore,
a wide study of several aspects can be carried out by simulation, such as those
related to the requirement of resources of different roles,or the estimated comple-
tion time for the BP enactment, by generating several kinds of problems.

It should also be clarified that the BP models are generated for execution pur-
poses, and hence clarity of meaning for the users of the generated models is not
considered relevant in the current proposal.

However, the proposed approach also presents a few limitations. First, the
business analysts must deal with a new language for the constraint-based specifi-
cation of BPs, therefore a period of training is required in order to let the business
analysts become familiar with ConDec-R specifications. Secondly, the optimized
BP models are generated by considering estimated values forthe activity duration
and resource availability, hence then current proposal is only appropriate for pro-
cesses in which the duration of the activities and the resource availability can be
estimated. However, P&S techniques can be applied to replanthe activities in the
enactment phase by considering the actual values of the parameters. Moreover,
ConDec-R specifications deal with both control-flow and resource perspectives,
and also temporal data. Incorporating the non-temporal data perspective is sub-
ject to future work. Notice that already without non-temporal data many problems
can be solved.

There are several objectives which can be considered in BPMSs. In this chap-
ter, minimizing the overall completion time only is considered. However, this
proposal can be extended in order to consider further objectives, such as cost or
other temporal measures.

5.6 Related Work

Related to the presented proposal is research on the generation of BP models, e.g.,
(Alves et al., 2008; González-Ferrer et al., 2009; R-Moreno et al., 2007; Hoffmann
et al., 2010; De Castro and Marcos, 2009; Ferreira and Ferreira, 2006). While the
proposals of (Alves et al., 2008; González-Ferrer et al., 2009) provide the BP
information through an execution/interchange language, XPDL, the proposed ap-
proach, in turn, uses a declarative approach based on a formal logic (LTL). In
a related way, in (R-Moreno et al., 2007), planning tools are used for the semi-
automatic generation of BP models, by considering the knowledge introduced

5.6. RELATED WORK 101

through BP Reengineering languages. In (R-Moreno et al., 2007), they propose
an object-oriented structure modelling tool that follows their own rule-based ap-
proach, while the use of an extension of ConDec, a widely referenced language
in the context of BPM (e.g., (Ly et al., 2008; Montali, 2009)), which also al-
lows a higher level of abstraction is proposed in the currentchapter. Additionally,
(Hoffmann et al., 2010) proposes a planning formalism for the modelling of BPs
through an SAP specification (Status and Action Management,SAM), which is
a variant of PDDL. Unlike the proposed approach, neither theresource perspec-
tive nor the optimization of several instances are considered since in (Hoffmann
et al., 2010) each non-deterministic action (i.e., activity) cannot berepeated in the
generated solution. Moreover, (De Castro and Marcos, 2009) presents a service-
oriented approach which transforms high-level BP models into web service com-
position models. This approach uses UML to specify the BP models from an
MDA point of view, which lacks an implementation view of BP models (Owen
and Raj, 2003), in contrast to ConDec, which is a graphical and specific language
for the modelling of BPs. Furthermore, (Ferreira and Ferreira, 2006) proposes to
refine BP models by combining learning and planning techniques, starting from
processes which are not fully described. Unlike the proposed approach, (Ferreira
and Ferreira, 2006) needs past process executions and examples provided by the
user to apply learning techniques. Moreover, (Ferreira and Ferreira, 2006) does
not consider the optimization of any objective function in the generation of the
plans. Furthermore, in (Ferreira and Ferreira, 2006) executable plans are genera-
ted, while the generation of BP models is proposed in the current approach which
are specified in a standard language, i.e., BPMN, which can also be improved by
business analysts if necessary.

On the other hand, related to the combined used of declarative and imperative
models, (Rychkova et al., 2008b) proposes the use of declarative BP models for
specifying processes independently of a particular environment in order to align
optional process customizations. This information is complemented with impe-
rative BP specifications which contain information relatedto the control flow of
the processes, often specific to a given environment. In (Rychkova et al., 2008b)
both declarative and imperative BP models need to be (manually) specified, while
in the proposed approach the optimized imperative models are automatically ge-
nerated. Lastly, (Caron and Vanthienen, 2011) analyzes the need of transitions
between different BP modelling paradigms, i.e., declarative, imperative and hy-
brid proposals, supporting the presented proposal.

Chapter 6

Planning and Scheduling of Business
Processes in Run-Time

6.1 Introduction

6.1.1 Motivation

The execution of most BPs entails, in some way, scheduling decisions since the ac-
tivities to be executed may compete for some shared resources. In these cases, it is
necessary to allocate the resources in a suitable way, usually optimizing some ob-
jectives. Scheduling decisions are typically made by the BPM systems (BPMSs)
during process execution by automatically assigning activities to resources (Rus-
sell et al., 2005).

To lesser measure, planning problems are present in BP executions when, in
some points, several possible execution branches exist, and the selection of the
suitable one depends on the BP goal and/or on the optimization of some criteri-
ons. Since BP models are typically specified in an imperativeway, most of the
planning decisions are taken in the modelling phase. Specifically, the ordering and
the selection of the activities to be executed (planning) inthe BP enactment are
specified in the BP design time, when only estimated values for several parameters
can be analyzed.

There are BPs which entail complex planning decisions whichcan greatly be
influenced by the values of several unpredictable parameters, whose actual value
is known in run time.

6.1.2 Contribution

In this chapter, a proposal for modelling and enacting BPs that involve planning
and scheduling (P&S) decisions (cf. Sect.2.2.3) is presented. The main contri-

103

104 CHAPTER 6. P&S OF BPS IN RUN-TIME

����
���������

���������	�
������

��

���

��������

���	��

����
����

�
����
�

������

�	

�	���	�
����
��������

��	�	��

����

��	
������

��������

����	���

�������	���

������	��

�����	��

�������� �����

������	��

�����	���

Figure 6.1: Planning & Scheduling of general BPs in run-time.

bution is that both P&S decisions are taken in BP run-time, providing the process
management with efficiency and flexibility, and avoiding thedrawbacks of taking
these decisions during the design phase.

In Fig. 6.1, a graphical representation of the current proposal is shown. The
user specifies the information of a P&S problem, that must include several aspects:
the initial state of the problem, the goal that must be reached, the activities that
can be executed in order to reach the goal (actions), together with the precedence
relations between them, the required resources, and the objective functions to be
optimized. Moreover, the estimated values of several parameters, such as activity
durations or resource availabilities, must be indicated. However, these estimated
values can be different from the actual values. The presented approach manages
this aspect through replanning techniques in run-time. Furthermore, in the pro-
posed approach, the BP representing a P&S problem needs to betranslated to an
imperative BP model in BPMN language1, that still represents a P&S problem
since the selection and the ordering of the activities, together with the temporal
resources allocation, are carried out in the enactment phase. The resulting BPMN
model includes a pool containing web services based on AI P&Stechniques that
drives the BP execution considering the optimization functions and the actual va-
lues of the parameters. In most cases, BPMN models can be translated into an
execution language (Ouyang et al., 2006), such as BPEL (BPEL, 2007), which
enables BP designs to be deployed into BPM systems and let their instances be
executed by a BPM engine in an optimized way.

1This translation is not automatic, and hence it needs to be manually carried out. As an exam-
ple, a method for modelling a specific complex P&S problem through BPMN language is detailed
in Sect.6.3.

6.1. INTRODUCTION 105

����

���������	�
������

��

�
����
�

������

���

��������

���������

�������	�������

	�
����

���	��

����
����

����

�����	��
���

��
���
�
��

�
���������
��

Figure 6.2: Planning & Scheduling of Repair Planning BP in run-time.

The main advantage of the current proposal is the flexible anddynamic ma-
nagement of the BP enactment, since the P&S decisions are taken considering
the actual execution values instead of the estimated ones, optimizing the objec-
tive functions. It is important to emphasize that the decision-making in run-time
provides the problem with a high spatial and temporal complexity, and hence it
is necessary to find a good balance between flexibility-optimality, and complexity
of the BP.

As an example, a complex and representative problem including P&S, the
multi-mode repair planning problem (cf. Sect.6.3), is managed through the pro-
posed approach (cf. Fig.6.2). For this problem, the minimization of the total
duration and cost when executing the plan in a generic multiple resource envi-
ronment is considered, taking into account duration and cost of the activities, and
resource allocation. In order to solve the repair planning problems, this chapter
presents a constraint-based approach (cf. AppendixD.1) and a PDDL 2.2 speci-
fication (cf. AppendixD.2) for managing the P&S of the BP activities to achieve
an optimal BP enactment.

The main contributions of this chapter can be summarized as follows:

• BP-based architecture for flexible and dynamic management of the BP enact-
ments that, in run-time, require:

– Planning: selection and ordering of the activities to be executed due to
the existence of several possible alternatives, and

– Scheduling: resources allocation involving temporal reasoning due to
the use of shared resources

106 CHAPTER 6. P&S OF BPS IN RUN-TIME

for optimizing some objective functions (cf. Sect.6.2).

• AI P&S reasoning based on (1) a constraint-based approach, and on (2)
a PDDL 2.2 specification for optimizing the BP enactment, focused on a
complex and representative P&S problem: the multi-mode repair planning
problem (cf. Sect.6.3).

• Validation of the proposed approaches through the analysisof different per-
formance measures related to a range of test models of varying complexity
(cf. Sect.6.4).

This chapter is organized as follows: Sect.6.2 includes an overview of the
proposed approach, Sect.6.3 shows the application of the proposed approach to
a complex and representative P&S problem, Sect.6.4 shows some experimental
results, and finally, Sect.6.5summarizes related work.

6.2 Framework for the Enactment of BPs Involving
P&S Decisions

For BP that entails planning and scheduling decisions, a framework containing
three pools is proposed (Fig.6.3), as presented in the work (Barba and Del Valle,
2010):

1. Client: It acts as intermediary between the user and the process. Depending
on the concrete problem, the user must specify some relevantinformation
about the process to be executed.

2. Enactment Module: It contains all the activities that can be executed. At the
end of the enactment, a message containing information about the process
execution is sent to the client.

3. Planner and Dispatcher: It contains the AI-based web services for the op-
timal P&S of the BP activities. Depending on the problem to besolved,
different AI P&S techniques can be used to obtain an optimal execution
plan.

As execution proceeds, theEnactment Moduleand thePlanner and Dispatcher
pool interchange information at several points. Regardingto the proposed archi-
tecture, theEnactment Moduleexecution starts when a message from theClient
is received. After that, the first activity to be enacted is the initial plan, that re-
quests information about an initial execution plan, tryingto obtain a good start
point which optimizes the considered objective functions.Next, a parallel gate-
way divides the execution into two parallel branches:

6.2. ENACTMENT OF BPS INVOLVING P&S DECISIONS 107

E
n

a
c
tm

e
n

t
M

o
d
u

le

Initial

Plan

Update

plan

C
lie

n
t

Input

Data

P
la

n
n

e
r

&

D
is

p
a
tc

h
e
r

Receive

data
Send

message

Initial Plan

Generation
Update plan

@

@

@
@

Branch 2

Branch 1 Plan Enactment

T
1
 or

T
2
or

…

T
n
?

T
1

...

T
n

T
2

...

Activity

Execution

@

@

...

Figure 6.3: Architecture for enacting BPs which involve P&Sdecisions.

• Plan enactment (Branch 1 in Fig.6.3): This branch contains the actual P&S
activities that can be executed in order to solve the problem. It should be
emphasized that all the possible alternative activities tobe selected are in-
cluded in this branch. In this way, P&S methods are used to automatically
select and order the suitable activities during the enactment phase, in order
to obtain an optimal execution plan. In theEnactment Module, when an
exclusive data-based gateway is reached during the plan execution, the way
that must be followed is established by the information previously received
from thePlanner and Dispatcherpool. In this way, selecting the most sui-
table activity considering the goal to be reached and the objective function
to be optimized is required (planning decision). Moreover,for the activities
which require the same resources to be executed, this pool establishes the
execution ordering. Therefore, resources need to be allocated to activities
by considering the objective function to be optimized (scheduling decision).

• Optimization process (Branch 2 in Fig.6.3): For the proposed architecture,
one of the most important aspects in the plan execution is theoptimality.
In order to improve it, an optimization process is carried out during all the
plan execution, due to, basically, two reasons:

– The execution plan which was initially generated can be non-optimal,
since the generation of optimal plans presents NP-complexity (Garey
and Johnson, 1979), and hence it is not possible to ensure the opti-
mality of the generated plans for all the cases in a specific execution
time.

108 CHAPTER 6. P&S OF BPS IN RUN-TIME

– The actual parameters of the enactment can be different fromthe esti-
mated ones, e.g., different activity duration or resource availability. In
these cases, the optimized plan needs to be updated by considering the
actual state of the BP execution.

Taking both reasons into account, a loop updating activity that is conti-
nuously trying to improve the current solution is included,considering the
actual values of the parameters. In order to do this, a web service based on
P&S techniques (Update plan) is invoked. When a better solution is found,
the current plan is updated and this information is used to decide the way
to follow in the OR gateways. Lastly, this loop finishes when the complete
plan is successfully enacted.

In Sect. 6.3, a specific example is modelled through the proposed generic
framework.

6.3 A Case of Study

In the current chapter, a generic framework for modelling and enacting BPs which
include P&S decisions is presented (cf. Sect.6.2). As an example, the multi-mode
repair planning problem (cf. Sect.6.3.1) is managed through this architecture (cf.
Sect.6.3.2).

6.3.1 The Multi-mode Repair Planning Problem

Some of the applications involving P&S issues are maintenance and repair plan-
ning, where there may be a cascading set of choices for actions, facilities, tools
or personnel, which affect the duration of the plans (Smith et al., 2000). In past
years, the effective management of maintenance and repair planning in organiza-
tions became more important, since the system complexity isincreasing as well
as there exist several limitations of the technology which is used to maintain it.
Maintenance and repair planning includes a wide scope of problems. Specifically,
assembly and disassembly planning are very important in themanufacturing of
products and its life cycles. They involve the identification, selection and sequen-
cing of assembly/disassembly operations, which can be specified by their effects
on the parts. The identification of assembly/disassembly operations is usually
tackled by analyzing the product structure and the feasibility of each possible ac-
tivity (Homem de Mello and Sanderson, 1991; Calton, 1999), and usually leads to
the set of all feasible plans.

In this chapter, the complete repair process of a reparable system (cf. Def.32)
is considered.

6.3. A CASE OF STUDY 109

A

SYSTEM

E

B D

C

Figure 6.4: Connection graph representing the reparable system ABCDE.

Definition 32. A reparable systemis composed by a set of components, and a set
of connections between the components.

A reparable system can be decomposed in certain subsystems (cf. Def. 33),
depending on the way that the components (cf. Def.34) are connected and the
type of connections which are included in the connection graph2.

Definition 33. A subsystemis a subset of a reparable system which is made of
more than one components which are connected.

Definition 34. A componentis an atomic part of a reparable system which cannot
be disconnected.

As an example, Fig.6.4shows a reparable system made of five components.
The complete system may present an unexpected or anomalous behavior, which

is supposed to be due to the fail of one or more components3. In these situations,
a diagnosis process would be adequate for identifying the faulty component/s.

In order to fix the faulty components, a repair plan must be carried out. This
plan is composed of three steps, that can be overlapped in time:

1. Disconnection process: set of activities that are execute to isolate the faulty
components.

2. Repair action: activity for fixing the faulty components.

3. Connection process: set of activities that are executed to reconnect the sys-
tem.

2Not all the connections which are included in the connectiongraph are feasible.
3For the sake of simplicity, in the current proposal the unexpected behavior of the reparable

system is supposed to be due to the fail of only one component.

110 CHAPTER 6. P&S OF BPS IN RUN-TIME

Taking these steps into account, a feasible repair plan can be seen as a (mini-
mum) set of activities that begins with the disconnection ofthe complete system,
fixes the faulty components, and finishes with the connectionof the complete
system. In the current proposal, two kinds of activities areconsidered, i.e., con-
nection/disconnection activities (cf. Def.35 and36) and auxiliary activities (cf.
Def. 37 and38).

Definition 35. A connection activityis an activity which obtains one subsystem
by connecting several subsystems or components. It is executed by using an esta-
blished resource with a particular configuration.

Definition 36. A disconnection activityis an activity which obtains several sub-
systems or components by disconnecting one subsystem. It isexecuted by using
an established resource with a particular configuration.

For the sake of clarity, only two subsystems are considered to be connected in
a connection activity and obtained after a disconnection activity.

Moreover, auxiliary activities are required since the connection/disconnection
activities are executed at different locations, and the resources can be used with
different configurations. Auxiliary activities can be classified into set-up opera-
tions (cf. Def.37) and transportation operations (cf. Def.38).

Definition 37. A set-up operationis an auxiliary operation which changes the
configuration of a resource. It is required when two successive activities with
different configuration use that resource.

Definition 38. A transportation operationis an auxiliary operation which trans-
ports a subsystem between locations. It is required when thelocation where the
subsystem is obtained is different from the location where that subsystem is re-
quired. In the current chapter, different resources are considered to be placed at
different locations.

All activities which are considered, i.e., connection/disconnection and auxi-
liary activities, have an associated duration and cost.

In the considered repair planning problem, the connection/disconnection ac-
tivities (cf. Def. 35 and36) can be executed in more than one operating mode
(multi-mode), each one using different resources or configuration, and possibly
different duration and cost. Taking this into account, there can be several options
to connect several subsystems to obtain another one, or disconnect one subsystem
to obtain several ones.

For the considered repair planning problem, two assumptions are supposed:

• (A1) All activities are reversible, i.e., if a connection activity which con-
nects several subsystemsS1,S2, . . . ,Sk to obtain another subsystemSexists,

6.3. A CASE OF STUDY 111

then a disconnection activity which disconnect the subsystem S to obtain
the subsystemsS1,S2, . . . ,Sk is also included, and vice versa.

• (A2) Subsystems that do not include the faulty components are not discon-
nected.

Taking (A1) and (A2) into account, in the connection process, other subsys-
tems different from the ones generated by the disconnectionprocess can appear,
depending on how they are joined. Moreover, disconnection activities only han-
dle subsystems that contain the faulty component, whereas connection activities
handle subsystems that may contain or not the faulty component. In general,
plans are not linear sequences of activities, unlike reversible plans. Although the
disconnection process is linear, the connection process can contain activities that
may execute in parallel with others. Furthermore, it is possible that the connection
process starts before the disconnection process has finished, and there may be a
parallel execution of the two types of activities.

A typical objective to be pursued in repair problems is the minimization of the
elapsed time of the plan, i.e., the time in which the reparable system is reconnected
after the reparation (called makespan). In the current approach, the total cost of
the complete repair plan is also considered for minimization. Therefore, a multi-
objective optimization is pursued, encompassing both objective functions, time
and cost.

And/Or Graph Representation

In the literature, there are several structures that can be used for representing the
considered repair planning problem. The And/Or graph (Homem de Mello and
Sanderson, 1990) is one of the most suitable ones, since it allows to represent the
set of all feasible connection/disconnection plans in a natural and compact way
(cf. Def. 39).

Definition 39. TheAnd/Or graphwhich represents a repair planning problem is
composed by:

• Or nodes: they correspond to subsets of components of the reparable sys-
tem, meaning that the root node represents the whole system (cf. Def. 32),
while non-leaf nodes represent subsystems (cf. Def.33), and leaf nodes are
individual components (cf. Def.34).

• And nodes: they represent the activities which connect/disconnect the sub-
systems (cf. Def.35 and 36). In this way, a downward edge decomposes
a system or subsystem in several subsystems, while an upwardedge can be

112 CHAPTER 6. P&S OF BPS IN RUN-TIME

���������	�
��	�
�������� ��������
�������	�
��������

�����

����

���

��

�

�� ��

� � � �

��
�

��
�

��
�

��
�

��
�

��

��
!

��
"

��
�#

��
$ ��

��

%�

��

%�

��

%�

�

%�

��

%�

��

%�

��

%�

��

%�

�"

%�

��

�����

����

���

��

�

�� ��

� � � �

��
�

��
�

��
�

��
�

��
�

��

��
!

��
"

��
�#

��
$ ��

��

%�

��

%�

��

%�

�

%�

��

%�

��

%�

��

%�

��

%�

�"

%�

��

%�

��

%�

��

Figure 6.5: The And/Or graph for a reparable system made of five components.

seen as the reverse activity of joining several subsystems into a composed
one.

In the current approach, each activity with an operating mode corresponds to
a different And node in the graph.

Notice that auxiliary activities (cf. Def.37and38) are not explicitly represen-
ted in the And/Or graphs.

In And/Or graphs, each connection/disconnection plan is associated to a tree,
that is an And/Or path starting at the root node and ending at the leaf nodes.

Fig. 6.5(a) shows the And/Or graph for a reparable system made of five com-
ponents, whereT ′ activities represent disconnection activities. For the same Or
node, there can be several And nodes (activities) below it, representing different
alternatives to connect/disconnect the related subsystem. As example of different
modes for the same activity, cf.T ′2 andT ′3 in Fig. 6.5(a). For the problem of Fig.
6.5(a) when D is the faulty component, the subsystems AC and BE are not dis-
connected since assumption (A2), i.e., subsystems that do not include the faulty
components are not disconnected (cf. Sect.6.3.1), is considered. Therefore, the
activitiesT ′8 andT ′11 are not selected for the disconnection process in this case
(cf. Fig. 6.5(b)). The useless activities, i.e., those And nodes below the Or nodes

6.3. A CASE OF STUDY 113

�����

����

���

��

�

�� ��

� � �

��
�

��
	

��

��
�

��
�

��

��
�

��
�

��

�

�����

����

���

�� �� ��

�

�
�

�
	

�

�
�

�
�

�

�
�

�
�

�

��

�

�

�
	

�
�

�

�

�
�

�

�

�
	

�
	

�
� �

�
	

�
�

�
	

�
�

�
�

�
	

�

�
	

�

�
�

�
�

�

�
	

�
	

�

�
	

�
�

�
�

�
	

�

�
	

�
�

�
�

�
	

�

�

�
	

�
	

�
�

Figure 6.6: The simplified repair And/Or graph for a reparable system made of five com-
ponents.

corresponding to subsystems which do not contain the faultycomponent, can be
removed from the graph, resulting in a simplified And/Or graph (cf. Def. 40).

Definition 40. A simplified And/Or graphfor a specific faulty component is an
And/Or graph (cf. Def.39) in which the And nodes below the Or nodes corre-

114 CHAPTER 6. P&S OF BPS IN RUN-TIME

sponding to subsystems which do not contain the faulty component, i.e., useless
activities, are not represented.

Moreover, the original And/Or graph (cf. Def.39) can be opened out by in-
cluding both connection and disconnection processes, resulting in a repair And/Or
graph (cf. Def.41).

Definition 41. A repair And/Or graph is composed by: (1) a set of subsystems
and disconnection activities which represent the disconnection process (top part
of the And/Or graph), (2) a set of individual components which represent the iso-
late components (medium part of the graph), and (3) a set of subsystems and
connection activities which represent the connection process (bottom part of the
And/Or graph).

Figure6.6presents the simplified repair And/Or graph for the problem of Fig.
6.5 when the faulty component is D, whereT ′ activities represent disconnection
activities andT activities represent connection activities.

The original And/Or graph has been extended, so that the new representation
includes all the constraints involved in the problem, adding new types of links
between And nodes. The new links represent non-precedence constraints: due to
the use of shared resources by the tasks and due to the change of configuration in
the resources.

...

...

(1) (2) (3)

(4) (5) (6)

Figure 6.7: Types of Relations

In this way, 6 types of relations are considered (cf. Fig.6.7), each one repre-
senting a link or component of the extended And/Or graph:

Relations of type (1) collect the relation between the information from an Or
node and the And nodes below it in the original And/Or graph.

Relations of type (2) consider the durations of connection and disconnection
tasks, and correspond to the relationships between the starting and ending times
of the connection and disconnection tasks.

Relations of type (3) collect the relation between the information from an And
node and the (two) Or nodes below it in the original And/Or graph.

Relations of type (4) consider the relation between the selection of an Or node
and all the And nodes above it (possibly only one) in the original And/Or graph.

6.3. A CASE OF STUDY 115

ABCDE

ABCD

ACD

AC

A

AD BE

B C D

T’
3

T’
2

T’
1

T’
7

T’
9

T’
4

T’
5

T’
6

T’
10

ABCDE

ABCD

ACD

AC AD BE

E

T
3

T
2

T
1

T
7

T
9

T
4

T
5

T
6

T
10T

8

T
11

R
2

C
3

R
1

C
1

R
3

C
4

R
1

C
2

R
2

C
3 R

1

C
2

R
3

C
2

R
3

C
6

R
2

C
1

R
2

C
4

R
3

C
3

R
1

C
2

R
2

C
4

R
2

C
5

R
3

C
2

R
1

C
2

R
3

C
6

R
2

C
4

R
1

C
2

R
2

C
5

Figure 6.8: The extended simplified repair And/Or graph withrelations (5) and (6) bet-
ween tasks

Relations of type (5) are due to the delay which is needed for managing a
change of configuration in a resource between the executionsof two successive
tasks using the same resource with precedence constraints between them. Those
constraints include the relations between reverse disconnection and connection
tasks. Notice that for a particular repair plan it is only required relating each task
to its closest successor that uses the same resource in the And/Or tree.

116 CHAPTER 6. P&S OF BPS IN RUN-TIME

Relations of type (6) consider the relation between the tasks which are not
related by precedence constraints and which use the same resource.

Types (1), (2), (3) and (4) come from the relations between the nodes included
in the original graph, while types (5) and (6) come from the use of (same or dif-
ferent) resources by the different tasks, and they are related to new links between
tasks in the extended And/Or graph.

As an example, Fig.6.8 shows an extension of the And/Or graph which is
presented in Fig.6.6by including relations of types (5) and (6).

The And/Or graphs represent the system structure through components re-
lations, that remains permanent despite of different required resources or faulty
components. Taking this into account, for the same graph there can be several
repair problems by varying the faulty components or the required resources.

The And/Or graphs can be used as a basis for representing someproblems
that involve both P&S, including the repair planning problem, since it allows to
show important P&S characteristics, such as alternative activities or precedence
relations. Moreover, in general, the And/Or graphs can be easily extended in order
to include other aspects. One important advantage of this representation is that the
And/Or graph shows the activities that can be executed in parallel.

Multi-objective Optimization

Many problems, such as planning and scheduling problems, can involve multi-
ple conflicting objectives that should be considered at the same time. In multi-
objective optimization problems, that have been studied for several decades (Chan-
kong and Haimes, 1983; Miettinen, 1999; Ehrgott, 2005; Coello, 2006), usually
no unique solution exists but a set of nondominated solutions can be found. These
solutions are also known as Pareto optimal solutions, i.e.,for obtaining a better
feasible solution in one of the objectives, it is necessary to deteriorate, at least,
another one objective. Two typical objectives pursued in planning and scheduling
problems, used in this chapter, are the minimization of the total time and cost of
the resulting plan. Typically, these two objectives are in conflict, and hence it is
not possible to find a plan which is optimum for both objectives. In these cases,
optimized plans which present a good balance between the considered objectives
are pursued.

In order to solve multi-objective optimization problems, there are, basically,
three approaches:

• Defining a new objective function that can be optimized with single objec-
tive solvers, such as the weighted-sum method (Zadeh, 1963; Koski, 1985;
Kim, 2006), that minimizes∑wi fi , wherewi ≥ 0 for each objective function
fi considered. It is advisable to normalize the objectives with some scaling

6.3. A CASE OF STUDY 117

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�������	�
���
��
���� �����
��
����
��
�����
��������������
��
����

�
��������	���
����	��
�
����������

�	
�
���
�
��
�
����

�
����	���	������
�
���

�
������������
��
�
������

�����������
�����
�
������������	
�����

��	�����	��
�����
��
�
���
���
�
�	�
��

�
�

����������	���
����	��������������	
�
�

�
�
��
�
����

�
����	���	������
�
�����������

����
��
�
������

�����������
�����������������	
���������	�

������������
��
�
���
���
�
�	�
��

�
����

���	���	�����������

�
�
�

�
�
�

�
�
�
�
���

�

�
�

�
�

�
�

���

�
�
�

�
�
�

��
�
�
����

�
�

�
�

�
� ���

Figure 6.9: Transformation from And/Or Graph relations to BPMN relations

so that different magnitudes do not confuse the method. Thismethod is
used in the current approach.

• Optimizing one of the objective functions constraining theother ones (e.g.,
ε-Constraint Method (Haimes et al., 1971; Chankong and Haimes, 1983;
Ehrgott and Ruzika, 2008)).

• Working with a set of Pareto optimal solutions (e.g., Evolutionary Multi-
objective Optimization (Goldberg, 1989; Fonseca and Fleming, 1995; Deb,
2008)).

6.3.2 BPMN Model for the Multi-mode Repair Planning Pro-
blem

As stated in Sect.6.3.1, And/Or graphs can be used as a base representation for
several AI P&S problems, including the considered repair planning problem. Fur-
thermore, a translation from all the And/Or graph components to a BP modelling
language, e.g., BPMN (White and et al., 2004), can be carried out in a direct way,
as explained as follows (cf. Fig.6.9):

118 CHAPTER 6. P&S OF BPS IN RUN-TIME

(a) The fact that there are several disconnection activities that can be used to
disconnect the same subsystem is modelled in BPMN by an exclusive gateway
with that subsystem as input and as many outputs as disconnection activities,
each one related to each disconnection activity.

(b) The fact that there is one disconnection activity that obtains two subsystems
is modelled in BPMN by a parallel gateway with that activity as input and two
outputs, each one related to each subsystem.

(c) The fact that there are several connection activities that can be used to con-
nect the same subsystem is modelled in BPMN by an exclusive gateway with
as many inputs as connection activities, each one related toeach connection
activity, and with the resulting subsystem as output.

(d) The fact that there is one connection activity that connects two subsystems is
modelled in BPMN by a parallel gateway with two inputs, each one related to
each subsystem, and with the connection activity as output.

As stated, the auxiliary activities (cf. Def.37 and Def. 38) are not explici-
tly represented in the And/Or graphs. However, they need to be included in the
resulting BPMN in order to be executed. Therefore, BPMN activities related to
auxiliary activities are added to the BPMN model when necessary, i.e.:

• set-up operationsare included between two successive activities which use
the same resource with different configurations, e.g.,T ′2 andT ′4 in Fig. 6.10.
TheChange of configurationactivity, provided that it is necessary, can be
executed in parallel with the treatment of the subsystems which are obtained
after the activity enactment (cf. Fig.6.11(b)). The dots in Fig.6.11(b) re-
present the treatment of the subsystem/s which result afterthe execution
of the activity. This treatment depends on the specific subsystem. For ex-
ample, after executingT ′2, the subsystemsA andBC are obtained (cf. Fig.
6.11(a)). In this case, the treatment of both subsystems, e.g., Move BC?,
can be performed in parallel to the change of configuration ofresourceR2

(i.e., resource which is used byT ′2).

The Change of configurationactivity is also controlled by thePlanner &
Dispatchermodule since its execution causes the resource lock, that influ-
ences the BP enactment. Moreover, the decisions about if this activity is
executed or not and when it is executed depend on P&S decisions which are
taken by thePlanner & Dispatcherpool.

transportation operationsare included between two successive activities
which manage the same subsystem and use different resources(locations),

6.3. A CASE OF STUDY 119

� � �

���

��
�

��
�

��

��
�

��

��
	

��

��

��

��

��

��

��

��

���

�
�

�
�

��

�
�

��

�
	

��

��

��

��

��

��

��

��

Figure 6.10: Example of the repair And/Or graph for a reparable system made of three
components.

e.g.,T ′1 andT ′3 in Fig. 6.10. Taking into account that the information about
the resources where the subsystems are obtained is includedin the plan
execution, and the information about the resources where they are required
depends on the selected branch, it is not necessary to call web services for
the Move subsystem?execution. If a subsystem is moved or not during
the enactment phase depends on the plan execution since different activities
can obtain the same subsystem, and this subsystem can be alsorequired for
different activities.

Taking the transformations of Fig.6.9and the inclusion of auxiliary activities
into account, the BPMN which represents the multi-mode repair planning problem
of Fig. 6.10is shown in Fig.6.11.

In Fig. 6.11(a), the enactment module (cf. Sect.6.2), i.e., the pool which
contains all the activities of the P&S problem which can be executed, is called
the repair module. Therefore, the repair module is the one which contains the
actual repair plan execution. In this module, the activities are executed consi-
dering the P&S established by thePlanner and Dispatcher, which contains web
services based on AI-based methods (specifically on a constraint-based approach
(cf. AppendixD.1) and on a planner for solving problems related to a PDDL 2.2
specification (cf. AppendixD.2)). For the sake of clarity, in Fig.6.11(a) the activ-

120 CHAPTER 6. P&S OF BPS IN RUN-TIME
�
�
�
�
��
��
	

�
��

������

����

��
���

����

�
���
�
�

����

����

�
��
�
�
�
��
�

�
��
�
�
��
�
�
�

�������

���
���

�������

��
�
�	�

��
�
�

 	��

!��

 	��

"�

��
#

�
$

!�

"

 	��

!�

�
#

�
�

�����������

%�������	�
��
��������

!

"�

 	��

!�

 	��

"�

��
�

��
�

�
�
�	�

�
#
�

�
�
�	�

�
$
�

�
�

!

�

"

"

"

!�

� �

�

 	��

��

 	��

��
� !�

"

"�

!

!�

!"�

!"�

!"�

 	��

"��

�
#
�	�

�
$
�

 	��

!��

"�

�

�

�
�

&�'�"� (�
�������)�����	������
�����������

������������*�	+,������-�������

�����.���
�
��������*����&+'

�
�
�
�
��

�
	

�
��

�
��
�
�
�
��
�

�
��
�
�
��
�
�
�

!������*

/��������

������

�	�-�������	�

���������*
������

�	�-�������	�

000

000000

&+'�"� (�
�������-	�������.���
�
��������*

���

�

�

��

������

	
��
����

��
$

Figure 6.11: BPMN diagram of the repair problem of Fig.6.10.

ities corresponding to connection/disconnection activities appear collapsed, while
in Fig. 6.11(b) its expanded representation is shown. In Fig.6.11(b), T Activity
represents the actual execution of the connection/disconnection activity. A suita-
ble web service manages it, since thePlanner & dispatchermust determine the
start time of the activity. This is due to the start time of theactivity is related to the
ordering in which that activity uses a resource, i.e., a scheduling decision which
needs to be established by thePlanner & dispatcherpool. Considering the infor-
mation about the activity execution, the actual values are stored and consulted for
updating the plan and enacting the remaining of the BP.

Notice that this BP contains all the possible alternative activities to be selected,
and during the enactment phase, AI P&S methods are used to automatically select
and order the suitable activities in order to execute the plan in an optimized way.

6.4. EMPIRICAL EVALUATION 121

Table 6.1: Number of And, Or nodes (average)

And/Or graph Simplified And/Or graph

Prob #Or #And #Or #And #And’ #RP

30-1 348 630 223 327 240 1213
30-2 404 828 303 520 365 9200
30-3 415 863 310 546 384 12846
40-1 649 1518 433 833 575 23005
40-2 770 2143 621 1489 984 248408
40-3 756 2060 598 1400 925 197551

6.4 Empirical Evaluation

Section6.4.1describes the design underlying the experiments, and Sect.6.4.2
shows the experimental results and the data analysis.

6.4.1 Experimental Design

Purpose: The purpose of the empirical evaluation is to check the suitability of
two approaches for developing the web services which are in charge of P&S the
activities of the BPs which represent multi-mode repair planning problems. These
approaches are listed as follows:

• A constraint-based approach (called CBP from now), cf. Appendix D.1.

• A PDDL specification of the problem which is used as input of the SGPlan
planner (Chen et al., 2006), which compose the generic planning approach
(called SGPlan from now), cf. AppendixD.2.

Objects: Table 6.1 shows the number of nodes in the And/Or graphs cor-
responding to a set of hypothetical products of 30 and 40 components which are
used as objects in the current empirical evaluation. Supposing that each individual
component must be repaired4, it includes the average number of Or, And (connec-
tion activities), And’ (disconnection activities) nodes,and the average number of
repair plans (#RP) in the simplified graphs. Each row refers to a set of 80 instan-
ces of an And/Or graph for a hypothetical product of 30 or 40 components, with
different combinations for the durations of activities, resources and configurations
which are used, and faulty component which is selected to be repaired. In order

4As stated, for the sake of simplicity only one component is considered to be faulty for each
problem.

122 CHAPTER 6. P&S OF BPS IN RUN-TIME

Table 6.2: Fraction of Optimal solutions which are found by CBP

Prob fTime fMO20 fMO10 fCost

30-1 0,5 0,591 0,898 1
30-2 0 0,011 0,307 0,5
30-3 0 0 0 0
40-1 0 0 0 0
40-2 0,5 0,5 0,5 0,579
40-3 0 0 0 0,045

M30-1 0,5 0,5 0,5 0,954
M30-2 0 0 0,079 0,5
M30-3 0 0 0 0
M40-1 0 0 0 0
M40-2 0,397 0,5 0,5 0,557
M40-3 0 0 0 0,023

to obtain results about the behavior of the model for multi-mode activities, each
graph has been extended to include 10% multi-mode activities (M30-1, M30-2,
M30-3, M40-1, M40-2 and M40-3).

The cost of each activity is considered to be a function whichdepends on the
resource, the configuration and the duration of this activity. In a related way, the
cost of a repair plan is obtained by the sum of the costs of all the activities which
are included in the plan.

Experimental Design: Four different objective functions have been selected
to be minimized: the cost (fCost), the makespan (fTime), and two combined objec-
tive functions which result of applying the weighted-sum method, i.e., the objec-
tive function to minimize iswt×PlanDuration+wc×PlanCost, wherewt andwc

refer to the weight which is given to the total time and the total cost of the repair
plan respectively:

• fMO10: In this case,wt = 10 andwc = 1.

• fMO20: In this case,wt = 20 andwc = 1.

The values 10 and 20 have been chosen because the cost of a repair plan which
has been considered is, in average, around 15 times the totalduration of the plan.

Independent Variables: For the empirical evaluation, the objective function
to be minimized, i.e.,fTime, fMO10, fMO20, and fCost, and the problem to be solved,
i.e., 30-1, 30-2, 30-3, 40-1, 40-2, 40-3, M30-1, M30-2, M30-3, M40-1, M40-2 and
M40-3, are taken as independent variables.

Response Variables:According to the 4 objective functions previously men-
tioned, some performance measures related to the best generated plan are reported
for the considered problems:

6.4. EMPIRICAL EVALUATION 123

Table 6.3: Execution time (average) with CBP

Prob fTime fMO20 fMO10 fCost

30-1 155,2 144,8 152,5 150,3
30-2 300 299,5 300 300
30-3 300 300 300 300
40-1 300 300 300 300
40-2 153,2 151,4 300 300
40-3 300 300 300 300

M30-1 420 368,5 349 121,9
M30-2 600 600 595,2 351,4
M30-3 540,4 600 600 600
M40-1 600 600 600 600
M40-2 416,5 318,25 307 270,4
M40-3 600 593,18 600 587,2

• The fraction of solutions which are found by the constraint-based approach
which are proven to be optimal (Table6.2)5.

• The average execution time which is spent for finding the solutions by both
approaches (Table6.3and6.5).

• The fraction of better solutions (in time and cost) that havebeen found in
both SGPlan and CBP approaches when including 10% multi-mode activi-
ties (cf. Tables6.4and6.6) regarding to the same problems but with single-
mode activities. This measure indicates if the fact of including multi-mode
activities makes improve the solution for the problems possible.

• The fraction of solutions which are found by SGPlan and whichare better
or equal to the solutions which are found by the CBP approach in time (T
column) and cost (C column) (cf. Table6.7). The equal solutions are also
included (less than 3%) due to the SGPlan is the fastest, and hence they can
be considered better solutions.

Experimental Execution: The experiments were carried out on a 2,66GHz
Intel Core 2 Duo with 4GB RAM.

For testing the constraint-based proposal (CBP) (cf. Appendix D.1), a basic
branch-and-bound algorithm is implemented in ILOG Solver (ILOG, 2011). A
temporal limit of 300 seconds for single-mode and 600 seconds for 10% multi-
mode has been established for the search. In order to guide the search, the order

5Unlike the constraint-based approach, SGPlan performs an incomplete search, and hence it is
generally not possible to ensure the optimality of a solution.

124 CHAPTER 6. P&S OF BPS IN RUN-TIME

Table 6.4: Fraction of better solutions for problems including 10% multi-mode activities
with CBP

Prob fTime fMO20 fMO10 fCost

30-1 0,01 0 0 0,01
30-2 0,32 0,32 0,32 0,32
30-3 0,19 0,20 0,19 0,19
40-1 0,18 0,18 0,18 0,19
40-2 0,29 0,29 0,21 0,24
40-3 0,52 0,42 0,47 0,44

of selection of the variables to be instantiated is from up todown in the repair
And/Or graph. On the other hand, a generic planner, SGPlan (Chen et al., 2006),
is used to solve the corresponding problems which are specified in PDDL (cf.
AppendixD.2), with several combinations of the functions to be minimized using
the weighted-sum method. SGPlan is based on the strong locality of mutex cons-
traints, and proposes to partition the constraints of a planning problem into groups
based on their subgoals. SGPlan includes an ordering heuristic and stopping con-
dition based on the marginal improvement of the plan metric.

6.4.2 Experimental Results and Data Analysis

Constraint-based Approach

Table6.2shows that the objective functions in which the cost has a high influence,
get the best fractions of proven optimal solutions (fCost gets the best score, fol-
lowed by fMO10, fMO20 and, finally, fTime) and, in most cases, also the results
are obtained in the fastest way for problems in which the costhas the highest in-
fluence (cf. Table6.3). This may be due to the differences between the costs of
the activities are more significant and discriminating thanbetween the durations,
and the cost seems to be less dependent of the ordering of the activities.

Table6.4 shows the fraction of better solutions (in time and cost) that have
been found by the constraint-based approach when including10% multi-mode
activities. A better solution (in time and cost) for multi-mode problem than for
single-mode problems has been found in 23,5% of the studied cases. It is possible
to see that the more complex is the problem, the more is the advantage of including
10% multi-mode activities, for the problems which are considered.

6.4. EMPIRICAL EVALUATION 125

Table 6.5: Execution time (average) with SGPlan

Prob fTime fMO20 fMO10 fCost

30-1 0,15 0,31 0,31 0,26
30-2 0,43 0,82 0,83 0,75
30-3 0,47 0,86 0,84 0,74
40-1 0,85 1,84 1,90 1,67
40-2 0,65 1,57 1,72 1,51
40-3 1,02 2,21 2,22 2,18

M30-1 0,88 0,31 0,35 0,73
M30-2 4,88 0,93 0,95 4,10
M30-3 4,70 0,87 0,95 3,73
M40-1 11,96 1,84 1,94 11,04
M40-2 9,53 1,70 1,71 9,62
M40-3 11,81 2,40 2,45 14,63

Table 6.6: Fraction of better solutions for problems including 10% multi-mode activities
with SGPlan

Prob fTime fMO20 fMO10 fCost

30-1 0,02 0,02 0,02 0,02
30-2 0 0 0 0
30-3 0,04 0,04 0,04 0,04
40-1 0,24 0,24 0,24 0,24
40-2 0,20 0,20 0,20 0,20
40-3 0,25 0,25 0,25 0,25

Planner and PDDL Specification

Table6.5shows the execution time (in average) of SGPlan when solvingthe con-
sidered repair planning problems. It is possible to see thatfor the single-mode
problems of 30 components which have been generated, the solution is found in
less than 1 second. In a similar way, for the single-mode problems of 40 compo-
nents which have been generated the solution is found in around 1 or 2 seconds.
As expected, this time increases when including multi-modeactivities. Compa-
ring Tables6.3 and6.5, the generic planning approach seems to be better in the
situations when the available time for finding the solutionsis low, since this ap-
proach is based on incomplete search, i.e., SGPlan includesa stopping condition
based on the marginal improvement of the plan metric.

Table6.6 shows the fraction of better solutions (in time and cost) that have
been found by SGPlan when including 10% multi-mode activities. It is possible
to see that the fact of including 10% multi-mode activities allows to reach better

126 CHAPTER 6. P&S OF BPS IN RUN-TIME

solutions in the systems made of 40 components than in the systems made of 30
components which are considered.

Planner and PDDL Specification VS Constraint-based Approach

Table 6.7: Fraction of SGPlan better or equal solutions (compared to CBP)

fTime fMO20 fMO10 fCost

Prob T C T C T C T C

30-1 0,01 0,30 0,03 0,21 0,04 0,19 0,12 0,16
30-2 1 1 1 0,98 1 1 1 1
30-3 0,96 0,99 0,95 0,94 0,96 0,98 0,96 0,99
40-1 0,83 0,85 0,87 0,85 0,83 0,85 0,83 0,85
40-2 0,02 0,20 0,06 0,25 0,05 0,11 0,14 0,10
40-3 0,63 0,77 0,64 0,67 0,63 0,77 0,62 0,71

M30-1 0,17 0,52 0,30 0,55 0,37 0,55 0,16 0,18
M30-2 1 1 1 1 1 1 1 1
M30-3 0,94 0,96 0,94 0,96 0,94 0,96 0,94 0,96
M40-1 0,87 0,92 0,87 0,90 0,87 0,90 0,87 0,90
M40-2 0,01 0,25 0,11 0,16 0,02 0,16 0,12 0,09
M40-3 0,48 0,63 0,50 0,60 0,50 0,60 0,52 0,57

For solving the repair planning problem, several approaches can be conside-
red. In this chapter, we analyze the results which are obtained through:

1. A constraint-based approach (cf. AppendixD.1), which includes a basic
branch-and-bound algorithm (i.e., complete search).

2. A generic planning approach (cf. AppendixD.2), which is used by a solver
which performs an incomplete search with a stopping condition based on
the marginal improvement of the plan metric.

Typically, complete search algorithms are suitable when a great time is avai-
lable for execution, while incomplete searches usually getbetter results in a little
time.

Table6.7shows a comparison between the quality of the solutions which are
found by both approaches. It is possible to see that the quality of the solutions
which are found by both approaches strongly depends on the type of problem,
obtaining, in general, values close to 0 and 1 in most cases. Moreover, in general,
CBP takes more advantages that SGPlan when multi-mode activities are included
(cf. Tables6.4and6.6).

6.5. RELATED WORK 127

6.5 Related Work

Several research groups have integrated AI techniques withBPM systems. As
follows, some of the similar works are briefly described, explaining the main dif-
ferences between them and the current approach.

Some related works integrate P&S tools in BPM systems for themodelling
phase, such as (Alves et al., 2008; González-Ferrer et al., 2009; R-Moreno et al.,
2007; Hoffmann et al., 2010; De Castro and Marcos, 2009; Ferreira and Ferreira,
2006). These works generate the BP model during the build-time, without ta-
king into account the actual values of the parameters which are known in run-
time. Consequently, the initial optimization plan can be obsolete due to the non-
updating aspect. On a different way, the current proposal, in order to update the
plan in run-time, maintains all the possible alternatives in the BP model, taking
into account the actual values of the parameters for updating the P&S of the ac-
tivities.

On the other hand, most of the related works integrate scheduling tools in
BPM systems for the enactment phase, in order to take dispatching decisions as
to which activity should be executed using a resource when itbecomes free (dy-
namic scheduling). As follows, a representative set of themare briefly summa-
rized. One of the first works, (Zhao and Stohr, 1999), developed a framework
for temporal workflow management, including turnaround time predication, time
allocation, and activity prioritization. In a related way,(Son and Kim, 2001) pro-
poses a schema for maximizing the number of workflow instances satisfying a
predetermined deadline, based on a method for finding out thecritical activities.
Moreover, (Ha et al., 2006) proposes a set of process execution rules based on
individual worklists, and it develops algorithms for the activity assignment in or-
der to maximize the overall process efficiency, taking the resources capacities
into account. Furthermore, (Rhee et al., 2008) presents a Theory of Constraints
(TOC)-based method for improving the efficiency of BPs. Additionally, (Tjoa
et al., 2010) presents an approach for dynamic activity and resource allocation
using risk-aware business process simulations to facilitate and improve the plan-
ning and the analysis of the BP activities.

There are several differences between the works (Zhao and Stohr, 1999; Son
and Kim, 2001; Ha et al., 2006; Rhee et al., 2008) and the current approach. First,
in the current proposal the selection of the activities to beexecuted (planning)
is done in run-time, besides the resource allocation, whilethe previously sum-
marized works only consider the prioritization of the activities using the same
resource (scheduling). Secondly, the current approach consider several objective
functions, while the other works only focus on the temporal aspects of the pro-
cesses for allocating the resources.

128 CHAPTER 6. P&S OF BPS IN RUN-TIME

Related to the proposed approach, (Marrella and Mecella, 2011) presents a
technique which is based on continuous planning in order to automatically cope
with unexpected changes. The dynamic domain of the processes is specified
through a second-order logic formalism (SitCalc), and a high level interpreter
(IndiGolog) is used to control the execution of the actions in the BP enactment.
Unlike our approach, any objective function is considered to be optimized. More-
over, while our approach is based on translating P&S problems to the standard
BPMN language (and hence the models can be usually executed by a BPM en-
gine), in (Marrella and Mecella, 2011) the process activities need to be specified
in SitCalc and be executed through IndiGolog.

To the best of our knowledge, there is not any proposal for selecting the suita-
ble activities in run-time in order to optimize some functions in BP environments
as well as considering reaching several goals (planning).

Related to And/Or graphs for representing P&S problems, a similar represen-
tation can be found in (Barták and O., 2007), that proposes an extension of tem-
poral networks by parallel and alternative branching to represent some kinds of
P&S problems. Furthermore, in (Bae et al., 2004) the concept of blocks that can
classify BP flows into several patterns: iterative block, serial block and parallel
block includingAND andORstructures, is proposed.

Related to assembly planning, most approaches used for choosing optimal as-
sembly plans employ different kind of rules in order to avoiddifficult activities
or awkward intermediate subassemblies (Homem de Mello and Sanderson, 1991;
Goldwasser and Motwani, 1999). In other context, disassembly planning has been
object of different studies, varying from maintenance or repair purposes to recycle
or recovery of useful materials (Li and Zhang, 1995; Lambert, 1997, 1999). Dif-
ferent techniques have been used for solving those problems, from mathematical
programming to a variety of methods related to artificial intelligence (Lambert,
2003).

Chapter 7

Conclusions

The research works which are presented in this document are based on the combi-
nation of several research areas which have been widely referenced and explored:
planning and scheduling (P&S), constraint programming (CP), and business pro-
cess management (BPM).

Although the interest in the application of artificial intelligence techniques,
and in particular P&S and CP, to improve the management of business processes
has grown in last years, there are some interesting and innovative points which
were unexploited and which are addressed in the current Thesis Dissertation.

Specifically, a constraint-based approach forgenerating optimized BP enact-
ment plans from declarative process specifications(cf. Chapter3) is proposed
in order to optimize the performance of a process, accordingto objective functions
like minimizing the overall completion time. This approachovercomes the pro-
blems which are related to imperative BP model specifications due to the tacit na-
ture of human knowledge is often an obstacle to eliciting accurate process models
(Ferreira and Ferreira, 2006). As mentioned in previous chapters, the generated
optimized BP enactment plans can be apply to greatly improvethe overall BPM
life cycle (Weske, 2007). Two of these applications are detailed in the current
Thesis Dissertation: (1) giving users of flexible BPMSs recommendations during
run-time, and (2) generating optimized imperative BP models.

The former approach consists ongiving users of flexible BPMSs recommen-
dations during run-time (cf. Chapter4) so that performance objective functions
of processes are optimized. Due to their flexible nature, frequently several ways
to execute declarative process models exist. Typically, given a certain partial trace
(i.e., reflecting the current state of the process instances), users can choose from
several enabled activities which activity to execute next.This selection, how-
ever, can be quite challenging since performance goals of the process should be
considered, and users often do not have an understanding of the overall process.
Moreover, optimization of objective functions requires that resource capacities are

129

130 CHAPTER 7. CONCLUSIONS

considered. Therefore, recommendation support is needed during BP execution,
especially for inexperienced users (van Dongen and van der Aalst, 2005). In our
proposal, recommendations on possible next steps are generated taking the partial
trace and the optimized plans into account. Furthermore, inthe proposed ap-
proach, replanning is supported if actual traces deviate from the optimized enact-
ment plans.

The latter approach, i.e.,generating optimized imperative BP models from
declarative specifications(cf. Chapter5) is motivated due to BP models are usu-
ally defined manually by business analysts through imperative languages. Fur-
thermore, allocating resources is an additional challengesince scheduling may
significantly impact business process performance. Therefore, the manual speci-
fication of process models can be very complex and time-consuming, potentially
leading to non-optimized models or even errors can be generated. Moreover, the
result of process modelling is typically a static plan of actions, which is difficult
to adapt to changing procedures or to different business goals. With the proposed
approach, process models can be adapted to changing procedures or to different
business goals, since imperative process models can dynamically be generated
from static constraint-based specifications. Moreover, the automatic generation of
BP models can deal with complex problems of great size in a simple way. There-
fore, a wide study of several aspects can be carried out, suchas those related to
the requirement of resources of different roles, or the estimated completion time
for the BP enactment, by starting from different declarative specifications.

Lastly, a proposal formodelling and enacting BPs that involve P&S deci-
sions (cf. Chapter6) is presented. The execution of most BPs entails, in some
way, scheduling decisions since the activities to be executed may compete for
some shared resources. In these cases, it is necessary to allocate the resources
in a suitable way, usually optimizing some objectives. During process execu-
tion, scheduling decisions are typically made by the BPM systems (BPMSs), by
automatically assigning activities to resources (Russell et al., 2005). To lesser
measure, planning problems are present in BP executions when, in some points,
several possible execution branches exist, and the selection of the suitable one
depends on the BP goal and/or on the optimization of some functions. Since BP
models are typically specified in an imperative way, most of the planning deci-
sions are taken in the modelling phase. Specifically, the ordering and the selection
of the activities to be executed (planning) in the BP enactment are specified in the
BP design time, when only estimated values for several parameters can be analy-
zed. However, there are BPs which entail complex planning decisions which can
greatly be influenced by the values of several unpredictableparameters, whose ac-
tual value is known in run time. The main contribution of the proposed approach
is that both P&S decisions are taken in BP run-time, providing the process mana-

131

gement with efficiency and flexibility, and avoiding the drawbacks of taking these
decisions during the design phase.

The motivation and the interest related to all the approaches which are pre-
sented in the current document are strongly justified. Furthermore, discussions re-
lated to the advantages, drawbacks and limitations of each proposal are included.
In addition, the validation of the proposed approaches through the analysis of dif-
ferent performance measures related to a range of test models of varying comple-
xity is included. Moreover, the most related work together with the overcomings
and innovations of the proposed approaches are also presented.

Chapter 8

Future Work

In the current document, several research works are presented. All the proposed
approaches can be extended by including interesting aspects which remain to be
exploited in its related fields.

In a first place, regarding the generation of optimized enactment plans from
declarative process specifications (cf. Chapter3), the next ideas are intended to
be explored:

• The inclusion of more general templates in the considered BPdeclarative
specifications, e.g., choice or metric temporal constraints (Montali, 2009).

• The analysis of further objective functions, e.g., cost or robustness, and
the optimization of all the overall these functions at the same time (multi-
objective optimization).

• The consideration of the non-temporal data perspective in the declarative
process specification (Montali, 2009).

All these extensions have a great influence in giving users offlexible BPMSs
recommendations for the optimized execution of BPs (cf. Chapter 4) and in the
generation of optimized BP models from declarative specifications (cf. Chapter
5), since the generation of optimized enactment plan are usedas a starting point
for both proposals.

Furthermore, there are other interesting applications of the generated opti-
mized enactment plans which are intended to be explored, such that:

• Simulation: Simulation of BPs can be effectively used for analyzing pro-
cesses and for improving BP models. BP simulation presents a”fast-forward”
view on a current business process, so that the generated simulation models
can accurately reflect the real-world process of interest. One interesting ap-
plication of BP simulation is to identify unbalances between the resources

133

134 CHAPTER 8. FUTURE WORK

required for executing a particular process and the available resources (Rei-
jers and van der Aalst, 1999). Moreover, the effects of alternative resources
schedules can be investigated. As future work, a simulationengine can
analyze the generated BP enactment plans for making simulations from the
declarative BP model, and the results can be studied in orderto analyze and
to enhance the current BP model (Process Design & Analysis phase of BPM
life cycle (Weske, 2007)).

• Time Prediction: There are many scenarios where it is usefulto have relia-
ble time predictions (van der Aalst et al., 2011). As future work, the genera-
ted optimized BP enactment plans can be used by a prediction engine since,
as stated, time information is available. For a given process instance state,
the expected completion time for instances and activities can be calculated
by taking the end time of the remaining activities of the optimized plans
into account.

Related to giving users of flexible BPMSs recommendations for the optimized
execution of BPs (cf. Chapter4), the integration of the proposed approach with
a testsuite for recommendations in ConDec (Westergaard, 2011) is intended to
be achieved. In this testsuite, a model of user behavior can be specified. The
proposal of this integration consists of checking the suitability of the proposed
approach when simulating the actual execution of the BPs.

Regarding the generation of optimized BP models from declarative specifi-
cations (cf. Chapter5), obtaining configurable process models from several op-
timized plans is intended. These configurable process models can be generated
by extracting the common parts of the original process models, creating a single
copy of them, and appending the differences as branches of configurable connec-
tors (La Rosa et al., 2010). In this way, the generated configurable models capture
all the behavior of the original models.

On the other hand, related to the proposal for planning and scheduling BPs in
run-time (cf. Chapter6), it is intended to analyze further kinds of BP problems in-
volving planning and scheduling aspects. Furthermore, a bidirectional translation
between planning languages, as PDDL, and BP model or execution languages, is
intended to be explored. Moreover, further objective functions can be considered.

Appendices

135

Appendix A

ConDec-R Templates

As stated, in general, if not restricted by any constraints BP activities are assumed
to be executed several times (Pesic and van der Aalst, 2006). Henceforth,nt(A)
refers to the number of times that the repeated activityA is executed;Ai represents
the P&S activity related to the i-th execution ofA; andst(Ai) andet(Ai) repre-
sent the start and the end times ofAi , respectively. It should be clarified that the
constraints∀i : 1≤ i < nt(A) : et(Ai)≤ st(Ai+1) hold for each repeated activityA.

In Fig. A.1, some representative examples of ConDec-R templates are graphi-
cally represented. Specifically, three precedence relations between two repeated
activities,A andB, are shown. As stated earlier, several executions of the same
BP activity can be modelled as a sequence of single P&S activities. In this figure,
the P&S activityAi represents the i-th execution of the repeated activity A (Ai),
and the arrow represents:

• A precedence relation between two P&S activitiesAi andB j , when it ap-
pears between two activities, which means thatet(Ai)≤ st(B j).

• A precedence relation between a P&S activityAi and a setS of P&S ac-
tivities, when it appears between an activity and a dotted rectangle which
encloses a set of activities, which means that∃B j ∈ S: et(Ai)≤ st(B j).

• A precedence relation between a setS of P&S activities and a P&S acti-
vity B j , when it appears between a dotted rectangle which encloses aset of
activities, and an activity, which means that∃Ai ∈ S: et(Ai)≤ st(B j).

In a similar way, a special arrow (wider than the other arrowsand with a big
dot in its origin) which appears between two P&S activities,A andB, shows that
A must be executedimmediately beforeB (et(A) = st(B)). In a similar way, this
can be defined for a set of activities. More details about Fig.A.1 are shown in the
definition of the related templates.

137

138 APPENDIX A. CONDEC-R TEMPLATES

(a) Precedence(A,B)

A1

A2

Ant(A)

...

B1

B2

Bnt(B)

...

(b) Alternate Precedence(A,B)

A1

Ai

Ant(A)

B1

Ai-1

...

Ai+nt(A)

-nt(B)

Bi

Bnt(B)

Bi-1

...

...
...

...
...

(c) Chain Precedence(A,B)

A1

Ai

Ant(A)

B1

Ai-1

...

Ai+nt(A)

-nt(B)

Bi

Bnt(B)

Bi-1

...

...
...

...
...

Figure A.1: Precedence templates whennt(B)> 0.

The ConDec-R templates, based on ConDec templates, together with some
examples of valid and invalid traces1, are listed as follows2. A full description of
the ConDec templates is included in the report (van der Aalst and Pesic, 2006b).
These templates can be easily modified to include further possibilities.

• Existence(N,A): A must be executed more than or equal to N times,nt(A)≥
N.

• Absence(N,A): A must be executed less than N times,nt(A)< N.

• Exactly(N,A): A must be executed exactly N times,nt(A) = N.

• Responded Existence(A,B): If A is executed, then B must alsobe executed
either before or after A,nt(A) > 0⇒ nt(B) > 0. For example, when Res-
ponded Existence(A,B) holds,, <AB> or<BA> are valid traces, and
<A> is an invalid trace since the execution of A requires the execution of
B.

• CoExistence(A,B): The execution of A requires the execution of B, and vice
versa,nt(A) > 0⇐⇒ nt(B) > 0. For example, when CoExistence(A,B)
holds,<AB> or<BA> are valid traces, and is an invalid trace since
the execution of B requires the execution of A.

1For the sake of clarity, no parallelism between the activities is considered in the examples,
i.e., trace<A1A2. . .An> means that∀i : 1≤ i < n,et(Ai) = st(Ai+1).

2For simplification, only non-branched templates are shown.

139

• Precedence(A,B): Before the execution of B, A must have beenexecuted,
nt(B)> 0⇒ (nt(A)> 0)∧(et(A1)≤ st(B1)). As can be seen in Fig.A.1(a),
this relation implies thatA1 must precedeB1 in the case thatnt(B)> 0. For
example, when Precedence(A,B) holds,<ABBBA> is a valid trace, and
<BAABB> is an invalid trace since the first B is executed before any A.

• Response(A,B): After the execution of A, B must be executed,nt(A)> 0⇒
(nt(B)> 0)∧ (st(Bnt(B))≥ et(Ant(A))). For example, when Response(A,B)
holds,<BAABB> is a valid trace, and<ABBBA> is an invalid trace since
after the last execution of A, B is not executed.

• Succession(A,B): Relations Precedence(A,B) and Response(A,B) hold. For
example, when Succession(A,B) holds,<ABABB> is a valid trace, and
<BABBA> is an invalid trace since the first B is executed before any A
(moreover, after the last execution of A, B is not executed).

• Alternate Precedence(A,B): Before the execution of B, A must have been
executed, and between each two executions of B, A must be executed. This
implies that:

1. The number of times that A is executed must be greater than or equal
to the number of times that B is executed:nt(A)≥ nt(B).

2. Between each two executions of B, A must be executed at least once.
Specifically, between the(i − 1)-th and thei-th execution of B, the
earliest execution of A that can exist isi, and henceAi−1 must precede
Bi−1 (as can be seen in Fig.A.1(b)). In a similar way, between the
(i−1)-th and thei-th execution ofB, the latest execution ofA that can
exist isi +nt(A)−nt(B), and henceBi must precedeAi+nt(A)−nt(B)+1.
This can also be seen in Fig.A.1(b), where the possible activities
to be executed between the(i−1)-th and thei-th execution ofB are
framed within the dotted rectangle.∀i : 2≤ i ≤ nt(B) : ∃ j : i ≤ j ≤
i +nt(A)−nt(B) : st(A j)≥ et(Bi−1)∧et(A j)≤ st(Bi).

3. Before the execution of B, A must be executed:st(B1) ≥ et(A1).

For example, when Alternate Precedence(A,B) holds,<ABAABABA > is
a valid trace, and<ABAABBAA > is an invalid trace since between the
second and the third execution of B, there is not any A.

• Alternate Response(A,B): After the execution of A, B must beexecuted,
and between each two executions of A, there must be at least one execution
of B. This implies:

140 APPENDIX A. CONDEC-R TEMPLATES

1. The number of times that B is executed must be greater than or equal
to the number of times that A is executed:nt(B)≥ nt(A).

2. Between each two executions of A, B must be executed at least once.
Specifically, between thei-th and the(i + 1)-th execution of A, the
earliest execution of B that can exist isi, and henceBi−1 must precede
Ai . In a similar way, between thei-th and the(i +1)-th execution of
B, the latest execution of A that can exist isi +nt(B)−nt(A)−1, and
henceAi must precedeBi+nt(B)−nt(A). ∀i : 1≤ i < nt(A) : ∃ j : i ≤ j ≤
i +nt(B)−nt(A)−1 : st(B j)≥ et(Ai)∧et(B j)≤ st(Ai+1).

3. After the execution of A, B must be executed:st(Bnt(B))≥ et(Ant(A)).

For example, when Alternate Response(A,B) holds,<BABABBAB> is a
valid trace, and<BAABBABB> is an invalid trace since between the first
and the second execution of A, there is not any B.

• Alternate Succession(A,B): Both the relations AlternatePrecedence(A,B)
and AlternateResponse(A,B) hold. For example, when Alternate Succes-
sion(A,B) holds,<ABABAB> is a valid trace, and<ABABBA> is an
invalid trace since between the second and the third execution of B, there is
not any A.

• Chain Precedence(A,B):Immediately before the execution of B, A must be
executed. It implies that:

1. The number of times thatA is executed must be greater than or equal
to the number of times thatB is executed:nt(A)≥ nt(B).

2. Immediately before each execution ofB, A must be executed. Speci-
fically, before thei-th execution ofB, the earliest execution ofA that
can exist isi. In a similar way, before thei-th execution ofB, the latest
execution ofA that can exist isi +nt(A)−nt(B). ∀i : 1≤ i ≤ nt(B) :
∃ j : i ≤ j ≤ i +nt(A)−nt(B) : et(A j)=st(Bi).

This is shown in Fig.A.1(c), where a special arrow (wider than the other
arrows and with a big dot in its origin) shows thatA must be executed
immediately beforeB. For example, when Chain Precedence(A,B) holds,
<ABAABABA > is a valid trace, and<ABAABBAA > is an invalid trace
since immediately before the third execution of B, there is not any A.

• Chain Response(A,B):Immediately after the execution of A, B must be
executed. It implies:

1. The number of times thatB is executed must be greater than or equal
to the number of times thatA is executed:nt(B)≥ nt(A).

141

2. Immediately after each execution ofA, B must be executed. Specifi-
cally, before thei-th execution ofA, the earliest execution ofB that
can exist isi. In a similar way, after thei-th execution ofA, the lat-
est execution ofB that can exist isi +nt(B)−nt(A)−1. ∀i : 1≤ i ≤
nt(A) : ∃ j : i ≤ j ≤ i +nt(B)−nt(A)−1 : st(B j)=et(Ai).

For example, when Chain Response(A,B) holds,<BABABBAB> is a valid
trace, and<BAABBABB> is an invalid trace since immediately after the
first execution of A, there is not any B.

• Chain Succession(A,B): Both the relations Chain Precedence(A,B) and Cha-
in Response(A,B) hold. For example, when Chain Succession(A,B) holds,
<ABABAB> is a valid trace, and<ABABBA> is an invalid trace since
immediately before the third execution of B, there is not anyA.

• Responded Absence and Not CoExistence(A,B): If B is executed, then A
cannot be executed, and vice versa,((nt(A)> 0) · (nt(B)> 0)) == 0. For
example, when Responded Absence(A,B) holds,<A> or are valid
traces, and<BA> is an invalid trace.

• Negation Response, Negation Precedence, Negation Succession(A,B): Af-
ter the execution of A, B cannot be executed, i.e., the last execution of B
must finish before the start of the first execution of A (nt(A)> 0∧nt(B)>
0)⇒ et(Bnt(B)) ≤ st(A1)). For example, when Negation Succession(A,B)
holds,<BBBA> is a valid trace, and<BBAB> is an invalid trace since the
third B is executed after A.

• Negation Alternate Precedence(A,B): Between two executions of B, A can-
not be executed,nt(B)≥ 2⇒∀i : 1≤ i ≤ nt(A) : et(Ai)≤ st(B1)∨st(Ai)≥
et(Bnt(B)). For example, when Negation Alternate Precedence(A,B) holds,
<AABBA> is a valid trace, and<ABABA> is an invalid trace since bet-
ween the first and the second execution of B, A is executed.

• Negation Alternate Response(A,B): Between two executionsof A, B can-
not be executed,nt(A) ≥ 2⇒ ∀1≤ i ≤ nt(B) : et(Bi) ≤ st(A1)∨ st(Bi) ≥
et(Ant(A)). For example, when Negation Alternate Response(A,B) holds,
<BBAAB> is a valid trace, and<BABAB> is an invalid trace since bet-
ween the first and the second execution of A, B is executed.

• Negation Alternate Succession(A,B): Both the relations Negation Alternate
Precedence(A,B) and Negation Alternate Response(A,B) hold. For exam-
ple, when Negation Alternate Succession(A,B) holds,<AABB> is a valid

142 APPENDIX A. CONDEC-R TEMPLATES

trace, and<AABBA> is an invalid trace since between the second and the
third execution of A, B is executed.

• Negation Chain Succession(A,B): B cannot be executed immediately after
the execution of A,∀i : 1≤ i ≤ nt(B) :¬∃ j : 1≤ j ≤ nt(A) : et(A j) = st(Bi).
For example, when Negation Chain Succession(A,B) holds,<BACBA>
is a valid trace, and<BABA> is an invalid trace since the second B is
executed immediately after A.

The ConDec-R templates can be classified either in unary (only one parameter,
e.g., ExistenceN or AbsenceN) or binary (two parameters, e.g., Response or Chain
Succession) templates.

Appendix B

Filtering Rules for ConDec-R
Templates

The constraint-based approach which is proposed for generating optimized BP
enactment plans from ConDec-R specifications (cf. Chapter3) includes specific
filtering rules (i.e., responsible for removing values which do not belong to any so-
lution from the domains of variables) for the definition of the high-level relations
between the BP activities through global constraints. In this way, the constraints
stated in the ConDec-R specification (cf. Def.20 on page39) are included in the
CSP model through the related filtering rules. These filtering rules facilitate the
specification of the problem through global constraints at the same time as they
enable the efficiency in the search for solutions to increase.

The developed filtering rules for the basic ConDec (also ConDec-R) high-
level constraints, i.e., non-branched templates, are presented in this section. For
each relation: (1) the definition of the template, (2) the pseudocode, and (3) the
complexity of the related filtering rule, are detailed.

B.1 Existence(A, N)

As stated,A must be executed more than or equal toN times,nt(A)≥ N.

Existence(A,N) is added ->
If N > LB(nt(A)) then

LB(nt(A)) <- N

Figure B.1: Filtering Rule for the Existence Template

The Existencerule (Fig. B.1) is invoked when the template is added to the
constraint model, hence its trigger ”Existence(A,N) is added”.

143

144 APPENDIX B. FILTERING RULES FOR CONDEC-R TEMPLATES

Proposition 5. If implemented properly, the time complexity of the rule Existence,
which includes all possible recursive calls, isΘ(1).

Proof. TheExistencerule is fired only when the constraint is added, and the time
complexity of its execution is constant, hence the complexity of this rule isΘ(1).

B.2 Absence(A, N)

As stated,A must be executed fewer thanN times,nt(A)< N.

Absence(A,N) is added ->
If N-1 < UB(nt(A)) then

UB(nt(A)) <- N-1

Figure B.2: Filtering Rule for the Absence Template

The Absencerule (Fig. B.2) is invoked when the template is added to the
constraint model, hence its trigger ”Absence(A,N) is added”.

Proposition 6. If implemented properly, the time complexity of the rule Absence,
which includes all possible recursive calls, isΘ(1).

Proof. TheAbsencerule is fired only when the constraint is added, and the time
complexity of its execution is constant, hence the complexity of this rule isΘ(1).

B.3 Exactly(A, N)

As stated,A must be executed exactlyN times,nt(A) = N.

Exactly(A,N) is added ->
If ! IsBound(nt(A)) then

VAL(nt(A)) <- N

Figure B.3: Filtering Rule for the Exactly Template

The Exactly rule (Fig. B.3) is invoked when the template is added to the
constraint model, hence its trigger ”Existence(A,N) is added”.

Proposition 7. If implemented properly, the time complexity of the rule Exactly,
which includes all possible recursive calls, isΘ(1).

Proof. TheExactlyrule is fired only when the constraint is added, and the time
complexity of its execution is constant, hence the complexity of this rule isΘ(1).

B.4. RESPONDED EXISTENCE(A, B) 145

B.4 Responded Existence(A, B)

As stated, ifA is executed, thenB must also be executed either before or afterA,
nt(A)> 0⇒ nt(B)> 0.

Responded Existence(A,B) is added OR
bounds of nt(A) changed OR bounds of nt(B) changed ->

If LB(nt(A)) > 0 then
If LB(nt(B)) < 1

LB(nt(B)) <- 1
If UB(nt(B)) == 0 then

If UB(nt(A)) > 0
UB(nt(A)) <- 0

Figure B.4: Filtering Rule for the Responded Existence Template

The Responded Existencerule (Fig. B.4) is invoked when the template is
added to the constraint model or when the domain bounds of some variables are
updated.

Proposition 8. If implemented properly, the worst-case time complexity ofthe rule
RespondedExistence, which includes all possible recursive calls, is O(n), where
n is the number of Repeated (ConDec-R) Activities of the problem.

Proof. TheRespondedExistencerule can be fired, at most,n times. This is due
to the fact that only a change in thent variable of a repeated activity can fire this
rule, and there aren repeated activities. Moreover, the time complexity of the
RespondedExistencerule execution is constant, and hence the worst-case com-
plexity of this rule isO(n).

B.5 CoExistence(A, B)

As stated, the execution ofA forces the execution ofB, and vice versa,nt(A) >
0⇐⇒ nt(B)> 0.

TheCoExistencerule (Fig. B.5) is invoked when the template is added to the
constraint model or when the domain bounds of some variablesare updated.

Proposition 9. If implemented properly, the worst-case time complexity ofthe
rule CoExistence, which includes all possible recursive calls, is O(n), where n is
the number of Repeated (ConDec-R) Activities of the problem.

Proof. TheCoExistencerule can be fired, at most,n times. This is due to the fact
that only a change in thent variable of a repeated activity can fire this rule, and
there aren repeated activities. Moreover, the time complexity of theCoExistence
rule execution is constant, and hence the worst-case complexity of this rule is
O(n).

146 APPENDIX B. FILTERING RULES FOR CONDEC-R TEMPLATES

CoExistence(A,B) is added OR bounds of
nt(A) changed OR bounds of nt(B) changed ->

If LB(nt(A)) > 0 then
If LB(nt(B)) < 1

LB(nt(B)) <- 1
If UB(nt(B)) == 0 then

If UB(nt(A)) > 0
UB(nt(A)) <- 0

If LB(nt(B)) > 0 then
If LB(nt(A)) < 1

LB(nt(A)) <- 1
If UB(nt(A)) == 0 then

If UB(nt(B)) > 0
UB(nt(B)) <- 0

Figure B.5: Filtering Rule for the CoExistence Template

B.6 Precedence(A, B)

As stated, before the execution ofB, A must have been executed,nt(B) > 0⇒
(nt(A) > 0)∧ (et(A1) ≤ st(B1)). As can be seen in Fig.A.1(a), this relation
implies thatA1 must precedeB1 in the case thatnt(B)> 0.

Precedence(A,B) is added OR bounds of
nt(A) changed OR bounds of nt(B) changed OR bounds of st(B1)
changed OR bounds of et(A1) changed ->

If LB(nt(B)) > 0 then
nt(A) <- nt(A) - {0}

If UB(nt(A)) == 0 then
VAL(nt(B)) <- 0

If LB(et(A1)) > LB(st(B1))then
LB(st(B1))) <- LB(et(A1))

If UB(et(A1)) > UB(st(B1)) then
UB(et(A1)) <- UB(st(B1))

Figure B.6: Filtering Rule for the Precedence Template

The Precedencerule (Fig. 10) is invoked when the template is added to the
constraint model or when the domain bounds of some variablesare updated.

Proposition 10. If implemented properly, the worst-case time complexity ofthe
rule Precedence, which includes all possible recursive calls, is O(n), where n is
the number of Repeated (ConDec-R) Activities of the problem.

Proof. ThePrecedencerule can be fired, at most, 3×n times. This is due to the
fact that only a change in the first execution (st andet variables ofAct1) or in the
nt variable of a repeated activity can fire this rule. Moreover,the time complexity
of thePrecedencerule execution is constant, and hence the worst-case complexity
of this rule isO(n).

B.7. RESPONSE(A, B) 147

B.7 Response(A, B)

As stated, after the execution ofA, B must be executed,nt(A) > 0⇒ (nt(B) >
0)∧ (st(Bnt(B))≥ et(Ant(A))).

Response(A,B) is added OR bounds of
nt(A) changed OR bounds of nt(B) OR bounds of st(BUB(nt(B)))
changed OR bounds of et(AUB(nt(A))) changed ->

If LB(nt(A)) > 0 then
nt(B) <- nt(B) - {0}

If UB(nt(B)) == 0 then
VAL(nt(A)) <- 0

If LB(et(AUB(nt(A)))) > LB(st(BUB(nt(B)))))then
LB(st(BUB(nt(B))))) <- LB(et(AUB(nt(A))))

If UB(et(AUB(nt(A)))) > UB(st(BUB(nt(B)))) then
UB(et(AUB(nt(A)))) <- UB(st(B,UB(nt(B))))

Figure B.7: Filtering Rule for the Response Template

The Responserule (Fig. 11) is invoked when the template is added to the
constraint model or when the domain bounds of some variablesare updated.

Proposition 11. If implemented properly, the worst-case time complexity ofthe
rule Response, which includes all possible recursive calls, is O(n), where n is the
number of Repeated (ConDec-R) Activities of the problem.

Proof. TheResponserule can be fired, at most, 3×n times. This is due to the fact
that only a change in the last execution (st andet variables ofActnt(Act)) or in the
nt variable of an activity can fire this rule. Moreover, the timecomplexity of the
Responserule execution is constant, and hence the worst-case complexity of this
rule isO(n).

B.8 Succession(A, B)

As stated, relationsPrecedence(A,B) andResponse(A,B) hold.

Proposition 12. If implemented properly, the worst-case time complexity ofthe
rule Succession, which includes all possible recursive calls, is O(n), where n is
the number of Repeated (ConDec-R) Activities of the problem.

Proof. TheSuccessionrule can be implemented as the conjunction ofPrecendence
andResponserules. The complexity of both rules isO(n) (see Prop.10 and11),
and hence the worst-case time complexity ofSuccessionrule isO(2×n), equal to
O(n).

148 APPENDIX B. FILTERING RULES FOR CONDEC-R TEMPLATES

B.9 Alternate Precedence(A, B)

As stated, before the execution ofB, A must have been executed, and between
each two executions ofB, A must be executed. It implies that:

1. The number of times thatA is executed must be greater than or equal to the
number of times thatB is executed:nt(A)>= nt(B).

2. Between each two executions ofB, A must be executed at least once. Speci-
fically, between the(i−1)-th and thei-th execution ofB, the earliest execu-
tion of A that can exist isi, and henceAi−1 must precedeBi−1 (as can be seen
in Fig. A.1(b)). In a similar way, between the(i−1)-th and thei-th execu-
tion of B, the latest execution ofA that can exist isi +nt(A)−nt(B), and
henceBi must precedeAi+nt(A)−nt(A)+1. This can also be seen in Fig.A.1(b),
where the possible activities to be executed between the(i−1)-th and thei-
th execution ofB are framed within the dotted rectangle.∀i : 2≤ i ≤ nt(B) :
∃ j : i ≤ j ≤ i +nt(A)−nt(B) : st(A j)≥ et(Bi−1)∧et(A j))≤ st(Bi).

3. BeforeB, A must be executed:st(B1)≥ et(A1).

Proposition 13. If implemented properly, the worst-case time complexity ofthe
rule AlternatePrecedence, which includes all possible recursive calls, is O(n×
nt3), where n is the number of Repeated Activities of the problem,and nt is the
upper bound of the variable nt(Act) domain. This upper bound obtains the same
value for all the ConDec-R activities.

Proof. TheAlternatePrecedencerule can be fired, at most,n+2×n×nt times.
This is due to the fact that a change in any execution of any activity (st andet
variables ofActi) or in thent variable of an activity can fire this rule. Moreover,
the time complexity of theAlternatePrecedencerule execution isO(nt2), and
hence the worst-case time complexity of this rule isO(n×nt3).

B.10 Alternate Response(A, B)

As stated, after the execution ofA, B must be executed, and between each two
executions ofA, there must be at least one execution ofB. It implies:

1. The number of times thatB is executed must be greater than or equal to the
number of times thatA is executed:nt(B)>= nt(A).

B.10. ALTERNATE RESPONSE(A, B) 149

Alternate Precedence (A,B) is added OR
bounds of nt(A) changed OR bounds of nt(B) changed OR bounds of
st(Ai) for any i changed OR bounds of et(Ai) for any i changed OR
bounds of st(Bi) for any i changed OR bounds of et(Bi) for any i
changed ->

if (LB(nt(A)) < LB(nt(B))) {LB(nt(A)) <- LB(nt(B))}
if (UB(nt(B)) > UB(nt(A))) {UB(nt(B)) <- UB(nt(A))}
for (int i = 1; i <= UB(nt(B)); i++){

SchedulingActivity a = Ai;
SchedulingActivity b = Bi;
if (LB(et(a)) > LB(st(b))) {LB(st(b)) <- LB(et(a))}// Ai -> Bi
if (UB(st(b)) < UB(et(a))) {UB(et(a)) <- UB(st(b))}// Ai -> Bi

}
for (int i = 1; i < LB(nt(B)); i++){

int dif = UB(nt(A)) - LB(nt(B));
SchedulingActivity a = Ai+dif+1;
SchedulingActivity b = Bi;
if (LB(et(b)) > LB(st(a))) {LB(st(a)) <- LB(et(b))}// Bi -> Ai+dif+1
if (UB(st(a)) < UB(et(b))) {UB(et(b)) <- UB(st(a))}// Bi -> Ai+dif+1

}
for (int i = 2; i <= UB(nt(B)); i++){ // force exists A between Bi-1 and Bi

int dif = UB(nt(A)) - max(i,LB(nt(B)));
SchedulingActivity b1 = Bi-1;
SchedulingActivity b2 = Bi;
int j = i; // Candidate As between Bi-1 and Bi
SchedulingActivity aFor;
int possible = 0;
while (j <= (i + dif) && possible < 2) {

SchedulingActivity aPos = Aj;
//If Bi-1->aPos->Bi possible

if (UB(st(aPos))>=LB(et(b1)) && LB(et(aPos))<=UB(st(b2))){
possible++;
aFor = aPos;

}
j++;

} // end while j
if (possible == 1){ // force Bi-1 -> aFor -> Bi

// Bi-1 -> aFor
if (LB(et(b1))>LB(st(aFor))){LB(st(aFor)) <- LB(et(b1))}
if (UB(st(aFor))<UB(et(b1)) {UB(et(b1)) <- UB(st(aFor))}
// aFor -> Bi
if (LB(et(aFor))>LB(st(b2))){LB(st(b2) <- LB(et(aFor))}
if (UB(st(b2))<UB(et(aFor))){UB(et(aFor)) <- UB(st(b2))}

} // end if
if(possible == 0)

return Failure;
}//end for i

Figure B.8: Filtering Rule for the Alternate Precedence Template

2. Between each two executions ofA, B must be executed at least once. Spe-
cifically, between thei-th and the(i +1)-th execution ofA, the earliest exe-
cution ofB that can exist isi, and henceBi−1 must precedeAi . In a similar
way, between thei-th and the(i + 1)-th execution ofB, the latest execu-
tion of A that can exist isi +nt(B)−nt(A)−1, and henceAi must precede
Bi+nt(B)−nt(A). ∀i : 1≤ i < nt(A) : ∃ j : i≤ j ≤ i+nt(B)−nt(A)−1:st(B j)≥
et(Ai)∧et(B j)≤ st(Ai+1).

150 APPENDIX B. FILTERING RULES FOR CONDEC-R TEMPLATES

3. After A, B must be executed:st(Bnt(B))≥ et(Ant(A)).

Alternate Response (A,B) is added OR
bounds of nt(A) changed OR bounds of nt(B) changed OR bounds of
st(Ai) for any i changed OR bounds of et(Ai) for any i changed OR
bounds of st(Bi) for any i changed OR bounds of et(Bi) for any i
changed ->

if (LB(nt(B)) < LB(nt(A))) {LB(nt(B)) <- LB(nt(A))}
if (UB(nt(A)) > UB(nt(B))) {UB(nt(A)) <- UB(nt(B))}
for (int i = 2; i <= UB(nt(A)); i++){

SchedulingActivity a = Ai;
SchedulingActivity b = Bi-1;
if (LB(et(b)) > LB(st(a))) {LB(st(a)) <- LB(et(b))}// Bi-1 -> Ai
if (UB(st(a)) < UB(et(b))) {UB(et(b)) <- UB(st(a))}// Bi-1 -> Ai

}
for (int i = 1; i <= LB(nt(A)); i++){

int dif = UB(nt(B)) - LB(nt(A));
SchedulingActivity a = Ai;
SchedulingActivity b = Bi+dif;
if (LB(et(a)) > LB(st(b))) {LB(st(b)) <- LB(et(a))}// Ai -> Bi+dif
if (UB(st(b)) < UB(et(a))) {UB(et(a)) <- UB(st(b))}// Ai -> Bi+dif

}
for (int i = 2; i <= UB(nt(A)); i++){ // force exists B between Ai-1 and Ai

int dif = UB(nt(B)) - max(i,LB(nt(A)))
SchedulingActivity a1 = Ai-1;
SchedulingActivity a2 = Ai;
int j = i - 1; // Candidate Bs between Ai-1 and Ai
SchedulingActivity bFor;
int possible = 0;
while (j <= (i + dif - 1) && possible < 2) {

SchedulingActivity bPos = Bj;
//If Ai-1->bPos->Ai possible
if (UB(st(bPos))>=LB(et(a1)) && LB(et(bPos))<=UB(st(a2))){

possible++;
bFor = bPos;

}
j++;

} // end while j
if (possible == 1){ // force Ai-1->bFor-> Ai

// Ai-1 -> bFor
if (LB(et(a1))>LB(st(bFor))){LB(st(bFor)) <- LB(et(a1))}
if (UB(st(bFor))<UB(et(a1)) {UB(et(a1)) <- UB(st(bFor))}
// bFor -> Ai
if (LB(et(bFor))>LB(st(a2))){LB(st(a2) <- LB(et(bFor))}
if (UB(st(a2))<UB(et(bFor))){UB(et(bFor)) <- UB(st(a2))}

} // end if
if(possible == 0)

return Failure;
}// end for i

Figure B.9: Filtering Rule for the Alternate Response Template

Proposition 14. If implemented properly, the worst-case time complexity ofthe
rule AlternateResponse, which includes all possible recursive calls, is O(n×nt3),
where n is the number of Repeated Activities of the problem, and nt is the upper
bound of the variable nt(Act) domain. This upper bound obtains the same value
for all the ConDec-R activities.

B.11. ALTERNATE SUCCESSION(A, B) 151

Proof. The AlternateResponserule can be fired, at most,n+ 2× n× nt times.
This is due to the fact that a change in any execution of any activity (st andet
variables ofActi) or in thent variable of an activity can fire this rule. Moreover,
the time complexity of theAlternateResponserule execution isO(nt2), and hence
the worst-case time complexity of this rule isO(n×nt3).

B.11 Alternate Succession(A, B)

As stated, relationsAlternatePrecedence(A,B)andAlternateResponse(A,B)hold.

Proposition 15. If implemented properly, the worst-case time complexity ofthe
rule AlternateSuccession, which includes all possible recursive calls, is O(n×
nt3), where n is the number of Repeated Activities of the problem,and nt is the
upper bound of the variable nt(Act) domain. This upper bound obtains the same
value for all the ConDec-R activities.

Proof. The AlternateSuccessionrule can be implemented as the conjunction of
AlternatePrecendenceand AlternateResponserules. The complexity of both
rules isO(n× nt3) (see Prop.13 and14), and hence the worst-case time com-
plexity of AlternateSuccessionrule isO(2×n×nt3), equal toO(n×nt3).

B.12 Chain Precedence(A, B)

As stated,immediately beforeB, A must be executed. It implies that:

1. The number of times thatA is executed must be greater than or equal to the
number of times thatB is executed:nt(A)>= nt(B).

2. Immediately before each execution ofB, A must be executed. Specifically,
before thei-th execution ofB, the earliest execution ofA that can exist
is i. In a similar way, before thei-th execution ofB, the latest execution
of A that can exist isi + nt(A)− nt(B). ∀i : 1≤ i ≤ nt(B) : ∃ j : i ≤ j ≤
i +nt(A)−nt(B) : et(A j)=st(Bi).

Proposition 16. If implemented properly, the worst-case time complexity ofthe
rule ChainPrecedence, which includes all possible recursive calls, is O(n×nt3),
where n is the number of Repeated Activities of the problem, and nt is the upper
bound of the variable nt(Act) domain. This upper bound obtains the same value
for all the ConDec-R activities.

152 APPENDIX B. FILTERING RULES FOR CONDEC-R TEMPLATES

Chain Precedence (A,B) is added OR
bounds of nt(A) changed OR bounds of nt(B) changed OR bounds of
et(Ai) for any i changed OR bounds of st(Bi) for any i changed OR
bounds of et(Bi) for any i changed ->

if (LB(nt(A)) < LB(nt(B))) {LB(nt(A)) <- LB(nt(B))}
if (UB(nt(B)) > UB(nt(A))) {UB(nt(B)) <- UB(nt(A))}
for (int i = 1; i <= UB(nt(B)); i++){

SchedulingActivity a = Ai;
SchedulingActivity b = Bi;
if (LB(et(a)) > LB(st(b))) {LB(st(b)) <- LB(et(a))}// Ai -> Bi
if (UB(st(b)) < UB(et(a))) {UB(et(a)) <- UB(st(b))}// Ai -> Bi

}
for (int i = 1; i <= UB(nt(B)); i++){ // force exists A before Bi

int dif = UB(nt(A)) - max(i,LB(nt(B)));
SchedulingActivity b = Bi;
int j = i; // Candidate As before Bi
SchedulingActivity aFor;
int possible = 0;
while (j <= (i + dif) && possible < 2) {

SchedulingActivity aPos = Aj;
//If aPos’->Bi possible
if (LB(et(aPos))<=UB(st(b)) && LB(st(b))<=UB(et(aPos)))

possible++;
aFor = aPos;

}
j++;

} // end while
if (possible == 1){ // force aFor ’-> Bi

forcedValue = true;
// aFor ’-> Bi
if (LB(et(aFor))>LB(st(b))){LB(st(b) <- LB(et(aFor))}
if (UB(et(aFor))>UB(st(b))){UB(st(b) <- UB(et(aFor))}
if (LB(st(b))<LB(et(aFor))){LB(et(aFor)) <- LB(st(b))}
if (UB(st(b))<UB(et(aFor))){UB(et(aFor)) <- UB(st(b))}

} // end if
if(possible == 0)

return Failure;
}// end for i

Figure B.10: Filtering Rule for the Chain Precedence Template

Proof. TheChainPrecedencerule can be fired, at most,n+2×n×nt times. This
is due to the fact that a change in any execution of any activity (st andet variables
of Acti) or in thent variable of an activity can fire this rule. Moreover, the time
complexity of theChainPrecedencerule execution isO(nt2), and hence the worst-
case time complexity of this rule isO(n×nt3).

B.13 Chain Response(A, B)

As stated,immediately afterA, B must be executed. It implies:

1. The number of times thatB is executed must be greater than or equal to the
number of times thatA is executed:nt(B)>= nt(A).

B.13. CHAIN RESPONSE(A, B) 153

2. Immediately after each execution ofA, B must be executed. Specifically,
before thei-th execution ofA, the earliest execution ofB that can exist is
i. In a similar way, after thei-th execution ofA, the latest execution ofB
that can exist isi +nt(B)−nt(A)−1. ∀i : 1≤ i <= nt(A) : ∃ j : i ≤ j ≤
i +nt(B)−nt(A)−1 : st(B j)=et(Ai).

Chain Response (A,B) is added OR
bounds of nt(A) changed OR bounds of nt(B) changed OR bounds of
et(Ai) for any i changed OR bounds of st(Bi) for any i changed OR
bounds of et(Bi) for any i changed ->

if (LB(nt(B)) < LB(nt(A))) {LB(nt(B)) <- LB(nt(A))}
if (UB(nt(A)) > UB(nt(B))) {UB(nt(A)) <- UB(nt(B))}
for (int i = 1; i <= LB(nt(A)); i++){

int dif = UB(nt(B)) - max(i,LB(nt(A)))
SchedulingActivity a = Ai;
SchedulingActivity b = Bi+dif;
if (LB(et(a)) > LB(st(b))) {LB(st(b)) <- LB(et(a))}// Ai -> Bi+dif
if (UB(st(b)) < UB(et(a))) {UB(et(a)) <- UB(st(b))}// Ai -> Bi+dif

}
for (int i = 1; i <= UB(nt(A)); i++){ // force exists B after Ai

int dif = UB(nt(B)) - max(i,LB(nt(A)))
SchedulingActivity a = Ai;
int j = i - 1; // Candidate Bs after Ai
SchedulingActivity bFor;
int possible = 0;
while (j <= (i + dif - 1) && possible < 2) {

SchedulingActivity bPos = Bj;
//If Ai->bPos possible
if (UB(st(bPos))>=LB(et(a)) && LB(et(bPos))<=UB(st(a))){

possible++;
bFor = bPos;

}
j++;

} // end while
if (possible == 1){ // force Ai’->bFor

// Ai ’-> bFor
if (LB(et(a))>LB(st(bFor))){LB(st(bFor)) <- LB(et(a))}
if (UB(et(a))>UB(st(bFor))){UB(st(bFor)) <- UB(et(a))}
if (LB(st(bFor))<LB(et(a)) {LB(et(a)) <- LB(st(bFor))}
if (UB(st(bFor))<UB(et(a)) {UB(et(a)) <- UB(st(bFor))}

} // end if
if(possible == 0)

return Failure;
}// end for i

Figure B.11: Filtering Rule for the Chain Response Template

Proposition 17. If implemented properly, the worst-case time complexity ofthe
rule ChainResponse, which includes all possible recursivecalls, is O(n× nt3),
where n is the number of Repeated Activities of the problem, and nt is the upper
bound of the variable nt(Act) domain. This upper bound obtains the same value
for all the ConDec-R activities.

Proof. TheChainResponserule can be fired, , at most,n+2×n×nt times. This
is due to the fact that a change in any execution of any activity (st andet variables

154 APPENDIX B. FILTERING RULES FOR CONDEC-R TEMPLATES

of Acti) or in thent variable of an activity can fire this rule. Moreover, the time
complexity of theChainResponserule execution isO(nt2), and hence the worst-
case time complexity of this rule isO(n×nt3).

B.14 Chain Succession(A, B)

As stated, relationsChainPrecedence(A,B) andChainResponse(A,B) hold.

Proposition 18. If implemented properly, the worst-case time complexity ofthe
rule ChainSuccession, which includes all possible recursive calls, is O(n×nt3),
where n is the number of Repeated Activities of the problem, and nt is the upper
bound of the variable nt(Act) domain. This upper bound obtains the same value
for all the ConDec-R activities.

Proof. TheChainSuccessionrule can be implemented as the conjunction ofChain
PrecendenceandChainResponserules. The complexity of both rules isO(n×
nt3) (see Prop.16 and17), and hence the worst-case time complexity ofChain
Successionrule isO(2×n×nt3), equal toO(n×nt3).

B.15 Responded Absence(A, B) and Not CoExistence
(A, B)

As stated, ifB is executed, thenA cannot be executed, and vice versa,((nt(A)>
0) · (nt(B)> 0)) == 0.

Responded Absence(A,B) is added OR
bounds of nt(A) changed OR bounds of nt(B) changed ->

If LB(nt(A)) > 0 then
nt(B) <- 0

If LB(nt(B)) > 0 then
nt(A) <- 0

Figure B.12: Filtering Rule for the Responded Absence Template

The Responded Absencerule (Fig. B.12) is invoked when the template is
added to the constraint model or when the domain bounds of some variables are
updated.

Proposition 19. If implemented properly, the worst-case time complexity ofthe
rule RespondedAbsence, which includes all possible recursive calls, is O(n),
where n is the number of Repeated (ConDec-R) Activities of the problem.

B.16. NEGATION RESPONSE, PRECEDENCE, SUCCESSION 155

Proof. TheRespondedAbsencerule can be fired, at most,n times. This is due to
the fact that only a change in thent variable of an activity can fire this rule. More-
over, the time complexity of theRespondedAbsencerule execution is constant,
and hence the worst-case complexity of this rule isO(n).

B.16 Negation Response(A, B), Negation Precedence(A,
B) and Negation Succession(A, B)

As stated, after the execution ofA, B cannot be executed,(nt(A) > 0∧nt(B) >
0)⇒ st(Bnt(B))≤ et(A1).

Negation Response(A,B) is added OR
bounds of nt(A) changed OR bounds of nt(B) changed OR bounds of
et(A1) changed OR bounds of st(BUB(nt(B))) changed ->

If LB(nt(A)) > 0 && LB(nt(B)) > 0 then
If LB(st(BUB(nt(B)))) > LB(et(A1))then

LB(et(A1)) <- LB(st(BUB(nt(B))))
If UB(et(A1)) < UB(st(BUB(nt(B)))) then

UB(st(BUB(nt(B)))) <- UB(et(A1))

Figure B.13: Filtering Rule for the Negation Response Template

TheNegation Responserule (Fig.B.13) is invoked when the template is added
to the constraint model or when the domain bounds of some variables are updated.

Proposition 20. If implemented properly, the worst-case time complexity ofthe
rule NegationResponse, which includes all possible recursive calls, is O(n), where
n is the number of Repeated (ConDec-R) Activities of the problem.

Proof. TheNegationResponserule can be fired, at most, 3×n times. This is due
to the fact that only a change in the first execution (et variable ofAct1) or in the
last execution (st variable ofActnt(Act)) or in thent variable of an activity can fire
this rule. Moreover, the time complexity of theNegationResponserule execution
is constant, and hence the worst-case complexity of this rule isO(n).

B.17 Negation Alternate Precedence(A, B)

As stated, between two executions ofB, A cannot be executed,nt(B) ≥ 2⇒ ∀i :
1≤ i ≤ nt(A) : et(Ai))≤ et(B1)∨st(Ai)≥ st(Bnt(B)).

Proposition 21. If implemented properly, the worst-case time complexity ofthe
rule NegationAlternatePrecedence, which includes all possible recursive calls, is
O(n×nt2), where n is the number of Repeated Activities of the problem,and nt
is the upper bound of the variable nt(Act) domain. This upper bound obtains the
same value for all the ConDec-R activities.

156 APPENDIX B. FILTERING RULES FOR CONDEC-R TEMPLATES

Negation Alternate Precedence (A,B) is
added OR bounds of nt(A) changed OR bounds of nt(B) changed OR
bounds of et(B1) changed OR bounds of st(Bnt(B)) changed OR bounds
of st(Ai) for any i changed OR bounds of et(Ai) for any i changed
->

if (LB(nt(B)) >= 2) then
for (int i = 1; i <= UB(nt(A)); i++){

SchedulingActivity a = Ai;
SchedulingActivity bF = B1; // bFirst
SchedulingActivity bL = BUB(nt(B)); // bLast
if (UB(st(a)) < LB(st(bL))) then // a can not start after bL => a must finish before bF

if (UB(et(bF)) < UB(et(a))) then
UB(et(a)) <- UB(et(bF))

if (LB(et(a)) > UB(et(bF))) then // a can not finish before bF => a must start after bL
if (LB(st(bL)) < LB(st(a))) then

LB(st(a)) <- LB(st(bL))
}

Figure B.14: Filtering Rule for the Negation Alternate Precedence Template

Proof. TheNegationAlternatePrecedencerule can be fired, at most,n+2×n×nt
times. This is due to the fact that a change in any execution ofany activity (st and
et variables ofActi) or in thent variable of an activity can fire this rule. Moreover,
the time complexity of theNegationAlternatePrecedencerule execution isO(nt),
and hence the worst-case time complexity of this rule isO(n×nt2).

B.18 Negation Alternate Response(A, B)

As stated, between two executions ofA, B cannot be executed,nt(A)≥ 2⇒∀1≤
i ≤ nt(B) : et(Bi)≤ st(A1)∨st(Bi)≥ et(Ant(A)).

Negation Alternate Response (A,B) is
added OR bounds of nt(A) changed OR bounds of nt(B) changed OR
bounds of et(A1) OR bounds of st(Ant(A)) changed OR bounds of
st(Bi) for any i changed OR bounds of et(Bi) for any i changed ->

if (LB(nt(A)) >= 2) then
for (int i = 1; i <= UB(nt(B)); i++){

SchedulingActivity b = Bi;
SchedulingActivity aF = A1; // aFirst
SchedulingActivity aL = AUB(nt(A)); // aLast
if (UB(st(b)) < LB(st(aL))) then // b can not start after aL => b must finish before aF

if (UB(et(aF)) < UB(et(b))) then
UB(et(b)) <- UB(et(aF))

if (LB(et(b)) > UB(et(aF))) then // b can not finish before aF => b must start after aL
if (LB(st(aL)) < LB(st(b))) then

LB(st(b)) <- LB(st(aL))
}

Figure B.15: Filtering Rule for the Negation Alternate Response Template

Proposition 22. If implemented properly, the worst-case time complexity ofthe
rule NegationAlternateResponse, which includes all possible recursive calls, is

B.19. NEGATION ALTERNATE SUCCESSION(A, B) 157

O(n×nt2), where n is the number of Repeated Activities of the problem,and nt
is the upper bound of the variable nt(Act) domain. This upper bound obtains the
same value for all the ConDec-R activities.

Proof. TheNegationAlternateResponserule can be fired, at most,n+2×n×nt
times. This is due to the fact that a change in any execution ofany activity (st and
et variables ofActi) or in thent variable of an activity can fire this rule. Moreover,
the time complexity of theNegationAlternateResponserule execution isO(nt),
and hence the worst-case time complexity of this rule isO(n×nt2).

B.19 Negation Alternate Succession(A, B)

As stated, relationsNegationAlternatePrecedence(A,B) andNegationAlternate
Response(A,B) hold.

Proposition 23. If implemented properly, the worst-case time complexity ofthe
rule NegationAlternateSuccession, which includes all possible recursive calls, is
O(n×nt2), where n is the number of Repeated Activities of the problem,and nt
is the upper bound of the variable nt(Act) domain. This upper bound obtains the
same value for all the ConDec-R activities.

Proof. The NegationAlternateSuccessionrule can be implemented as the con-
junction ofNegationAlternatePrecendenceandNegationAlternateResponserules.
The complexity of both rules isO(n×nt2) (see Prop.21 and22), and hence the
worst-case time complexity ofNegationAlternateSuccessionrule is O(2× n×
nt2), equal toO(n×nt2).

B.20 Negation Chain Succession(A, B)

As stated,B cannot be executed immediately after the execution ofA, ∀i : 1≤ i ≤
nt(B) : ¬∃ j : 1≤ j ≤ nt(A) : et(A j) = st(Bi).

Proposition 24. If implemented properly, the worst-case time complexity ofthe
rule NegationChainSuccession, which includes all possible recursive calls, is
O(n× nt3), where n is the number of Repeated Activities of the problem,and
nt is the upper bound of the variable nt(Act) domain. This upper bound obtains
the same value for all the ConDec-R activities.

Proof. The NegationChainSuccessionrule can be fired, at most,n+ 2× n× nt
times. This is due to the fact that a change in any execution ofany activity (st and
et variables ofActi) or in thent variable of an activity can fire this rule. Moreover,

158 APPENDIX B. FILTERING RULES FOR CONDEC-R TEMPLATES

Negation Chain Succession (A,B) is
added OR bounds of nt(A) changed OR bounds of nt(B) changed OR
et(Ai) for any i is bound OR st(Bi) for any i is bound ->

for (int i = 1; i <= UB(nt(A)); i++){
SchedulingActivity a = Ai;
if(IsBound(et(a))){

int aVal = Value(et(a));
for (int j = 1; j <= UB(nt(B)); j++){

SchedulingActivity b = Bj;
if(MemberOf(aVal,st(b)))
RemoveValue(aVal,st(b));

}
}

}
for (int i = 1; i <= UB(nt(B)); i++){

SchedulingActivity b = Bi;
if(IsBound(st(b))){

int bVal = Value(st(b));
for (int j = 1; j <= UB(nt(A)); j++){

SchedulingActivity a = Aj;
if(MemberOf(bVal,et(a)))
RemoveValue(bVal,et(a));

}
}

}

Figure B.16: Filtering Rule for the Negation Chain Succession Template

the time complexity of theNegationChainSuccessionrule execution isO(nt2),
and hence the worst-case time complexity of this rule isO(n×nt3).

Appendix C

Algorithms for Generating BPMN
Models

In order to develop the algorithm to generate the BP models from the optimized
enactment plans (cf. Alg.6), certain related types are stated, as shown in Fig.
C.1 (UML diagram). It should be clarified that, at this point of the process, the
CSP variables are instantiated, hence all the information is known (nt variable for
each BP activity,st variable for each scheduling activity, resource in which each
scheduling activity is executed, etc). The types which appear in the UML diagram
are as follows:

• OptimizedPlan: This represents the generated optimized enactment plan.
Moreover, it contains the information related to the input problem. This
type contains properties regarding a set of roles, a set of repeated activi-
ties (ConDec-R activities), and a set of templates which relate the repeated
activities.

• RepeatedAct: This represents the ConDec-R activities. Each repeated ac-
tivity contains information about the required role, the estimated duration,
the set of scheduling activities which represent the execution of each BP
activity, and the number of times this repeated activity is executed (property
nt).

• Role: This represents a role, and it is composed of the set of resources
available for this role.

• Resource: This represents a resource. This type contains properties regar-
ding a list of scheduling activities which are executed in that resource, or-
dered by the start time.

159

160 APPENDIX C. ALGORITHMS FOR GENERATING BPMN MODELS

• Template: This represents the high-level relations which are given between
the repeated activities. In order to consider the branched constraints (Sect.
3.2), two specializations are included to allow the relations between one
source and several sinks (TemplateSinks), and between several sources and
one sink (TemplateSources). The methodincludePredof a template up-
dates the information of the BPMN model by including the precedence re-
lations which are implied by that template (more details aregiven later in
this section during the presentation of the algorithms). For the generation of
the BPMN model, the template relations are considered for the connection
of the BPMN activities.

• P&SAct: This represents each execution of a repeated activity. This type
contains properties regarding the start and the end times ofthe activity, to-
gether with the resource used by the scheduling activity. Since each P&SAct
is related to a specific BPMNAct, the P&SAct type provides themethod
toBPMNActin order to obtain the related BPMNAct from a P&SAct.

• BPMNModel: This represents the BPMN model that is generated. This
model is composed of a set of BPMN activities, a set of pools, aset of
gates, and a set of connections.

• BPMNAct: This represents a BPMN activity. This type contains properties
regarding the pool and the lane where the activity is allocated, together with
the estimated duration and start time.

• Pool: This represents a BPMN pool. Each pool is associated toa specific
role and is composed of a set of lanes.

• Lane: This represents a BPMN lane. Each lane is associated toa specific
resource.

• Gate: This represents a BPMN gate. In order to consider parallel merging
gateways, a specialization, named ParallelM, is developed.

• ParallelM: This represents a parallel merging gateway. This type contains
properties regarding a set of inputs (BPMN activities), andone output (BP-
MN activity).

• Connection: This represents a precedence connection between two BPMN
activities,a andb.

The types which are presented in the UML diagram of Fig.C.1 are used
for the development of the algorithms for the automatic generation of optimized
BPMN models from enactment plans (cf. Algs.6, 7, 8, 9 and10). Generic types

1
6

1

�����������	�
���
���������

����

������	�
���
�������

��������

��������������������	��������

������������������	������������	�
������������	�����

������	�����

������	�
���

�����	����

����	����

	
��
��

��������������������	������

�������	�
���

����

������	�����

���

�������
�����������	����������

�����	���������

����

�������������

�������	����
�����

������	����
��������

�������	����
 ����������

�!�����	����
"����

	
�������

����������������������	�
���
���������������	���������

���������	����
��������

����#�	��������

��������

����������������$�%�	����
�������
���
����������	����
�������
���
��������

���&$���	������!

��������

����������������	���������	��������

����	����

����	����

�����	���������

��
��

������	�����

�����	����

������	�
���
�������

����	����

��������
��

����

������� ���������������	�������������$�	���������

���	��������

�$�	��������

����������

' (

'

(

'(

'

(

'

(

'(

'

(

'

'

������	����
������������

���	����
�����

���	����
)�&������

���������
���

' (

'

(

'

(

'

(

' '

'(

��������	������������

����#��	����
������������

�������������

���������	����
������������

����#�	������������

���������������

*���&�+������,����&�������� *���&�+�����������

F
igure

C
.1:

U
M

L
D

iagram
ofTypes

for
the

O
ptim

ized
B

P
M

N
G

ener
ation.

are
u

sed
,

h
en

ce
T<P
>

rep
resen

ts
th

e
g

en
eric

typ
e

T,
w

ith
th

e
g

en
eric

p
aram

eter
in

stan
tiated

to
P.T

h
ese

alg
o

rith
m

s
are

exp
lain

ed
b

elow
.

T
h

e
m

ain
alg

o
rith

m
,

A
lg

.6,
co

n
stru

cts
a

B
P

M
N

m
o

d
elfro

m
th

e
o

p
tim

ized
B

P
en

actm
en

t
p

lan
.

T
h

is
p

lan
is

rep
resen

ted
b

y
a

so
rted

set
o

f
sch

ed
u

lin
g

activ-

162 APPENDIX C. ALGORITHMS FOR GENERATING BPMN MODELS

Algorithm 6 : Construct an Optimized BP Model from an Optimized BP
Enactment Plan

input : SortedSet<P&SAct> acts, ordered byst
Set<Template> t
Set<Role> r

output: BPMNModelbp

Map<P&SAct,Set<P&SAct>> pred←CreateDependencies(acts, t, r);1

bp.gates← /0;2

bp.pools←{createPool(role) | ∀role∈ r};3

bp.acts←{createBPMNAct(a) | ∀a∈ acts};4

BPMNAct start← createBPMNAct(P0,L0,0);5

bp.conns←{createConnection(start, ini) | ∀ini ∈ bp.acts, ini.st= 0};6

foreach psact in actsdo7

if pred(psact).size == 1then8

P&SAct aPred← pred(psact).get(0);9

bp.conns← bp.conns∪10

createConnection(toBPMNAct(aPred), toBPMNAct(psact));

else11

Set<BPMNAct> inputs←{toBPMNAct(a) | ∀a∈ pred(psact)};12

bp.gates←13

bp.gates∪createParallelM(inputs, toBPMNAct(psact));

BPMNAct end← createBPMNAct(P0,L0,0);14

Set<BPMNAct>15

f inals←{toBPMNAct(a) | ∀a∈ P&SAct,¬∃b∈ P&SAct,a∈ pred(b)};
if inputs.size == 1then16

BPMNAct f inal← f inals.get(0);17

bp.conns← bp.conns∪createConnection(f inal,end);18

else19

bp.gates← bp.gates∪createParallelM(f inals,end);20

return bp;21

ities ordered by start time,acts; a set of the templates which relate the repeated
activities,t; and a set of the considered roles,r. The mappred associates a set
of direct predecessors (cf. Def.29 on page86) for each scheduling activity (cf.
Alg. 7, explained later in this section), in order to generate the BPMN model (line
1). Moreover, a pool associated to each role is created, together with the corre-
sponding lanes (line 3). In a similar way, a BPMN activity associated to each
scheduling activity is created (line 4). The start and end activities of the model

163

can be associated to any pool (P0 in Alg. 6) and to any lane (L0 in Alg. 6) (line 5
and 14 respectively). In line 6, a connection between the start BPMN activity and
each BPMN activity whose estimated start time is equal to 0, is created. Lines
7-13 establish the connections and gateways between the BPMN activities in the
following way: if the BPMN activity has only one direct predecessor, a connec-
tion is included; if the BPMN activity has several direct predecessors, a parallel
merging gateway is included. In line 15, all the final activities are selected to be
direct predecessors of the end activity. These activities are related by either a con-
nection, in the case that there is only one ending activity (lines 16-18); or by a
parallel merging gateway, in the case that there are severalending activities (lines
19-20).

Algorithm 7 : CreateDependencies
input : SortedSet<P&SAct> actsordered byst

Set<Template> temp
Set<Role> roles

output: Map<P&SAct,Set<P&SAct>> pred

foreach r in rolesdo1

foreach res in r.resourcesdo2

List<P&SAct> actsRes← res.acts;3

foreach i in i:1..actsRes.size-1do4

pred(actsResi+1)← actsResi;5

foreach t in tempdo6

t.includePred(pred);7

Map<P&SAct,Set<P&SAct>> indirectPred← /0;8

foreach act in actsdo9

foreach p in pred(act)do10

pred(act)← pred(act)\ (pred(p)∪ indirectPred(p));11

indirectPred(act)←12

indirectPred(act)∪ (pred(p)∪ indirectPred(p));

return pred;13

Additionally, Algorithm7 generates a map in which each scheduling activity
is a associated to a set of scheduling activities that are itsdirect predecessors (cf.
Def. 29 on page86). First, the precedences required due to the use of the same
resource are included (lines 1-5). Secondly, the precedences required due to the
high-level relations between the repeated activities which are stated in the tem-
plates, are included (lines 6-7). The methodincludePredfor some representative

164 APPENDIX C. ALGORITHMS FOR GENERATING BPMN MODELS

templates is detailed in Algs.8, 9 and10. Lastly, the indirect predecessors (cf.
Def. 30 on page86) are removed from the map in order to avoid redundant con-
nections, by taking into account that the sorted setacts is ordered byst (lines
8-12).

Algorithm 8 : includePredmethod for the branchedPrecedencetemplate
input : Map<P&SAct,Set<P&SAct>> pred

Set<RepeatedAct> sources
RepeatedActsink

output: Map<P&SAct,Set<P&SAct>> pred

Set<P&SAct> meet←{a1 | ∀a∈ sources,a1.et≤ sink1.st};1

P&SAct sel← argmin
a∈meet

(a.et);
2

pred(sink1)← pred(sink1)∪sel;3

return pred;4

With respect to theincludePredmethod, some representative templates are
selected for illustration purposes (other templates can bedescribed in a similar
way). In Alg. 8, the template regarding the branchedPrecedencetemplate, is
shown. The location of a branched precedence template between several sources
and one sink implies that the first execution of at least one ofthe sources must
finished before the start of the first execution of the sink. Inline 1, the set of
scheduling activities which comply with the Precedence template (i.e, the first
executions of the sources which end before the start of the first execution of the
sink) are included in the setmeet. At least one scheduling activity will be included
in this set since the Precedence template is satisfied, however it may be possible
to find more than one. In order to generate a BPMN model which iscompatible
with both the optimized enactment plan and the ConDec-R specification, as is the
purpose of our approach, any scheduling activity of the setmeetcan be selected
to be the predecessor of the sink in the BPMN model. One scheduling activity
of the setmeet is then selected to be the predecessor of the sink. Specifically,
the scheduling activity which presents more slack is selected (line 2) in order to
construct a robust BPMN model. In line 3, the selected predecessor is included
in the map, and is associated to the predecessors of the first execution of the sink.
The fact that an activityBcan start after another activityAhas finished (ES, default
option), is stated by includingA in the setpredof B (line 3) of Alg. 9.

The branchedAlternatePrecedencetemplate between several sources and one
sink implies that before the execution of the sink, at least one of the sources must
be executed, and between each two executions of the sink, at least one of the
sources must be executed. As discussed, there exist two variants for the same

165

Algorithm 9 : includePredmethod for the branchedAlternatePrecedence
Template

input : Map<P&SAct,Set<P&SAct>> pred
Set<RepeatedAct> sources
RepeatedActsink

output: Map<P&SAct,Set<P&SAct>> pred

Set<P&SAct> meet←{a1 | ∀a∈ sources,a1.et≤ sink1.st};1

P&SAct sel← argmin
a∈meet

(a.et);
2

pred(sink1)← pred(sink1)∪sel;3

foreach i in 2..sink.ntdo4

Set<P&SAct> meet←{a j | ∀a∈ sources,∀ j ∈ 1..a.nt,sinki−1.et≤5

a j .st∧a j .et≤ sinki.st};
P&SAct sel← argmax

a∈meet
((a.st−sinki−1.et)+(sinki.st−a.et));

6

pred(sel)← pred(sel)∪sinki−1;7

pred(sinki)← pred(sinki)∪sel;8

return pred;9

temporal relation, which are represented by adding SS or ES at the end of the name
of the template. In theAlternatePrecedencetemplate, two temporal relations must
be indicated: first, what ”sink before source” means, and secondly, what ”source
before sink” means. Therefore, the branched templateAlternatePrecedenceES-
ES(default option) specifies that ”sink before source” means that theend time of
the sink must be less than or equal to thestart time of the source, and ”source
before sink” means that theend time of the source must be less than or equal to
the start time of the sink. TheincludePredmethod for the branched template
AlternatePrecedenceES-ESis shown in Alg. 9. For lines 1-3, the idea is the
same as that in Alg.8. Moreover, between each two successive executions of
the sink,sinki−1 and sinki, one scheduling activity must be executed. Several
scheduling activities related to the sources can meet this condition (line 5). As
before, the scheduling activity which presents more slack is selected (line 6) to be
the predecessor ofsinki (line 8), and at the same timesinki−1 is selected as the
predecessor of the selected scheduling activity.

In a similar way, the branched templateAlternatePrecedenceSS-ESspecifies
that ”sink before source” means that thestart time of the sink must be less than
or equal to thestart time of the source, and ”source before sink” means that the
end time of the source must be less than or equal to thestart time of the sink.
The includePredmethod for the branched templateAlternatePrecedenceSS- ES
is shown in Alg. 10. This algorithm is identical to Alg.9, except for line 7.

166 APPENDIX C. ALGORITHMS FOR GENERATING BPMN MODELS

Algorithm 10 : includePred method for the branched
AlternatePrecedenceSS-ESTemplate

input : Map<P&SAct,Set<P&SAct>> pred
Set<RepeatedAct> sources
RepeatedActsink

output: Map<P&SAct,Set<P&SAct>> pred

Set<P&SAct> meet←{a1 | ∀a∈ sources,a1.et≤ sink1.st};1

P&SAct sel← argmin
a∈meet

(a.et);
2

pred(sink1)← pred(sink1)∪sel;3

foreach i in 2..sink.ntdo4

Set<P&SAct> meet←{a j | ∀a∈ sources,∀ j ∈ 1..a.nt,sinki−1.st≤5

a j .st∧a j .et≤ sinki.st};
P&SAct sel← argmax

a∈meet
((a.st−sinki−1.et)+(sinki.st−a.et));

6

pred(sel)← pred(sel)∪pred(sinki−1);7

pred(sinki)← pred(sinki)∪sel;8

return pred;9

As mentioned earlier, the fact that an activityB can start after another activityA
has finished (ES, default option), is stated by includingA in the setpred of B.
Additionally, the fact that an activityB can only start after another activityA has
started, label SS, is stated by including the setpred(A) in the setpred of B, as
can be seen in line 7 of Alg.10.

The complexity analysis of all the algorithms previously described is included
in C.1.

C.1 Complexity Analysis

This section presents the complexity analysis of the algorithms previously de-
scribed.

Proposition 25. If implemented properly, the worst-case time complexity ofAlgo-
rithm 8 is O(n), where n is the number of Repeated Activities of the problem.

Proof. The worst-case time complexity of line 1 isO(n), since #sources≤ n. The
worst-case time complexity of line 2 is alsoO(n), since #meet≤ n. The time
complexity of line 3 is constant. Therefore, the worst-casetime complexity of
Algorithm 8 is O(n)+O(n)+Θ(1), equal toO(n).

C.1. COMPLEXITY ANALYSIS 167

Proposition 26. If implemented properly, the worst-case time complexity ofAl-
gorithms9 and10 is O(n×nt), where n is the number of Repeated Activities of
the problem, and nt is the maximum number of times that a repeated activity is
executed.

Proof. The worst-case time complexity of line 1 isO(n), since #sources≤ n. The
worst-case time complexity of line 2 is alsoO(n), since #meet≤ n. The time
complexity of line 3 is constant. The worst-case time complexity of lines 4-8 is
O(n× nt) since lines 5-7 (with complexityO(n) from the proof of Proposition
25) are executed at mostnt times. Therefore, the worst-case time complexity of
Algorithms9 and10 is O(n)+O(n)+Θ(1)+O(n×nt) equal toO(n×nt).

Proposition 27. If implemented properly, the worst-case time complexity ofAlgo-
rithm 7 is O(t×n×nt+nps2), where n is the number of Repeated Activities of the
problem, nt is the maximum number of times that a repeated activity is executed,
t is the number of templates that appear in the definition of the problem, and nps
is the number of scheduling activities in the optimized plan.

Proof. The time complexity of line 1-5 isΘ(nps), since each scheduling activity
is considered exactly once (each activity uses a specific resource of a specific role).
The worst-case time complexity of lines 6-7 isO(t×n×nt), since the worst-case
time complexity of the methodincludePredis O(n× nt) (Proposition26), and
this method is invokedt times. The worst-case time complexity of lines 9-12 is
O(nps2), since for each scheduling activity, its predecessors (at most, nps) are
considered. Therefore, the worst-case time complexity of Algorithm 7 is O(t×
n×nt+nps2).

Proposition 28. If implemented properly, the worst-case time complexity ofAlgo-
rithm 6 is O(t×n×nt+nps2), where n is the number of Repeated Activities of the
problem, nt is the maximum number of times that a repeated activity is executed,
t is the number of templates that appear in the definition of the problem, and nps
is the number of scheduling activities in the optimized plan.

Proof. The worst-case time complexity of line 1 isO(t×n×nt+nps2), by Propo-
sition27. The worst-case time complexity of line 3 isO(n), since #role≤ n. The
time complexity of line 4 isΘ(nps). The worst-case time complexity of lines 6
and 15 isO(nps). The time complexity of lines 7-13 isΘ(nps). Therefore, the
worst-case time complexity of Algorithm6 is O(t×n×nt+nps2).

Appendix D

AI Techniques for Solving the
Multi-mode Repair Planning
Problem

AI-based techniques for solving the multi-mode repair planning problem are pre-
sented, specifically: (1) a constraint-based approach (cf.AppendixD.1), and (2)
a PDDL specification (cf. AppendixD.2).

D.1 Constraint-based Approach

In this section, the constraint-based approach for solvingthe multi-mode repair
planning problem is presented (cf. (Barba et al., 2009a)). According to the con-
sidered problems (cf. Sect.6.3), the time and resource constraints, typical from
scheduling, would be modified to conditional constraints taking into account that
tasks (and subsystems) may not appear in the solution. Most of the ideas are
taken from (Del Valle et al., 2010), but the assumptions considered in this work
will result in modifying most constraints and in adding others: apart from the op-
timization of the duration, the minimization of the total cost is pursued, resulting
in a multi-objective optimization problem, and multi-modetasks are considered
(cf. (Barba et al., 2009a)).

D.1.1 Variables of the CSP

Four kinds of CSP variables have been defined: selection, resource, time and cost
variables.

Selection variables. For each And node, two boolean variables represent if the
connection and disconnection tasks are selected for the solution, s(T) ands(T ′)

169

170 APPENDIX D. AI TECHNIQUES

respectively. Furthermore, for each Or node, two boolean variables represent if
the subsystemSappears in the connection and disconnection processes,s(S) and
s′(S) respectively.

Resource variables. For each And node,M(T) andM(T ′) show the resources
used, andC f(T) andC f(T′) are the necessary configuration on them for the con-
nection and disconnection tasks respectively. These values are data of the pro-
blem. On the other hand, the resource where a subsystem is obtained after the
corresponding disconnection and connection task, are represented by the varia-
blesm′(S) andm(S) respectively, that are variables of the CSP.

Time variables. For each And node, the durations of the associated tasks
Dur(T) andDur(T ′) are established. Due to the auxiliary operations,∆cht(M,C f,
C f ′) denotes the time needed for changing the configuration of theresourceM
from C f to C f ′, and∆mov(S,M,M′) denotes the time needed for transporting the
subsystemS from resourceM to resourceM′. Finally, a componentC to be re-
paired is associated to a temporal delay∆subst(C), corresponding to the reparation
or substitution of the faulty component. These values are data of the problem.

On the other hand, for each And node, the CSP variables related to the time
are: its starting times,ti(T) andti(T ′) and ending times,t f (T) andt f (T ′). For each
Or node, the times when it is obtained after connection,tOR(S), and disconnection,
t ′OR(S).

Cost variablesFor each And node, it is considered: its connection and dis-
connection cost,Cost(Ti) andCost(T′i) respectively. Regarding to the auxiliary
operations,Costcht(M,C f,C f ′) denotes the cost of changing the configuration of
the resourceM from C f to C f ′, andCostmov(S,M,M′) denotes the cost of trans-
porting the subsystemS from resourceM to resourceM′. Furthermore, a com-
ponentC to be repaired is associated to a costCostsubst(C), corresponding to the
reparation or substitution of the faulty component.

On the other hand, for each And node, the selection of the corresponding
task T may be associated some additional costs, as explained in Sect. D.1.2:
first, the variablecostmov(Ti) represents the possible costs which are associated
to the movement of subsystems tom(T), if this resource is different from the
one where the subsystem were previously obtained; and secondly, the variable
costcht(Ti) represents the possible costs of change of configuration, ifm(T) has
been previously used with a different one. These variables are linked to the And
nodes because the costs are due to the selection of the corresponding task.

Finally, a variable that represents the total cost of a plan,costtotal, has been
used in order to minimize this objective function. Therefore, a multi-objective
optimization is pursued, encompassing both objective functions, time and cost.

D.1. CONSTRAINT-BASED APPROACH 171

ABCDE

ABCD

ACD

AC

A

AD BE

B C D

T’
3

T’
2

T’
1

T’
7

T’
9

T’
4

T’
5

T’
6

T’
10

ABCDE

ABCD

ACD

AC AD BE

E

T
3

T
2

T
1

T
7

T
9

T
4

T
5

T
6

T
10T

8
T

11

M
2

C
3

M
1

C
1

M
3

C
4

M
1

C
2

M
2

C
3 M

1

C
2

M
3

C
2

M
3

C
6

M
2

C
1

M
2

C
4

M
3

C
3

M
1

C
2

M
2

C
4

M
2

C
5

M
3

C
2

M
1

C
2

M
3

C
6

M
2

C
4

M
1

C
2

M
2

C
5

Figure D.1: The extended simplified repair And/Or graph withrelations (5) and (6) bet-
ween tasks

D.1.2 Constraints of the CSP

Taking the variables of the proposed CSP model into account (cf. Sect.D.1.1), a
classification about the types of constraints can be done: selection, resource, time
and cost constraints. These constraints are detailed as follows, and some examples
related to the graph of Fig.D.1 are given.

172 APPENDIX D. AI TECHNIQUES

Selection Constraintscollect the relations between the boolean variables that
represent if the tasks are selected for the solution and if the subsystems appears
in the repair process. A special case is for the complete system and for the
faulty component, which will be always part of the solution,so s′(ABCDE) =
s(ABCDE) = s′(D) = s(D) = true.

Related to relations of type (1) (cf. Sect.6.3.1), constraints which relate the se-
lection of disconnection tasksT ′ and connection tasksT with the selection of sub-
systems are included:s′(S)⇔XORT′i ∈succ(S)(s(T

′
i)) ands(S)⇔XORTi∈succ(S)(s(Ti))

(examples′(ABCDE)⇔ (XOR(s(T′1),s(T
′
2),s(T

′
3))).

Related to relations of type (3) (cf. Sect.6.3.1), the obligatory selection of the
two Or nodes if the And node is selected is considered:s(T′)⇒ s′(S1)∧ s′(S2)
ands(T)⇒ s(S1)∧s(S2) (examples(T′1)⇒ s′(ABCD)∧s′(E)).

Related to relations of type (4) (cf. Sect.6.3.1), constraints which relate the se-
lection of disconnection tasksT ′ and connection tasksT with the selection of sub-
systems are included:s′(S)⇔XORT′i ∈pred(S)(s(T

′
i)) ands(S)⇔XORTi∈pred(S)(s(Ti))

(examples(ACD)⇔ XOR(s(T2),s(T3),s(T4))).
Resource Constraintsconsider the relations between the resources used in

the connection and disconnection tasks, and the resources where the subsystems
are obtained after them.

Related to relations of type (1) (cf. Sect.6.3.1), the resourcem where a
subsystem is generated after a connection task is the resource used by this task:
s(Ti)⇒m(S) = M(Ti) (examples(T10)⇒m(AD) = M(T10)).

Related to relations of type (3) (cf. Sect.6.3.1), the resourcem′ where a
subsystem is generated after a disconnection task is the resource used by this task:
s(T′i)⇒m′(S1) = m′(S2) = M(T′i) (examples(T′9)⇒m′(A) = m′(D) = M(T ′9)).

Time Constraints collect the relations between the start and the end times of
the tasks, and the time when the subsystems are obtained. Initially, t ′OR(ABCDE)=
0.

Related to relations of type (1) (cf. Sect.6.3.1), these constraints establish
the disconnection timest ′OR and connection timestOR of Or nodes related to the
start times of the disconnection tasks or the end times of theconnection tasks:
s(T′i)⇒ ti(T ′i)≥ t ′OR(S)+∆mov(S,m′(S),M(T′i)) ands(Ti)⇒ t f (Ti) = tOR(S) (ex-
amples(T ′1)⇒ ti(T ′1)≥ t ′OR(ABCDE)+∆mov(ABCDE,m′(ABCDE),M(T′1))).

Related to relations of type (2) (cf. Sect.6.3.1), these constraints consider the
end time of the tasks related to the start time and its durations: s(T′i)⇒ t f (T ′i) =
ti(T ′i)+Dur(T ′i) ands(Ti)⇒ t f (Ti) = ti(Ti)+Dur(Ti) (examples(T′1)⇒ t f (T′1) =
ti(T ′1)+Dur(T′1)).

Related to relations (3) (cf. Sect.6.3.1), constraints which relate the equal-
ity constraints between the disconnection times of the Or nodest ′OR and the end
time of a disconnection task T’ which is placed above them in the original And/Or

D.1. CONSTRAINT-BASED APPROACH 173

graph, together with the precedence between the connectiontime of the Or nodes
tORand the start times of the connection tasks T (And nodes) are included:s(T′i)⇒
t f (T ′i) = t ′OR(S1) = t ′OR(S2).

Furthermore, the possible delays due to the transportationof subsystems bet-
ween different resources are considered:s(Ti)⇒ ti(Ti)≥ tOR(S1)+∆mov(S1,m(S1),
M(Ti)) ands(Ti)⇒ ti(Ti) ≥ tOR(S2)+∆mov(S2,m(S2),M(Ti)) (examples(T ′10)⇒
t f (T ′10) = t ′OR(A) = t ′OR(D)).

Related to relations of type (5) (cf. Sect.6.3.1), constraints which relate a
taskTi and its closest predecessor taskTj using the same resourcem, taking into
account the possible change of configuration are considered: (s(Ti)∧ s(Tj))⇒
ti(Tj) ≥ t f (Ti) + ∆cht(m,C f(Ti),C f(Tj)) (example(s(T′1)∧ s(T′10)) ⇒ ti(T′10) ≥
t f (T ′1) + ∆cht(M2, C f(T ′1), C f(T ′10))).

Moreover, since the solution may contain non-reverse tasks, each disconnec-
tion task must be related to each closest successor connection task that uses the
same resource. Furthermore, when both tasks use the same configuration, the
resulting constraint is superfluous and can be eliminated.

For each two tasksTi andTj requiring the same resourcem, with no precedence
constraint among them and which may belong to the same repairplan, the cons-
traints of type (6) (cf. Sect.6.3.1) express the two possible orders of execution of
the tasks:(s(Ti)∧ s(Tj))⇒ (ti(Ti) ≥ t f (Tj)+∆cht(m,C f(Tj),C f(Ti))∨ ti(Tj) ≥
t f (Ti)+∆cht(m,C f(Ti),C f(Tj))) (example(s(T8)∧s(T11))⇒ ti(T8) ≥ t f (T11) +
∆cht(M2,C f(T11), C f(T8)) ∨ ti(T11) ≥ t f (T8) + ∆cht (M2, C f(T8),C f(T11))).

For theOr leaf nodes (including those that do not include the faulty compo-
nent)t ′OR andtOR are equals, except for the faulty component, in which the delay
corresponding to the reparation is considered.

Cost Constraints: In the repair process of a component in a complete system,
the cost of a plan can be established by the aggregated costs associated to the
execution of the selected tasks. The total cost of selectinga taskTi involves:

• the execution cost of the task,Cost(Ti) (related to relation (2))

• the cost associated to the possible movement of one or two subsystems from
one resource to another,costmov(Ti):

– in disconnection tasksT ′i , it is necessary to take into account the pos-
sible movement of the subsystem related to the Or nodes aboveit
in the original And/Or graph, related to relation (1),costmov(T′i) =
Costmov(S,m′(S),M(T′i))

– in connection tasksTi , it is necessary to take into account the pos-
sible movement of the two subsystems related to Or nodes below it
in the original And/Or graph, related to relation (3),costmov(Ti) =
Costmov(S1,m(S1),M(Ti))+Costmov(S2,m(S2),M(Ti))

174 APPENDIX D. AI TECHNIQUES

Table D.1: Cost Constraints

Type Constraint
(1) s(T ′1)⇒ costmov(T ′1) =

Costmov(ABCDE,m′(ABCDE),M(T′1))
(1) . . .
(1) s(T ′10)⇒ costmov(T ′10) =

Costmov(AD,m′(AD),M(T ′10))
(3) s(T1)⇒ costmov(T1) =

Costmov(ABCD,m(ABCD),M(T1))+
Costmov(E,m(E),M(T1))

(3) . . .
(3) s(T11)⇒ costmov(T11) =

Costmov(B,m(B),M(T11))+
Costmov(E,m(E),M(T11))

(5),(6) s(T ′10)⇒ costcht(T ′10) =Costcht(M(T ′10),
C f(argmaxTa∈{T ′1 ,T11}{Tf (Ta) | s(Ta)∧

t f (Ta)≤ ti(T ′10)}),C f(T ′10))
(5),(6) . . .
(5),(6) s(T8)⇒ costcht(T8) =Costcht(M(T8),

C f(argmaxTa∈{T ′10,T11}{Tf (Ta) | s(Ta)∧

t f (Ta)≤ ti(T8)}),C f(T8))

• the possible cost associated to a change of configuration onM(Ti), costcht(Ti).
If M(Ti) has been used before by another task with a different configura-
tion, it is necessary to change it. An additional complexityof the conside-
red problems is that the cost of the change of configuration depends on the
sequence of tasks which are executed using each resource, and hence the
precedent taskexecuted onm(Ti) should be considered, being necessary to
analyze two groups of tasks: set of possible immediate predecessors ofTi

using the same resource (precedent tasks with Relation (5)); and set of tasks
linked toTi by the relation (6), which is explained in Sect.D.1.2.

Taking this into account,costcht(Ti) =Costcht(M(Ti),C f(PM(Ti)),C f(Ti)),
wherePM(Ti) is the precedent task executed onm(Ti), needs to be met. If
Ti is executed the first one on its resource, thencostcht(Ti) = 0.

On the other hand, the total cost of a plan can be defined as:
costtotal = ∑Ti

s(Ti)(Cost(Ti)+costmov(Ti)+costcht(Ti)).
In TableD.1, some cost constraints of the And/Or graph of the Fig.D.1 are

shown.

D.2. PDDL SPECIFICATION 175

Table D.2: Predicates for the repair planning problem

Predicate Description
(is-built-connection ?s - subsystem) The subsystem has been obtained in the

connection process and it has not been
used yet for another operation.

(is-built-disconnection ?s - subsystem)The subsystem has been obtained in
the disconnection process and it has not
been used yet for another operation.

(at ?s - subsystem ?l - location) The subsystems is in locationl.
(has-config ?r - resource ?c - configu-
ration)

The resourcer hasc configuration.

(task-connection ?s1 ?s2 ?s - subsys-
tem ?r - resource ?c - configuration)

There exists a connection task that is
executed in resourcer with cconfigura-
tion and it connectss1ands2 to obtain
s.

(task-disconnection ?s ?s1 ?s2 - sub-
system ?r - resource ?c - configuration)

There exists a disconnection task that is
executed inr with c configuration and
it disconnectss to obtains1ands2.

(fault ?s - subsystem) It is the faulty component.
(leaf ?s - subsystem) It is a leaf in the And/Or graph.
(free ?r - resource) The resource is free.

Notice that the combinatorial character of the problem is due to the XOR cons-
traints of types (1) and (4) and the disjunctive constraintsof type (6). These types
of constraints correspond, respectively, to the selectionof alternative tasks and
to the use of shared resources by them that are not related through precedence
constraints.

D.2 PDDL Specification

In this section, a PDDL 2.2 specification for solving the multi-mode repair plan-
ning problem is proposed (cf. (Barba et al., 2009b)). As stated before, PDDL
specifications include two separated files: a domain file for predicates and actions;
and a problem file for objects, initial state and goal specification.

The definition of the domain for a PDDL specification containsdifferent items
(cf. Sect.2.2.2):

Predicates: Several predicates has been considered in the current problem
(TableD.2). The aim of defining separated predicatesis-built-connectionandis-
built-disconnectionis to facilitate the search working of the planner.

176 APPENDIX D. AI TECHNIQUES

Table D.3: Functions for the repair planning problem

Function Description
(cht ?r - resource ?c1 ?c2 - configura-
tion)

Required time for changer from c1 to
c2.

(cost-cht ?r - resource ?c1 ?c2 - config-
uration)

Required cost for change the resourcer
from c1 to c2.

(mov ?s - subsystem ?l1 ?l2 - location) Required time for moving subsystems
from locationl1 to l2.

(cost-mov ?s - subsystem ?l1 ?l2 - loca-
tion)

Required cost for moving subsystems
from locationl1 to l2.

(length-connection ?s1 ?s2 ?s - subsys-
tem ?r - resource ?conf - configuration)

Required time for connecting subsys-
temss1ands2 to obtains.

(cost-connection ?s1 ?s2 ?s - subsystem
?r - resource ?conf - configuration)

Required cost for connecting subsys-
temss1ands2 to obtains.

(length-disconnection ?s ?s1 ?s2 - sub-
system ?r - resource ?conf - configura-
tion)

Required time for disconnecting the
subsystems to obtains1ands2.

(cost-disconnection ?s ?s1 ?s2 - subsys-
tem ?r - resource ?conf - configuration)

Required cost for disconnecting the
subsystems to obtains1ands2.

(repair ?s - subsystem) Required time for repairing the subsys-
tems.

(cost-repair ?s - subsystem) Required cost for repairing the subsys-
tems.

(accumulated-cost ?r - resource) This fluent is the cost accumulated to
each resource at each time. It is used to
define the objective functions related to
cost.

Functions (Fluents): They are used in actions preconditions or effects and
their values are given in the problem file (TableD.3).

(Durative) Actions/Operators: The execution of a durative action has asso-
ciated a duration. (Fig.D.2 andD.3). Theconnectionaction acts on subsystems
s1ands2 to obtains, using the resourcer with configurationconf, with duration
given by the functionlength-connection. The cost of this action is added to the flu-
entaccumulated-costof r. Similarly, thedisconnectionaction is defined (it does
not appear in the figure). The repair action repairs the subsystems on resourcer,
with duration given by the functionrepair. The cost of this action is added to the
fluentaccumulated-costof r. In the disconnection process, when a subsystem that
does not contain the faulty component is obtained, it is not separated anymore,

D.2. PDDL SPECIFICATION 177

so it disappears of the disconnection process to join to the connection process
(disconnection-to-connectionaction). This action does not correspond to any ac-
tual activity, but it is proposed to facilitate the search working of the planner. The
moveaction moves the subsystems from locationl1 to l2, with duration given by
the functionmov. The cost of this action is added to the fluentaccumulated-cost
of r2. Finally, thechange-configurationaction change the configuration ofr from
c1 to c2. The cost of this action is added to the fluentaccumulated-costof r.

(:durative-action CONNECTION
:parameters (?s1 ?s2 ?s - subsystem ?r - resource ?c - configuration)
:duration (= ?duration (length-connection ?s1 ?s2 ?s ?r ?c))
:condition

(and (at start (task-connection ?s1 ?s2 ?s ?r ?c))
(at start (free ?r))
(at start (has-config ?r ?c))
(at start (at ?s1 ?r))
(at start (at ?s2 ?r))
(at start (is-built-connection ?s1))
(at start (is-built-connection ?s2)))

:effect
(and (at start (not (free ?r)))

(at start (not (at ?s1 ?r)))
(at start (not (at ?s2 ?r)))
(at start (not (is-built-connection ?s1)))
(at start (not (is-built-connection ?s2)))
(at end (free ?r))
(at end (at ?s ?r))
(at end (is-built-connection ?s))
(at end (increase (accumulated-cost ?r)(cost-connection ?s1 ?s2 ?s ?r ?c)))))

(:durative-action REPAIR
:parameters (?comp - subsystem ?r - resource)
:duration (= ?duration (repair ?comp))
:condition

(and (at start (fault ?comp))
(at start (is-built-disconnection ?comp))
(at start (at ?comp ?r)))

:effect
(and (at start (not (is-built-disconnection ?comp)))

(at end (is-built-connection ?comp))
(at start (not (at ?comp ?r)))
(at end (at ?comp ?r))
(at start (not (fault ?comp)))
(at end (increase (accumulated-cost ?r) (cost-repair ?comp)))))

(:action DISCONNECTION-TO-CONNECTION
:parameters (?s - subassembly)
:precondition (and (leaf ?s)

(is-built-disconnection ?s))
:effect (and (not (is-built-disconnection ?s))

(is-built-connection ?s))))

Figure D.2: PDDL specification for theconnection, repair and disconnection-to-
connectionactions.

The PDDL 2.2 problem defines the next items (cf. Sect.2.2.2):

178 APPENDIX D. AI TECHNIQUES

(:durative-action MOVE
:parameters (?s - subsystem ?r1 - resource ?r2 - resource)
:duration (= ?duration (mov ?s ?r1 ?r2))
:condition (at start (at ?s ?r1))
:effect (and (at start (not (at ?s ?r1)))

(at end (at ?s ?r2))
(at end (increase (accumulated-cost ?r2) (cost-mov ?s ?r1 ?r2)))))

(:durative-action CHANGE-CONFIGURATION
:parameters (?r - resource ?c1 ?c2 - configuration)
:duration (= ?duration (cht ?r ?c1 ?c2))
:condition (and (at start (has-config ?r ?c1))

(at start (free ?r)))
:effect (and (at start (not (free ?r)))

(at end (free ?r))
(at start (not (has-config ?r ?c1)))
(at end (has-config ?r ?c2))
(at end (increase (accumulated-cost ?r) (cost-cht ?r ?c1 ?c2)))))

Figure D.3: PDDL specification for themoveandchange-configurationactions.

(define (problem grafo) (:domain repair)
(:objects M1 M2 - resource

C0 C1 - configuration
ABCDE ABCD ACD AC AD BE A B C D E - subsystem
INIT_LOC - warehouse)

(:init
(at ABCDE INIT_LOC)(is-built-disconnection ABCDE) (fault D)
(free M1) (free M2) (has-config M1 C0) (has-config M2 C0) (leaf A) ...
(task-disconnection ABCDE ABCD E M1 C1)
(=(length-disconnection ABCDE ABCD E M1 C1) 10)
(= (cost-disconnection ABCDE ABCD E M1 C1) 124) ...
(= (cht M1 C0 C1) 0) (= (cost-cht M1 C0 C1) 0) (= (cht M1 C3 C1) 4)
(= (cost-cht M1 C1 C3) 36) ... (= (mov AD INIT_LOC M1) 0)
(= (cost-mov AD INIT_LOC M1) 0) (= (mov AD M1 M2) 1)
(= (cost-mov AD M1 M2) 15)...
(:goal (is-built-connection ABCDE))
(:metric minimize (+ (* (total-time) 10) (+ (accumulated-cost M1)

(accumulated-cost M2))))

Figure D.4: PDDL Problem specification of Fig.D.1.

Objects: For the problem of Fig.D.1, the objects can be seen in Fig.D.4.
Initially, the system can be in anywhere, that it is represented by the location
INIT LOC, and the resources can have any configuration, that it is represented by
C0.

Initial state: Some of them related to the problem of Fig.D.1 can be seen in
Fig. D.4.

Goal specification: In the repair problem, the objective is to obtain the com-
plete system in the connection process (Fig.D.4).

Objective function: In business process environments, several objective func-
tions can be defined depending on the problem to solve. In the current proposal,

D.2. PDDL SPECIFICATION 179

some objective functions have been selected to be minimized, one of them appears
in Fig. D.4.

In this section, a PDDL 2.2 specification for solving a specific P&S problem,
the multi-mode repair planning problem, has been explained. Similar P&S pro-
blems can be solved in a related way.

Bibliography

Aguilar-Savén, R., 2004. Business process modelling: Review and framework.
International Journal of Production Economics 90 (2), 129 –149.

Allen, J., 1983. Maintaining knowledge about temporal intervals. In: Proc. Com-
munications of the ACM. pp. 832–843.

Alves, F. S. R., Guimares, K. F., Fernandes, M. A., 2008. Integrating planning and
scheduling based on genetic algorithms to an workflow system. In: Proc. CEC.
pp. 3766–3775.

Awad, A., Goré, R., Thomson, J., Weidlich, M., 2011. An iterative approach for
business process template synthesis from compliance rules. In: Proc. Caise. pp.
406–421.

Bae, J., Bae, H., Kang, S., Kim, Y., 2004. Automatic control of workflow pro-
cesses using eca rules. IEEE Transactions on Knowledge and Data Engineering
16 (8), 1010–1023.

Bao, F., Chintabathina, S., Morales, A., Rushton, N., Watson, R., Zhang, Y., 2011.
A temporally expressive planner based on answer set programming with cons-
traints: Preliminary design. In: Proc. LPNMR. pp. 398–414.

Baptiste, P., Le Pape, C., Nuijten, W., 1999. Satisfiabilitytests and time-bound ad-
justments for cumulative scheduling problems. Annals of Operations Research
92, 305 – 333.

Barba, I., Del Valle, C., 2010. Planning and Scheduling of Business Processes in
Run-Time: A Repair Planning Example. In: Proc. ISD. Springer, pp. 75–88.

Barba, I., Del Valle, C., 2011a. A Constraint-based Approach for Planning and
Scheduling Repeated Activities. In: Proc. COPLAS. pp. 55–62.

Barba, I., Del Valle, C., 2011b. A Planning and Scheduling Perspective for De-
signing Business Processes from Declarative Specifications. In: Proc. Icaart.
Vol. 1. pp. 562–569.

181

182 BIBLIOGRAPHY

Barba, I., Del Valle, C., Borrego, D., 2009a. A Constraint-based Model for Multi-
objective Repair Planning. In: Proc. ETFA. pp. 234–241, art. no. 5347038.

Barba, I., Del Valle, C., Borrego, D., 2009b. PDDL Specification for Multi-
objective Repair Planning. In: Proc. CAEPIA 2009 Workshop on Planning,
Scheduling and Constraint Satisfaction. pp. 21–33.

Barba, I., Weber, B., Del Valle, C., 2011. Supporting the Optimized Execution of
Business Processes through Recommendations. In: Proc. BPI. Springer LNCS
(In press).

Barjis, J., Verbraeck, A., 2010. The relevance of modeling and simulation in en-
terprise and organizational study. In: Proc. EOMAS. pp. 15–26.

Barták, R., Cepek, O., 2008. Incremental filtering algorithms for precedence and
dependency constraints. International Journal on Artificial Intelligence Tools
17 (1), 205–221.

Barták, R., Cepek, O., 2010. Incremental propagation rules for a precedence graph
with optional activities and time windows. Transactions ofthe Institute of Mea-
surement and Control 32 (1), 73–96.

Barták, R., O., C., 2007. Temporal networks with alternatives: complexity and
model. In: Proc. FLAIRS. pp. 641–646.

Beck, J., Fox, M., 1998. A generic framework for constraint-directed search and
scheduling. AI Magazine 19 (4), 101 – 130.

Beck, J., Fox, M., 2000. Constraint-directed techniques for scheduling alternative
activities. International Journal on Artificial Intelligence 121, 211–250.

Bellman, R., 1957. Dynamic Programming. Princeton University Press, Princeton,
NJ.

Berry, P., Drabble, B., 2000. Swim: An ai-based system for organizational mana-
gement. In: The 2nd NASA Intl. WS on Planning and Scheduling for Space.
NASA.

Blazewic, J., Pesh, E., Sterna, M., 2000. The disjunctive graph machine repre-
sentation of the job shop scheduling problem. European Journal of Operational
Research 127 (2), 317–331.

Blum, A., Furst, M., 1997. Fast planning through planning graph analysis. Artifi-
cial Intelligence 90 (1-2), 281–300.

BIBLIOGRAPHY 183

BPEL, 2007. Web Services Business Process Execution Language Ver-
sion 2.0: OASIS Standard.http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.html, [Online; accessed 09-November-2011].

BPMN, 2011. Business Process Model and Notation (BPMN), Version 2.0.
http://www.omg.org/spec/BPMN/2.0/, [Online; accessed 09-November-
2011].

Brandimarte, P., 1993. Routing and scheduling in a flexible job shop by tabu
search. Annals of Operations Research 41 (3), 157 – 183.

Brucker, P., Knust, S., 2006. Complex Scheduling (GOR-Publications). Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

Calton, T., 1999. Advancing design-for-assembly. the nextgeneration in assembly
planning. In: IEEE International Symposium on Assembly andTask Planning.
pp. 57 – 62.

Caron, F., Vanthienen, J., 2011. An exploratory approach toprocess lifecycle tran-
sitions from a paradigm-based perspective. In: Proc. BPMDSand EMMSAD.
pp. 178–185.

Chankong, V., Haimes, Y., 1983. Multiobjective Decision Making Theory and
Methodology. Elsevier.

Chaturvedi, A., Hutchinson, G., Nazareth, D., 1993. Supporting complex real-
time decision making through machine learning. Decision Support Systems
10 (2), 213–233.

Chen, Y., Hsu, C., Wah, B., 2006. Temporal planning using subgoal partitioning
and resolution in sgplan. Journal of Artificial Intelligence Research 26, 323–
369.

Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F.,Storari, S., 2009. Ex-
ploiting inductive logic programming techniques for declarative process min-
ing. In: Proc. ToPNoC. pp. 278–295.

Clarke Jr., E., Grumberg, O., Peled, D., 1999. Model Checking. The MIT Press.

Coello, C., 2006. Evolutionary multi-objective optimization: A historical view of
the field. IEEE Computational Intelligence Magazine 1 (1), 28–36.

Davenport, T. H., 1993. Process innovation: reengineeringwork through informa-
tion technology. Harvard Business School Press.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.omg.org/spec/BPMN/2.0/

184 BIBLIOGRAPHY

De Castro, V., Marcos, E., 2009. Towards a service-orientedmda- based approach
to the alignment of business processes with it systems: fromthe business model
to a web service composition model. International Journal of Cooperative In-
formation Systems 18 (2), 225 – 260.

Deb, K., 2008. Introduction to evolutionary multiobjective optimization. 5252
LNCS, 59–96.

Dechter, R., 2003. Constraint Processing. Morgan KaufmannPublishers.

Del Valle, C., Márquez, A., Barba, I., 2010. A CSP model for simple non-
reversible and parallel repair plans. Journal of Intelligent Manufacturing 21 (1),
165–174.

Demeyer, R., Van Assche, M., Langevine, L., Vanhoof, W., 2010. Declarative
workflows to efficiently manage flexible and advanced business processes. In:
Proc. PPDP. pp. 209–218.

Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., Zbyslaw, A., 1996.
Freeflow: Mediating between representation and action in workflow systems.
In: Proc. CSCW. pp. 190–198.

Drabble, B., Tate, A., 1994. The use of optimistic and pessimistic resource profiles
to inform search in an activity based planner. In: Proc. AIPS. pp. 243–248.

Drexl, A., Gruenewald, J., 1993. Nonpreemptive multi-moderesource-
constrained project scheduling. IIE Transactions (Institute of Industrial Engi-
neers) 25 (5), 74–81.

Dumas, M., van der Aalst, W., ter Hofstede, A. (Eds.), 2005. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology.
Wiley-Interscience, Hoboken, NJ.

Dynadec, 2011. Comet Downloads.http://dynadec.com/support/
downloads/, [Online; accessed 09-November-2011].

Ehrgott, M., 2005. Multicriteria Optimization. Springer Berlin.

Ehrgott, M., Ruzika, S., 2008. Improvedε-constraint method for multiobjective
programming. Journal of Optimization Theory and Applications 138 (3), 375–
396.

Elgammal, A., Turetken, O., Van Den Heuvel, W., Papazoglou,M., 2011. On
the formal specification of regulatory compliance: A comparative analysis. In:
Proc. ICSOC Workshops. pp. 27–38.

http://dynadec.com/support/downloads/
http://dynadec.com/support/downloads/

BIBLIOGRAPHY 185

Ellis, C., Nutt, G., 1993. Modeling and enactment of workflowsystems. In: Proc.
PETRI NETS. Springer Berlin / Heidelberg, pp. 1–16.

Erol, K., Hendler, J., Nau, D., 1994. HTN planning: Complexity and expressivity.
In: Proc. of 20th AAAI Conference. pp. 1123–1128.

Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal,
S., 2009. Declarative versus imperative process modeling languages: The issue
of understandability. In: Proc. BPMDS 2009 and EMMSAD 2009.pp. 353–
366.

Fahland, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal, S., 2010.
Declarative versus imperative process modeling languages: The issue of main-
tainability. In: Proc. BPM Workshops. pp. 477–488.

Feo, T., Resende, M., 1989. A probabilistic heuristic for a computationally diffi-
cult set covering problem. Operations Research Letters 8, 67–71.

Feo, T., Resende, M., 1995. Greedy randomized adaptive search procedures. Jour-
nal of Global Optimization 6, 109–133.

Fernandes, R., Lange, F., Burchett, R., Happ, H., Wirgau, K., 1983. Large scale
reactive power planning. IEEE transactions on power apparatus and systems
PAS-102 (5), 1083–1088.

Ferreira, H., Ferreira, D., 2006. An integrated life cycle for workflow management
based on learning and planning. International Journal of Cooperative Informa-
tion Systems 15 (4), 485 – 505.

Fikes, R., Nilsson, N., 1971. Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189–208.

Fonseca, C., Fleming, P., 1995. An overview of evolutionaryalgorithms in multi-
objective optimization. Evolutionary Computation 3 (1), 1–16.

Friedrich, G., Fugini, M., Mussi, E., Pernici, B., Tagni, G., 2010. Exception Han-
dling for Repair in Service-Based Processes. IEEE Transactions on Software
Engineering 36 (2), 198–215.

Frost, D., Dechter, R., 1994. Dead-end driven learning. In:Proc. of the National
Conference on Artificial Intelligence. pp. 294–300.

Gabriel, G., Grandcolas, S., 2009. Searching optimal parallel plans: A filtering
and decomposition approach. pp. 576–580.

186 BIBLIOGRAPHY

Gantt, H., 1913. Work, wages, and profits. Engineering Magazine Co.

Garey, M. R., Johnson, D. S., 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman &Co.

Garrido, A., Arangu, M., Onaindia, E., 2009. A constraint programming formula-
tion for planning: From plan scheduling to plan generation.Journal of Schedu-
ling 12 (3), 227–256.

Garrido, A., Onaindia, E., Sapena, O., 2008. Planning and scheduling in an e-
learning environment. a constraint-programming-based approach. Engineering
Applications of Artificial Intelligence 21 (5), 733–743.

Georgakopoulos, D., Hornick, M., Sheth, A., 1995. An Overview of Workflow
Management: From Process Modeling to Workflow Automation Infrastructure.
Distributed and Parallel Databases 3, 119–153.

Gerevini, A., Long, D., 2006. Preferences and soft constraints in pddl3. In: ICAPS
2006 Ws on Preferences and Soft Constraints in Planning. pp.46 – 53.

Ghallab, M., et al., 1998. Pddl - the planning domain definition language. Tech.
rep., CVC TR-98-003/DCS TR-1165.

Ghallab, M., Nau, D., Traverso, P., 2004. Automated Planning: Theory and Prac-
tice. Morgan Kaufmann, Amsterdam.

Glance, N., Pagani, D., Pareschi, R., 1996. Generalised process structure gram-
mars (GPSG) for flexible representations of work. In: Press,A. (Ed.), Proc.
CSCW. pp. 190–198.

Glover, F., 1989. Tabu search part i. Orsa Journal on Computing 1 (3), 190–206.

Goedertier, S., Vanthienen, J., 2009. An overview of declarative process modeling
principles and languages. In: Proc. ABIS. pp. 51 – 58.

Goldberg, D., 1989. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley, Reading.

Goldmann, S., Münch, J., Holz, H., 2000. Distributed Process Planning Support
with MILOS. International Journal of Software Engineeringand Knowledge
Engineering 10 (4), 511–525.

Goldwasser, M. H., Motwani, R., 1999. Complexity measures for assembly se-
quences. International Journal of Computational Geometryand Applications 9,
371 – 418.

BIBLIOGRAPHY 187

Gomes, C., Van Hoeve, W., Selman, B., 2006. Constraint programming for dis-
tributed planning and scheduling. Vol. SS-06-04. pp. 157–158.

González-Ferrer, A., Fernández-Olivares, J., Castillo, L., 2009. JABBAH: A Java
Application Framework for the Translation Between Business Process Models
and HTN. In: Proc. ICKEPS. pp. 28–37.

Ha, B., Bae, J., Park, Y., Kang, S., 2006. Development of process execution rules
for workload balancing on agents. Data & Knowledge Engineering 56 (1), 64–
84.

Haimes, Y., Lasdon, L., Wismer, D., 1971. On a bicriterion formulation of the pro-
blems of integrated system identification and system optimization. IEEE Trans-
actions on Systems, Man, and Cybernetics 1, 296–297.

Haisjackl, C., Weber, B., 2010. User Assistance During Process Execution - An
Experimental Evaluation of Recommendation Strategies. In: Proc. BPI.

Hallé, S., Villemaire, R., 2008. Runtime monitoring of message-based workflows
with data. In: EDOC. IEEE Computer Society, pp. 63–72.

Hammond, K., 1990. Case-based planning: A framework for planning from expe-
rience. Cognitive Science 14 (3), 385–443.

Hoffmann, J., Edelkamp, S., 2005. The deterministic part ofipc-4: an overview.
Journal of Artificial Intelligence Research 24 (1), 519–579.

Hoffmann, J., Weber, I., Kraft, F., 2010. SAP speaks PDDL. In: Proc. AAAI. pp.
1096–1101.

Homem de Mello, L., Sanderson, A., 1990. And/or graph representation of as-
sembly plans. IEEE Transactions on Robotics and Automation6(2), 188–189.

Homem de Mello, L., Sanderson, A., 1991. A correct and complete algorithm for
the generation of mechanical assembly sequences. IEEE Transactions Robotic
& Automation 27 (2), 228 – 240.

ILOG, 2011. IBM ILOG CPLEX CP Optimizer.http://www-01.ibm.com/
software/integration/optimization/cplex-cp-optimizer/, [Online;
accessed 09-November-2011].

Jarvis, P., et al., 2000. Applying intelligent workflow management in the chemi-
cals industries. In: The workflow handbook 2001, Published in association with
the Workflow Management Coalition (WfMC). L. Fisher (Ed.).

http://www-01.ibm.com/software/integration/optimization/cplex-cp-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-cp-optimizer/

188 BIBLIOGRAPHY

Joeris, G., 2000. Decentralized and flexible workflow enactment based on task
coordination agents. In: Springer-Verlag (Ed.), Proc. Caise. pp. 41–62.

Joshi, S., Kersting, K., Khardon, R., 2011. Decision-theoretic planning with gen-
eralized first-order decision diagrams. Artificial Intelligence 175 (18), 2198–
2222.

Kim, I.Y., D. W. O., 2006. Adaptive weighted sum method for multiobjective
optimization: A new method for pareto front generation. Structural and Multi-
disciplinary Optimization 31 (2), 105–116.

Kirkpatrick, S., Gelatt, C., Vecchi, M., 1983. Optimization by simulated anneal-
ing. Science 220 (4598), 671–680.

Koehler, J., 1998. Planning under resource constraints. In: Proc. ECAI. pp. 489–
493.

Koski, J., 1985. Defectiveness of weighting method in multicriterion optimiza-
tion of structures. Communications in Numerical Methods inEngineering 1 (6),
333–337.

La Rosa, M., Dumas, M., Uba, R., Dijkman, R., 2010. Merging business process
models. pp. 96–113.

Laborie, P., Ghallab, M., 1995. Planning with sharable resource constraints. In:
Proc. IJCAI. pp. 1643–1649.

Laborie, P., Rogerie, J., Shaw, P., Vilı́m, P., 2009. Reasoning with Condi-
tional Time-Intervals. Part II: An Algebraical Model for Resources. In: Proc.
FLAIRS.

Lambert, A., 1997. Optimal disassembly of complex products. International Jour-
nal of Production Research 35, 2509 – 2523.

Lambert, A., 1999. Optimal disassembly sequence generation for combined ma-
terial recycling and part reus. In: IEEE International Symposium on Assembly
and Task Planning. pp. 146 – 151.

Lambert, A., 2003. Disassembly sequencing: a survey. International Journal of
Production Research 41 (16), 3721–3759.

Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.,2007. Inducing decla-
rative logic-based models from labeled traces. In: Proc. BPM. pp. 344–359.

BIBLIOGRAPHY 189

Larrosa, J., 2000. Boosting search with variable elimination. In: Proc. CP. pp.
291–305.

Larrosa, J., Meseguer, P., 2003. Algoritmos para satisfaccin de restricciones. In-
teligencia Artificial: Revista Iberoamericana de Inteligencia Artificial 20, 31–
42.

Le Pape, C., Couronne, P., Vergamini, D., Gosselin, V., 1994. Time-versus-
capacity compromises in project scheduling. In: Proc. PlanSIG. pp. 498–502.

Lecoutre, C., Vion, J., 2008. Enforcing arc consistency using bitwise operations.
Constraint Programming Letters 2, 21–35.

Lekavy, M., Návrat, P., 2007. Expressivity of STRIPS-Likeand HTN-Like Plan-
ning. In: Proc. KES-AMSTA. pp. 121–130.

Li, W., Zhang, C., 1995. Design for disassembly analysis forenvironmentally
conscious design and manufacturing. In: ASME International Mechanical En-
gineering Congress. pp. 969 – 976.

Liu, Y., Jiang, Y., 2006. Lp-tpop: Integrating planning andscheduling through
constraint programming. In: Proc. PRICAI. pp. 844–848.

Liu, Y., Müller, S., Xu, K., 2007. A static compliance-checking framework for
business process models. IBM Systems Journal 46 (2), 335–362.

Lombardi, M., Milano, M., 2010. Constraint based scheduling to deal with uncer-
tain durations and self-timed execution. In: Proc. CP. pp. 383–397.

Lu, R., Sadiq, S., Padmanabhan, V., Governatori, G., 2006. Using a temporal
constraint network for business process execution. In: Australian Computer So-
ciety, I. (Ed.), Proc. ADC. pp. 157–166.

Ly, L., Rinderle, S., P., D., 2008. Integration and verification of semantic cons-
traints in adaptive process management systems. Data & Knowledge Engineer-
ing 64 (1), 3 – 23.

Mackworth, A., 1977. Consistency in networks of relations.Artificial Intelligence
8 (1), 99–118.

Marrella, A., Mecella, M., 2011. Continuous Planning for Solving Business Pro-
cess Adaptivity. In: Proc. BPMDS and EMMSAD. pp. 118–132.

Miettinen, K., 1999. Nonlinear Multiobjective Optimization. Kluwer Academic
Dordrecht.

190 BIBLIOGRAPHY

Mitchell, M., 1998. An Introduction to Genetic Algorithms.MIT Press.

Monette, J., Deville, Y., Van Hentenryck, P., 2009. Just-in-time scheduling with
constraint programming. pp. 241–248.

Montali, M., 2009. Specification and Verification of Declarative Open Interac-
tion Models: a Logic-Based Approach. Ph.D. thesis, Department of Electron-
ics, Computer Science and Telecommunications Engineering, University of
Bologna.

Mouhoub, M., Sadaoui, S., Sukpan, A., 2003. Chronological backtracking versus
formal methods for solving CSPs. In: Proc. of the International Conference on
Artificial Intelligence IC-AI 2003. pp. 270–275.

Moura, A., De Souza, C., Cire, A., Lopes, T., 2008. Heuristics and constraint pro-
gramming hybridizations for a real pipeline planning and scheduling problem.
pp. 455–462.

Nareyek, A., Freuder, E., Fourer, R., Giunchiglia, E., Goldman, R., Kautz, H.,
Rintanen, J., Tate, A., 2005. Constraints and ai planning. IEEE Intelligent Sys-
tems 20 (2), 62 – 72.

Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, J., Wu, D., Yaman, F., 2003.
Shop2: An htn planning system. Journal of Artificial Intelligence Research 20,
379–404.

Nuijten, W., Aarts, E., 1996. Sequencing with earliness andtardiness penalties: a
review. European Journal of Operational Research 90 (2), 269 – 284.

Ouyang, C., van der Aalst, W., Dumas, M., ter Hofstede, A., 2006.
Translating BPMN to BPEL.http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.79.3072&rep=rep1&type=pdf, [Online; accessed
09-November-2011].

Owen, M., Raj, J., 2003. BPMN and Business Process Management Introduc-
tion to the New Business Process Modeling Standard.http://www.omg.org/
bpmn/Documents/6AD5D16960.BPMN_and_BPM.pdf, [Online; accessed 09-
November-2011].

Özbayrak, M., Bell, R., 2003. A knowledge-based decision support system for
the management of parts and tools in FMS. Decision Support Systems 35 (4),
487–515.

Penberthy, J., Weld, D., 1994. Temporal planning with continuous change. In:
Proc. AAAI. pp. 1010–1015.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.3072&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.3072&rep=rep1&type=pdf
http://www.omg.org/bpmn/Documents/6AD5D16960.BPMN_and_BPM.pdf
http://www.omg.org/bpmn/Documents/6AD5D16960.BPMN_and_BPM.pdf

BIBLIOGRAPHY 191

Pesic, M., 2008. Constraint-Based Workflow Management Systems: Shifting
Control to Users. Ph.D. thesis, Eindhoven University of Technology, Eind-
hoven.

Pesic, M., Schonenberg, M., Sidorova, N., van der Aalst, W.,2007. Constraint-
Based Workflow Models: Change Made Easy. In: OTM Conferences(1). pp.
77–94.

Pesic, M., van der Aalst, W., 2006. A declarative approach for flexible business
processes management. In: Proc. BPM Workshops. pp. 169–180.

Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H., 2011.
Imperative versus Declarative Process Modeling Languages: An Empirical
Investigation. In: Proc. ER-BPM (accepted). [Online; http://zugal.info/wp-
content/uploads/2011/07/erbpm 2011.pdf; accessed 8-September-2011].

Pinedo, M., 2008. Scheduling - Theory, Algorithms, and Systems. Springer.

Pisinger, D., Ropke, S., 2010. Large neighborhood search. International Series in
Operations Research & Management Science 146 (13), 399–420.

PLANET, 2003. Network home page: European network of excellence in
ai planning.http://planet.dfki.de/index.html, [Online; accessed 09-
November-2011].

Prosser, P., 1993. An empirical study of phase transitions in binary constraint
satisfaction problems. Artificial Intelligence 81, 81–109.

R-Moreno, M., Borrajo, D., Cesta, A., Oddi, A., 2007. Integrating planning and
scheduling in workflow domains. Expert Systems with Applications 33 (2),
389–406.

Reijers, H., 2003. Design and Control of Workflow Processes.Springer-Verlag
Berlin, Heidelberg.

Reijers, H., van der Aalst, W., 1999. Short-term simulation: bridging the gap
between operational control and strategic decision making. In: Proc. IASTED
Conference on Modeling and Simulation. p. 417421.

Rhee, S., Cho, N., Bae, H., 2008. Increasing the efficiency ofbusiness processes
using a theory of constraints. Information Systems Frontiers, 1–13.

Rhee, S., Cho, N., Bae, H., 2010. Increasing the efficiency ofbusiness processes
using a theory of constraints. Information Systems Frontiers 12 (4), 443–455.

http://planet.dfki.de/index.html

192 BIBLIOGRAPHY

Rossi, F., van Beek, P., Walsh, T. (Eds.), 2006. Handbook of Constraint Program-
ming. Elsevier.

Rozinat, A., Wynn, M., van der Aalst, W., ter Hofstede, A., Fidge, C., 2009.
Workflow simulation for operational decision support. Data& Knowledge En-
gineering 68 (9), 834–850.

Russell, N., van der Aalst, W., ter Hofstede, A., 2006. Workflow Exception Pat-
terns. In: Proc. Caise. pp. 288–302.

Russell, N., van der Aalst, W., ter Hofstede, A., Edmond, D.,2005. Workflow re-
source patterns: Identification, representation and tool support. In: Proc. Caise.
pp. 216–232.

Rychkova, I., Regev, G., Wegmann, A., 2008a. High-level design and analysis
of business processes: The advantages of declarative specifications. In: Proc.
RCIS. pp. 99–110.

Rychkova, I., Regev, G., Wegmann, A., 2008b. Using declarative specifications in
business process design. International Journal of Computer Science and Appli-
cations 5 (3b), 45 – 68.

Sabin, D., Freuder, E., 1994. Contradicting convectional wisdom in constraint
satisfaction. In: Proc. ECAI. pp. 125–129.

Sadiq, S. W., Orlowska, M. E., Sadiq, W., 2005. Specificationand validation of
process constraints for flexible workflows. Information Systems 30 (5), 349–
378.

Salido, M., 2010. Introduction to planning, scheduling andconstraint satisfaction.
Journal of Intelligent Manufacturing 21 (1), 1–4.

Schonenberg, H., Weber, B., van Dongen, B., van der Aalst, W., 2008. Supporting
flexible processes through recommendations based on history. In: Proc. BPM.
pp. 51–66.

Smith, D., Frank, J., Jónsson, A., 2000. Bridging the gap between planning and
scheduling. Knowledge Engineering Review 15(1), 47–83.

Smith, D., Weld, D., 1999. Temporal planning with mutual exclusion reasoning.
In: Proc. IJCAI. pp. 139–144.

Son, J., Kim, M., 2001. Improving the performance of time-constrained workflow
processing. Journal of Systems and Software 58 (3), 211–219.

BIBLIOGRAPHY 193

Thompson, G., Goodale, J., 2006. Variable employee productivity in workforce
scheduling. European Journal of Operational Research 170 (2), 376–390.

Timpe, C., 2002. Solving planning and scheduling problems with combined inte-
ger and constraint programming. OR Spectrum 24 (4), 431–448.

Tjoa, S., Jakoubi, S., Goluch, S., Kitzler, G., 2010. Planning dynamic activity and
resource allocations using a risk-aware business process management approach.
In: Proc. ARES. pp. 268–274.

Tsai, C., Huang, K., Wang, F., Chen, C., 2010. A distributed server architecture
supporting dynamic resource provisioning for BPM-oriented workflow mana-
gement systems. Journal of Systems and Software 83 (8), 1538–1552.

Tu, P., Son, T., Pontelli, E., 2007. CPP: A constraint logic programming based
planner with preferences. In: Proc. LPNMR. pp. 290–296.

van der Aalst, W., 2003. Patterns and XPDL: A critical Evaluation of the XML
Process Definition Language. In: QUT Technical report FIT-TR-2003-06. pp.
1–30.

van der Aalst, W., Jablonski, S., 2000. Dealing with workflowchange: identifica-
tion of issues and solutions. International Journal of Computer Systems Science
and Engineering 15 (5), 267–276.

van der Aalst, W., Pesic, M., 2006a. DecSerFlow: Towards a Truly Declarative
Service Flow Language. In: LNCS 4184. pp. 1–23.

van der Aalst, W., Pesic, M., 2006b. Specifying, discovering, and monitoring ser-
vice flows: Making web services process-aware. In: Technical Report BPM-
06-09, BPMcenter.org.

van der Aalst, W., Pesic, M., Schonenberg, H., 2009. Declarative workflows: Bal-
ancing between flexibility and support. Computer Science - Research and De-
velopment 23 (2), 99–113.

van der Aalst, W., Schonenberg, M., Song, M., 2011. Time prediction based on
process mining. Information Systems 36 (2), 450–475.

van der Aalst, W., ter Hofstede, A., Weske, M., 2003. Business Process Manage-
ment: A Survey. In: Proc. BPM. pp. 1–12.

van der Aalst, W., van Hee, K., 2002. Workflow Management: Models, Methods,
and Systems. MIT Press.

194 BIBLIOGRAPHY

van Dongen, B., 2007. Process Mining and Verification. Ph.D.thesis, Eindhoven
University of Technology, Eindhoven.

van Dongen, B., van der Aalst, W., 2005. A Meta Model for Process Mining Data.
In: Proc. Caise, 17th Edition. pp. 309–320.

van Hentenryck, P., 1999. The OPL Optimization ProgrammingLanguage. MIT
Press.

Vanderfeesten, I., Reijers, H., van der Aalst, W., 2008. Product based workflow
support: A recommendation service for dynamic workflow execution. In: Tech-
nical Report BPM-08-03, BPMcenter.org.

Vidal, V., Geffner, H., 2006. Branching and pruning: An optimal temporal pocl
planner based on constraint programming. Artificial Intelligence 170 (3), 298–
335.

Vossen, T., Ball, M., Lotem, A., Nau, D., 1999. On the use of integer programming
models in ai planning. The Knowledge Engineering Review 15 (1).

Wainer, J., Bezerra, F., Barthelmess, P., 2004. Tucupi: a flexible workflow system
based on overridable constraints. In: Proc. SAC. pp. 498–502.

Wainer, J., De Lima Bezerra, F., 2003. Constraint-based flexible workflows. In:
Proc. CRIWG. pp. 151–158.

Weld, D., 1994. Introduction to least commitment planning.AI Magazine 15 (4),
27–61.

Weske, M., 2007. Business Process Management: Concepts, Methods, Technol-
ogy. Springer.

Westergaard, M., 2011. Access/cpn 2.0: A high-level interface to coloured petri
net models. In: Proc. PETRI NETS. pp. 328–337.

White, S., et al., 2004. Business Process Modeling Notation(BPMN), Working
draft, Version 1.0.

Wolfman, S., Weld, D., 1999. Combining linear programming and satisfiability
solving for resource planning. The Knowledge Engineering Review 15 (1).

Younes, H., Simmons, R., 2003. VHPOP: Versatile heuristic partial order planner.
Journal of Artificial Intelligence Research 20, 405–430.

Zadeh, L., 1963. Optimality and non-scalar-valued performance criteria. IEEE
Transactions on Automatic Control 8, 59–60.

BIBLIOGRAPHY 195

Zhao, J., Stohr, E., 1999. Temporal workflow management in a claim handling
system. SIGSOFT: Software Engineering Notes 24 (2), 187–195.

Zisman, M., 1977. Representation, Specification and Automation of Office Pro-
cedures. Ph.D. thesis, Wharton School.

	List of Figures
	List of Tables
	Introduction
	Generalities
	Motivation and Contributions
	Structure
	Publications
	Research Projects

	Background
	Business Process Management
	BPM Life Cycle
	Process Modelling

	Planning & Scheduling
	Scheduling
	Planning
	Integrating P&S

	Constraint Programming
	Constraint Satisfaction Problems
	Solving the CSP
	Constraint Programming for Planning and Scheduling

	AI Planning and Scheduling for BPM
	P&S for the Process Design & Analysis Phase
	P&S for the Process Enactment Phase

	From Constraint-based Specifications to Optimized BP Enactment Plans
	Introduction
	Motivation
	Contribution

	ConDec-R
	Extending ConDec with Estimates and Resource Availabilities
	Extending ConDec with Parallel Execution of Activities

	From ConDec-R to Optimized Enactment Plans
	Translating the ConDec-R Model as a CSP Model
	Global Constraints and Filtering Rules
	Solving the COP

	Empirical Evaluation
	Experimental Design
	Experimental Results and Data Analysis

	Related Work

	User Recommendations for the Optimized Execution of BPs
	Introduction
	Motivation
	Contribution

	Method for Generating Recommendations
	Generating Recommendations on Possible Next Execution Steps

	A Running Example
	Build-time Phase
	Run-time Phase

	Empirical Evaluation
	Search Algorithms
	Experimental Design
	Experimental Results and Data Analysis

	Discussion and Limitations
	Related Work

	From Optimized BP Enactment Plans to Optimized BP Models
	Introduction
	Motivation
	Contribution

	From Optimized Enactment Plans to Optimized Business Process Models
	A Running Example
	The Travel Agency Problem
	ConDec-R Specification for the Travel Agency Problem
	Optimized Enactment Plan and Optimized BP Model for the Travel Agency Problem
	Dynamic Programming for Combining Solutions of the Travel Agency Problem

	Empirical Evaluation
	Experimental Design
	Experimental Results and Data Analysis

	Discussion and Limitations
	Related Work

	Planning and Scheduling of Business Processes in Run-Time
	Introduction
	Motivation
	Contribution

	Framework for the Enactment of BPs Involving P&S Decisions
	A Case of Study
	The Multi-mode Repair Planning Problem
	BPMN Model for the Multi-mode Repair Planning Problem

	Empirical Evaluation
	Experimental Design
	Experimental Results and Data Analysis

	Related Work

	Conclusions
	Future Work
	Appendices
	ConDec-R Templates
	Filtering Rules for ConDec-R Templates
	Existence(A, N)
	Absence(A, N)
	Exactly(A, N)
	Responded Existence(A, B)
	CoExistence(A, B)
	Precedence(A, B)
	Response(A, B)
	Succession(A, B)
	Alternate Precedence(A, B)
	Alternate Response(A, B)
	Alternate Succession(A, B)
	Chain Precedence(A, B)
	Chain Response(A, B)
	Chain Succession(A, B)
	Responded Absence(A, B) and Not CoExistence (A, B)
	Negation Response, Precedence, Succession
	Negation Alternate Precedence(A, B)
	Negation Alternate Response(A, B)
	Negation Alternate Succession(A, B)
	Negation Chain Succession(A, B)

	Algorithms for Generating BPMN Models
	Complexity Analysis

	AI Techniques for Solving the Multi-mode Repair Planning Problem
	Constraint-based Approach
	Variables of the CSP
	Constraints of the CSP

	PDDL Specification

	Bibliography

