AUTOMATING THE NEGOTIATION
OF AGREEMENTS

0

A FRAMEWORK FOR DEVELOPING AUTOMATED
NEGOTIATION SYSTEMS

MANUEL RESINAS
UNIVERSIDAD DE SEVILLA

DOCTORAL DISSERTATION
ADVISED BY DR. RAFAEL CORCHUELO

e/%
»

Ehe Distributed
SEVILLE

JUNE, 2008

First published in June 2008 by
The Distributed Group

ETSI Informatica

Avda. de la Reina Mercedes s/n
Sevilla, 41012. SPAIN

Copyright (© MMVIII The Distributed Group
http://www.tdg-seville.info
contact@tdg-seville.info

In keeping with the traditional purpose of furthering science, education and research,
it is the policy of the publisher, whenever possible, to permit non-commercial use and
redistribution of the information contained in the documents whose copyright they
own. You however are not allowed to take money for the distribution or use of these
results except for a nominal charge for photocopying, sending copies, or whichever
means you use redistribute them. The results in this document have been tested care-
fully, but they are not guaranteed for any particular purpose. The publisher or the
holder of the copyright do not offer any warranties or representations, nor do they
accept any liabilities with respect to them.

Classification (ACM 1998): D.2.11 Software Architectures: Domain-specific architec-
tures; D.2.13 Reusable Software: Domain engineering; 1.2.11 Distributed Artificial In-
telligence: Intelligent agents; H.4.2 Information Systems Applications: Decision sup-
port; K.4.4 Electronic Commerce: Distributed commercial transactions.

Support: Partially supported by the European Commission (FEDER) and Spanish
Government under CICYT project AgilWeb (TIC-2000-1106-C02-01) and grant “Ayu-
das para el desarrollo de précticas especializadas en estudios de posgrado”, and by
the University of Seville under grant “Plan Propio de movilidad”. Complementary
funding has been provided by the Spanish Government under grant TIN2007-64119
and the Andalusian Local Government under grant P07-TIC-02602.

http://www.tdg-seville.info�
contact@tdg-seville.info�

UNIVERSIDAD DE SEVILLA

The committee in charge of evaluating the dissertation presented by
Manuel Resinas in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Computer Engineering, hereby recommends
of this dissertation and awards the author the

grade
Isidro Ramos Salavert
Catedratico de Universidad
Univ. Politécnica de Valencia
Miguel Toro Bonilla Carlos Delgado Kloos
Catedratico de Universidad Catedratico de Universidad
Univ. de Sevilla Univ. Carlos III de Madrid
Mario G. Piattini Velthuis Carlos Molina Jiménez
Catedratico de Universidad Research Associate
Univ. de Castilla-La Mancha Newcastle University

To put record where necessary, we sign minutes in

4No,mejor el
\S, 532: =2

To my parents.
To Beli.

Contents

Acknowledgements il xi
Abstractcoiiiiiii i e e Xiii
Resumenciiiiiiiiiiiiiiiiiiiiiiiinennnnenns XV

I Preface
1 Introductioncoiiiiiiiiiiiiiiiiiiiiiiin., 3
1.1 Researchcontext, 4
12 Researchrationale L. 6
1.3 Summary of contributions 7
1.4 Structure of this dissertation 8
2 Motivationciiiiiiiiiiiii i i i 11
21 Introduction 12
22 Problems 12
2.2.1 Negotiations are multi-term 13
2.2.2 Parties are heterogenous 14
2.2.3 Partial information about parties 15
224 Marketsaredynamic 16
2.3 Analysis of current solutions o oL 17
2.3.1 Negotiation-related specifications 17
2.3.2 Ad-hoc automated negotiation systems 18
2.3.3 Automated negotiation frameworks 19
24 DISCUSSIONt 24

25 Summary ... 25

il

Contents

II Background information

3 Negotiationrudimentsooiiiiiiiae 29
3.1 Introduction 30
32 Agreements 31

321 Foundationsiiiiiiii i 32
322 Proposals 33
3.3 Preferencesiiii 34
3.3.1 Foundationsiiiiiii i 35
332 Proposals 36
3.4 Negotiation protocolsl 38
34.1 Foundationsot 38
342 Proposals i 41
35 Summary ... 44

4 Negotiation intelligencecoviintt. 45
4.1 Introductioniiit i 46
42 Decisionmaking i i 46

421 Foundationsciiiiiiii 47
422 Proposals i 49
43 Worldmodelling i 54
431 Foundationsciiiiiiiiii . 54
432 Proposals 56
44 SUMIMATY ...\ttt 59

5 Automated negotiationsystems 61
5.1 Introduction 62
5.2 Ad-hoc automated negotiation systems 62
5.3 Automated negotiation frameworks 66

5.3.1 Protocol-oriented frameworks 66
5.3.2 Intelligence-oriented frameworks 69
54 Summary ... 74

IIT Our approach

6 NegoFASTinanutshellooiiiit. 77

6.1

Introduction, 78

Contents 1ii

6.2 Preliminaries 79
6.3 The NegoFAST reference architecture 83
6.3.1 The NegoFAST-Core reference architecture 83

6.3.2 The NegoFAST-Bargaining reference architecture 84

6.4 The NegoFAST framework 86
6.4.1 The NegoFAST-Core framework 86

6.4.2 The NegoFAST-Bargaining framework 88

6.5 August, a proof-of-concept implementation 89
6.6 Summary 89
7 The NegoFAST-Core reference architecture 91
71 Introduction i 92
72 Coordination i 93
721 Roles 94

722 Interactions il 99

7.3 Protocol management 101
731 Roles ... 102

732 Interactions il 103

74 Decisionmaking oo i 105
741 Roles ... 106

742 Interactions i il 108

75 Worldmodelling 109
751 Roles 110

752 Interactions il 111

7.6 Environmental resources oL 112
7.7 SUMMATY ... 114
8 The NegoFAST-Bargaining reference architecture 115
81 Introduction i 116
8.2 Protocolhandler oL 116
821 Roleso 118

822 Interactions i 118

8.3 Negotiation coordinator 119
831 Roles ... 119

83.2 Interactions il 122

8.4 Responsegenerator i 123
841 Roleso 123

8.4.2 Interactions 125

iv

10

Contents

8.5 Environmental resources, 126
86 Summary 128
The NegoFAST-Core framework 129
9.1 Introductionc..uiiuiii i 130
9.2 Datamodel e 130
9.3 Environmentinterfaces 137
94 Interactionsttt e e 151
9.5 Statemachines 162
9.6 SUMMATIYt 165
The NegoFAST-Bargaining framework 167
10.1 Introduction i e 168
10.2 Datamodel 169
10.3 Environmental resourcesiiiiiiiiinin.. 170
10.4 Interactionsc.iiiiii i 172
10.5 Statemachines i 182
10.6 Summary 186

IV Final remarks

11

V

A

Conclusions oottt 189
Appendices
Use case: Submitting computing jobs 195
Al Introduction i 196
A.2 Preferences, agreements and proposals 198
A.3 Negotiation protocolsl 200
A.4 Decision-makingroles o il 201
A5 Optionalroles i 203
A6 Summary 204
Use case: Hosting computingjobs 205
B.1 Introduction i 206

B.2 Preferences, agreements and proposals 206

Contents v

B.3 Negotiation protocols i 206

B.4 Decision-makingroles 207

B.5 Optionalroles i 209

B.6 Summary 210

C Use case: Strategies equilibrium 213
C1 Introduction i 214

C.2 The automated negotiation system 215
C.2.1 Preferences, agreements and proposals 216

C.2.2 Negotiation protocols 216

C.2.3 Decision-makingroles 217

C.24 Optionalroles i 218

C3 Integration withJGAP i i 218

Cd Summaryccooiiiiiiii 220

D Auctions i i 221

Bibliography ...t 227

vi

Contents

List of Figures

6.1 Conceptual map of an automated negotiation system 80
6.2 General structure of an automated negotiation system 82
6.3 The NegoFAST-Core reference architecture 84
6.4 The NegoFAST-Bargaining reference architecture 85
6.5 NegoFAST-Core framework packages 87
6.6 NegoFAST-Bargaining framework packages 88
7.1 The NegoFAST-Core reference architecture 92
7.2 Sources of party references il 94
7.3 State machine of the system context 95
7.4 State machine of a party context ... 97
7.5 State machine of a negotiation context, 99
8.1 The NegoFAST-Bargaining reference architecture 117
8.2 State machine of a negotiation context for a bilateral protocol 121
8.3 NegoFAST-Core extended by NegoFAST-Bargaining 127
9.1 NegoFAST-Core framework packages 131
9.2 Datamodel of preferencesl 132
9.3 Data model of agreements and proposals 134
9.4 Data model of negotiation messages 136
9.5 Interface of AgreementsResource 138
9.6 Interface of PreferencesResource 140
9.7 Interface of SystemContextData 141
9.8 Interface of PartyContextData 142
9.9 Interface of NegotiationContextData 146
9.10 Interface of WorldModel, 148
9.11 Interface of NegotiationHistory 150

9.12 Interaction UserInteraction mueeiuneinan. 152

viii List of Figures
9.13 Interaction IncomingProtocolNegotiation 153
9.14 Interaction IncomingNegotiation 154
9.15 Interaction RequestPartyProcessing 155
9.16 Interaction RequestInformation 157
9.17 Interaction RequestProtocolNegotiation 158
9.18 Interaction ConfigureHandler 158
9.19 Interaction RequestNegotiation 159
9.20 Interaction RequestCommitApproval 160
9.21 Interaction RequestAdvise, 162
9.22 State machine of the SystemCoordinator 163
9.23 State machine of the PartyCoordinator 164
10.1 NegoFAST-Bargaining framework packages 168
10.2 Data model of NegoFAST-Bargaining 169
10.3 Interface of BargainingContextData 171
10.4 State machine of the abstract bilateral negotiation protocol 172
10.5 Interaction ProtocolConversion 174
10.6 Interaction CoordinateNegotiation 177
10.7 Interaction SubmitPolicies 178
10.8 Interaction RequestResponseooooon. 179
10.9 Interaction RequestProposal 180
10.10 Interaction CreateProposal 181
10.11 State machine of the BilateralNegotiator 183
A.1 Computing job submission scenario 197
A.2 Preferences, agreements and proposals models 199
A.3 Implementation of negotiation protocolroles 200
A4 Implementation of decision-makingroles 202
A5 Implementation of optionalroles 204
B.1 Implementation of decision-makingroles 208
B.2 Implementation of utility function estimator 210
C.1 Integration of the automated negotiation system with JGAP 219

List of Tables

2.1
2.2
2.3

3.1
3.2

51
52
5.3

6.1

7.1

Summary of problems automated negotiation systems must face ...[13
Comparison of automated negotiation frameworks 20
Separation of concerns in automated negotiation frameworks 22
Description of common performatives 40
Summary of bargaining protocols 42
Summary of representative ad-hoc automated negotiation systems .63

Summary of protocol-oriented frameworks 67
Summary of intelligence-oriented frameworks 70
Summary of levels of abstraction and extensions 79
Contexts of NegoFAST-Core, 93

D.1 Summary of auction protocols 223

List of Tables

Acknowledgements

Acknowledgement of one another’s faults
is the highest duty imposed by our love of truth.

Ambrose G. Bierce, 1842—1914
Newspaper columnist

I am in no doubt that the best moment during the development of your
Philosophise Doctor Thesis and the writing of your dissertation is when you
finish them both. Not only because you reach the end of a hard way, but
also because you can have a few minutes to relax, look back, and put your
gratitude to many people in black ink.

Many individuals, friends and colleagues have been instrumental in mak-
ing this dissertation a reality. Pivotal in this role was my research advisor,
Dr. Rafael Corchuelo, since I would not have been able to finish my work
without his help. Since he was the advisor of my master thesis, he has always
trusted me and has taught me everything I know about research, which I be-
lieve it is the most important knowledge I have acquired while working on
this dissertation.

The help of a good research team is of uttermost importance. I have been
lucky since my thesis work has been developed in the bosom of a group of
people, who have given me the encouragement and support I have needed
since the beginning. Chiefly Pablo Fernandez, with whom I have shared so
many working hours and whose arguments have provide me with valuable
insights and feedback for this research work. I also would like to thank Dr.
Miguel Toro for his cheerful willingness to proof-read and criticise this doc-
ument. Finally, I shall never forget the breakfasts and lunches (and beers)
with a list of colleagues and friends too long to mention, which made my long
working hours more bearable.

Xii Acknowledgements

Finally, and most important, I thank my parents for supporting me un-
conditionally in the pursuit of my life; and to Beli, without whose love and
support, not a word would have been written.

Abstract

You will have only an opportunity
to make a first impression.

Popular saying

One of the major achievements of the Service-Oriented Architecture (SOA)
and the Business Process Management (BPM) initiatives is providing the ref-
erence models and technologies that are necessary to help companies bridge
the gap between businesses and IT, which is commonly referred to as the Busi-
ness/IT misalignment. In this scenario, real-world business processes require
to search, assess, and select the best available supply chain service providers,
which, more often than not requires to negotiate with them the terms of a
service agreement that regulates the properties and guarantees regarding the
service provisioning. In this context, our research hypothesis is that the au-
tomation of service agreement negotiations shall improve the service provi-
sion process as a part of the business’ supply chain, mainly in open and dy-
namic markets in which the flexibility in business relationships, the openness
to new providers and the best exploitation of a company’s resources are key
aspects in the business management strategies.

Taking this hypothesis as a starting point, it follows that the development
of automated negotiation systems may be a key point of the IT infrastruc-
ture of many companies, chiefly, but not limited to, those that are interested
on delivering their services via the Internet. Unfortunately, developing such
automated negotiation systems is a challenging task because of the following
reasons: first, service negotiations involves many terms such as response time,
security features or availability; second, in open environments, parties are het-
erogeneous, which means that automated negotiation systems must adapt to
many different scenarios; third, automated negotiation systems must be able
to negotiate with partial information about the other parties; and, fourth, ser-
vice negotiations are usually take place in highly dynamic markets in which
there are several providers and consumers at the same time and where supply

Xiv Abstract

and demand requirements may change dynamically depending on the avail-
ability of resources.

The goal of this dissertation is to support the thesis that it is convenient
to develop a software framework that provides engineering support to make
the development of automated negotiation systems easier in the context of
negotiating service agreements in open and dynamic environments.

To this end, we present a strong motivation for this idea; we describe the
problems that appear when negotiating in such environments; we detail why
current approaches to build automated negotiation systems are not appropri-
ate for service negotiations in open and dynamic environments; and, last but
not least, we present NegoFAST, which is our approach to build such auto-
mated negotiation systems. NegoFAST is defined at three levels of abstrac-
tion: a reference architecture, a software framework and a proof-of-concept
implementation. To enhance its reusability, it has been divided into a protocol-
independent part, NegoFAST-Core, which is common to all negotiation pro-
tocols, and different protocol-specific extensions. In this dissertation, we have
developed a bargaining-specific extension, NegoFAST-Bargaining, although
other different extensions can be implemented. Furthermore, NegoFAST pro-
vides direct support to deal with the aforementioned problems of service ne-
gotiations in open and dynamic environments, which makes our proposal a
novel, original contribution.

Resumen

Solo tendrds una oportunidad
de dar una primera impresion.

Dicho popular

Uno de los mayores logros de las Arquitecturas Orientadas a Servicios
(SOA) y la Gestion de Procesos de Negocio (BPM) es el de proporcionar los
modelos de referencia y tecnologias que son necesarias para reducir la bre-
cha entre el mundo empresarial y las Tecnologias de la Informacién (TI). En
este escenario, los procesos de negocio requieren la buisqueda, asesoramiento
y seleccién de los mejores proveedores de servicios disponibles. Este hecho
requiere a menudo la negociacién con los proveedores de servicio de los tér-
minos de un acuerdo de servicio que regula las propiedades y garantias del
mismo. En este contexto, nuestra hipoétesis de investigacion es que la auto-
matizacion de las negociaciones de acuerdo de servicio mejorara el proceso
de aprovisionamiento del mismo como parte de la cadena de suministro del
negocio. Estas ventajas se maximizaran en mercados abiertos y dindmicos en
donde la flexibilidad en las relaciones de negocio, la apertura a nuevos pro-
veedores y la obtencién del maximo rendimiento posible a los recursos de una
empresa son aspectos fundamentales dentro de las estrategias empresariales.

Tomando esta hip6tesis como punto de partida, se deduce que el desarro-
llo de sistemas de negociacién automética puede ser un aspecto clave de la
infraestructura de Tecnologias de la Informacién de muchas empresas. Princi-
palmente, aquellas que estdn interesadas en ofrecer sus servicios a través de
Internet. Desafortunadamente, el desarrollo de sistemas de negociacién auto-
maética es una tarea compleja por las siguientes razones: primero, las nego-
ciaciones de servicio incluyen la negociacién de multiples términos como el
tiempo de respuesta, caracteristicas de seguridad o disponibilidad; segundo,
en entornos abiertos, las partes con las que se negociara son heterogéneas, lo
que significa que los sistemas de negociaciéon automatica deben adaptarse a
multiples escenarios; tercer, los sistemas de negociacién automaética deben ser

XVi Resumen

capaces de negociar con informacién parcial sobre las otras partes, y, cuarto,
las negociaciones de servicio suelen tener lugar en mercados muy dindmicos,
en los que hay muchos proveedores y consumidores al mismo tiempo y donde
los requisitos de la oferta y la demanda cambian dindmicamente dependiendo
de la disponibilidad de los recursos.

El objetivo de esta tesis doctoral es apoyar la idea de que es conveniente el
desarrollo de un framework software que proporcione soporte desde el punto
de vista de la ingenieria para el desarrollo de sistemas de negociacién auto-
maética en el contexto de la negociacién de acuerdos de servicio en entornos
abiertos y dindmicos.

Con este fin, en esta memoria presentamos una motivacién bien funda-
mentada de esta idea; describimos los problemas que aparecen en este tipo
de sistemas al negociar en estos entornos; detallamos por qué las aproxima-
ciones actuales al desarrollo de sistemas de negociacién automatica no son
apropiadas para las negociaciones de servicios en entornos abiertos y dina-
micos, y, por tltimo, presentamos NegoFAST, que es nuestra aproximacion al
desarrollo de estos sistemas de negociaciéon automaética. NegoFAST esta defi-
nido en tres niveles de abstraccién: una arquitectura de referencia, un frame-
work software y una implementacién en forma de prueba de concepto. Para
incrementar su reusabilidad, NegoFAST se ha divido en una parte indepen-
diente del protocolo, NegoFAST-Core, que es comtn a todos los protocolos
de negociacién, y extensiones especificas del protocolo. En este trabajo de in-
vestigacion, hemos desarrollado una extension especifica para negociaciones
basadas en el intercambio de oferta y contraoferta, NegoFAST-Bargaining. Sin
embargo, el sistema estd abierto a otras posibles extensiones. Con todo esto,
NegoFAST proporciona soporte directo para tratar con los problemas, mencio-
nados anteriormente, sobre las negociaciones de servicio en entornos abiertos
y dindmicos, lo que hace de nuestra propuesta una contribucién original.

Part I

Preface

Chapter 1

Introduction

There is nothing more difficult to take in hand,

more perilous to conduct, or more uncertain in its success,
than to take the lead in the introduction

of a new order of things.

Niccolo Machiavelli, 1469-1527
Italian dramatist, historian, and philosopher

n this dissertation, we report on our work to design a new framework

that helps to build automated negotiation systems that are able to nego-
tiate service agreements in open and dynamic environments. In this chapter,
we first introduce the elements that constitute the context of our research work
in Section §1.1; we then detail the motivation and goals of this dissertation in
Section §1.2; next, we summarise our main contributions in Section §1.3; fi-
nally, we describe the structure of the dissertation in Section §1.4.

4 Chapter 1. Introduction

1.1 Research context

There is a well-know problem for Chief Information Officers that is com-
monly referred to as the Business/IT misalignment [19]. Roughly speaking,
this problem can be stated as follows: What can be done to map business
needs onto IT capabilities? Or, complementarily: What can be done to re-
alise business value from IT investments? The root of this problem is the lack
of communication between business and IT, which is usually caused because
business and IT people speak very different languages. It is unusual that IT
managers do not fully understand business or its methods and terminology,
but they use techno-babble that is not commonly understood by business man-
agers. As a result, it is hard to map business goals onto concrete IT initiatives
and, hence, the results of IT are not as valuable as they could be [24].

In this context, one of the major achievements of the Service-Oriented Ar-
chitecture (SOA) and the Business Process Management (BPM) initiatives has
been to provide the reference models and technologies that are necessary to
help companies bridge the gap between businesses and IT [16]. Particularly,
the SOA initiative has emerged as a strategy for streamlining business deliv-
ery; complementarily, the BPM initiative has emerged as a strategy for stream-
lining supply chains. In other words, the SOA initiative provides technologies
to enable companies to offer their services, i.e. their business delivery, whereas
the BPM initiative provides technologies to make it explicit the business pro-
cess that is necessary to provide a service, i.e. it focuses on the implementation
of the supply chain [30].

Real-world business processes require to search, assess, and select the best
available supply chain services providers, which, more often than not requires
to negotiate the terms of a service agreement with them [18]. Automating the
negotiation of agreements, so that the human participation in the process is re-
duced to a minimum shall bring a variety of advantages, e.g., cutting the cost
of reaching an agreement, increasing the speed in the contracting process, and
allowing the establishment of new business relationships in a more flexible
way [11, 122, 27,139, 187,122].

It is not surprising then that, with the advent of the Internet and electronic
businesses [67, 113, 134], the need to automate such negotiation processes is
becoming a must due to the general, broad availability of service providers
and their need to keep their IT resources in use 24 hours a day, 7 days a
week [32,103]. Furthermore, current service-oriented architectures make au-
tomated negotiation of agreements a valuable resource even in intraorganisa-
tional environments. In a service-oriented approach, applications are devel-
oped by composing and invoking network services instead of programming

1.1. Research context 5

new code. In this context, one of the main reasons to use service agreements is
to improve the computing-resources planning inside an organisation, which
argues for these service agreements to be managed as automatically as possi-
ble, including its creation through a negotiation process.

The first attempts to automate negotiation processes date back to the early
80s, being the ContractNet protocol [126] one of the most significant proposals
to define an interaction protocol between the negotiating parties. Since then,
much work has been done on developing algorithms, protocols and models
that have desirable characteristics for automated negotiations [64]. More re-
cently, in the web services world, WS-Negotiation [62] and WSLA [33] were
the first attempts to tackle negotiations of web services agreements. However,
the former allow only simple interactions, and the latter was abandoned to
work in another specification: WS-Agreement [4]. Currently, WS-Agreement,
which is a proposed recommendation of the Open Grid Forum, has emerged
as the most significant specification for the creation of service agreements. The
goal of WS-Agreement is threefold: defining a document format for the agree-
ments, establishing a concrete agreement creation process and describing the
communication interfaces that must be implemented by the parties involved
in the agreement creation process. However, the negotiation capabilities of
WS-Agreement are very limited. To solve this problem, an extension to enable
negotiations, the so-called WS-AgreementNegotiation is being developed.

In this dissertation, we do not intend to tackle all types of automated ne-
gotiations, but we focus on automated negotiations of service agreements in
open and dynamic environments. These automated negotiations have several
characteristics that must be taken into consideration. First, service agreements
involve multi-term negotiations, i.e., although there are negotiations that only
involve one term (usually the price), there are many others that involve the ne-
gotiation of many terms before reaching an agreement. Second, negotiating in
open environments means that the parties with which our system negotiates
may change over time. Note that this includes not only interorganisational
environments, but also highly distributed intraorganisational environments
such as grid services in large organisations, in which services are distributed
amongst different departments and they provide services to the other parts of
the organisation. And third, negotiating in dynamic markets, which is com-
mon with Internet-based businesses, involves that there are several providers
and consumers at the same time and where supply and demand may change
dynamically depending on the resources availability.

Since not all negotiation mechanisms are well suited to deal with all types
of negotiations [64], in this dissertation, we just focus on those that are more
useful for our purposes. This is particularly relevant when it comes to the

6 Chapter 1. Introduction

negotiation protocol and their support for multi-term negotiations. Generally
speaking, negotiation protocols can be categorised into auctioning and bar-
gaining [61]. However, although auctions are very useful in many scenarios,
they are not well suited to deal with agreements with multiple terms: most
typical auctions just allow for the negotiation of one term, the price, and, al-
though multi-attribute auctions allow for the negotiation of agreements with
multiple terms, they require a procedure to guide the bidder in the process
of improving the bid (cf. Appendix §D). This procedure may involve the dis-
closure of their own preferences, which may take the auctioneer to a weak
negotiation position [108]. As a consequence, in this dissertation we just fo-
cus on bargaining protocols. Nevertheless, we acknowledge the importance
of auctions; and we consider that the support for auctions requires further
research work in future.

1.2 Research rationale

From the previous section we conclude the following hypothesis:

The automation of service agreement negotiations shall improve the
service provision process as a part of the business” supply chain,
mainly in open and dynamic markets in which the flexibility in busi-
ness relationships, the openness to new providers and the best ex-
ploitation of a company’s resources are key aspects in the business
management strategies.

Taking this hypothesis as a starting point, it follows that the development
of automated negotiation systems may be a key point of the IT infrastructure
of many companies, chiefly, but not limited to, those that are interested in
delivering their services via the Internet.

Unfortunately, developing such automated negotiation systems is not an
easy task. It is then not surprising that very few such systems exist. Au-
tomating the negotiation of service agreements in open and dynamic environ-
ments raises several problems. On the one hand, creating service agreements
involves negotiating many terms such as response time, security features or
availability, not only the price as is the case of many negotiations of goods. On
the other hand, negotiating in open and dynamic environments requires the
automated negotiation systems to be able to deal with heterogeneous parties,
which is common in open environments; to negotiate with partial information
about the other parties, and to cope with dynamic ever-changing markets in

1.3. Summary of contributions 7

which supply and demand may change quickly depending on the resources
available.

Authors have followed three approaches to build automated negotiation
systems: ad-hoc solutions [20, 43, 44, 69, 77,179,/87,104,129], protocol-oriented
frameworks [9, 75, 114] and intelligence-oriented frameworks [6, 26, 55, 74, 84,
136]. However, none of these proposals are appropriate to build systems that
negotiate automatically service agreements in open environments. Ad-hoc so-
lutions lack the reusability and adaptability that are necessary to deal with het-
erogeneous parties in open environments. Protocol-oriented frameworks only
focus on the negotiation protocol and, hence, need to be complemented with
negotiation intelligence capabilities by means of ad-hoc mechanisms or an
intelligence-oriented framework. Finally, current intelligence-oriented frame-
works are not well suited to deal with partial information about parties and
dynamic markets.

As a consequence, our thesis is that:

It is convenient to develop a software framework that provides en-
gineering support to make the development of automated negotiation
systems easier in the context of negotiating service agreements in open
and dynamic environments.

1.3 Summary of contributions

On the road towards making the development of automated negotiation
systems easier, we have made the following contributions:

First, we have made a thorough analysis of the state of the art in negotiation
rudiments, protocols and intelligence algorithms. The novelty of this analysis
is its focus on bridging the gap between the many different terminologies and
techniques useful in this field within a coherent comparison framework.

Second, we have analysed the problems of negotiating service agreements
in open and dynamic environments and we have elicited the requirements that
such negotiation context poses on the automated negotiation systems. Then,
we have compared current approaches to build automated negotiation sys-
tems with them and concluded that they are not usually well suited to be ap-
plied to the development of automated negotiation systems able to negotiate
in such environments at a sensible cost.

Third, we have developed NegoFAST, which is the main result of this dis-

8 Chapter 1. Introduction

sertation. NegoFAST is our approach for developing automated negotiation
systems, and it is defined at three levels of abstraction. The first one is the
NegoFAST reference architecture, which provides a foundation for develop-
ing automated negotiation systems. It is divided into a protocol-independent
reference architecture, the so-called NegoFAST-Core, and protocol-specific ex-
tensions. In this dissertation, we describe a bargaining-specific extension, the
so-called NegoFAST-Bargaining. This allows us to deal with the different re-
quirements posed by different protocols while keeping the reusability of the
other elements of the reference architecture. The second level of abstraction
is the NegoFAST framework, which provides an instantiation of the Nego-
FAST reference architecture by defining the interfaces and protocols amongst
the elements defined in the reference architecture and the data structures they
require. Its design goal has been maximising the reusability and extensibil-
ity of the framework. And the third level of abstraction is August, which is
a reference implementation of the NegoFAST framework that has been used
to implement several use cases that are described in the appendices of this
dissertation.

1.4 Structure of this dissertation

This dissertation is organised as follows:

Part I: Preface. It comprises this introduction and Chapter §2, in which we
motivate our research and conclude that current solutions are not prac-
tical enough.

Part II: Background information. Here, our goal is to provide the reader with
a deep understanding of the research context in which our results have
been developed, but without evaluating the different proposals. The
evaluation is carried out in Chapter §2. In Chapter §3, we detail the ne-
gotiation rudiments that are the basis of all negotiation processes includ-
ing different models to express agreements and preferences and the most
significant negotiation protocols. In Chapter §4, we describe several ap-
proaches that have been presented to implement the decision-making
and the world-modelling aspects of an automated negotiation system.
In Chapter 8§85, we analyse the approaches that have been proposed to
build automated negotiation systems and classify them.

Part III: Our approach. This is the core of our dissertation and it is organ-
ised into five chapters. In Chapter §6, NegoFAST is presented as a
general approach to build such automated negotiation systems and its

1.4. Structure of this dissertation 9

three levels of abstraction are outlined. In Chapter §7, we build on the
Gaia methodology to detail the NegoFAST-Core reference architecture in
terms of roles, interactions and environmental resources. In Chapter §8,
we follow a similar approach by detailing the NegoFAST-Bargaining ref-
erence architecture, which is an extension of the NegoFAST-Core refer-
ence architecture for bargaining protocols. In Chapter §9, we specify
the NegoFAST-Core framework, which refines the NegoFAST-Core ref-
erence architecture and provides a data model, the interfaces of the en-
vironmental resources and the roles, and the state machines of the co-
ordination roles. Similarly, in Chapter §10, we describe the NegoFAST-
Bargaining framework, which refines the NegoFAST-Bargaining refer-
ence architecture to extend the NegoFAST-Core framework to support
bargaining protocols.

Part I'V: Final remarks. It consists of one chapter in which we report on our
main conclusions and future research directions.

Part V: Appendices. We illustrate the instantiation of the framework by de-
scribing the development of several August-based automated negotia-
tion systems that implement different use cases in Appendix §A, Ap-
pendix §B and Appendix §C. In addition, we analyse auction-based pro-
tocols in Appendix §D.

10

Chapter 1. Introduction

Chapter 2

Motivation

Motivation will almost always beat mere talent.

Norman R. Augustine, 1935—
Chairman of LocKheed Martin Corporation

Ithough current work on automated negotiation provides an excellent

background to build automated negotiation systems, it is still neces-
sary to put it all together in a framework that provides engineering support
to build automated negotiation systems of service agreements in open and
dynamic environments. QOur goal in this chapter is to present the problems
that this scenario pose to automated negotiation systems; to detail to which
extent current solutions deal with these problems, and to motivate the need
for a new solution. It is organised as follows: in Section §2.1, we introduce the
chapter; in Section §2.2, we present these problems in detail; in Section §2.3,
we conclude that none of the current solutions solve these problems at a time;
in Section'§2.4, we discuss our results and compare them with current solu-
tions; finally, Section §2.5 summarises the main ideas in this chapter.

12 Chapter 2. Motivation

2.1 Introduction

In the last years, much work has been done on automated negotiation.
This work can be divided into five broad categories, namely: the agreement
model (cf. Section §3.2), i.e., the negotiation object and how it is expressed; the
preferences model (cf. Section §3.3), i.e., how to express the user preferences
about the terms of the agreement; the negotiation protocol (cf. Section §3.4),
i.e., which are the rules that govern how the parties communicate with each
other; the decision making (cf. Section §4.2), i.e., which is the behaviour of
the automated negotiation system during the negotiation or, in other words,
which strategy it follows; and the world modelling method (cf. Section §4.3),
i.e., which models must be created about the opponents or the market to sup-
port the decision-making process. Agreement model, preferences model, and
negotiation protocol are determined by the user of the automated negotiation
system and the other parties, whereas decision making and world modelling
constitute the negotiation intelligence of an automated negotiation system.

This work on automated negotiation chiefly focus on the development of
new models, algorithms or protocols that have a number of desirable charac-
teristics for automated negotiations, and it provides an excellent background
to build automated service agreement negotiation systems. Unfortunately, the
development of such systems is a challenging task because they must face the
problems that are depicted in Table §2.1 and described in the next section,
namely: negotiations are multi-term, parties are heterogeneous, we only have
partial information about them, and markets are dynamic.

Authors have followed different approaches to build such automated
negotiation systems (ad-hoc solutions, protocol-oriented frameworks, and
intelligence-oriented frameworks). However, as we discuss later in this chap-
ter, no solution seems to be appropriate enough because they do not address
successfully all problems at a time. Consequently, it is still necessary to put all
previous work in automated negotiations together in a framework that pro-
vides engineering support to build automated negotiation systems. This is
our proposal in this dissertation.

2.2 Problems

Automated negotiation systems must cope with the problems we describe
in this section when facing automated negotiations of services in open envi-
ronments, cf. Table §2.1.

2.2. Problems 13

Problem Hints

Negotiations are
multi-term

1.1) Support multi-term negotiation protocols

1.2) Manage expressive preferences models

2.2) Negotiate the negotiation protocol
Parties are

(
(
(2.1) Support multiple protocols
(
(
heterogeneous

2.3) Support multiple negotiation intelligence al-
gorithms

(2.4) Support multiple agreement models
(2.5) Support multiple preferences models

(2.6) Allow user preferences about the negotiation
process

(3.1) Manage different types of knowledge about
Partial information parties

about parties 3.2) Gather information from different sources

3.3) Build analysis-based models

4.1) Support several simultaneous negotiations

(
(
(
Markets are (4.2) Select intelligence algorithms dynamically
dynamic (4.3) Support decommitment
(4.4) Supervised creation of agreements
(

4.5) Build market models

Table 2.1: Summary of problems automated negotiation systems must face.

2.2.1 Negotiations are multi-term

Although there are negotiations that only involve one term (usually the
price), negotiations of service agreements usually involves many terms such
as availability, response time, security or price. However, not all negotiation
protocols allow multi-term negotiations (cf. Appendix §D). This enables the
negotiating parties to make trade-offs amongst the terms. Therefore, it would
be desirable for an automated negotiation system to:

14 Chapter 2. Motivation

(1.1) Support multi-term negotiation protocols: The negotiation protocol must
support the negotiation of multiple terms. This is the case for most bar-
gaining protocols. However, is not so usual for other negotiation proto-
cols such as auctioning (cf. Appendix §D).

(1.2) Manage expressive preferences models: As the number of terms in-
creases, the search space for a mutual agreements becomes larger too,
making it harder to find an agreement. This requires parties to use ad-
vanced negotiation intelligence algorithms in order to avoid excessively
long negotiations that may finish without reaching an agreement. These
algorithms require preferences to capture relations between terms and,
hence, enable making trade-offs during negotiations.

2.2.2 Parties are heterogenous

In open environments, such as the Internet, we cannot make any assump-
tions about the negotiating parties. In other words, parties may implement
a great variety of negotiation protocols, have very diverse behaviours dur-
ing the negotiation (e.g., some parties can concede more at the beginning of
the negotiation whereas others may concede only when the deadline is ap-
proaching) and express preferences and agreements following different mod-
els. Furthermore, the best negotiation protocol, behaviour, preferences model
and agreement model depends on the concrete scenario and the parties with
which the automated negotiation system is negotiating [64]. To adapt to this
variability, it would be desirable for an automated negotiation system to:

(2.1) Support multiple negotiation protocols: Since there is no standard ne-
gotiation protocol, different parties may implement different negotiation
protocols. Furthermore, there is no best negotiation protocol, but it de-
pends on the concrete situation [64]. Therefore, an automated negotia-
tion system should support several negotiation protocols to avoid losing
business opportunities because parties do not share the same protocol.

(2.2) Negotiate the negotiation protocol: Since the best negotiation protocol
depends on the concrete situation and parties may implement differ-
ent negotiation protocols, it is convenient that the automated negotia-
tion system supports a pre-negotiation phase, in which the negotiation
protocol is selected.

(2.3) Support multiple negotiation intelligence algorithms: It is convenient
that the automated negotiation system supports several negotiation in-
telligence algorithms to face the different behaviours that may present

2.2. Problems 15

the other parties during the negotiation. The reason is that the effec-
tiveness of a negotiation intelligence algorithms depends, amongst other
things, on the behaviour of the other parties. Furthermore, negotiation
intelligence algorithms depend on a particular way of expressing agree-
ments and preferences (cf. Section §4.2). Thus, simpler and more efficient
algorithms can be used when the user does not require a complex model
to express preferences and agreements.

(2.4) Support multiple agreement models: Agreements can be expressed us-
ing different models, cf. Section §3.2, and parties may choose to express
agreements in a variety of models depending on the concrete situation.
Furthermore, supporting multiple agreement models enables the user to
make a trade-off between the expressiveness it requires and the avail-
ability and complexity of the corresponding negotiation algorithms.

(2.5) Support multiple preferences models: Like agreements, there are dif-
ferent models to express preferences as detailed in Section §3.3 and par-
ties may choose one model or another depending on the situation. Par-
ticularly, two aspects must be taken into account to make this selection:
the negotiation domain and the influence the preferences model has on
the negotiation intelligence algorithms. The reason is that, depending on
the negotiation domain, it is better to express preferences in a different
way (e.g., depending on whether the terms under negotiation are inter-
related or not); furthermore, like agreements, a trade-off should be made
between the preferences model expressiveness and the availability and
complexity of the negotiation algorithms that deal with them.

(2.6) Allow user preferences about the negotiation process: Not all parties
have the same preferences about the negotiation process. Some parties
may have a shorter deadline, may be eager to reach an agreement or may
be less strict about the agreements it accepts. Therefore, an automated
negotiation system must allow users to set their preferences about the
negotiation process.

2.2.3 Partial information about parties

The knowledge about a party is important to strengthen our negotiation
capabilities [87, 139]. However, automated negotiation systems usually have
only partial information about them [47] either because parties are not known
a priori, or because they do not disclose any information about them since it
can weaken their negotiation capabilities [87]. Therefore, it would be desirable
for an automated negotiation system to:

16 Chapter 2. Motivation

(3.1) Manage different types of knowledge about parties: In particular, an
automated negotiation system can manage knowledge about the service
the other party wish to provide or consume (i.e. the functional and non-
functional characteristics), knowledge about the other party itself (e.g.
its reputation or its geographical situation), and knowledge about the
behaviour of the party during the negotiation process (e.g. its temporal
constraints) [111].

(3.2) Gather information from different sources: An automated negotiation
system should be able to acquire information from several sources. In
particular, they may query information directly to the other party (e.g.
as a template that should be filled [4]). Furthermore, they may query
third parties to obtain information related to another party (e.g. an au-
tomated negotiation system can ask a third party for the reputation of
another party).

(3.3) Build analysis-based models of parties: An automated negotiation sys-
tem can analyse previous interactions with other parties to build models
and, later, use them to make better decisions during the negotiation pro-
cess (cf. Chapter §4).

2.2.4 Markets are dynamic

It is likely that, for a single service, there are several providers and con-
sumers competing against each other. Furthermore, these service markets can
be extremely dynamic because services are not storable, which means that the
idleness of a resource results in a loss of revenue [55], and, hence, providers
may lower the cost of their services when their resources are idle. To deal with
these changing markets, an automated negotiation system should:

(4.1) Support several simultaneous negotiations: This is desirable since it
would allow so the automated negotiation system to choose the party
that offers the most profitable agreement.

(4.2) Select negotiation intelligence algorithms dynamically: When dealing
with simultaneous negotiations, the state of the negotiations can have
an influence on the negotiation intelligence algorithms employed in a
particular negotiation. Therefore, it is desirable to be able to change dy-
namically the negotiation intelligence algorithms to adapt to different
situations. For instance, if the automated negotiation system is carrying
out several simultaneous negotiations and finds a very profitable agree-
ment, it can negotiate tougher with with the other parties.

2.3. Analysis of current solutions 17

(4.3) Support decommitment from established agreements: It may be very
convenient, in dynamic markets, to be able to revoke previous agree-
ments, possibly after paying some compensation to the other party [118].

(4.4) Supervised creation of agreements: To avoid committing to agreements
that cannot be satisfied, the automated negotiation system should be su-
pervised by external elements such as a capacity estimator to determine
whether an agreement can be accepted or not [85].

(4.5) Build market models: The characteristics of the market may have an in-
fluence on the negotiation process [123]. Therefore, it is convenient for
an automated negotiation system to build models of the market to obtain
information such as the reservation price of a product or the probability
of appearing new candidate parties during the negotiation [81].

2.3 Analysis of current solutions

Our goal in this section is to prove that none of the current solutions to
build automated negotiation systems addresses the aforementioned problems
at a time. In the literature, there are a few international specifications that deal
with some parts of a negotiation process. Furthermore, there are three ap-
proaches to build automated negotiation systems: ad-hoc automated negotia-
tion systems, protocol-oriented frameworks and intelligence-oriented frame-
works (cf. Chapter §5 for a detailed description).

2.3.1 Negotiation-related specifications

The most significant specifications that have tried to standardise some
parts of a negotiation process are three: FIPA protocols [49-52], OMG negotia-
tion facility [102] and WS-Agreement [4]. Currently, the WS-Agreement speci-
fication is being extended to support negotiation (WS-AgreementNegotiation)
and renegotiation, although these extensions are still at a very early stage of
development. These standardisation efforts focus on facilitating the interac-
tion amongst the negotiating parties and, more recently, they have also dealt
with the structure of the agreement document.

FIPA protocols are specifications of several negotiation protocols that in-
clude Dutch [49] and English auctions [50], Contract Net [52] and iterated
Contract Net [51]. They are part of the Agent Communication Language Spec-
ifications and build on other related specifications such as the FIPA Commu-

18 Chapter 2. Motivation

nicative Act Library Specification, which specifies the performatives that can
be used in the negotiation protocols and the FIPA Content Language Spec-
ifications, which deal with different representations of the content of mes-
sages. However, the structure of agreements and negotiation messages is not
detailed. Furthermore, although FIPA describes an abstract architecture for
agents, this abstract architecture is generic and do not deal with the specific
problems of automated negotiation systems.

The OMG Negotiation Facility [102] is a specification that builds on
CORBA. It defines a protocol for bilateral negotiation and another protocol
for multilateral negotiation; a language to define such protocols, and a frame-
work that defines a processor for that language. However, the OMG Nego-
tiation Facility does not detail the language and structure of the negotiation
messages and agreements and the framework just provides support to imple-
ment the negotiation protocol, but it does not deal with providing support for
the negotiation intelligence part of an automated negotiation system.

Unlike the previous specifications, WS-Agreement [4] is gaining impor-
tance and it shall likely become the de facto standard. The WS-Agreement
specification can be divided into several parts: it specifies the structure of an
agreement document, although it must be composed with several domain-
specific vocabularies to give proper semantics to the terms of the agreement,
and it defines a protocol and a web service-based interface to create, rep-
resent, and allow the monitoring of agreements. However, WS-Agreement
only defines a take-it-or-leave-it protocol. To use more complex negotiation
protocols, some extensions are required, such as the aforementioned WS-
AgreementNegotiation. Furthermore, WS-Agreement does not deal with the
internals of automated negotiation systems.

2.3.2 Ad-hoc automated negotiation systems

Ad-hoc automated negotiation systems [20, 43| 44, 69, 77,79, 87,104, 129]
are designed to negotiate in specific scenarios. They usually implement only a
negotiation protocol and a concrete set of negotiation intelligence algorithms.
Furthermore, they only support a concrete model to express agreements and
preferences (cf. Section §5.2/for more information about ad-hoc automated ne-
gotiation systems). The problem here is due to the heterogeneity of parties in
open environments such as the Internet. A single ad-hoc automated negoti-
ation system cannot fulfil all requirements these heterogeneous parties may
pose. Moreover, since they are wired to the concrete negotiation techniques
they use, it is hard to implement new negotiation protocols or negotiation in-
telligence algorithms without changing the other parts of the system.

2.3. Analysis of current solutions 19

2.3.3 Automated negotiation frameworks

Unlike, ad-hoc automated negotiation systems, automated negotiation
frameworks focus on the reusability of the different parts of an automated
negotiation system. As a consequence, a good software framework must be
designed with a clear separation of concerns in mind. The separation of con-
cerns indicates how independent each part of an automated negotiation sys-
tem is from the others. A clear separation of concerns eases the addition of
new aspects of the automated negotiation system such as negotiation proto-
cols or intelligence algorithms without changing the other parts of the system.
Therefore, automated negotiation frameworks must be analysed in terms of
the support they provide to deal with the aforementioned problems and the
separation of concerns they present.

Table §2.2 depicts how current negotiation frameworks deal with the prob-
lems that service negotiations in open and dynamic environments pose (cf.
Section §2.2): a + sign in the table means that the proposal provides explicit
support for the corresponding characteristics; a ~ sign indicates that it ad-
dresses it partially; a blank indicates that the proposal does not support the
characteristic; and NA means the information is not available.

Similarly, Table §2.3/ depicts the separation of concerns of the aforemen-
tioned frameworks. Specifically, we detail the support the framework pro-
vides to decouple the five parts in which an automated negotiation system
can be divided, namely: agreement model, preferences model, negotiation
protocol, decision making and world modelling. For each part, we consider
three degrees of coupling: loose coupling (depicted as a + sign) when the
framework explicitly provides mechanism that makes a part easily change-
able; medium coupling (indicated by a ~ sign) when the framework does not
explicitly provide a mechanism to change a part, but it seems not hard to do it;
and tight coupling (indicated by a blank) when either the characteristics of the
framework make it hard to change the part or the framework does not provide
support for it (e.g. decision making in protocol-oriented frameworks). Finally,
NA means that no information is available.

There are two kinds of negotiation frameworks depending on the parts of
the negotiation system they wish to reuse: protocol-oriented frameworks and
intelligence-oriented frameworks (cf. Section §5.3 for more information).

Protocol-oriented frameworks: They focus on the reusability of the differ-
ent parts of an automated negotiation system and deal with the negotiation
protocol and the problems of interoperability amongst them (cf. Section §5.3.1

[99] s1oy0 pue

Chapter 2. Motivation

+ |+ + + I uo|

[21] suoxrap

+ + ~| +|VNI|VN | VN + pue joonoAusg
VN | VN + [9¢T] SOrweuiq

+ + |~ + |+ + [6¢] VANV
[78] s1oy3c pue

~ + Simpn

[9] s1oyj0 pue

+ +] VN | VN VN LIYsy

SYIOMIWILI] PIJUILIO-30UISI[[DIU]

[8Z1] peomq[IS

[6] stoyi0 pue
turoreq

[F11] JoonoLuag
pue s[Iapury

[S2]
A939g pue wry

SYIOMIWRTJ PAJUILIO-[0D0}0I]

20

Y ¥v €V TV IV €€ T¢€ 1€ 9C 9T vVe €7 T

resodoxg

Table 2.2: Comparison of automated negotiation frameworks.

2.3. Analysis of current solutions 21

for more information about protocol-oriented frameworks). However, they do
not cover anything related to the development of the negotiation intelligence
in the automated negotiation systems themselves. As a consequence, current
protocol-oriented frameworks [9, 75, 114, 128] only deal with problems such
as the support for multi-term protocols and for multiple negotiation proto-
cols. To face the other problems, they need to be complemented with ad-hoc
implementations or with an intelligence-oriented framework. Therefore, our
work is closely related to protocol-oriented frameworks, but our focus is dif-
ferent since we are also concerned with the negotiation intelligence part of an
automated negotiation system.

Intelligence-oriented frameworks: They focus on improving the reusability
of automated negotiation systems by defining a software framework that sup-
ports implementing several negotiation intelligence algorithms and protocols.
Intelligence-oriented frameworks [6, 12,55, 84, [136] differ in their level of ab-
straction and how they support decision making and world modelling, as well
as the number of negotiation protocols they support. They face some of the
problems we describe in the previous section but none of them copes with all
of them at the same time.

Ashri and others [6] describe two architectures for negotiating agents.
However, the architecture is described from an abstract point of view. In
addition, it lacks some advanced features. For instance, it does not cover a
pre-negotiation phase, it does not consider information queries, it is not well
suited for supporting concurrent negotiations, and it does not take into ac-
count external factors in the binding decision.

Ludwig and others [84] have developed a framework for automated nego-
tiation of service level agreements in service grids. This framework builds on
WS-Agreement and provides a protocol service provider and a decision mak-
ing service provider to deal with the negotiation process. However, it does
not acquire knowledge from the other parties (neither querying nor analysing
previous interactions); the separation of concerns is only reached partially be-
cause all decision-making is implemented in one unique service and, hence, it
makes it less reusable; and its capabilities to face a dynamic market are very
limited because it does not support several negotiations simultaneously, does
not create market models, does not support decommitment, and does not al-
low changing the negotiation intelligence algorithms dynamically.

PANDA [55] is a framework that mixes utility functions and rules to carry
out the decision-making process. The decision-making component is com-
posed of rules, utility functions and an object pool with several estimation li-
braries, the negotiation history and the current offer. This framework presents

Chapter 2. Motivation

22

VN

VN

[99] s1a30 pue 1axuO(

VN

VN

[e1]
SUOII9/ |pue JoonoAuag

VN

VN

[9¢T] sOrweudiq

[ss] vaNvda

+
+
+ 4]+

[¥8] s1oy30 pue Simpn-

+

VN

VN

[9] sToy10 pue tIysy

SYIOMIUILI] PIJUSLIO-OUSI[[IU]

+

[821] peomy[IS

+

[6] s1oy30 pue urjoyreq

+

[F11]
JoOnNoAuag pue S[IdpUTY

+

[6£] A98ag pue winy

SYIOMIWEL] PIJUSLIO-[OD0I0I]

Sur[[opowr pl1opA Supjewr UOISII(] [020301J

SIDUIAJIIJ JUIWIIIZY

resodoxg

Table 2.3: Separation of concerns in automated negotiation frameworks.

2.3. Analysis of current solutions 23

interesting capabilities specially when dealing with dynamic markets. How-
ever, the object pool, which is an important element because it deals with all
the knowledge the framework has about the other parties and the market, is
not implemented, but only vaguely specified. Furthermore, it does not sup-
port querying other parties (neither third parties nor the other party directly)
to get information; it does not provide automatic mechanisms to change the
negotiation intelligence algorithms dynamically; neither it does support de-
commitment from previous agreements nor supports a pre-negotiation phase
in which the negotiation protocol is decided.

DynamiCS is an actor-based framework developed by Tu and others [136].
This framework makes a clear distinction between the negotiation protocol
and the decision making model and it uses a plug-in mechanism to support
new protocols and strategies. Nevertheless, it is not well suited to deal with
parties that are not known previously because querying information to other
parties is not supported and it does not create models based on the analysis
of previous interactions. In addition, the framework cannot change the ne-
gotiation intelligence algorithms dynamically. Furthermore, DynamiCS has
problems when coping with dynamic markets because it does not support de-
commitment, does not build market models, and the creation of agreements
cannot be supervised.

Benyoucef and Verrons [12] present an approach to a configurable frame-
work for designing, implementing and deploying automated negotiation sys-
tems. Their approach is based on the separation of protocols and strategies
from the system and they adopt a service-oriented architecture to make it eas-
ier the deployment and integration with current infrastructures. However, the
authors do not provide a data model for the framework and do not provide
any detail on the preferences the framework manages and whether it supports
multi-term negotiation protocols or manages different types of knowledge
about parties. Another drawback is that the services that can be composed
into the system are vaguely defined. In addition, the framework does not
seem to be able to build analysis-based models of parties and market models.
Furthermore, it does not provide the mechanism to allow several negotiations
at the same time and to permit decommitment of agreements.

Jonker and others [66] describe a component-based generic agent architec-
ture for multi-attribute negotiation. Unlike other negotiation frameworks, it
provides advanced capabilities to deal with partial information of other par-
ties, and it also copes with multi-term negotiations successfully. However, it
has problems when negotiating with heterogeneous parties in dynamic envi-
ronments because it only supports one model to express agreements and pref-
erences, and it is not clear whether it can support several different negotiation

24 Chapter 2. Motivation

protocols. Furthermore, the framework does not support several simultane-
ous negotiations, the negotiation intelligence algorithms cannot be selected
dynamically, it does not support decommitment, the creation of agreements
cannot be supervised and no market models are built.

2.4 Discussion

From the previous sections, it follows that, although a framework to ease
the development of automated negotiation systems able to negotiate service
agreements in open and dynamic environments is very desirable from a prac-
tical point of view, current solutions are not well-suited. The reasons are:
first, protocol-oriented frameworks need to be complemented with decision-
making and world-modelling capabilities by means of ad-hoc mechanisms or
an intelligence-oriented framework (cf. Table §2.2); second, although current
intelligence-oriented frameworks deal with multi-term agreements success-
fully (1.1 and 1.2), they just cope with heterogeneous parties (2.1, 2.2, 2.3, 2.4,
2.5 and 2.6) and partial information about parties (3.1, 3.2 and 3.3) partially,
and they have problems when dealing with dynamic markets (4.1, 4.2, 4.3,
4.4 and 4.5); and third, most frameworks are loosely coupled just regarding
protocols and decision making (cf. Table §2.3).

The reasons behind these problems are three: first, traditionally, protocols
and decision-making have been considered the only variation points in a ne-
gotiation system, instead of including agreements and preferences models as
well; second, the work on modelling the other negotiating parties to deal with
partial information is relatively recent, mainly if we compare it with the work
on decision-making models; and, third, most negotiation frameworks, with
the exception of PANDA, have been designed to support one bilateral negoti-
ation at a time only, i.e., they are not prepared to deal with dynamic markets
in which several simultaneous negotiations must be carried out.

To solve the drawbacks of current negotiation frameworks, we present Ne-
goFAST, which is defined at three levels of abstraction. The NegoFAST refer-
ence architecture (cf. Chapters §7 and §8) provides a foundation for develop-
ing automated negotiation systems. It defines the elements that conform an
automated negotiation system as well as their interactions. Those elements
can be categorised into four large blocks that are called organisations follow-
ing the Gaia terminology [138]: the protocol management organisation, which
deals with external negotiation protocols; the decision making organisation,
which generates responses during the negotiation process and decides on the
creation of agreements; the world modelling organisation, which manages the

2.5. Summary 25

knowledge about the market and the other parties, and the coordination or-
ganisation, which coordinates the other elements of the system.

The second level of abstraction is the NegoFAST framework (cf. Chap-
ters §9 and §10), which refines the NegoFAST reference architecture by defin-
ing the interfaces between the elements of the automated negotiation systems.
The main design goal of the NegoFAST framework has been to promote the
reusability of the elements, so that they may be freely integrated as a whole
to produce automated negotiation systems. The NegoFAST framework allows
to substitute them easily, which reduces the impact of changes and improves
reusability. In addition, it defines a generic model for expressing preferences
and agreements.

The third level of abstraction is August, which is a proof-of-concept im-
plementation of the NegoFAST framework. August provides a reference im-
plementation of the coordination organisation and the data structures shared
by all elements of the automated negotiation systems. In order to implement
the remaining parts of an automated negotiation system, existing negotiation
protocol and negotiation intelligence algorithms can be used. This allows us
to take advantage of all the work developed in these fields. Furthermore,
protocol-oriented frameworks such as [9,75,114,128] can be integrated seam-
lessly with our work in order to implement the support for multiple negotia-
tion protocols. Appendices §A, §B and §C describe the development of three
automated negotiation systems for three different use cases using August.

2.5 Summary

Our goal in this chapter was to motivate the reason why we embarked on
this PhD project. We have analysed the problems involved in automating the
negotiation of service agreements in open and dynamic environments, and
have concluded that none of them succeeds in addressing them at a time. This
proves that our contribution is original and advances the state of the art a step
forward.

26

Chapter 2. Motivation

Part 11

Background information

Chapter 3

Negotiation rudiments

And since geometry is the right foundation of all painting,
I have decided to teach its rudiments and principles
to all youngsters eager for art.

Albrecht Diirer, 1471-1528
German painter, engraver, and mathematician

negotiation involves a number of interactions amongst two or more
parties, following a specific protocol, in order to reach a mutually ac-
ceptable agreement. This chapter presents several proposals to express agree-
ments and preferences and analyses the most significant negotiation protocols
in the context of this dissertation. It is organised as follows: in Section §3.2
and Section §3.3, we describe proposals to express agreements and user pref-
erences respectively; in Section §3.4, we characterise negotiation protocols and
review proposals that follow the bargaining approach; finally, we summarise
our main conclusions in Section §3.5.

30 Chapter 3. Negotiation rudiments

3.1 Introduction

Negotiation is a process in which several parties interact in order to reach
an agreement. The first formal analysis of the negotiation process was carried
out by John Nash [95]. He pioneered the so-called game theory, which analy-
ses negotiation processes mathematically to extract properties. This theory has
been developed later and new and more complex negotiation scenarios have
been analysed. However, these results are not suitable to be directly imple-
mented in current negotiation software systems because of their assumptions,
being the full rationality of the parties, the assumption that limits the most
their use in real scenarios [64].

Nevertheless, some properties and conclusions derived from the game-
theory are very useful to study the characteristics of negotiation processes and
to create or compare negotiation protocols and systems with desirable prop-
erties. The most significant are:

Pareto-efficiency: A negotiation is Pareto-efficient if there is no agreement
that improves the utility of one party while the outcome of the other
parties do not decrease. This means that, if a negotiation is not Pareto-
efficient, we are losing agreements that are more profitable for all the
parties in the negotiation.

Stability (Nash equilibrium): Let s and s’ be two strategies that determine
the behaviour of a party during the negotiation. Two strategies are in
Nash equilibrium if, given that the best strategy that one party is using
strategy s, the best that other party can do is to use strategy s’. A nego-
tiation process is stable if it encourages the parties to behave in a way so
that their strategies are in Nash equilibrium.

Cooperative/non-cooperative: A negotiation is cooperative if the parties try
to maximise the social welfare, i.e., the sum of the utilities of the negoti-
ating parties. Conversely, a negotiation is non-cooperative when parties
only care of their own interests and they just try to maximise their own
utility. In [87], the term semi-competitive negotiation is introduced to
denote negotiations in which parties try to find a fair agreement for all
parties, but maximising their own utility. This negotiation is common
when the parties want the other parties to be as satisfied as possible so
that long-term relationships can be established.

Success guaranteed: A negotiation process guarantees the success if it assures
that an agreement is going to be reached at the end of the process. That
is to say, if it guarantees that all parties will reach an agreement.

3.2. Agreements 31

Provider/consumer bias: A negotiation process is unbiased for both provider
and consumer if it is fair for both of them, i.e., if being in one side is not
more advantageous than being in the other.

The idea of creating software systems that support or develop negotiation
processes is not new. Since the early 80s, there are systems that try either
to support human decisions during a negotiation process or to carry out au-
tomatically these negotiations. The way agreements are expressed can vary
from one negotiation to another. In some cases, it is an explicit document that
states the terms of the agreement; in other cases, it may be only a decision
on some issue. In this dissertation, we are interested in negotiations aimed at
creating an explicit agreement document.

As a consequence, the first problem a negotiation software system has to
face is the models in which agreements and preferences are expressed, and
the specification of the mechanisms that defines the interactions that the par-
ties carry out in a negotiation, i.e., the negotiation protocol. There are many
different approaches, each one with their advantages and drawbacks. For in-
stance, user preferences can be expressed using constraints, fuzzy constraints,
or utility functions amongst others. Regarding agreements, there are also dif-
ferent approaches. Some proposals try to standardise their structure, others
focus on the interoperability of terms by defining ontologies, whereas others
express the agreements in formal languages such as deontic logic in order to
facilitate further analysis. Finally, most common negotiation protocols can be
categorised into auctions and bargaining [61].

3.2 Agreements

An agreement defines a relationship between several parties. Its goal is to
define the terms that regulate the sale of goods or the execution of a service. In
our context, service agreement negotiation, the agreement specifies the func-
tional description of the service and the non-functional guarantees. In addi-
tion, agreements may also include compensation and termination clauses: the
former are used when one party does not fulfil some terms of the agreement;
the latter specify when an agreement must finish.

Some authors [57, 82] use the term contract as a synonym for agreement
document. However, we prefer to avoid the term contract because of the legal
implications that this term involves. Therefore in this dissertation, we use the
term agreement document or, simply, agreement to refer to a document with
the aforementioned characteristics.

32 Chapter 3. Negotiation rudiments
3.2.1 Foundations

Agreements are composed of the following parts. However it is not
mandatory for an agreement to include them (e.g., definitions may appear
in other documents such as attribute catalogues).

e A specification of the parties involved.

e A collection of terms that specify the conditions and arrangements of the
agreement. Some authors [82] classify them into obligation terms, per-
mission terms and prohibition terms; other approaches, this distinction
is implicit in the definition of the terms of the agreement [4, 92].

e A definition of the notions and elements that are used in the agreement.
For instance, in an agreement with an Internet services provider in which
it is stated that its availability is 99.9%, it is necessary to formally define
what availability is and how it is measured.

Agreements are usually expressed in natural language. However, natu-
ral language is, by its own nature, imprecise and ambiguous and, thus, it
is not suitable to be automatically processed by software systems. To over-
come this problem, several proposals have been made: in [57, 59, 82, 92] the
agreement document is used to monitor and enforce the terms specified in the
agreement and they focus on the business interactions level. In addition, in
Reference [56], the authors present a formal grounding for [82] using logic for-
malisms (e.g. courteous logic, deontic logic or defeasible logic). This approach
makes it possible to reason about violations of obligations in agreements.

Other proposals [31} 133, 165, 132] focus on lower-level details of the agree-
ments. They are called Service Level Agreements (SLAs) and are usually ap-
plied to non-functional attributes of services (e.g. response time or availabil-
ity). As a consequence, these agreements tend to be a list of non-functional at-
tributes and the values or ranges that they should take during the agreement
fulfilment. This vision of agreements is also shared by other proposals [44, 68],
which focus on the negotiation of the agreement. In [9, 100], the problem of
interoperability is dealt with, and ontologies are used to define the agreement
document and its contents. Finally, there are standardisation efforts [4] aimed
at defining a general structure for an agreement document. This agreement,
can later be adopted in other domains by using domain-specific vocabularies.

Note that this classification is based on the main goal of the proposal. This
does not mean that the proposals that focus on the business interaction level
cannot be used to specify low-level details [82], or that proposals that focus on
lower-level details cannot express higher-level business details [132].

3.2. Agreements 33
3.2.2 Proposals

Next, we analyse one representative proposal for each approach.

Linington and others: In Reference [82], the authors tackle the problem of co-
ordinating behaviour in cross-organisational scenarios and argue that
agreements (business contracts, using their terminology) can be used to
solve the problem. Therefore, they focus on the business interaction level
of agreements. The agreement is specified in a language called Busi-
ness Contract Language (BCL), which can be seen as an event-driven
language. The agreement defines a community, which is a set of roles,
policies, states and related event patterns. The terms of the agreement
are called policies. There are three types of policies: obligations, prohibi-
tions and permissions. Each policy is applied to one role, which is a label
for a party whose behaviour is constrained by policies, and triggered by
one or more events. In addition, each policy specifies the behaviour that
the role is obliged, prohibited or allowed to have. States are used to de-
fine data values shared by all the participants in the community. For
instance, a policy called MakeGoodsAvailable is an obligation applied to
role Supplier, that is triggered when event PurchaseOrder occurs and
obliges it to make the goods available one day after the purchase order
is issued. BCL also allows the specification of compensations in case
of violations of some terms of the agreement. Specifically, they can be
modelled by defining policies with guards, so that it obliges one party to
follow a behaviour if a policy has not been fulfilled. Furthermore, Gov-
ernatori and Milosevic [56] present a formal grounding to BCL. They
define the so-called Formal Contract Logic (FCL), which is based on de-
ontic logic but extended to support reasoning about violations, and a
mapping from FCL to BCL.

Bartolini and others: In Reference [9], a framework for automated negotia-
tion and a way to represent agreements is presented. This work is based
on Reference [133], where this representation of agreements was first
presented. Agreements here are focused on detailing the characteristics,
both functional and non-functional, of the service or goods that are being
sold. However, the novelty of this work is that interoperability issues are
taken into account. In this case, the agreement document is an instance
of a class of an ontology, which is defined using OWL-Lite [36]. Specif-
ically, they define a description ontology that includes concepts such as
agreement template, proposal or advertisement, and a sale ontology that
defines concepts like sale, party, delivery or product. Then, they use
domain-specific ontologies to define the semantics of the concrete terms
of the agreement. For instance, if the product that is being sold is a PC,

34

Chapter 3. Negotiation rudiments

the domain-specific ontology includes concepts such as memory or pro-
cessor. Due to the use of ontologies, the automated management of an
agreement is not bounded to just simple string matches. Furthermore, to
an extent, description logic reasoners may be used to validate proposals,
match them or find agreements.

WS-Agreement: It is a standardisation effort developed by the GRAAP work-

group in the Open Grid Forum [4]. The goal of WS-Agreement is three-
fold: to define a document format for the agreements, to establish a con-
crete agreement creation process and to describe the communication in-
terfaces that must be implemented by the parties involved in the agree-
ment creation process. An agreement is an XML document specified in
XML Schema and is composed of three sections: the name of the agree-
ment, which is used to identify it, the context of the agreement, and its
terms. The context of the agreement establishes the parties that are in-
volved in the agreement, the expiration time and other general informa-
tion about the agreement. The terms of an agreement may be either ser-
vice terms or guarantee terms. Service terms include service description
terms, which specify functional characteristics that shall present the ser-
vice during its consumption; service references, which indicate how to
have access to the service; and service properties, which specify proper-
ties of the service that must be measured such as response time or avail-
ability. Guarantee terms establish the non-functional characteristics of
the service, e.g., response time or cost. A guarantee term includes the
scope of the term, when it should be applied, the condition that must be
met (service-level objective), and a business value list that specifies the
importance of the term, penalties and rewards. Therefore, although WS-
Agreement focuses on technical details, it allows to model business-level
details as well. In addition, WS-Agreement is domain independent and
only specifies the structure of the agreement document. Consequently,
to build actual agreements, WS-Agreement must be used in conjunction
with one or several domain-specific vocabularies.

3.3 Preferences

Should we wish to automate the negotiation process, we need a means to

give to the software system the knowledge that is necessary to negotiate on
our behalf, i.e., the preferences. Preferences express the information that is
used to ensure that the agreement is reached according to our needs. There-
fore, preferences guide the decisions made during the negotiation process. For

3.3. Preferences 35

instance, they can be used to evaluate and compare potential agreement pro-
posals in order to choose the one that best fits our needs.

3.3.1 Foundations

Preferences detail the desired characteristics of three different aspects:

e Preferences about the contents of the agreement: Preferences express
the desired values for both functional and non-functional characteristics
of the service provided, such as the service interface, cost or response
time.

o Preferences about the other parties in the agreement: Preferences ex-
press features, which are the capabilities and attributes that present the
party on which behalf the automated negotiation system is negotiating
(e.g., it is located in Spain), and requirements, which are the desired fea-
tures in other parties (e.g., it must have a high reputation on service Y).

e Preferences about the negotiation process itself: Preferences express
the desired characteristics of the negotiation process, such as the dead-
line to finish the negotiation [44], the eagerness of the user to obtain an
agreement [121] or the willingness to cooperate with other parties [29].

Preferences typically include initial data provided by a human user, such as
the requirements/features of a service demanded/offered. However, it may
also include information obtained automatically. For instance, in the case of a
computation service provider, the features of the service offered may be gen-
erated automatically from the current load of their servers [83} 85].

There are many different models to express preferences. The most com-
mon approach uses utility functions [37, 44, 55, 60, 70, 101]. Furthermore,
many other approaches [55, 77, 116] use utility functions as a complement to
the other formalisms they employ to express preferences. Others express pref-
erences as constraints [53, 78, 88], fuzzy constraints [77, 86], a combination of
attributes [39], and rules [55].

The way the user defines his or her preferences is very important to the ne-
gotiation process because decision-making algorithms depend on a particular
preferences model. Furthermore, simpler and more efficient algorithms can
be used when the user does not require a very expressive preferences model
(cf. Section §4.2). As a consequence, a trade-off should be made between the

36 Chapter 3. Negotiation rudiments

preferences model expressiveness and the availability and complexity of the
decision-making algorithms that deal with them.

Additionally, there is another important aspect regarding preferences: its
elicitation. Obtaining an explicit representation of the preferences from the
user is not easy [86]. Two different approaches have been followed in the
literature to overcome these difficulties, namely: using formalisms that are
natural to the user such as rules [55] and eliciting user preferences indirectly
like in References [21, 60].

3.3.2 Proposals

Next, we analyse one representative proposal for each approach except for
constraints because it is a particular case of fuzzy constraints:

Faratin and others (Utility functions): Faratin and others [44] use multi-
attribute utility functions to define user preferences about the issues un-
der negotiation. Specifically, they consider a;,j € {1,...,n} the set of at-
tributes about the service, party or process defined in the preferences;
[ming, maxy] as the values that are acceptable for attribute aj; and,
for each attribute, an utility function (also known as scoring function),
Uy @ [ming, maxy] — [0,1], that assigns a utility to every value of
this attribute. Finally, the total utility for all attributes is defined as a
weighted sum of all utility functions. The weight of each attribute (w,)
is a measure of the importance the party gives to this attribute and we
assume it is normalised, which means that ij],...,nwaj = 1. Therefore,
the utility of an agreement is defined as:

U(X): Z W(lju(lj(x[aj])

j=1,...m

and, hence, the more utility an agreement proposal has, the closer it is
to our preferences. However, defining the utility of an agreement as
a weighted arithmetic mean presents several drawbacks such as that
the contribution of an attribute to the global score is limited to wg,,
which prevents the model from dealing with mandatory attributes, for
instance [37, 101]. To solve these problems, Dujmovic [37] presents the
LSP (Logic Scoring of Preference) method, which defines the utility of an
agreement as

wX) =) (weug (Xl

j=1,...m

3.3. Preferences 37

where 71 is a real number selected to achieve desired logical properties
in the utility function. Karp| also faces these problems and propose a
complex model to represent utility [70].

Kowalczyk| (Fuzzy constraints): In this approach, preferences are expressed
as fuzzy constraints. Therefore, the best agreement for the user is the
one that maximises the satisfaction level of its fuzzy constraints. Prefer-
ences in this approach consist of the following: a set of attributes A =
{a1, ..., an} that includes all decision attributes used by the party; a set of
domains D = {Dg,, ..., D, }, where each domain D is the set of values
that an attribute a; may take, a; € Dg;,j = 1,...,m; and a set of fuzzy
constraints C = {Cy, ..., Ci}, where each fuzzy constraint C;,i = 1,...,k
is characterised by a membership function C; : Dg, X ... X Dq —
[0,1],11,...,1 € {1,...,n}, that represents the satisfaction of the constraint
on a set of attributes. All constraints of the party can be represented as:

cxX)= AN CX¥)= A CylxCi(Xlay], ..., Xlay])

i=1,..k i=1,...k

where CylxCi(Xlay,], ..., X[a;]) is the cylindrical extension of the fuzzy
relation to X. In general, it is usual to define a satisfaction threshold
(o), so that an agreement proposal X is considered to be acceptable if
C(X) > «. In addition, the author introduces an additional constraint
that represents the utility value of an agreement: Cy(X) = u(X), where
u(X) is the final utility of an agreement as defined above. The addition
of this constraint makes it possible to consider trade-offs between the
issues, taking into account the utility values of the proposals.

PANDA (Rules and utility functions): PANDA [55] is a framework that
mixes utility functions and rules to express preferences about the ne-
gotiation process. Utility functions are used in the same way as in the
proposal by Faratin and others [44]. However, they argue that some
preferences are hard to express using utility functions, for instance, a
preference expressing that if the customer is a first-time customer, then
we can accept less profitable agreements in order to attract new cus-
tomers. Nevertheless this preference is much easier to express using
rules. Gimpel and others argue that, to express rules, it is necessary
to make a trade-off between expressive power and ease of use while
ensuring automated execution. The authors define rules with the form
condition-action and include a set of sensors to provide input to the rules
(e.g. LEVEL-OF-DISSENT, RISK-UTILITY, NEW-CUSTOMER) and effectors to
conduct desired actions (e.g. ACCEPT-OFFER, FIND-TRADE-OFF-OFFER,
MAKE-OFFER). Hence, the previous preference can be expressed as if
LEVEL-OF-DISSENT < 0.2 and NEW-CUSTOMER then ACCEPT-OFFER.

38 Chapter 3. Negotiation rudiments

Elfatatry and Layzell (Combinations of attributes): Elfatatry and Layzell de-
fine a negotiation description language [39]. This language allows to de-
fine service profiles, negotiation strategies and protocols. Service pro-
files are a description of the functional and non-functional attributes
of the service that is being offered or demanded. This description is a
list of functional and non-functional attributes and their allowed val-
ues. In addition, the negotiability of each attribute is specified. For in-
stance, NEGOTIABLE price = 10..15 cents per minute. Together with
this description, service profiles also define the so-called selection pack-
ages. Selection packages are used to evaluate combinations of non-
functional attributes of the service. The authors argue that utility func-
tions are not always useful to specify preferences, for instance, when an
attribute is considered key for choosing a particular combination of non-
functional attributes. However, these conditions are easily expressed
as a selection package IF price < 10 THEN security <= 32-bit and
reliability <= 2 failures per session.

3.4 Negotiation protocols

An essential part of a negotiation is the mechanism that defines the inter-
actions that parties carry out in a negotiation. This mechanism is the negotia-
tion protocol. The most common negotiation protocols can be categorised into
auctions and bargaining [61]. However, as discussed in Section §1.1, in this
dissertation we focus on bargaining protocols because they are more suited
for the type of automated negotiations we are dealing with. Nevertheless, a
thorough analysis of auction protocols has been developed and it is included
in this dissertation in Appendix §D.

3.4.1 Foundations

Bargaining protocols involve exchanging proposals and counterproposals
between the parties. However, there are differences between them, which may
be analysed in terms of five fundamental aspects: roles, performatives, rules,
information exchanged, and agreement terms negotiability.

Roles: In a negotiation, there are three types of parties: consumers, providers
and trusted third parties. These parties play one or more roles in a nego-
tiation. Most bargaining protocols have two roles: initiator, which starts

3.4. Negotiation protocols 39

the negotiation, and responder, which responds to the initiator. How-
ever, some negotiation protocols require an additional role called medi-
ator or negotiation host that facilitates the negotiation process [75, 76].
Bartolini and others [10] identifies six different sub-roles that this medi-
ator may present. Note that, for instance, a consumer may be either the
initiator or the responder of a negotiation. Furthermore, it may be even
initiator and mediator at the same time. Trusted third parties just can be
used as mediators.

Equally important is the number of parties that may play the roles in
the negotiation. Most bargaining protocols are bilateral and, hence, the
parties are limited to one party per role. However, note that parties may
carry out several simultaneous bargaining negotiations, resulting a mul-
tilateral negotiation with several consumers and several providers nego-
tiating at the same time.

Performatives: A performative is the expression of the intention of the sender
of a message about it. The term performative is borrowed from the FIPA
terminology and the speech act theory. The set of performatives used
in a negotiation protocol may differ significantly, although all bargain-
ing protocols use, at least, performatives accept, reject negotiation
and commit. Table §3.1f! shows a description of the most common per-
formatives in negotiation protocols, although, depending on the pro-
tocol being used, other performatives may be necessary. For instance,
argumentation-approaches introduce performatives, such as argue and
challenge [3], to express arguments that support our proposal.

Rules: In a negotiation protocol, there are usually some restrictions regarding
a variety of aspects of the negotiation such as how the proposals must be
built, when a party can send a proposal, which performative can be used
in each moment, or when the negotiation finishes. Often, these rules are
implicit in the description of a negotiation protocol. However, some au-
thors [8,/75,114] argue that to build automated negotiation systems that
supports a variety of negotiation protocols, it is necessary to define them
explicitly. To this end, several different formalisms can be used, being the
most significant: if-then rules [8], Petri nets [34], state machines [75,114],
electronic institutions [41] and domain-specific languages [39].

Bargaining protocols usually involves an alternated exchange of propos-
als and there are no restrictions on their contents. However, in some
bargaining protocols the terms of the proposal are negotiated one-by-

fIn the literature [51, 71,119, 129], performative propose usually means making a binding
proposal. However, we prefer to leave the term propose to non-binding proposals and to use
commit for binding proposals

40 Chapter 3. Negotiation rudiments
Performative Description
accept Accept a proposal
reject proposal Reject the last proposal but keep negotiating

reject negotiation Finishes a negotiation process unsuccessfully

Sends a non-binding proposal, i.e., a proposal

propose which does not involve a firm commitment with

the other party
Sends a binding proposal, i.e., a proposal which

commit -) g g

involve a firm commitment with the other party
withdraw Withdraw the last proposal
cfp Make a call for proposals to the other parties

Table 3.1: Description of common performatives.

one following an established agenda [47], or restricted to be narrower in
the counterproposal than in the proposal [71].

Information exchanged: The approaches followed to exchange information

can be classified into three broad groups: (i) the information exchanged
explicitly states the parts of the agreement that are disliked by the party
as well as the proposed changes. (ii) The information exchanged con-
sists only of proposals (i.e., the negotiation protocol is proposal-based).
In this case, the information about the disliked parts of the agreement
is implicit in the counterproposal and it is up to the parties to infer
it. The advantage of this approach is that it unveils less information
to the other parties. The disadvantage is that the lack of explicit infor-
mation implies a blind search of a mutually acceptable agreement that
may lead to longer negotiations or may even prevent an agreement from
being reached. (iii) The information exchanged includes proposals, as
in proposal-based protocols, and statements that are used to persuade
or convince the opponent to accept our proposal [109]. This approach
is called argumentation and it is a promising field that may eventually
overcome the drawbacks of the proposal-based negotiation in scenarios
with limited information about the environment [107]. However, the au-
tomated negotiation systems that support argumentation tend to be very
complex and no argumentation approach has been applied to a realistic
scenario as of the time of writing this dissertation.

3.4. Negotiation protocols 41

Agreement terms negotiability: The simplest term negotiability involves ne-
gotiating only one term, which is usually the price. However, most bar-
gaining protocols do not impose any restriction about the negotiability
of agreement terms [44] and, hence, virtually any term can be negotiable.
Nevertheless, generally speaking, increasing the term negotiability of a
negotiation protocol allows causes a higher complexity in automated ne-
gotiation systems because the search space for a mutual agreement is
larger and, hence, it is harder to find an agreement. In addition, this
requires the parties to be given more intelligence in order to avoid exces-
sively long negotiations that may finish without reaching an agreement.
Because of this, some bargaining protocols force parties in a negotiation
to follow a preestablished agenda [26, 47] during the negotiation. This
means that not all terms can be negotiated at the same time, but one-by-
one or in closed groups of related terms (e.g. terms related to the quality
of the product and terms related to the delivery and payment).

3.4.2 Proposals

Next, we report on four different proposals of bargaining protocols that
cover most significant approaches to bargaining (cf. Table §3.2): Contract-
Net [51], OMG bilateral negotiation [102], alternating-offers negotiations de-
scribed by Sierra and others [119] and extended to allow decommitment by
Nguyen and Jennings [98], and argumentation-based approaches [107].

Iterated ContractNet: The original ContractNet protocol was first described
in the early 80s, and it was focused on solving resource allocation prob-
lems through negotiation. In this dissertation, we analyse the specifica-
tion of this protocol developed by FIPA called Iterated Contract Net Pro-
tocol [51]. The protocol involves two roles: the initiator and the partici-
pant. Any of them can be played by either the consumer or the provider.
The performatives used in the protocol are depicted in Table §3.2. Be-
sides the common performatives, they include inform (informs the other
party that everything finished successfully), and failure (indicates that
there was an error at the end of the process). The negotiation protocol
is developed as follows: first, the initiator sends a call for proposals to
the participant. Then, the participant can either refuse the negotiation
or send a concrete proposal. When the initiator receives the proposal, it
has several options: it may send a reject proposal, a new call for propos-
als or accept the proposal. If it sends a reject proposal, the participant
can either send a new proposal or refuse the negotiation. If the initiator
sends a new call for proposals the whole process starts again. Finally, if it

Chapter 3. Negotiation rudiments

42

readde
sjuswdle}s ,
SUOT}OLI}SI ON] 01307 / (Syuowrudrs pIEMolL TUSIEIL uorjeyuawn 3y
o . > 4sonbar “opjo ‘merp [FOEIH .
-se) sresodoi J)
-m o9fax ‘3dedoe
(semmque JTUIWIOoD
SUOTOIISAI ON] 0} sanjea jo juawr -ap ‘@sodoid ‘uoryeny [erarerg SI9Jj0-3unjeuIa) Yy
-udisse) syesodorg -o3au 309fax ‘4daooe
(paunapun 19530 ‘osod
suoroLsar oN juayuod) spesodord -oxd “ysenbar 4sa3 TeIoYerTg rexayeqig ONO
10] qreD/sresodoig -3ns “poofor ‘daooe
aInyrey / WIoy
SUOI}OLI)SAI O U2ju0D) ANQMMMNMM -ur ‘dyp ‘asodoud PNPERUOS
HoH N wou o mﬁcmo dogs 2Sngar qesodoxd 1Ol pajeral]
j 1eD/S1 d -309lor “1daooe
Aniqeno8aN uorjeurIoyu SIATJRULIOJIDJ Sa[0Y] [020301q

Table 3.2: Summary of bargaining protocols.

3.4. Negotiation protocols 43

accepts the proposal, the participant must either inform that everything
went fine or indicate that there was a failure that makes it impossible to
fulfil the negotiation. Regarding the information exchanged during the
protocol, they can be either proposals or call for proposals although the
specific content of a proposal is not specified in the protocol. In addition,
the protocol does not impose any constraint on the negotiability of the
terms either.

OMG Bilateral Negotiation: This negotiation protocol is part of the OMG
Negotiation Facility [102], which is a specification that builds upon the
OMG’s CORBA specification. The protocol involves two parties. The
performatives employed are depicted in Table §3.2: offer and propose
are commitments to proposals, whereas suggest is a non-committing
proposal and request is equivalent to performative cfp. The negotia-
tion starts with either a request, an offer or a propose. If it starts with
a request, the protocol enters in state requested. In that state, parties
may suggest new proposals, or send an offer or a propose. If an offer
is sent, the protocol enters in state offered. In that state, the only op-
tions are either accept the offer or reject it. Alternatively, if a propose
is sent, the protocol enters in state proposed. In that state, the options
are either accept or reject the proposal or send performative request
to get new non-committing proposal. Finally, in any state, performative
reject may be sent to finish the negotiation. Regarding the information
exchanged during the protocol, they are proposals although their spe-
cific content is not specified in the protocol. In addition, the protocol
does not impose any constraint on the negotiability of the terms either.

Alternating-offers: Sierra and others| described a bargaining protocol de-
signed to develop negotiations of services [119]. The performatives the
protocol includes are propose, reject negotiation, reject proposal
and accept (cf. Table §3.2). The protocol is very simple, it starts when
one party sends a proposal to the other. When it receives the proposal,
it can respond with a new proposal (i.e. a counterproposal); it can re-
ject the negotiation and finish it; it can reject the proposal, forcing the
other party to create a new proposal; or it can accept the proposal, thus
reaching an agreement. The protocol does not impose any restriction on
the negotiability of the agreement terms, and the information exchanged
consists of proposals exclusively.

An extension to this protocol was presented in Reference [98], in which
the authors analyse the problem of several simultaneous bilateral nego-
tiations following the protocol described above. They conclude that the
best solution to deal effectively with several concurrent negotiations is to
allow the decommitment of previously established agreements by pay-

44

Chapter 3. Negotiation rudiments

ing a certain cancellation fee. To do so, they add a new performative
called decommit. Therefore, the parties follow the previous protocol to
reach an agreement and, once it is made, if they found a new proposal
that improves the current agreement, they create a new agreement and
decommit from the previous one by paying a penalty.

Argumentation: There are many proposals for argumentation-based negoti-

ations [3, 91, 109] (cf. Reference [107] for a survey). In this dissertation,
we focus on the protocol described by Sierra and others [120]. The pro-
tocol, as most argumentation-based negotiations, is bilateral. The per-
formatives are divided into two sets: negotiation performatives, which
are used to make proposals, and persuasion performatives, which are
used in argumentation. The former performatives are: request, offer,
accept , reject and withdraw (cf. Table §3.2). The latter are: threaten
(threats the other party to do something if it does not accept something),
reward (rewards the other party with something if it does something),
and appeal (communicates something to the other party). Note that
other argumentation-based approaches may have a set of performatives
significantly different. The negotiation protocol always start with a re-
quest or an offer. Then, parties exchange proposals and counterpropos-
als together with persuasion performatives. Finally, the negotiation fin-
ishes when either an accept or a withdrawal is sent by one party. The
information exchanged, together with the performatives, are the main
difference between argumentation-based negotiations and other negoti-
ations. In [120], the authors do not commit to a specific language to ex-
press the information exchanged. Instead, they describe the characteris-
tics that such language must have, namely: it must be a logical language
with variables to represent the terms under negotiation, constants to rep-
resent the values for the terms under negotiation, equality to specify the
value of a term under negotiation, and conjunction to define complex
sentences. Regarding the negotiability of agreement terms, the protocol
does not impose any restriction on it.

3.5 Summary

In this chapter, we have introduced some general negotiation properties

that can been used to check if negotiation elements such as protocols or strate-
gies lead to optimal outcomes. Furthermore, we have described different ap-
proaches to model agreements and preferences, which are a key part in every
negotiation system, and we have characterised and analysed the negotiation
protocols that are more relevant in the context of this dissertation.

Chapter 4

Negotiation intelligence

What a distressing contrast there is
between the radiant intelligence of the child
and the feeble mentality of the average adult.

Sigmund Freud, 1856—1939
Austrian neurologist and psychiatrist

n the previous chapter, we analyse the external parts of an automated ne-

gotiation system, i.e., the preferences as an input to the system, the agree-
ments as the output of the system, and the negotiation protocol that guides
the interaction between the negotiators. In this chapter, we move inside the
automated negotiation system and describe the mechanisms that are neces-
sary to carry out the negotiation automatically. These mechanisms are the
decision-making that determines the way a certain party behaves in a negoti-
ation process and the world-modelling that models the different elements that
have an influence over the negotiation to support the decisions. The chapter
is organised as follows: in Section §4.2, we describe the decision-making of
an automated negotiation system; then, we analyse the approaches to create
models of the environment in negotiation scenarios in Section §4.3.| Finally, we
summarise our main conclusions in Section §4.4.

46 Chapter 4. Negotiation intelligence

4.1 Introduction

An automated negotiation system must be intelligent enough to carry out
the negotiation process automatically. In particular, this negotiation intelli-
gence can be divided into two tasks: first, it is necessary to make decisions au-
tonomously during the negotiation process; second, to support this decision-
making, it is necessary to create models of the elements of which the negotia-
tion process is composed.

The decision-making model of an automated negotiation system deter-
mines its behaviour during a negotiation process. An automated negotiation
system has to make the decision of which responses shall be sent to the other
participants in the negotiation following a given protocol, as well as decid-
ing on when to commit to an agreement proposal. In addition, some au-
thors [98, [118] also include the decommit decision as a procedure to enable
negotiations with several parties at the same time.

In its simplest form, decisions may be exclusively based on user prefer-
ences or other factors such as the resources available or the time remaining to
reach the deadline established to achieve an agreement. However, there are
other environmental aspects that can be used to make better decisions during
a negotiation. For instance, knowing the preferences of the other parties may
help devise more appealing proposals and, thus, increase the likelihood of
reaching an agreement [139]. Therefore, modelling the world that surrounds
the automated negotiation system, i.e., the market, the other opponents, and
the domain, plays an important role in the negotiation abilities of the system.

4.2 Decision making

The decision-making of an automated negotiation system determines the
way it behaves while involved in a negotiation process. Specifically, it uses
information from several sources, including preferences, world model and ex-
ternal factors that may prevent a party to commit to an agreement, to make, at
least, two decisions: whether it is convenient to commit to an agreement and
the response that shall be sent to the other parties during the negotiation pro-
cess. Besides, there is another decision that may be necessary depending on
the characteristics of the negotiation that is being developed, namely the pos-
sibility of decommitting from agreements as a mechanism to enable several
simultaneous negotiations.

As a consequence, the decision-making of an automated negotiation sys-

4.2. Decision making 47

tem is heavily influenced by the agreement model, the preferences model and
the negotiation protocol. It is influenced by the agreement model because,
since the goal of the decision-making is creating agreements, the decision-
making algorithms must change depending on the characteristics of the agree-
ment model. For instance, it is not the same to create agreements in which
terms are name-value pairs, than agreements in which terms can express com-
plex relations amongst different attributes. It is influenced by the preferences
model because, depending on how preferences are expressed, the decision-
making algorithms may be more complex (e.g. they may try to find trade-offs
between different terms of the agreement) or they may be simpler (e.g. they
just concede as time goes by in the negotiation). Finally, the decision-making
of an automated negotiation system is influenced by the the negotiation pro-
tocol because the automated negotiation system must behave according to the
rules defined by the negotiation protocol.

4.2.1 Foundations

The decisions of automated negotiation systems are based on several dif-
ferent information sources. These sources can be classified into the following
broad groups:

Preferences: The decision-making of an automated negotiation system must
use the information provided by the preferences to behave according to
the user’s requirements. As detailed in Section §3.3, preferences may be
related to the contents of the agreement (e.g. constraints on the values
of the terms of the agreement or an utility function indicating the impor-
tance of these terms to the user), the party with which we are negotiating
the agreement (e.g. we may not wish to make an agreement with a com-
pany that competes with us with another product or with a company
located in a country to which we are not allowed to sell services), and
the negotiation process (e.g. the deadline and the eagerness to reach an
agreement).

World model: The knowledge about the world in which an automated nego-
tiation system is immersed enables the decision-making of an automated
negotiation system to improve its negotiation capabilities [87, 139]. As
detailed in Section §4.3, the models may be related to other parties (e.g.
we may create more appealing proposals to the other parties if we know
its preferences [28], the market (e.g. we may be more reluctant to accept a
proposal if we are likely to get a better one soon [80], or if there are many
trading partners and our proposals are close to the other parties” [121]),

48 Chapter 4. Negotiation intelligence

and the negotiation domain (e.g. it may be necessary to measure the sim-
ilarity between two different values of the same agreement term to make
trade-offs that improve other party’s utility).

External factors: Usually, the capability to accept new agreements depends
on the current state of the resources. To avoid committing to agreements
that cannot be satisfied, the automated negotiation system should use
information provided by external elements such as a capacity estimator
to determine whether an agreement can be accepted or not [85].

Regarding the decisions that must be made by an automated negotiation
system, they can be divided into the following decisions:

Commit decision: It involves determining when to submit a binding pro-
posal and whether a binding proposal that has been received should be
accepted. Its complexity may vary significantly from one approach to an-
other. For instance, in Reference [77], a proposal is accepted if its fuzzy
constraint satisfaction is higher than a certain threshold that may change
during the negotiation. In other approaches such as in Reference [44],
the commit decision also depends on the time that remains to reach the
deadline to finish the negotiation. Therefore, a proposal that it is not
acceptable at the beginning of the negotiation may become acceptable
at the end because of the time constraints. Furthermore, when multiple
agreement negotiations are being carried out simultaneously, the com-
mit decision becomes even more complex because it must coordinate
the sending or acceptance of binding proposals to the other parties [98]
to avoid undesirable behaviour such as a service consumer committing
simultaneously to two agreements when only one is enough.

Together with the decision of submitting or accepting a binding pro-
posal, it is necessary to establish when these decisions must be made.
Usually, the decision is made as the proposals are received [97]. How-
ever, other approaches may be followed such as making the decision at
some predefined points in time.

Response decision: This decision determines which messages must be sent
to the other parties in the negotiation. This involves selecting the perfor-
mative that is going to be used and creating the response content, which
may include proposals, bids, or arguments. Note that separating com-
mit decision and response decision is only at a conceptual level and they
can be implemented together like in References [44, 77]. However, in
other cases, it is convenient to implement them as separate processes.
For instance, when coordinating several concurrent negotiations [98] or

4.2. Decision making 49

when the commit decision is computationally expensive (e.g., it requires
an analysis of the provider’s capability to accept a new agreement).

The response decision is specially influenced by the negotiation proto-
col because it must obey the rules it imposes. Bargaining protocols are
based on the exchange of proposals. Therefore, the main goal of the re-
sponse decision is to create these proposals. To this end, a wide variety
of techniques have been developed, being the most influentials: those
that use time-dependent functions or resource-dependent functions to
obtain the counterproposal by modifying the values of the terms of the
offer [44]; those that try to find trade-offs and create proposals that are
more appealing to the other party based on similarity between propos-
als [43]; those that use constraint resolution techniques [78] or that are
based on fuzzy constraints [77, 87], and those that regard negotiations
as games and use techniques similar to those used in chess games [72].
Genetic algorithms have also been used to calculate which the best strat-
egy to use is [48]. In addition, in argumentation-based negotiations, the
response decision is more complex because many performatives can be
used (e.g. reward, information or threat) and the contents of the mes-
sage may include logical arguments that must be generated and selected
by the automated negotiation system [107].

Decommit decision: Decommitting an agreement involves revoking it, usu-
ally by paying a previously agreed decommit fee, and it is chiefly used
as a mechanism to enable several simultaneous negotiations [98]. The
first work in this direction was presented by Sandholm and Lesser [118].
The authors present a formal analysis of the advantages of decommit-
ting from established agreements, and show how decommitment may
increase the payoff obtained in several negotiations. However, they only
analysed a bilateral game with fixed penalties for decommitting. Later,
Nguyen and Jennings [98] have used decommitment to build a system
that allows multiple concurrent negotiations and support varying de-
commitment fees depending on the stage of the process at which the
commitment is broken. The decommit decision is closely related to the
commit decision because usually the event that triggers the need for a
decommitment is that we can commit to a more profitable agreement.
That is the reason why both commit and decommit decisions are made
by the same element in many cases [97].

4.2.2 Proposals

We focus on four decision-making models for bargaining negotiations.

50 Chapter 4. Negotiation intelligence

Negotiation Decision Functions: Faratin and others [44] describe a decision-
making model for service-oriented negotiations (cf. Section §3.4). They
consider that each term of the agreement is an assignment of a value
to an attribute. In addition, they assume the preferences include an in-
terval of allowed minimum (min,,) and maximum (max,;) values for
each attribute a; under negotiation, together with an utility function for
the attribute (u,;). In addition, there is a global utility function, which
represents a weighted sum of the utility functions of each attribute.

The commit decision is made as the proposals are received and involves
the following: (i) generated proposals are always binding proposals, i.e.
they do not need to pass any approval process, and (ii) when a proposal
is received, the automated negotiation system generates a counterpro-
posal. If the utility of the received proposal is higher than the utility of
its counterproposal, then the proposal is accepted; otherwise, the coun-
terproposal is submitted.

The response decision involves: first, if the negotiation deadline is
reached, the negotiation is finished; second, when a proposal is received,
a counterproposal is generated and, if its utility is higher than the util-
ity of the received proposal, then it is submitted. Counterproposals are
created using the so-called negotiation decision functions. To prepare a
counter proposal X’, the automated negotiation system uses a set of tac-
tics that generate new values for each of the terms in the agreement. The
authors define three types of tactics: time-dependent, which depend on
the progress of time during the negotiation; resource-dependent, which
depend on the availability of resources (e.g. remaining bandwidth) and
the environment (e.g. number of clients); and behaviour-dependent,
which attempt to mimic the behaviour of the other parties. Each tac-
tic is a function that calculates a value for each term of the agreement.
For instance, in the case of time-dependent tactics, the authors propose
to calculate the value of term T, in counter proposal X’ as the following
function:

X'T.] = ming, +ag (t)(maxe —ming,), if u, decreases
o] =
] ming, +(1 — g (t))(maxq —ming), if uy increases

where o, is a function that determines the behaviour of the tactic. De-
pending on its value, the authors distinguish between a conceder be-
haviour, which concedes quickly at the beginning of the negotiation,
and the boulware behaviour, which waits until the end of the negoti-
ation to concede. Resource-dependent tactics are implemented either
by modifying dynamically the deadline of the negotiation depending
on the number of simultaneous negotiations with other parties, or by
making the o, function dependent on the resources available. Regard-

4.2. Decision making 51

ing behaviour-dependent tactics, the authors propose three alternatives:
relative tit-for-tat, where the automated negotiation system reproduces,
in percentage terms, the behaviour of the opponent in the last propos-
als; absolute tit-for-tat, in which the behaviour of the opponent is repro-
duced in absolute terms; and averaged tit-for-tat, where the automated
negotiation system computes the average of percentages of changes in
a window of the opponent last proposals. The final value for each term
in the counter proposal is calculated as a weighted sum of the values
obtained applying each tactic. In this context, the evolution of these
weights as a function of the mental state of the automated negotiation
system is the negotiation strategy.

Faratin and others [43]: The authors present a decision-making model that,
unlike the previous one, can be used to make trade-offs and is based
on a similarity criteria between agreements. It has the same assump-
tions as negotiation decision functions [44], but it also requires the def-
inition of a fuzzy similarity relation. A fuzzy similarity relation for an
attribute q; is a binary function Simg, : Do, x Do, — [0, 1], where Dy,
is the domain of attribute a;. This similarity function gives a measure of
how similar two values of the domain D, are. Therefore, this function
can be used to measure how similar two terms of different agreements
that refer to the same attribute are. In general, the similarity between
two agreements is the weighted sum of the similarities of their terms:
Sim(X,Y) = 3 ., wiSimg (X[Ty], Y[Ty]), where Sim, (X[Tq], Y[Tq 1)
is the similarity function of attribute a; for terms X[Ta].] and Y[Taj]. Note
that this similarity function is a subjective concept. The other party may
consider a different value for the similarity function. However, it is sup-
posed that the similarity measure of two parties is relatively close.

The commit decision in this approach is the same as in negotiation de-
cision functions and the response decision also involves the creation of
counter proposals. However, the creation process is significantly differ-
ent. The idea is to create a counter proposal X’ that has the same util-
ity as our previous proposal X but that is more appealing to the other
party. The way of creating more appealing proposals to the other party
is based on the assumption that the more similar X’ and Y are, the more
appealing proposal X' is to the other party. Therefore, the goal of the
algorithm is to create a counter proposal that verifies that u(X’) = u(X)
and Sim(X’,Y) is as high as possible (i.e. the counter proposal is very
similar to the other party’s proposal). In particular, the algorithm imple-
ments this in S steps. It starts from the other party’s proposal. In each
step, it generates N agreements that have a utility E = (u(X) — u(Y))/S
greater than the agreement selected in the last step. Then, it selects the
agreement with the highest similarity to the other party’s proposal.

52 Chapter 4. Negotiation intelligence

Kowalczyk [77]: The author views the negotiation process as a distributed
fuzzy constraint satisfaction problem and, hence, describes a decision-
making model for bilateral bargaining based on fuzzy constraints. The
model assumes that the preferences have been defined as fuzzy con-
straints (cf. Section §3.3).

The commit decision is made as the proposals are received and is as fol-
lows: (i) generated proposals are always binding proposals, and (ii) a
proposal received is accepted if its level of satisfaction is greater than or
equal to a prescribed satisfaction threshold. This threshold can be fixed
since the beginning of the negotiation or changed during the negotia-
tion according to its progress and the availability of new information.
In Reference [78], the author proposes this threshold to be calculated as
C* = dC(X*), where C(X*) is the level of satisfaction of the preferred so-
lution, and d is a coefficient that expresses the desirability of a party to
reach an agreement.

The response decision involves the creation of counter proposals. The
idea is to start the negotiation with the most preferred agreement and to
concede progressively in each counter proposal. All concessions involve
decreasing the level of satisfaction of the proposal: C(X') = C(X) + A,
where X' is the new counter proposal, X is the proposal submitted pre-
viously and A is the concession. The negotiation strategy determines the
rules of progressing negotiation towards an agreement by characterising
the level of concession of one party. Kowalczyk proposed a number of
basic negotiation strategies including take-it-or-leave-it, no concession,
fixed concessions, and simple concessions. For instance, in a fixed con-
cession strategy, the value of A is a constant and, hence, the concession
made in each counter proposal is always the same. When the conces-
sion level is determined, the counter proposal is generated solving a lo-
cal fuzzy constraint satisfaction problem that includes the information
available to a party including the individual preferences, constraints and
objectives as well as the previous proposals and counter proposals.

Nguyen and Jennings [98]: This approach deals with the problem of multi-
ple concurrent negotiations. The decision-making model is based on the
notion of leveled commitment contracts [118] in which a party can de-
commit from an agreement by paying a decommitment fee. Therefore,
this implies that the decision-making model requires the addition of a
decommit decision to decide when it is profitable for the system to de-
commit from an agreement. The authors assume that preferences are
expressed as in negotiation decision functions [44]. In addition, a de-
commitment fee is established. The calculation of the decommitment fee
(p(t)) takes into consideration a percentage of the utility of the agree-

4.2. Decision making 53

ment and the time when the agreement is broken. Therefore, as time
goes by, the decommitment fee increases.

The commit decision in this proposal involves the decision of whether to
commit to an agreement and the decommitment from the current agree-
ment, if any. Let X be the proposal that is being analysed, A a previously
established agreement, u(X) and u(A) the utility of both agreements and
p(t) the decommitment fee for the current agreement. The automated
negotiation system will accept X and reject the current agreement if all
the following conditions are satisfied: (i) the utility of the new agree-
ment is higher than the sum of the current agreement and the decom-
mitment fee: u(X) > u(A) + p(t), (ii) the degree of acceptance (u) is
over a predefined threshold (t). The degree of acceptance is calculated
by comparing the utility value of X with the predicted utility of the next
set of contracts from other parties that are negotiating simultaneously
(X, | p € Parties}), also taking into account the relation between the
current time and the negotiation deadline (ty, .,). Specifically, the for-
mula is:

_ u(X) —p(t) t
max{Uex, (X,,) | p € Parties} ty, .,

(X)

where U, (X,) is the expected utility of the next proposal by the party
Pp.
The decommit decision of this decision-making model is implicit in the

commit decision because the creation of a new agreement implies the
decommitment from a previous one.

The response decision in this proposal involves the creation of counter
proposals following the time-dependent family of negotiation decision
functions [44]. However, the authors developed a system to change the
strategy during the negotiation based on the perception it has about
the type of negotiation the other party uses. Specifically, they dis-
tinguish between conceder and non-conceder negotiators. At the be-
ginning of the negotiation, the automated negotiation system assumes
the other party has a probability P(a) of being of type a € Aypes =
{conceder, non-conceder}. Then, during the negotiation, it updates this
probability based on how fast it concedes in two consecutive propos-
als. Given this, the system selects the strategy A € S to use in each
iteration as the strategy that maximises the expected utility EU(A) =
ZaeAtypes PS(A, a)PO(A, a)P(a), where PS(A, a) is the percentage of suc-
cess matrix and PO(A, a) is the pay off matrix. The former measures the
chance of having an agreement when the automated negotiation system
applies strategy A to negotiate with a party of type a; the latter measures
the average utility value of the agreement reached in such situation.

54 Chapter 4. Negotiation intelligence

4.3 World modelling

The knowledge about the world in which an automated negotiation system
is immersed is important to strengthen its negotiation capabilities [87, 139].
For instance, in the decision-making model proposed by Nguyen and Jen-
nings [98], it is necessary to calculate the expected utility of the next proposal
submitted by one party or the probability that a party is of type conceder or
non-conceder.

However, this knowledge is not always available for the automated negoti-
ation system. Negotiations can be classified into two broad groups depending
on the information available to the automated negotiation system, namely:
full information negotiations and partial or incomplete information negotia-
tions. The former are those negotiations in which the automated negotiation
system has full knowledge of all the factors that may affect the decisions made
in a given situation. The latter are those in which the automated negotiation
system has only partial knowledge of these factors and, hence, the decisions
made may not be optimal.

In realistic scenarios, the most common negotiations are those with par-
tial information [47] either because parties are not known a priori, or because
parties in a negotiation try to minimise the amount of information they reveal
about their preferences since that revelation can weaken their negotiation po-
sition [87]. As a consequence, an automated negotiation system must be pro-
vided with mechanisms to create models about the world in order to increase
the partial information it has about it. This is the so-called world modelling.

4.3.1 Foundations

The models that an automated negotiation system can create about the
world it is immersed can be classified into three different categories based
on the subject the model is about:

Models of other parties: These models include their preferences [139], the ne-
gotiation process followed by the other party (e.g. whether it tends to
concede [98] or its negotiation deadline) and the party itself (e.g. reputa-
tion or geographical location).

Market models: These models include information such as the market reser-
vation price, the trading opportunities of a party [123], or the probability
of appearing new candidate parties during the negotiation [80].

4.3. World modelling 55

Models of the negotiation domain: These models include information about
the domain of the agreement. For instance, Reference [43] requires a
measure of the similarity between two different values of the same agree-
ment term to make trade-offs that improve other party’s utility.

To create these models, the automated negotiation system needs to gather
information about the world, which can be gathered from the following
sources:

Domain expert: The information is provided by an expert in the domain. This
is the most common information source when building models of the ne-
gotiation domain. For instance, in Reference [43], a domain expert pro-
vides the automated negotiation system with the aforementioned mea-
sure of similarity between values of terms in the negotiation domain.

Directly polling the other parties: The automated negotiation system queries
the other parties in the negotiation to get information about them and the
characteristics of the service demanded or offered, i.e., their preferences.
For instance, in WS-Agreement [4], the parties may offer templates that
can be used as guidelines for the other parties to know the kind of agree-
ments they are willing to accept.

External information providers: Besides querying the other parties in the ne-
gotiation directly, automated negotiation systems may query other enti-
ties that are not directly involved in the negotiation to get information.
For instance, reputation providers may be asked for the reputation of a
specific party, or marketplaces may be asked for the number of providers
or the results of last negotiations. This is the case of Reference [58],
in which several auction sites are queried to gather information about
the results of recent auctions to provide measures such as recommended
maximum price for an auction.

Messages exchanged in negotiations: The messages exchanged with other
parties during the negotiations provides an excellent information source
that can be used to learn the behaviour and the preferences of other par-
ties like in References [28| 139]. Note that the messages exchanged in-
clude both those exchanged in previous negotiations that have already
finished and those exchanged in the current negotiation.

Depending on the information obtained from the aforementioned sources,
it can can be used to support the decision-making without any further process-
ing or it must be analysed before being used to support decisions during ne-
gotiations. The former is usually the case for information provided by domain

56 Chapter 4. Negotiation intelligence

experts or obtained by polling the other parties in the negotiation, whereas the
latter is the most common case for information provided by external informa-
tion providers or obtained from previous negotiations.

A variety of approaches have been proposed to analyse the information.
They can be classified into the following categories:

Offline analysis: The analysis does not take into account the state of current
negotiations. Therefore, it can be computationally intensive because
they do not have to be computed for a specified time. An example of
offline analysis is described in Reference [80], in which the history of
previous negotiations is used to learn the expected utility of uncertain
and dynamic potential parties that may appear in the future.

Online analysis: The analysis takes into account the state of current negoti-
ations. Therefore, it should be performed as the negotiation progresses
and needs to be fast and not very computationally intensive. Examples
of online analysis can be found in Reference [139], which uses Bayesian
learning to build a model of the preferences of other participants, and in
Reference [122], which defines functions that measure two market condi-
tions trading opportunity and competition based on the state of current
negotiations and the number of service providers and consumers.

Note that there may be approaches that uses both an offline and an online
analysis. For instance, Reference [28] uses an offline analysis to acquire a prob-
ability density function over the other party’s preferences and, then, it uses an
online analysis to reflects the information of the current negotiation process.

4.3.2 Proposals

Next, we report on several approaches to create models of other parties
and market models that are used to help improve the decision-making of au-
tomated negotiation systems:

Zeng and Sycara [139]: In this approach, the authors model beliefs about the
negotiation environment and the other negotiating parties under a prob-
abilistic framework using Bayesian learning representation and updat-
ing mechanism. In their model,) represents a set of relevant infor-
mation entities that may be either the parameters of the environment,
which can change over time (e.g. demand and interest rate or overall
product supply), or beliefs about the other parties: about their factual

4.3. World modelling 57

aspects (e.g. how many resources a party has), about their preferences
(e.g. which is the maximum price a party is willing to pay) and about
their decision-making model (e.g. the negotiation style of a party). Be-
fore negotiation starts, each party has a certain amount of knowledge
about), denoted as Py, i, where Py, ; is a subjective probability distri-
bution that represents the knowledge held by each party i in each stage
of the negotiation and H; is the history at the initial step. Then, when
other party sends a message, the automated negotiation system updates
his subjective evaluation about the environment using Bayesian rules:
given prior distribution Py, , ; and the new information Hyy, calculate
the posterior distribution Py, ;. In the article, the authors exemplify
this framework by learning the reservation price of the other parties (the
maximum/minimum price a buyer/seller is willing to pay).

Coehoorn and Jennings [28]: In this approach, the authors model beliefs
about other negotiating parties using the kernel density estimation
(KDE) method. This article takes the decision-making model proposed
by Faratin and others [43] as a starting point. This model is used to
make trade-offs based on a similarity criteria between agreements (cf.
Section §4.2). One of the problems to put into practise this decision mak-
ing model is the difference in importance (weight) that each party gives
to the terms under negotiation. Therefore, the goal here is to learn the
weights that the other parties give to the terms under negotiation. To
this end, they process the data of previous negotiations offline to acquire
a probability density function over the other party’s weights for the var-
ious terms. In addition, this model can be improved by online learn-
ing that reflects the information of the current negotiation process. The
learning is based on the difference between two consecutive proposals.
Furthermore, the authors assume that the other party behaves differently
as time goes by during the negotiation. Therefore, the density estimation
is made for each time in the negotiation.

Li and others [80]: They focus on modelling the market instead of the par-
ties. When an automated negotiation system is negotiating with another
party, there may exist simultaneously other potential parties or some
may appear in the future. These alternatives to the party that we are con-
sidering are called outside options. Outside options have an influence on
the decision making model because if we expect for a new party to ap-
pear with an appealing proposal, we may be more reluctant to accept the
current proposal. The problem Li and others face is to calculate the ex-
pected utility of uncertain and dynamic outside options that may appear
during a negotiation process. Outside options can execute concurrently
with a negotiation, or present sequentially in the future, which are uncer-

58

Chapter 4. Negotiation intelligence

tain outside options. The authors model outside options with two levels
of complexity: synchronised negotiations, which only consider the im-
pact of other concurrent negotiations, and dynamic negotiations, which
consider outside options coming in the future. In synchronised nego-
tiations, the authors provide four heuristic approaches to estimate the
expected utility given a set of concurrent negotiations. In the first ap-
proach, the synchronised negotiation is approximated as a reverse auc-
tion. In the second one, it is approximated by an English auction fol-
lowed by a bilateral negotiation between the system and the winning
party. The third approach is based on the approximation of the prob-
ability distributions of negotiators’ types by uniform distributions and
on the application of the results of Reference [94] to calculate the proba-
bility of reaching an agreement. Finally, the fourth approach is based on
learning the probability of reaching an agreement and the distribution of
agreements based on previous negotiations. The case of dynamic nego-
tiations is an extension of synchronised negotiations in which the arrival
of outside options is modelled as a Poisson process.

Sim and Wang [122]: In this article, the authors consider that the automated

negotiation system is carrying out several negotiations simultaneously.
In this context, the authors model several market conditions such as
competition and use them to make adjustable amounts of concessions
and to relax trading aspirations in face of negotiation pressure. Specif-
ically, they define functions to measure two market conditions: trading
opportunity and competition. The trading opportunity function deter-
mines the bargaining power of one party based on trading alternatives
(number of trading partners) and differences in proposals. To determine
the trading opportunity, Sim and Wang calculate the highest probabil-
ity of not reaching an agreement with any other party. This probability
is based on the difference between the other party’s last proposal and
the counterproposal made by the negotiation system. When the proba-
bility of not reaching an agreement is nearly 0, the trading opportunity
approaches 1, and hence, the automated negotiation system has more
bargaining power and can make smaller concessions. Conversely, if the
probability of not reaching an agreement is close to 1, the trading oppor-
tunity reduces to 0, and the bargaining power decreases. On the other
hand, the competition function determines the probability that the auto-
mated negotiation system is ranked as the most preferred trading part-
ner by at least another party in the current round. Sim and Wang assume
the automated negotiation system knows, at each instant t, the number
of trading partners (m.), and the number of competitors (n.). Then, they
calculate the probability that the automated negotiation system is the
most preferred trading partner by at least one party as 1—[(m—1)/m ™.

4.4. Summary 59

4.4 Summary

In this chapter, we have analysed the intelligence in automated negotiation
systems. First we have described the decisions an automated negotiation sys-
tem makes and, then, we have reported on models of the environment that the
automated negotiation system can create to support those decisions.

60

Chapter 4. Negotiation intelligence

Chapter 5

Automated negotiation systems

Besides black art, there is only
automation and mechanisation.

Federico Garcia Lorca, 1898—1936
Spanish poet and dramatist

oftware systems can support the negotiation process to several extents.

In this chapter, we review a number of software systems and frameworks
that automate several parts or the whole negotiation process. These systems
can be designed ad-hoc for a specific protocol and negotiation intelligence al-
gorithms or they can be built on frameworks that make it easier to reuse pro-
tocol support and intelligence algorithms. The chapter is organised as follows:
in Section §5.2, we review some ad-hoc automated negotiation systems; then,
we describe several negotiation frameworks in Section §5.3. Finally, we sum-
marise the main ideas of this chapter in Section §5.4.

62 Chapter 5. Automated negotiation systems

5.1 Introduction

In the previous chapters, we have analysed the different parts that com-
pose an automated negotiation system, namely: the models that are used to
represent the agreements and the preferences (i.e. the output and the input to
the automated negotiation system respectively) (cf. Chapter §3); the protocol
that defines the rules that must be followed by the parties that participate
in the negotiation (cf. Chapter §3), and the negotiation intelligence, which
includes the decisions that an automated negotiation system makes and the
models it creates to support those decisions (cf. Chapter §4). In this chapter
we consider the automated negotiation system as a whole and we analyse how
these pieces fit together.

The simplest approach to build an automated negotiation system is to
make an ad-hoc design for concrete negotiation intelligence algorithms and
protocols. This is the approach followed by many authors [20, 43| 44, 69, 77,
79,187,1104,129]. These developments cover all aspects of an automated nego-
tiation system: from the negotiation protocol to the agreement model and the
negotiation intelligence. Furthermore, they usually couple tightly these parts
of an automated negotiation system.

Nevertheless, other authors focus on the reusability of the different parts of
an automated negotiation system. Thus, they have came up with negotiation
frameworks that can be used to build automated negotiation systems. There
are two kinds of negotiation frameworks, namely: protocol-oriented frame-
works [9, 75114, 128] and intelligence-oriented frameworks [6, 12, 26, 55, 66,
74, 84, 136]. The former focus on the interaction of the negotiation parties,
whereas the latter are centred on the mechanisms that allow the automated
negotiation system to carry out the negotiation process automatically. In sum-
mary, protocol-oriented frameworks deal with the external part of automated
negotiation systems whereas intelligence-oriented frameworks focus on the
internals of those systems.

5.2 Ad-hoc automated negotiation systems

One approach to develop automated negotiation systems is to select a con-
crete negotiation protocol and specific negotiation intelligence algorithms and
to make an ad-hoc design for them. Therefore in such ad-hoc automated ne-
gotiation systems, the protocol and intelligence algorithms cannot be easily
changed. Ad-hoc automated negotiation systems are usually employed when

63

5.2. Ad-hoc automated negotiation systems

Eo.ﬁmwwm suoTouNj
0 EwwmmOu Sunuresreq Amn SjuTeI}SUO SV NP
N yuren IR ‘SIUTensuod jurensuo) [££] SVNPA
Azznjy ur J—
SUOISSIOUO)) d
uorjexe[a1 [EMBIPUIIM uorjexe[a1
o syurenysuod esodoxd yym SJUTRI}SUO0D SJUTETISUO [621]
N pue sisA[eue Surure3req “jouny Amn ‘ J SISUJO pue nNg
}JOUDJ-ISU0D) [eIdje[rg ‘SIUTeIISUO))
sresodoxd INOTABYD
[7¥] suonouny : AR [vo1l
Surpurg-uou aurpeap sanfea jo
sonred Y10 uorsIdp | o L SI930 pue
m SurureSreq sfearaurl yuewudIssy
uoreno3aN o . : . ATeqoimeg
[esore[rg “10uny Aun
‘[9pour p[IOA Supjeur S [020301] EEMIEMCIER S | JudwWIIY resodoig

Table 5.1: Summary of representative ad-hoc automated negotiation systems.

64 Chapter 5. Automated negotiation systems

we want to create a system that negotiates in a specific scenario. For instance,
ad-hoc automated negotiation system have been proposed to acquire goods
via a mobile device [104] or to reach service agreements with a telecommuni-
cations company [44].

In this section, we focus on a subset of all ad-hoc automated negotiation
systems. Specifically, our interest is in approaches that negotiate complex
agreements following a bargaining protocol. By complex agreements, we
mean agreements with several negotiable terms. There are many proposals
that fit into this category such as References [20, 43, 44,69, 77,79, 87,104, 129].
However, they differ in the scenario they deal with and in the protocol and in-
telligence algorithms they employ to reach their goal. For instance, Kurbel and
Loutchko [79] deals with the situation of an electronic job marketplace, Pau-
robally and others [104] focus on acquiring goods and services from mobile
devices, Byde and others [20] focus on procurement scenarios, Su and others
[129] cover both business-to-business (B2B) and business-to-consumer (B2C)
scenarios, and so on.

Regarding negotiation protocols, although all of them follow a bargaining
bilateral protocol, they differ in aspects such as the performatives they support
and the proposals they exchange. For instance, besides the typical commit,
accept and reject performatives, Luo and others [87] include a reward per-
formative and Su and others [129] include modify, acknowledge and withdraw.
The negotiation intelligence varies also amongst the different proposals. For
example, some authors [43, 77, 87] try to find trade-offs to create proposals
that are appealing to the other party, whereas others [20, 43| 44, 69, 104] just
concede as the negotiation progresses.

Next, we describe several representative ad-hoc automated negotiation
system proposals (cf. Table §5.1 for a summary). The description is made
based on the parts that compose an automated negotiation system. Namely,
agreement and preferences models, negotiation protocol, decision making and
world modelling.

Paurobally and others [104]: The authors present an automated negotiation
system for provisioning mobile services. These services include mobile
shopping, location-sensitive information (e.g. obtaining map services
or local hotels), telemetry (e.g. logistics tracking) and mobile banking.
The particularities of this scenario is that services are context-aware and
location-sensitive and the inherent limitations to mobile devices such as
network availability and bounded computation capabilities and, hence,
negotiation mechanisms should adapt to the varying environment con-
ditions. The agreement data structure is simple: an agreement is a set

5.2. Ad-hoc automated negotiation systems 65

of terms (issue in the authors’ terminology) and each term is an assign-
ment of a value to an attribute. The preferences are expressed in terms
of an utility function and an interval of allowed values for each possible
attribute like in Reference [44] (cf. Chapter §3). In addition, there are also
preferences about the negotiation process such as the deadline and val-
ues to parameterise the decision-making model (e.g. whether the system
should concede at the beginning or at the end of the negotiation). It fol-
lows a bilateral protocol based on the exchange of proposals and coun-
terproposals. This protocol includes binding (offer or propose) and
non-binding (suggest) proposals, a timeout to deal with network prob-
lems and the ability to resume timed-out negotiations. Regarding the
negotiation intelligence, the decision-making is based on Reference [44]
(cf. Chapter §4) but it includes a network-aware strategy to adapt the
negotiation behaviour to variations in the quality of the network, and an
experience strategy that uses models of other parties based on previous
negotiations.

Su and others [129]: This article describes an automated negotiation system
suited for negotiating in both B2B and B2C scenarios. They present an
architecture with several negotiation servers in which several clients can
register. These negotiation servers negotiate on behalf of their clients.
The authors consider an agreement as a set of terms but, unlike Pau-
robally and others [104], in this one, terms can be intervals instead of
only concrete values. The preferences about the agreement are expressed
in two different ways: first, a set of attribute constraints and another set
of inter-attribute constraints are defined. These constraints define the al-
lowed values for the terms of the agreement. Second, an utility function
is given to make a cost-benefit analysis in certain phases of the decision-
making. Furthermore, preferences about the negotiation process are also
specified. These preferences are expressed in the form of rules and are
used to relax the constraints when no proposal meets them. The protocol
supported by the automated negotiation system is bilateral and it allows
the modification and withdrawal of previously submitted proposals. In
addition, unlike the previous automated negotiation system [104], the
values of the terms of the proposal can be intervals instead of constant
values. Concerning the negotiation intelligence, when the automated
negotiation system receives a new proposal, it makes a constraint verifi-
cation. If constraints are satisfied, then a cost-benefit analysis is carried
out to select the best agreement. Otherwise, the automated negotiation
system applies the relaxation rules and creates a counterproposal that is
sent back to the other party. No models of the world are created by this
automated negotiation system.

66 Chapter 5. Automated negotiation systems

FeNAs: Kowalczyk [77] presents an automated negotiation system for e-
commerce scenarios. In particular, two examples are described in the
article: used car trading and negotiating document translation services.
However, the authors argue that it can be used in other scenarios. Agree-
ments are viewed as a set of terms and each term is a constraint on one
or several attributes. The preferences are expressed as fuzzy constraints
together with an additional constraint that represents the utility value
of an agreement (cf. Section §3.3 for a more detailed description). The
automated negotiation system uses a bilateral negotiation protocol that
only includes accepting or rejecting proposals, sending counterpropos-
als and withdrawing from the negotiation. The negotiation intelligence
algorithms are based on viewing the process as a distributed fuzzy con-
straint satisfaction problem. A proposal is accepted when its satisfaction
level is higher than a predetermined threshold. Counterproposals are
generated by conceding progressively following a number of negotia-
tion strategies (cf. Section §4.2 for more information). No world models
are created in this automated negotiation system either.

5.3 Automated negotiation frameworks

Unlike ad-hoc automated negotiation systems, frameworks focus on the
reusability of the different parts of an automated negotiation system. Note
that an automated negotiation framework cannot be used as a negotiation
system, but it defines the elements on which an automated negotiation sys-
tem can be built. The term negotiation framework is used in this dissertation
in a different way than in other articles [44, 87, 104]. Here we understand ne-
gotiation framework as a software framework whereas in those articles, the
term framework is used in a conceptual level to define the formal founding on
which the negotiation intelligence is based.

As mentioned above, there are two kinds of negotiation frameworks de-
pending on the parts of the negotiation system they wish to reuse: protocol-
oriented frameworks and intelligence-oriented frameworks.

5.3.1 Protocol-oriented frameworks

There is a large variety of negotiation protocols (cf. Section §3.4). Therefore,
there is a lack of a standard protocol to enable the interoperation of different
automated negotiation systems, which makes it very unlikely to happen that

5.3. Automated negotiation frameworks 67

Proposal Agreement Protocol Interop. Mediator

Kim and Shared Yes (market-

Segev [75] N/A BPEL ontology place)

Rinderle

and Statecharts Yes (market-

Benyoucef N/A and BPEL N/A place)

[114]

Bartolini OWL- Taxonomy OWL-Lite Several de-

and others . .

9] Lite [36] of rules ontologies ployments
Common

SilkRoad XML State- commu- Yes (inter-

[128] Schema machines nication mediary)

meta-model

Table 5.2: Summary of protocol-oriented frameworks.

all parties use the same negotiation protocol. Moreover, the automated nego-
tiation of agreements between two parties that are not known a priori may in-
volve semantic-interoperability problems. For instance, each party could have
a different definition of what response time means. Solving these problems is
the aim of protocol-oriented frameworks.

Protocol-oriented frameworks follow two different approaches. Some of
them [75, 114, 128] define a negotiation host or marketplace that acts as a me-
diator between the negotiating parties. Others describe the elements that are
required to manage negotiation protocols properly [9]. Then, these elements
may be deployed in a negotiation host, in the automated negotiation systems
themselves or in both of them at the same time. Next, we describe several
proposals of protocol-oriented frameworks that cover both approaches:

Kim and Segev [75]: This article describes a web services-enabled market-
place architecture. This architecture enables the automation of B2B ne-
gotiations from the process management perspective by defining ne-
gotiation protocols in BPEL4WS and developing a central marketplace
that controls them. Specifically, the marketplace includes a repository of
shared ontology and message templates that can be used to solve seman-
tic interoperability problems. In addition, the marketplace has a repos-
itory of executable negotiation protocols defined in BPEL and it runs a

68

Chapter 5. Automated negotiation systems

BPEL engine that executes the process and interacts with the negotiating
parties through web services. Together with this negotiation host, the
authors propose a semi-automatic mechanism to build those negotiation
processes in BPEL. Specifically, they identify attributes in the negotia-
tion processes and propose a pattern-based process model in which ne-
gotiation processes are generated by the selection of the patterns in each
process attribute.

Rinderle and Benyoucef [114]: In this article, the authors propose a service-

oriented architecture to manage negotiation protocols. Like Kim and
Segev [75], they define a marketplace, which contains a set of formally
specified negotiation protocols. Then, the marketplace configures the
negotiation based on the protocol and passes them on to the negotiating
parties. Finally, the negotiating parties use them to carry out the negotia-
tion. The authors formally specify negotiation protocols using statechart
models and, later, map them onto BPEL processes. However, this map-
ping is still manual and its automation is left as future work.

Bartolini and others [9]: They argue that the rules of negotiation must be

made explicit instead of being represented implicitly in the automated
negotiation system’s design. This allows solving maintenance and
reusability problems in automated negotiation systems. To this end, the
authors present a taxonomy of rules that can be used to capture a vari-
ety of negotiation mechanisms. These rules include rules for admission
of participants, proposal validity, protocol enforcement, updating sta-
tus and informing participants, agreement formation and management
of the lifecycle of the negotiation. They also define a simple interaction
protocol based on FIPA specifications that is used together with the rules
in order to define negotiation protocols. Therefore, the automated nego-
tiation systems only have to care about following this simple interaction
protocol and obeying the rules. In addition, based on the rules taxon-
omy, they define a set of roles that must be implemented to carry out a
negotiation process. However, unlike the previous frameworks [75,114],
the authors do not specify a concrete deployment of these roles. There-
fore, they can be placed in a negotiation host or they can be integrated
in each negotiating party. Finally, to solve the semantic-interoperability
problem, the authors define a language to express negotiation proposals
and agreements that is based on OWL-Lite.

SilkRoad: Itis a framework developed by Strobel [128] that consist of a meta-

model, the so-called roadmap, intended to capture the characteristics of
a negotiation process and an application framework, the so-called skele-
ton, that provides several modular and configurable negotiation service

5.3. Automated negotiation frameworks 69

components that can be used for the implementation of automated ne-
gotiation systems. The meta-model is divided into two main constructs:
organisation design meta-model to specify the structure (roles) and be-
haviour (protocols) of the negotiation, and communication design meta-
model to express syntactical and semantical representations of the ne-
gotiation terms and agreements. The organisation structure is divided
into agents (buyer, seller and intermediary) and services (match, score,
mediate, bid, contract and bundle) and the organisation behaviour de-
tails the interactions amongst agents and services using a state machine
that is triggered by events. At runtime, the communication meta-model
is transformed into XML schemas and the organisation meta-model is
expressed as a state-machine table and enforced by the policy manager
that invokes the services if necessary. Note that, although they provide
some services that may be considered as negotiation intelligence mech-
anisms, the author explicitly states that the proposal does not provide
means to design or represent negotiation strategies. That is the reason
why we consider SilkRoad a protocol-oriented framework.

5.3.2 Intelligence-oriented frameworks

Intelligence-oriented frameworks try to make the development of auto-
mated negotiation systems easier by giving a common founding for devel-
oping negotiation intelligence algorithms and improving reusability. Further-
more, some of these frameworks [6), 55, 136] also deal with protocol manage-
ment. However, instead of dealing with the interactions amongst automated
negotiation systems like protocol-oriented frameworks, they focus on decou-
pling the protocol and the intelligence algorithms to make the latter compati-
ble with a number of different protocols.

There are several proposals [6, 12, 55| 66, 184, 136] of intelligence-oriented
frameworks but they differ in their level of abstraction and the support they
give to the negotiation intelligence as well as the number of negotiation pro-
tocols they support. Next, we report on the most significant intelligence-
oriented frameworks for bargaining protocols (cf. Tables §5.3/for a summary):

Ashri and others [6]: In this article, two architectures for negotiating agents
are described: a basic negotiating agent including those participating
in auctions and bilateral bargaining, and an argumentative negotiating
agent that focuses on argumentation-based negotiations. Here we fo-
cus on the first one. The framework is described at a high level of ab-
straction and the authors use agent-based techniques to describe it. In

Chapter 5. Automated negotiation systems

70

(s1ay30
-Sunjeuroye) Sur

(e
-ueulj pue 9sed)

son
-TeA Jo yuawudIssy

MOT-WNIPIN

[99]
SIaU}0 pue Iaxuo(

-uredreq Jerdje[lg suondouny Aymn
JUaLIND [2i]suorrain
-uod jou jng Auy V/N V/N WO pue JoonoAuag
Surure3req [e19 . —
4eTq JUSLIMIUOS V/N V/N PIN [9€1] SO a
(s1000301d Sa[nI [8] s1aj0 pue
VdId) Surure3 swompuny Anmn L) JUAWRAIZY-GM MOT-WNIPIA Stmpn
-Teq Texayeqig
Bupuresieq [exo SOt SjuTeI}SUO MOT-WNIPd
Je[Iq JuBLMOUOY ‘suonduny Ajnn Jurersuo) T-WnIpa [es] vaNVd
o V/N V/N 81H)
-uredreq Terdjeig et SI9U)O pue LIysy
[0>0301J CERVEREIENS | JUdUIRIZY uonpensqy resodoig

Table 5.3: Summary of intelligence-oriented frameworks.

5.3. Automated negotiation frameworks 71
Proposal Decision-making World-modelling
Proposal evaluator Opponent model,
Ashri and others [6] and response genera- mental attitudes,

tion

environment model

Rule-based, deploy- Object pool with es-

PANDA [55] timation libraries and
ment planner ..)
negotiation history
Ludwig and others Rule-based No
[84]
Any (example with
DynamiCS [136] evolutionary strate- No
gies)
Benyoucef and
Verrons [12] If-then rules N/A
Jonker and others [66] Attribute evaluation Opponent model

and planning

Table 5.3: Summary of intelligence-oriented frameworks (Cont’d).

particular, they define the system in terms of a descriptive specification,
a structural specification and a behavioural specification. The system
specified in the framework receives incoming messages from the other
negotiating parties and returns outgoing messages as responses. The
protocol is managed by a protocol reasoner, which checks the incoming
messages with the protocol rules and generates the available responses,
and the locution generation, which encapsulates the generated responses
into the proper messages. The model of the world is decomposed into
three components: the opponent model, mental attitudes and the envi-
ronment model. However, the article does not detail more about these
components. Finally, the decision making is carried out by the proposal
evaluator, and the response generator, which uses the evaluation, the
possible responses and the models of the world to create a response.

PANDA: PANDA (Policy-driven Automated Negotiation Decision-making
Approach) [55] is an object-oriented framework to carry out negotiations
automatically. An agreement proposal is composed of non-negotiable
terms such as the name of the parties and variable terms that may con-
tain single values and may be restricted by intervals, enumerations of
values, simple logical constraints and inter-attribute constraints. The

72

Chapter 5. Automated negotiation systems

preferences are a mix of utility functions and rules. The assumptions
on the protocol made by the framework are weak for keeping it appli-
cable to many different negotiation scenarios. Specifically, the authors
consider bilateral bargaining protocols in which the data exchanged are
proposals and the performatives supported are accept, reject, offer,
withdraw and terminate. The decision-making component is composed
of rules, utility functions and an object pool with several estimation li-
braries, the negotiation history and the current offer. In addition, the
PANDA framework allows combining multiple decision-making com-
ponents to build a more complex system. For instance, the authors pro-
pose a negotiation system architecture for infrastructure providers with
three decision-makers: a negotiating agent, which develops a bilateral
negotiation; a negotiation coordinator, which coordinates multiple ne-
gotiating agents to carry out multiple simultaneous negotiations; and an
utility update, which updates the resource utility function as a function
of the available resources in the server. Furthermore, they include a de-
ployment planner to evaluate the feasibility of accepting an agreement
and a risk function to calculate associated risks.

Ludwig and others [84]: In this article, the authors present a framework for

automated negotiation of service level agreements in service grids. The
underlying principle of the framework is the decomposition of the ne-
gotiation into negotiation object, negotiation protocol and decision mak-
ing model [64]. More specifically, the authors take WS-Agreement [4]
as a starting point and extend its agreement layer with elements that
deal with the negotiation process. Thus, the agreement layer proposed
is composed of three components: agreement provider and initiator,
protocol service provider and decision making service provider. Each
component deals with a different part of the negotiation: the agreement
provider and the initiator provide the interfaces that are necessary for
interacting with a provider during service negotiation and it is respon-
sible for describing the negotiation object; the protocol service provider
deals with the negotiation protocol and it is responsible for making sure
the rules of the protocol are followed and the messages are correctly
managed, and the decision making service provider encapsulates the
decision making model. The authors propose using FIPA protocols (cf.
Section §3.4) to implement protocol service providers and the syntax
and semantics of the PANDA framework in the decision making service
providers. However, the decomposition of the framework into different
services allows it to use several protocol service providers with differ-
ent protocols implemented in them and several decision making service
providers with different levels of complexity.

5.3. Automated negotiation frameworks 73

DynamiCS: This is an actor-based framework developed by Tu and others
[135,136]. The framework is founded on a dynamic plug-in mechanism
that allows modules to bee selected and composed dynamically depend-
ing on the requirements of the environment. Each module decomposes
into a set of tasks which can be dynamically assigned to active objects
(actors). The framework itself can be decomposed into four modules:
the communication module, the protocol module, the strategy module
and the rules module. The communication an the protocol module are in
charge of managing the negotiation protocol whereas the rules and the
strategy modules manage the negotiation intelligence algorithms. The
rules module is used to define the preferences in the form of invariants,
policies and action rules. The strategy module is composed of two kinds
of actors: the coordinator and the strategy actor. The coordinator is re-
sponsible for checking the validity of execution constraints. These can be
classified into strategy constraints, which control the execution of actors
that model a negotiation strategy; agent constraints, which reflect the
inner state of the agent; and negotiation constraints, which reflect the
state of a negotiation. Moreover, the coordinator is also responsible for
invoking the concrete strategy actors. Each strategy actor implements
a different decision-making model. In addition, the authors argue that
decision-making algorithms should deliver usable results even when in-
terrupted at any point of computation.

Benyoucef and Verrons [12]: In this article, the authors present their ap-
proach to a configurable framework for designing, implementing and
deploying automated negotiation systems. Their approach is based on
the separation of protocols and strategies from the system and they
adopt a service-oriented architecture to make it easier the deployment
and integration with current infrastructures. The authors separate the
protocol management and the negotiation intelligence into two differ-
ent components, namely: the e-negotiation server and the automated
e-negotiation interface, respectively. By doing so, they achieve a clear
separation of concerns. Furthermore, they consider that negotiation pro-
tocols and strategies should be treated as declarative knowledge. In
particular, they argue that negotiation protocols can be expressed using
UML statecharts and negotiation strategies can be represented as if-then
rules. Later, these UML statecharts are transformed into BPEL processes
that are executed in the engine in the e-negotiation server, and the ne-
gotiation strategies are executed by software agents in the automated
e-negotiation interface. This allows to modify the negotiation strategy
dynamically during the negotiation. In addition, both e-negotiation
server and automated e-negotiation interface can use additional services
to complement them such as authentication and non-repudiation for the

74 Chapter 5. Automated negotiation systems

server, and decision support systems and advisor services for the inter-
face. Both of them can also integrate with back office systems that may
provide internal information for the decision making process such as
taking provider’s capacity into account in binding decisions.

Jonker and others [66]: The authors describe a component-based generic
agent architecture for multi-attribute negotiation. The negotiation con-
sidered follows an alternating-offers protocol and the agreement has the
form of values assigned to a number of attributes. No concurrent nego-
tiations are supported. The negotiation component is composed of five
components: negotiation coordinator, which decides the next action de-
pending on the last events of the negotiation; attribute evaluation, which
evaluates the proposals at two levels: the level of the overall proposal
and the level of each of the attributes; bid utility determination, which
calculates two different utilities of a proposal: financial utility, which
covers the financial rationality, and ease utility, which models all other
aspects within the decision making; utility planning, which determines
the concession step for the next proposal; and attribute planning, which
determines the proposal that shall be sent to the other party based on the
concession step. The attribute planning can be composed of two or five
components depending on whether the automated negotiation system
create models of the other parties. If no models are created, the attribute
planning is composed of target evaluation determination, which calcu-
lates the utility that each attribute must have in the proposal, and config-
uration determination, which calculates the values of these attributes. If
the system creates models of the other parties, the attribute planning is
composed of five components: target evaluation determination, config-
uration determination, estimation of opponent’s parameters, provision
of initial guess information and guess coefficients.

54 Summary

In this chapter, we have focused on the problem of building automated
negotiation systems. First, we have analysed several ad-hoc automated ne-
gotiation systems that perform a negotiation process with a concrete protocol
and specific negotiation intelligence algorithms. Then, we have reviewed a
number of frameworks that have been proposed to make the development of
automated negotiation systems easier. These frameworks can be classified into
protocol-oriented frameworks, which focus on the external part of an auto-
mated negotiation system, and intelligence-oriented frameworks, which deal
with the internals of such systems.

Part 111
Our approach

Chapter 6
NegoFAST in a nutshell

O God! I could be bounded in a nutshell,
and count myself King of infinite space,
were it not that I have bad dreams.

William ShaKespeare, 1564—1616
English Dramatist, and Poet

rom the previous chapters, we conclude that it is appealing to build a

framework that facilitates the development of automated negotiation
systems of service agreements in open and dynamic environments. Our goal
in this chapter is to present NegoFAST as a general approach to build such
automated negotiation systems. NegoFAST is described at three levels of ab-
straction: the reference architecture, a framework, and an implementation.
This chapter is organised as follows: in Section §6.1, we introduce NegoFAST;
in Section |§6.2, we detail a conceptual map to define the concepts that appear
in an automated negotiation system and its general structure; in Section §6.3
we present the NegoFAST reference architecture; in Section §6.4, we describe
the NegoFAST framework, which is a materialisation of the reference architec-
ture; in Section §6.5, we outline August, our proof-of-concept implementation
of the NegoFAST framework; tinally, we summarise our contributions in Sec-
tion |§6.6.

78 Chapter 6. NegoFAST in a nutshell

6.1 Introduction

As we state in Chapter §1, the primary focus of our research work is to pro-
vide engineering support so that software developers can develop automated
negotiation systems that negotiate service agreements in open and dynamic
environments. The result of this research work is NegoFAST, which is our
approach to build automated negotiation systems.

NegoFAST is defined at three levels of abstraction. The higher level of
abstraction is the NegoFAST reference architecture, described in Chapters §7
and §8). It provides a foundation for developing automated negotiation sys-
tems and defines the elements and interactions that are part of them. The mid
level of abstraction is the specification of the NegoFAST software framework,
described in Chapters §9 and §10. It defines a set of interfaces and a data
model that conforms to the reference architecture. Finally, the lower level of
abstraction is August, which is a reference implementation of the NegoFAST
software framework.

The main design goal of NegoFAST is twofold. On the one hand, Ne-
goFAST has been designed to promote the reusability of the elements, so
that they may be freely integrated as a whole to produce automated nego-
tiation systems. On the other hand, NegoFAST has been designed to be
flexible enough to adapt to the models, algorithms and protocols that are
best suited for each negotiation scenario. To this end, NegoFAST is divided
into a protocol-independent part, the so-called NegoFAST-Core, and protocol-
specific extensions. In this dissertation, we describe a bargaining-specific ex-
tension, NegoFAST-Bargaining. However, other extensions to support differ-
ent negotiation protocols can be added.

Furthermore, NegoFAST has been designed to be independent from
whether its user acts as a service consumer or a service provider. Therefore, it
is symmetric in the sense that both provider and consumer can simultaneously
be negotiating with other parties that are interested in creating an agreement.

This approach, based on protocol-specific extensions, enables dealing with
the different requirements that pose different negotiation protocols (cf. Chap-
ters §3 and §4), while keeping the other elements of the automated negotiation
system reusable.

Table §6.1 summarises the different levels of abstraction and extensions
that have been defined as part of this dissertation as well as the chapters in
which they are described.

6.2. Preliminaries 79

Abstraction Protocol-independent Protocol-specific
Hieh NegoFAST-Core reference NegoFAST—Ba'rgammg
& architecture (Chapter §7) reference architecture
P (Chapter §8)
Medium NegoFAST-Core NegoFAST-Bargaining
framework (Chapter §9) framework (Chapter §10)
Low August August

Table 6.1: Summary of levels of abstraction and extensions.

6.2 Preliminaries

From the study of the background information developed in the previous
chapters, we may conclude the conceptual map of an automated negotiation
system that is depicted in Figure §6.1.

The user of the automated negotiation system defines a preferences docu-
ment, which is the set of data that it is used to ensure an agreement is reached
according the user’s needs, and initiates the automated negotiation system to
negotiate on his or her behalf. The automated negotiation system is also pro-
vided with party references. A party reference gives a means to interact with
a party. Party references may be provided by the user or they may directly
come from the parties as a request to start a protocol negotiation or a nego-
tiation. Parties may also provide public information about its preferences to
facilitate the negotiation process.

For each party reference received, the automated negotiation system starts
a process whose goal is to execute a negotiation protocol instance with the
party whose reference was received. A negotiation protocol instance is a con-
crete execution of a negotiation protocol played by two or more parties. A ne-
gotiation protocol belongs to a negotiation protocol family, which is a group
of negotiation protocols with some common characteristics. Depending on
the characteristics we consider, the granularity of negotiation protocol fami-
lies may be higher (e.g. auction protocols and bargaining protocols) or lower
(e.g. bargaining proposal-based protocols and bargaining argumentation pro-
tocols). An abstract negotiation protocol of a negotiation protocol family is a
superset of all negotiation protocols of the negotiation protocol family.

Negotiation protocol instances are configured by a protocol configuration,

80 Chapter 6. NegoFAST in a nutshell

y Preferences
ldeﬂnes*
User + provided by
follows /
1
Automated
Party — provides —pp» Publlc information

. q allows to
Negotiaton |— i —_ 3
initates P Sgystem receives —p| Party references interact with el preferences

executes played by Negotiation
belongs to ———J»| protocol
| family

/ involves involves
. Negotiation | Abstract
execution of —p» strac
Negotiation |— abstracted by —p»| negotiation
protocol protocols
intances +
specifies
\ charactelristics of
" Protocol h teristics
configured by A ! characteristi
_> determined by
exchanges Negotiation contains
> messages \
Message
content
may be
/ \ may be
Binding Non-binding / \
negotiation negotiation (thread, rewards...) (Proposal)4 created from -| Agreement
messages messages / \ |

may include composed of composed of

Negotiation
data

g

Figure 6.1: Conceptual map of an automated negotiation system.

which specifies characteristics of the negotiation protocol for a particular exe-
cution. For instance, they may specify the timeout of the protocol or its secu-
rity features.

The execution of a negotiation protocol instance involves the exchange of
negotiation messages, whose specific characteristics are determined by the ne-
gotiation protocol. All negotiation messages contain a performative to express
the intention of the sender about the message (cf. Section §3.4 for more infor-
mation about performatives) and a message content. Furthermore, depending
on the performative, negotiation messages can be classified as binding nego-
tiation messages, which involve a firm commitment with the other party, and
non-binding negotiation messages, which do not involve such a firm com-

6.2. Preliminaries 81

mitment. Non-binding negotiation messages can be used to give additional
information to the other party or to explore new possible areas of agreement
without the need of committing to that proposals. This is very useful in dy-
namic contexts in which there are several simultaneous negotiations with dif-
ferent parties and the feasibility of committing to an agreement depends on
the current state of the service provider’s resources.

The message content of a negotiation message is usually a proposal. How-
ever, as described in Section §3.4, other kinds of information can be exchanged
such as threats, rewards or arguments. A proposal is an offer for an agree-
ment made by one party to another. A proposal is composed of the par-
ties the proposal is about and a set of terms. Terms describe both func-
tional descriptions and non-functional guarantees of the service. Some ex-
amples of usual terms are: the service interface is specified in document
http.// example.org/ myservice.wsdl, the response time is less than 20 ms, or the
number of service requests is lower than 10 times per minute. Additionally,
proposals may also include negotiation data referring to some terms. Nego-
tiation data expresses additional information to guide the negotiation process
such as information to relax constraints specified in some terms of the pro-
posal, to express possible trade-offs amongst terms (e.g. I accept a response
time higher than 20 ms provided that the price is lower than 50 cents per re-
quest), or to indicate whether a term is negotiable.

Finally, when parties agree on a proposal, an agreement is created. An
agreement, as stated in Section §3.2, is a document that defines a relationship
between parties. Its goal is to define the terms that regulate the execution
of services and it must have a specification of the parties involved in it and
a collection of terms, such as those described in the proposal. These terms
regulate how the execution of the service must be carried out in the context of
the agreement. In addition, unlike proposals, in which the terms can be left
open in order to be refined later, agreement terms must be fully specified and
ambiguities must be avoided.

Together with these concepts, a general structure of an automated negoti-
ation system can be developed, as depicted in Figure §6.2. The automated ne-
gotiation system is represented as a big white box in the middle of the figure,
and the external entities that interact with it are depicted as little grey boxes.
The automated negotiation system needs two inputs that are provided by the
user: a preferences document and a set of party references with whom our
system is going to negotiate. To obtain these party references, a previous dis-
covery and pre-selection phase may have been carried out [110]. Furthermore,
the automated negotiation system may also obtain party references from in-
coming negotiation requests made by other parties.

http://example.org/myservice.wsdl�

82

Chapter 6. NegoFAST in a nutshell

Other Party Other Party Other Party
(User) (User) (User)
A A A
Preferences » Preferences » Preferences m
- Agreements , <t Agreements -4 Agreements
Other Party Other Party Other Party
(Automated (Automated (Automated

Neg. System)

Neg. System)

Neg. System)

!

Negotiation Negotiation Negotiation
protocol protocol protocol

Protocol management

!

Coordination

O

World modelling

Preferences and
‘references to parties

A

User

-« Agreements

waisAs uonenobaN parewoiny

External

information o
providers

[

Decision making

Figure 6.2: General structure of an automated negotiation system.

After receiving the input, the automated negotiation system starts negotia-
tions following a negotiation protocol on which the parties have agreed previ-
ously. This negotiation protocol is implemented by the protocol management
to make the system independent from concrete negotiation protocols. The be-
haviour of the automated negotiation system during the negotiation is deter-
mined by some decision-making algorithms that it must implement, such as
those described in Section §4.2. In addition, these decision-making algorithms
may be supported by models created about the other negotiating parties, the
market or the negotiation domain (cf. Section §4.3). To create these models,
the automated negotiation system may need to query external information
providers. Protocol management, decision making and world modelling are
coordinated by the coordination element.

At the end of the negotiations, the automated negotiation system reaches
agreements with one or several parties. These agreements are sent back to the
user and constitute the output of the automated negotiation system. Note that
the user does not necessarily represent a human user, it may also represent a
software system.

6.3. The NegoFAST reference architecture 83

6.3 The NegoFAST reference architecture

The NegoFAST reference architecture is the highest level of abstraction in
NegoFAST. It provides a foundation for developing automated negotiation
systems and defines the elements and interactions that are part of an auto-
mated negotiation system. To model the NegoFAST reference architecture,
we use the organisational metaphor proposed in the Gaia methodology [138].
The Gaia methodology decomposes an architecture into organisations, roles,
interactions and environment. Organisations group several roles and have a
concrete and well defined goal; roles are precisely defined tasks that must be
carried out by one or more software artefacts; interactions represent the ex-
change of messages of two or more roles; and the environment determines the
resources that roles can exploit, control or consume while working towards
the achievement of the organisational goal.

6.3.1 The NegoFAST-Core reference architecture

Figure §6.3 depicts the NegoFAST-Core reference architecture. Organisa-
tions are depicted as big boxes and each corresponds to the parts of an auto-
mated negotiation system described in the previous section: protocol manage-
ment, coordination, world modelling and decision making.

Each organisation is composed of several roles (depicted as small light grey
boxes). Protocol management is composed of a ProtocolNegotiator and a Pro-
tocolHandler; coordination consist of a SystemCoordinator, a PartyCoordinator
and a NegotiationCoordinator; world modelling includes an Inquirer, an Infor-
mant and a WorldModeller; and decision making comprises a ResponseGen-
erator, a CommitHandler, and a CommitAdvisor. The arrows connecting the
roles represent the interactions amongst them.

The environment is divided into several resources, which are the Agree-
mentsResource, the PreferencesResource, the SystemContextData, the Party-
ContextData, the NegotiationContextData, the WorldModel and the Negotia-
tionHistory. They are depicted as white boxes.

Finally, elements that are external to the architecture such as other parties,
external information providers, or user are depicted as small dark grey boxes.

84 Chapter 6. NegoFAST in a nutshell

Agreement -
creation
I

Protocol Management

Protocol ~ Agreement

negotiation Negotiation creation
Protqc ol | Configure Protocol
negotiator handler handler
Request '\

protocol

negotiation Convert protocol
Coordination Incoming

Incoming protqcpl
negotiation negotiation
h 4 | 2

| User System e Rggz(;st > Party Request N Negotiation
interact. i . i iati i
coordinator processing coordinator negotiation coordinator
!
i isi i Request
World modelling) Reque_st Decision making ques Request
nformation commit
approval response
Query) v
= —» .
~ party. IS Commit Response
information handler generator
Query I I
| part .
~ paty — Informant Reql_Jest Decommit
information advise
v agreement
Query Commit
- external * World modeller advisor
information
Agreements Preferences System Party context Negotiation
Environmental resource resource context data data context data
resources Fe————— .; _______ .;
: World model | : Netgg:?tlon
I B

Figure 6.3: The NegoFAST-Core reference architecture.

6.3.2 The NegoFAST-Bargaining reference architecture

The NegoFAST-Bargaining reference architecture extends NegoFAST-Core
to deal with the specific requirements of concurrent proposal-based bilateral
negotiations of multi-term agreements. This is a type of bargaining negotia-
tion in which two parties exchange proposals sequentially to reach an agree-
ment (cf. Section §3.4). The extension of NegoFAST-Core to deal with these
requirements involves extending roles, interactions and environmental re-
sources.

Roles are extended by decomposing them as depicted in Figure §6.4. The

6.3. The NegoFAST reference architecture

85

Other party
(Protocol Notary
handler)
AN 4
orotocol . e Agreement
rotocol managemen Negotiation creation

\ resources

/Protocol-dependent Protocol handler
roles
Protocol Configure Ba:gs)'zg‘lg
negotiator handler ﬁandler
A
Convert
protocol
Coordination —
Negotiation
Incoming coordinator
negotiation Policies
/ manager
Sysltem Pqny '« Request Sulbr_nit
coordinator coordinator o - policies
negotiation_|_| Bargaining
coordinator |[*"Coordinate .
negotiation,| Bilateral
/ negotiator
Decision making Request
response
Reque'stt Response Builder
comm|| generator A anacer
approva Request 9
- proposal A
Commit Message Create
handler composer proposal
Proposal
builder
Environmental Bargaining
context data

Figure 6.4: The NegoFAST-Bargaining reference architecture.

ProtocolHandler remains as one role, the BargainingProtocolHandler; the Ne-
gotiationCoordinator is divided into the BilateralNegotiator, the BargainingCo-
ordinator and the PoliciesManager; and the ResponseGenerator is divided

into the PerformativeSelector, the BuilderManager and the ProposalBuilder.

Regarding the interactions, NegoFAST-Bargaining defines new interac-
tions between roles created after the decomposition (CoordinateNegotiation,
SubmitPolicies, RequestProposal and CreateProposal). In addition, it also ex-
tends interaction RequestResponse of NegoFAST-Core to allow the submis-
sion of policies to guide the generation of responses.

Environmental resource NegotiationContextData is extended by resource

86 Chapter 6. NegoFAST in a nutshell

BargainingContextData to store and provide information regarding the cur-
rent status of bargaining negotiations.

6.4 The NegoFAST framework

The medium level of abstraction is the specification of the NegoFAST soft-
ware framework. The NegoFAST software framework is a materialisation of
the NegoFAST reference architecture, in which the following elements are de-
fined: a data model to represent the concepts that are managed by the roles
of the reference architecture; the interfaces of the environmental resources; the
interfaces of the interactions between roles; and the state machines of the roles
of organisation coordination. Note that other materialisations of the Nego-
FAST reference architecture are also possible.

The NegoFAST framework includes the elements that conform an auto-
mated negotiation system, not the interactions with external parties. These
interactions should be made using a standardised or mutually agreed proto-
col that fall beyond the scope of this dissertation.

The NegoFAST framework is divided into the NegoFAST-Core framework
and the NegoFAST-Bargaining framework. Note that the NegoFAST-Core
framework can be used without the NegoFAST-Bargaining framework and,
hence, it can be reused for other protocol families (e.g. auctions) provided that
the corresponding extension is defined.

6.4.1 The NegoFAST-Core framework

Figure §6.5 depicts the NegoFAST-Core framework, which is a materialisa-
tion of the NegoFAST-Core reference architecture. The NegoFAST-Core frame-
work can be decomposed into four packages, namely: model, environment,
interactions and roles.

Package model provides a data model for all protocol-independent con-
cepts managed by the other parts of the NegoFAST-Core framework. Package
model specifies a generic model to define the more general concepts like agree-
ment, preferences, proposal or negotiation message. These concepts must be
further refined to support concrete models for expressing agreements and
preferences. This enables choosing different models to express agreements
and preferences while keeping the reusability of the general concepts.

6.4. The NegoFAST framework 87

1]

model environment

P i i

<<import>> agreements preferences

A |]

1 .
: <<import>> N systemcontext partycontext
\

\
\
interactions \ —| —|
\
(]] \

N negotiationcontext worldmodel

user configurehandler

\
B B
_| _l \\ negotiationhistory events

incomingnegotiation incomingprotocolnegotiation \

H] T

requestinformation requestprotocolnegotiation

roles

<<Interface>>

requestnegotiation requestpartyprocessing

ISystemCoordinator

<-- _<2irﬁp5rt_>>_] <<Interface>>

requestadvise requestcommitapproval IPartyCoordinator

Figure 6.5: NegoFAST-Core framework packages.

Package environment includes interfaces for all environmental resources
of NegoFAST-Core (AgreementsResource, PreferencesResource, SystemCon-
textData, PartyContextData, NegotiationContextData, WorldModel and Ne-
gotiationHistory) as well as the data structures that contains the information
stored in them. Furthermore, package environment also includes package
events, which provides a publish/subscription mechanism [42] to avoid a
continuous polling of the elements of the framework to detect when some
event occurs. This package uses the data model provided by package model.

Package interactions includes the interfaces of the protocol-independent
interactions that are internal to the automated negotiation system (UserInter-
action, IncomingProtocolNegotiation, IncomingNegotiation, RequestProto-
colNegotiation, RequestNegotiation, ConfigureHandler, RequestCommitAp-

88 Chapter 6. NegoFAST in a nutshell

1]

model environment

—

bargainingcontext

N\ %
1 AN .
[» <<import>>
I <<import>> N
| . A
1 N AN 1
AN 1 <<import>>
AN 1
interactions AN !
| 1]
protocolconversion requestresponse roles
<<Interface>>
< <<import>> IBilateralNegotiator
requestproposal createproposal

_| <<Interface>>

submitpolicies coordinatenegotiation

IBargainingCoordinator

Figure 6.6: NegoFAST-Bargaining framework packages.

proval and RequestInformation). These interactions use concepts defined in
package model.

Package roles provides a specification of the state machine of the Sys-
temCoordinator and the PartyCoordinator, which orchestrates the other roles
of the framework. This specification of the state machine uses both package
model and package interactions.

6.4.2 The NegoFAST-Bargaining framework

The NegoFAST-Bargaining framework extends the NegoFAST-Core frame-
work with a materialisation of the NegoFAST-Bargaining reference archi-
tecture. In other words, it provides a bargaining-specific extension to
the NegoFAST-Core framework. Like the NegoFAST-Core framework, the
NegoFAST-Bargaining framework can be decomposed into four packages
(cf. Figure §6.6), namely: package model, which provides a data model to rep-
resent the bargaining-specific concepts that are necessary by the other pack-

6.5. August, a proof-of-concept implementation 89

ages of the NegoFAST-Bargaining framework; package environment, which
includes resource BargainingContextData; package interactions, which in-
cludes the interfaces of the bargaining-specific interactions that are internal
to the automated negotiation system (ProtocolConversion, CoordinateNego-
tiation, SubmitPolicies, RequestResponse RequestProposal and CreatePro-
posal); and package roles, which provides a state-machine specification of
the behaviour of the BargainingCoordinator and the BilateralNegotiator.

6.5 August, a proof-of-concept implementation

August is the proof-of-concept implementation of the NegoFAST frame-
work. It has been developed using Java 1.5 and can be fetched from http:
//www.tdg-seville.info It provides a reference implementation of the interfaces
specified in the NegoFAST framework. August has been used to implement
three different automated negotiation systems for different scenarios. These
implementations are described in Appendices §A, §B and §C.

6.6 Summary

In this chapter, we overview NegoFAST, which is our approach for build-
ing automated negotiation system. NegoFAST is defined at three levels of
abstraction, which are outlined in this chapter and comprises the NegoFAST
reference architecture, the NegoFAST framework and the August proof-of-
concept implementation. The next chapters analyse them in deeper detail.

http://www.tdg-seville.info�
http://www.tdg-seville.info�

90

Chapter 6. NegoFAST in a nutshell

Chapter 7

The NegoFAST-Core reference
architecture

If you have built castles in the air, your work need
not be lost. Put the foundations under them.

Henry D. Thoreau, 1817-1862
American Philosopher

tecture as a general approach to build automated negotiation systems.
It is organised as follows: in Section §7.1, we overview the main structure of
NegoFAST-Core that was presented in the previous chapter; in Section §7.2,
Section §7.3] Section §7.4 and Section §7.5, we detail the roles and interactions
of the reference architecture; in Section §7.6,| we describe the environmental
resources; tinally, we summarise our contributions in Section §7.7.

‘ Z he goal of this chapter is to detail the NegoFAST-Core reference archi-

92 Chapter 7. The NegoFAST-Core reference architecture

- ‘Agreement - -
creation
I

Protocol Management

Protocol . Agreement

negotiation Negotiation creation
Protc_)col | Configure___| Protocol
negotiator handler handler
Request '\

protocol

negotiation Convert protocol
Coordination Incoming

Incoming ~ protocol
negotiation negotiation
v | 4

| User System e Rggzt;st » Party ¢ Request | Negotiation
interact. i . i iati i
coordinator processing coordinator negotiation coordinator
!
i isi i Request
World modelling) Request Decision making q S Request
information commit
A approval response
Query .
— —»>| .
~ party Inquirer Commit Response
information handler generator
Query 7'y
| part .
infor;mz-iion - Informant Razc\lltif:t Decommit
agreement
Query Commit
-. extern_al -» World modeller iy
information
Agreements Preferences System Party context Negotiation
Environmental resource resource context data data context data
resources F————— .; _N___‘_-__.;
: World model | : egotlatlon
| history |
l— ——————— o l -------- o

Figure 7.1: The NegoFAST-Core reference architecture.

7.1 Introduction

In this chapter, we detail the NegoFAST-Core reference architecture, which
was briefly introduced in Section §6.3.1. The goal of NegoFAST-Core is to
describe the protocol-independent elements that are necessary to develop au-
tomated negotiation systems. In the following sections, we describe the or-
ganisations and environmental resources that are defined in NegoFAST-Core
(cf. Figure §7.1).

7.2. Coordination 93

Context Coordinator Resource

System SystemCoordinator SystemContextData
Party PartyCoordinator PartyContextData
Negotiation NegotiationCoordinator NegotiationContextData

Table 7.1: Contexts of NegoFAST-Core.

7.2 Coordination

The coordination of an automated negotiation system is carried out by the
coordination organisation. At runtime, NegoFAST-Core defines three contexts
(cf. Table §7.1): system context, which includes the whole process of reaching
agreements following the user preferences; party context, which involves the
processing of a party reference and includes getting information about the
party and negotiating the negotiation protocol; and negotiation context, which
focuses on the execution of negotiation protocol instances.

In an automated negotiation system, there is only one system context at
a time. In other words, an automated negotiation system only negotiates on
behalf of one user at a time. This allows avoiding privacy concerns between
users of the automated negotiation system. Regarding party contexts, there
may be many different party contexts running simultaneously. Specifically,
there are n,, party contexts, where n, is the number of party references that
are being processed by the automated negotiation system.

Finally, there are n,, negotiation contexts running simultaneously, one for
each negotiation protocol instance that is being executed by the automated ne-
gotiation system. Each party context is associated to a negotiation context, i.e.,
the automated negotiation system establishes just one negotiation protocol in-
stance for each party reference it knows. However, one negotiation context
may have one or several associated party contexts depending on the number
of parties that participate in a negotiation protocol instance. For example, if
the automated negotiation system is acting as the initiator in a bargaining pro-
tocol, in which there are two participants, the negotiation context corresponds
to only one party context. Nevertheless, if the automated negotiation system
is acting as the auctioneer in an auction protocol, the negotiation context cor-
responds to several party contexts: one for each bidder in the auction.

94 Chapter 7. The NegoFAST-Core reference architecture

Other party Other party
(Protocol (Protocol
negotiator) handler)
Protocol ‘ .
negotiation Negotiation
Protocol
negotiator Protocol handler
Incoming
rotocol .
nggotiation '”°°’.“"_‘g
negotiation
Automated
User - User __ | negotiation system
interact. coordinator

Figure 7.2: Sources of party references.

7.2.1 Roles

The organisation coordination is composed of four roles: the User, the Sys-
temCoordinator, the PartyCoordinator and the NegotiationCoordinator. The
User represents the actor on whose behalf the automated negotiation sys-
tem is negotiating. The SystemCoordinator is the facade of the system for
the User and is responsible for receiving the party references (cf. Figure §7.2).
The PartyCoordinator orchestrates the other roles of the negotiation system to
process those party references. The NegotiationCoordinator supports a negoti-
ation protocol family, orchestrates the protocol management and the decision
making organisation and coordinates several simultaneous negotiations with
a number of parties. Note that, unlike SystemCoordinator and PartyCoordina-
tor, which are protocol-independent, the NegotiationCoordinator is associated
to one abstract negotiation protocol and, hence, it just supports one negotia-
tion protocol family.

Role: User

Goal: It represents the external actor on whose behalf the automated
negotiation system is negotiating. It provides the system with its
preferences and receives the agreement documents that have been
reached. In addition, it also may supply the automated negotiation
system with party references.

Interactions: Userlnteraction.

7.2. Coordination 95

party reference

init . termination

Figure 7.3: State machine of the system context.

Environmental resources: None.

Behaviour: The User initialises the automated negotiation system with
its preferences. Since that moment, the automated negotiation sys-
tem negotiates on his or her behalf following the given preferences.
When it reaches an agreement with another party, it sends it back to
the User. In addition, the User may provide the automated negoti-
ation system with party references.

Note that the User may be a human user interacting with the au-
tomated negotiation system by means of a graphical user interface
or it may be a software system that set the preferences of the auto-
mated negotiation system automatically.

Role: SystemCoordinator

Goal: Itis responsible for coordinating the system context. This involves
the interaction of the automated negotiation system and the User,
the initialisation and termination of the system context and the re-
ception of party references from the User, the ProtocolNegotiator
and the ProtocolHandler.

Interactions: UserInteraction, IncomingNegotiation, IncomingProto-
colNegotiation, and RequestPartyProcessing.

Environmental resources: It writes to the PreferencesResource, System-
ContextData, AgreementsResource, and NegotiationHistory.

Behaviour: The SystemCoordinator is responsible for coordinating the
system context and storing its status in resource SystemContext-
Data. The system context starts when the User sends his or her
preferences to the SystemCoordinator (cf. Figure §7.3). Then, the
SystemCoordinator stores them into the PreferencesResource and
initialises the other roles and resources in the architecture.

After receiving the preferences, the system context enters state pro-
cessing. In that state, the SystemCoordinator receives party ref-
erences from three different sources (cf. Figure §7.2), namely: the

96

Chapter 7. The NegoFAST-Core reference architecture

User, the ProtocolNegotiator as a request to start a protocol negotia-
tion from other party, and the ProtocolHandler as a request to start a
negotiation from other party. For each reference received, the Sys-
temCoordinator initiates interaction RequestPartyProcessing to ask
the PartyCoordinator to process the party reference.

Furthermore, the SystemCoordinator checks the termination con-
ditions of the system context and ends it if any of them holds.
The termination conditions are: a preestablished negotiation dead-
line is reached, a desired number of agreements is achieved, or the
User sends a stop signal to the negotiation system. Note that, the
deadline and the desired number of agreements may be unlimited
and, hence, the system context may run indefinitely until an ex-
ternal event stops it. When the system context finishes, the envi-
ronmental resources that are specific to a system context (Agree-
mentsResource, PreferencesResource, SystemContextData, Party-
ContextData and NegotiationContextData) are stored in the Nego-
tiationHistory and it is reinitialised.

Role: PartyCoordinator

Goal: It is responsible for coordinating party contexts. In other words,
it coordinates the processing of party references, since they are re-
ceived, until the negotiation with the party finishes.

Interactions: RequestPartyProcessing, RequestProtocolNegotiation, Re-
questNegotiation, and RequestInformation.

Environmental resources: It writes to the PartyContextData and may
read the PreferencesResource, the AgreementsResource, and the
NegotiationHistory.

Behaviour: The behaviour of the PartyCoordinator focuses on the man-
agement of party contexts, which involves orchestrating the other
roles to fulfill the states of the party context and updating the Par-
tyContextData. Each party reference that the SystemCoordinator
receives is sent to the PartyCoordinator to be processed. After re-
ceiving the party reference, the PartyCoordinator starts a new party
context. The states of a party context are depicted in Figure §7.4:

Pending. This is the initial state and all party contexts remains in it
until the PartyCoordinator decides which is their next state.

Getting information. The goal of this state is to obtain the neces-
sary information about the party to start a negotiation with it.
To this end, the PartyCoordinator uses interaction RequestInfor-
mation to requests the Inquirer to gather that information.

7.2. Coordination 97

start negotiation

?

party reference
start prenegotiation

Pending Negotiating

get information .
prenegotiation successful

Pre-negotiating

negotiation failed

information received

Getting
information

o agreement created
negotiation cancelled

negotiation cancelled prenegotiation failed

Finished
unsuccessfully

Finished
successfully

Figure 7.4: State machine of a party context.

Negotiating protocol. The goal of this state is to reach an agree-
ment on the negotiation protocol that shall be used during the
negotiation and its configuration. To this end, the PartyCoor-
dinator starts interaction RequestProtocolNegotiation with the
ProtocolNegotiator.

Negotiating. This is the state in which the actual negotiation takes
place. When the party context enters this state, the PartyCoor-
dinator delegates the negotiation to the NegotiationCoordinator
by means of interaction RequestNegotiation. When the negoti-
ation finishes, the NegotiationCoordinator notifies the result to
the PartyCoordinator. Depending on the result, the party con-
text enters state finished successfully or state finished unsuc-
cessfully.

Finished successfully. When both parties reach an agreement, the
PartyCoordinator sends it to the SystemCoordinator, who stores
the agreement for future reference.

Finished unsuccessfully. This is the final state of all party contexts
which fail to reach an agreement with the other party. In this
state, the PartyCoordinator notifies the SystemCoordinator the
result of the negotiation.

Decommitted. It may happen that a proposal that is more appeal-
ing than a previously created agreement is found. In this case,

98

Chapter 7. The NegoFAST-Core reference architecture

it may be possible to decommit from the previous agreement
and, hence, the state of the party context changes from finished
successfully to decommitted.

Role: NegotiationCoordinator

Goal: It coordinates the negotiation contexts by linking the Protocol-

Handler with the decision making organisation.

Interactions: RequestNegotiation, RequestCommitApproval, Protocol-

Conversion and RequestResponse.

Environmental resources: It may be necessary to read PreferencesRe-

source and WorldModel to coordinate the negotiations. In addi-
tion, it stores all messages exchanged in a negotiation context in the
NegotiationContextData.

Behaviour: The NegotiationCoordinator manages negotiation contexts

and stores their status in resource NegotiationContextData. Its be-
haviour is as follows: first, the NegotiationCoordinator receives a
request to start a negotiation through interaction RequestNegotia-
tion. Then, it either starts a new negotiation context for the request
(this is the case of all bargaining negotiations) or assigns it to an
existent negotiation context (for instance, if the NegotiationCoordi-
nator acts as an auctioneer of an auction).

Figure §7.5/shows the states of a negotiation context. They are based
on the distinction between binding and non-binding negotiation
messages (cf. Section §6.2): the NegotiationCoordinator may send
as many non-binding negotiation messages as it wants to; but, it
needs the approval of the CommitHandler before sending a binding
negotiation message. Therefore, the states of a negotiation context
are as follows:

Negotiating. This is the state in which the NegotiationCoordinator
coordinates the ProtocolHandler and the ResponseGenerator
to exchange non-binding negotiation messages with the other
negotiating parties and waits for the responses of the other par-
ties. When the ResponseGenerator decides that a binding ne-
gotiation message should be sent, the negotiation context enters
state asked approval.

Asked approval. In this state, the NegotiationCoordinator waits for
the approval of the CommitHandler before sending a binding
negotiation message. If the approval is granted, the negotiation
context enters state approved. Otherwise, it moves back to state
negotiating.

7.2. Coordination 99

approval rejected

start negotiation

ask approval Asked
approval

Negotiating

negotiation failed commit rejected approval accepted

. agreement created
Finished Approved

Figure 7.5: State machine of a negotiation context.

Approved. If the CommitHandler approves the sending of a bind-
ing negotiation message, the negotiation context enters this
state and the binding negotiation message is sent. If this is
the last message of the negotiation protocol (e.g. performative
accept), it enters state finished. Otherwise, it waits in this state
until the response from the other party arrives. If the other
party rejects the binding negotiation message, the negotiation

context moves back state negotiating. Else, it enters state fin-
ished.

Finished. This is the final state in which the negotiation protocol
instance finishes.

The NegotiationCoordinator depends on the characteristics of the
negotiation protocol family it supports. For instance, in a bargain-
ing protocol it has to request a response for each negotiation mes-
sage, whereas in an auction protocol, it can wait for the other par-
ties” bids. Its behaviour also varies depending on whether it coor-
dinates negotiation contexts independently, or it coordinates them
depending on how the other negotiation contexts are performing.

7.2.2 Interactions

There are five interactions that are carried out in the coordination organ-
isation of NegoFAST-Core. One of them (UserInteraction) is developed with
the user of the negotiation system; other two (IncomingProtocolNegotiation
and IncomingNegotiation) are incoming requests from other parties; and the
last two (RequestPartyProcessing and RequestNegotiation) are the interac-

100 Chapter 7. The NegoFAST-Core reference architecture

tions between the SystemCoordinator and the PartyCoordinator, and the Par-
tyCoordinator and the NegotiationCoordinator, respectively (cf. Figure §7.1).

Interaction: UserInteraction

Initiator: User.
Partners: SystemCoordinator.

Input: The user preferences and party references with whom to negoti-
ate.

Output: Agreements reached with the parties according to the prefer-
ences supplied by the user.

Description: This interaction represents the interaction between the au-
tomated negotiation system and the user. It allows the User to pro-
vide the SystemCoordinator with the preferences and the parties
with whom to negotiate. Furthermore, the User may also request
the system to end the negotiation. The automated negotiation sys-
tem returns the achieved agreements.

Interaction: IncomingProtocolNegotiation

Initiator: ProtocolNegotiator.
Partners: SystemCoordinator.

Input: A party reference that wishes to start a protocol negotiation pro-
cess with the automated negotiation system.

Output: The acceptance or rejection to start the protocol negotiation.

Description: Through this interaction, the ProtocolNegotiator notifies
that it has received a request to start a protocol negotiation and asks
the SystemCoordinator for permission to proceed with it.

Interaction: IncomingNegotiation

Initiator: ProtocolHandler.
Partners: SystemCoordinator.

Input: A party reference that wishes to start a negotiation process with
the automated negotiation system.

Output: The acceptance or rejection to start the negotiation.

Description: Through this interaction, the ProtocolHandler notifies that
it has received a request to start a negotiation and asks the System-
Coordinator for permission to proceed with it.

Interaction: RequestPartyProcessing

7.3. Protocol management 101

Initiator: SystemCoordinator.

Partners: PartyCoordinator.

Input: A party reference.

Output: Agreements reached with the parties.

Description: By means of this interaction, the SystemCoordinator sends
party references to the PartyCoordinator in order to be processed.
The PartyCoordinator notifies the SystemCoordinator when an
agreement has been reached. In addition, the SystemCoordinator
may cancel the processing of all party references because some ter-
mination condition of the system context holds.

Interaction: RequestNegotiation

Initiator: PartyCoordinator.
Partners: NegotiationCoordinator.

Input: A reference to the ProtocolHandler that manages the negotiation
protocol and, optionally, additional information about the other

party.

Output: An agreement if the negotiation finishes successfully or noth-
ing if it fails.

Description: By means of this interaction, the PartyCoordinator assigns
a new negotiation to be carried out by the NegotiationCoordinator.

7.3 Protocol management

The aim of the protocol management organisation is to provide the ele-
ments that are necessary to deal with the selection and the execution of ne-
gotiation protocols instances and to make the other roles of the architecture
independent from concrete negotiation protocols. Furthermore, it also may
provide mechanisms to guarantee the reliability and non-repudiability of the
agreements created. Note that the independence from concrete negotiation
protocols is reached by means of the definition of abstract negotiation proto-
cols. The protocol management organisation converts negotiation protocols
into the corresponding abstract negotiation protocols that are understood by
the other roles.

102 Chapter 7. The NegoFAST-Core reference architecture

7.3.1 Roles

The organisation is composed of the following roles: ProtocolNegotiator,
ProtocolHandler and Notary as depicted in Figure §7.1. The ProtocolNego-
tiator deals with the selection of the negotiation protocol; the ProtocolHan-
dler, which is specific for each concrete negotiation protocol, interacts with
the other parties following the negotiation protocol and transforms it into an
abstract negotiation protocol; and the Notary guarantees that the agreement
created is reliable and non-repudiable.

Role: ProtocolNegotiator

Goal: The goal of the ProtocolNegotiator is to select and configure, if
necessary, in cooperation with the other parties, the protocol that
will be used during the negotiation process.

Interactions: RequestProtocolNegotiation, ProtocolNegotiation, Incom-
ingProtocolNegotiation and ConfigureHandler.

Environmental resources: The role may read the PreferencesResource,
WorldModel, SystemContextData and PartyContextData.

Behaviour: The ProtocolNegotiator receives a reference to the parties
as part of interaction RequestProtocolNegotiation. Then, through
interaction ProtocolNegotiation, it contacts the parties to reach an
agreement about the negotiation protocol that will be used and its
configuration (e.g. timeouts or maximum number of interactions).
To decide which protocol is the most appropriate, it may read infor-
mation from the PreferencesResource and the WorldModel. After a
negotiation protocol is selected, it configures a ProtocolHandler by
means of interaction ConfigureHandler and returns a reference to
the ProtocolHandler as the last part of interaction RequestProtocol-
Negotiation.

In addition, the ProtocolNegotiator receives requests to start new
protocol negotiations from other parties and forwards them to the
SystemCoordinator by means of interaction IncomingProtocolNe-
gotiation.

Role: ProtocolHandler

Goal: The ProtocolHandler deals with the interaction with the other par-
ties following a negotiation protocol.

Interactions: ConfigureHandler, IncomingNegotiation, Negotiation,
and ProtocolConversion.

7.3. Protocol management 103

Environmental resources: None.

Behaviour: It is configured to manage a negotiation protocol instance
by means of interaction ConfigureHandler. It adapts the negoti-
ation protocol instance to the abstract negotiation protocol that is
supported by the NegotiationCoordinator. This involves transform-
ing the syntax of the negotiation protocol into negotiation messages
that are understood by the other roles in NegoFAST and sending
them by means of interaction ProtocolConversion; transforming ne-
gotiation messages into the concrete syntax of a negotiation proto-
col and sending them out to the other parties; enforcing the rules of
the negotiation protocol; and coping with the errors that may ap-
pear during the interaction with the other parties such as messages
missing, arriving too late or the arrival of unexpected messages.

In addition, the ProtocolHandler receives requests from other par-
ties to start negotiations and forwards them to the SystemCoordi-
nator by means of interaction IncomingNegotiation.

Role: Notary
Goal: The Notary must guarantee that the agreement created between
the two parties is reliable and non-repudiable.
Interactions: AgreementCreation
Environmental resources: None.

Behaviour: The behaviour of the role depends on the protocol used to
guarantee the reliability and non-repudiability of the process. How-
ever, it must include, at least, with cryptographic technology and
algorithms to implement non-repudiation. Additionally, it can also
maintain a repository of all created agreements that it has certified
to resolve potential disputes.

7.3.2 Interactions

There are six types of interactions that are carried out by the roles of this
organisation. Three of them: ProtocolNegotiation, Negotiation and Agree-
mentCreation are interactions with external parties, whereas the other four
are internal (cf. Figure §7.1).

Interaction: RequestProtocolNegotiation

Initiator: PartyCoordinator.

104

Chapter 7. The NegoFAST-Core reference architecture

Partners: ProtocolNegotiator.

Input: A reference to the party or parties with whom negotiate the pro-
tocol.

Output: A reference to a ProtocolHandler role that will manage the se-
lected negotiation protocol.

Description: This interaction allows the PartyCoordinator to request a
protocol negotiation before starting the negotiation process with the
other party.

Interaction: ProtocolNegotiation

Initiator: ProtocolNegotiator or other party.
Partners: Other party or ProtocolNegotiator.

Input: The proposed negotiation protocols that can be used during the
negotiation.

Output: A negotiation protocol instance.

Description: This interaction represents the protocol negotiation carried
out by parties before starting the negotiation.

Interaction: ConfigureHandler

Initiator: ProtocolNegotiator.
Partners: ProtocolHandler.
Input: A negotiation protocol instance.

Output: The reference to the ProtocolHandler that is configured to man-
age that protocol.

Description: This interactions configures the ProtocolHandler with the
parameters of the negotiation protocol instance that have been pre-
viously agreed with the other parties.

Interaction: ProtocolConversion

Initiator: NegotiationCoordinator.

Partners: ProtocolHandler.

Input: A negotiation message with an initial proposal.

Output: An agreement if the negotiation finishes successfully or noth-
ing if it fails.

Description: This interaction is an implementation of the abstract nego-
tiation protocol and represents the exchange of messages carried

out during the negotiation between the ProtocolHandler and the
NegotiationCoordinator.

7.4. Decision making 105

Interaction: Negotiation

Initiator: ProtocolHandler.
Partners: Other party.

Input: A negotiation message with an initial proposal expressed in the
syntax of a concrete negotiation protocol.

Output: An agreement if the negotiation finishes successfully or noth-
ing if it fails.

Description: This interaction represents the negotiation protocol in-
stance followed by the parties during the negotiation process. In

Section §3.4, we present a comprehensive description of negotiation
protocols that can be used to implement this interaction.

Interaction: AgreementCreation

Initiator: ProtocolHandler or the other party.
Partners: Other party or the ProtocolHandler.
Input: The agreement established by both parties.

Output: The assurance of the reliability and non-repudiability of the cre-
ated agreement.

Description: The aim of this interaction is to actually create and sign
an agreement and to guarantee that the created agreement is reli-
able and non-repudiable. It assumes that the agreement has already
been reached previously.

7.4 Decision making

The goal of the decision making organisation is to provide mechanisms to
determine the behaviour of the automated negotiation system during a ne-
gotiation process. In NegoFAST-Core, we define the three different decisions
that we describe in Section §4.2, namely: response decision, which involves
determining which messages are sent to the other parties during the negotia-
tion; commit decision, which includes deciding whether and when the system
should send a binding negotiation message; and decommit decision, which in-
volves deciding on the decommitment from already established agreements.
This organisation also provides other elements that analyse the convenience
of committing to or decommitting from an agreement.

106 Chapter 7. The NegoFAST-Core reference architecture

7.4.1 Roles

The organisation is composed of three roles, namely: ResponseGenerator,
CommitHandler and CommitAdvisor (cf. Figure §7.1). The ResponseGenera-
tor develops the response decision by generating the message to send to the
other parties; the CommitAdvisor analyses the convenience of committing to
or decommitting from an agreement, and the CommitHandler deals with both
commit and decommit decision because both decisions are extremely related:
the automated negotiation system will only decommit from an agreement if it
finds a more profitable agreement (cf. Section §4.2).

Role: ResponseGenerator

Goal: Its goal is to decide which responses should be sent as a response
to a received negotiation message. This involves selecting the per-
formative that is going to be used, creating proposals, bids, or argu-
ments supporting proposals and generating any other information
that can be sent to the other parties.

Interactions: RequestResponse.

Environmental resources: The role may read the PreferencesResource,
the WorldModel, the SystemContextData, the PartyContextData
and the NegotiationContextData to create the responses.

Behaviour: It is heavily influenced by the negotiation protocol that is
being used because it must obey the rules it imposes. There are
two approaches to response generation. The first one involves two
phases: first, the performative has to be decided, and, then, the
other parts of the negotiation message (i.e. proposal or additional
arguments) are generated. The second approach can be divided
into two phases as well: first, all possible responses (or a subset
of possible responses) are generated and then, the best one is se-
lected. The first approach is usually developed in auctions or non-
argumentation bargaining protocols, whereas the latter is common
in argumentation-based negotiations. Section §4.2 reports on algo-
rithms that can be used to implement the ResponseGenerator.

Role: CommitHandler

Goal: Role CommitHandler implements the decision on whether to com-
mit to a proposal or not and also determines when these decisions
are made. In addition, it may also decide to decommit from an ex-
isting agreement if necessary.

7.4. Decision making 107

Interactions: RequestCommitApproval, RequestAdvise and Decom-
mit.

Environmental resources: It may read the PreferencesResource, the
WorldModel, the SystemContextData, the PartyContextData and
NegotiationContextData to get information in order to make the
decision.

Behaviour: The CommitHandler receives proposals through interaction
RequestCommitApproval and responds either approving or reject-
ing the commitment to them. To make this decision, it uses the
PreferencesResource and the information in the WorldModel about
the market and the other negotiating parties to decide whether to
approve the proposal for commitment. It may also query one or
more CommitAdvisors about the feasibility of committing to the
given proposal. For instance, in the case of a service provider, the
CommitHandler may inquire a CommitAdvisor (e.g. a capacity plan-
ner) about the provider’s capability to provision the proposal.

Another aim of the CommitHandler is to determine when these ap-
proval decisions are made, i.e. when approvals and rejections are
sent. There are several approaches to it:

e Making the decision as the proposals are received [97]. This
option is easier to implement. Here, decisions are made very
quickly. However, if we just wish to reach a limited number of
agreements, we may miss some very good ones only because
we previously accepted others.

e Making the decision at some certain points in time previously
defined. These points may be dynamically selected, depending
on changing conditions of the market such as the frequency of
arrival of proposals, or statically determined based on temporal
constraints imposed by the user in its preferences.

The last goal of the CommitHandler is to ask for the decommitment
of existing agreements to commit to another one, provided it is
worth. To this end, the CommitHandler may consider the Prefer-
encesResource, the decommitment fee and the models of the mar-
ket and the other parties. Section §4.2 outlines several algorithms
that some authors have proposed to implement both commit and
decommit decisions.

Role: CommitAdvisor

Goal: Role CommitAdvisor analyses the feasibility of accepting an agree-
ment based on domain-specific knowledge (e.g. the provider’s ca-
pacity to provision a proposal) and gives a recommendation.

108

Chapter 7. The NegoFAST-Core reference architecture

Interactions: RequestAdvise.
Environmental resources: None.

Behaviour: The implementation of this role is domain-specific. For in-
stance, in the case of a service provider, a CommitAdvisor can be
a capacity planner that analyses the provider’s capability to provi-
sion a certain agreement and recommends whether to commit to
that agreement or not.

7.4.2 Interactions

There are four types of interactions amongst the roles of this organisation.

Only Decommit is an interaction with external parties, whereas the other three
are internal to the automated negotiation system.

Interaction: RequestResponse

Initiator: NegotiationCoordinator.
Partners: ResponseGenerator.

Input: A set of the negotiation performatives that can be used as a re-
sponse and the current status of the negotiation context, including
the last negotiation message received.

Output: A negotiation message to be sent as a response.

Description: Its goal is to obtain negotiation messages that the Negotia-
tionCoordinator will send to the other parties.

Interaction: RequestCommitApproval

Initiator: NegotiationCoordinator.

Partners: CommitHandler.

Input: The proposal whose approval is asked for.

Output: The approval or rejection to commit to the proposal.

Description: The goal of this interaction is to get the approval, from the
CommitHandler, to submit a binding proposal or to accept a binding
proposal. This interaction can be very simple or more complex de-
pending on the coupling between the NegotiationCoordinator and
the CommitHandler and the way the CommitHandler determines
when to make an approval decision. If they are decoupled and the
CommitHandler makes decisions about the approval as it receives
them, then the interaction may be just one single message to ask

7.5. World modelling 109

for approval and the response. However, it may be more complex
if it uses information about the current status of the negotiations
or it has to inform the NegotiationCoordinator when the following
approval decision is going to take place.

Interaction: RequestAdvise

Initiator: CommitHandler.
Partners: CommitAdvisor.
Input: A proposal.

Output: A recommendation about the feasibility of approving a pro-
posal.

Description: The aim of this interaction is to get specialised advise
about the approval of a specific proposal.

Interaction: Decommit

Initiator: CommitHandler.

Partners: A party.

Input: An already established agreement.

Output: The decommitment from that agreeement

Description: The goal of this interaction is to decommit from an already
established agreement. A decommitment may involve a penalisa-
tion such as the payment of a decommitment fee.

7.5 World modelling

The goal of this organisation is to obtain and manage knowledge about
the world. This involves gathering information from sources such as past in-
teractions, external information providers or the other parties and analysing
that information to build models with algorithms such as those described in
Section §4.3. Furthermore, the world modelling organisation must also pro-
vide the information that it is necessary to configure and start a negotiation
process with other parties (e.g. the negotiation protocols they support or an
initial template as a starting point for the negotiation).

110 Chapter 7. The NegoFAST-Core reference architecture

7.5.1 Roles

As depicted in Figure §7.1, the organisation is composed of the following
roles: Inquirer and Informant, which provide the information that is necessary
to start the negotiation process, the ExternallnformationProviders, which pro-
vide specific information about the market or other parties, such as their repu-
tation, and the WorldModeller, which gathers additional information from Ex-
ternallnformationProviders and previous interactions and analyses it to build
models of the market and the other parties.

Role: Inquirer

Goal: The Inquirer is the role in charge of obtaining more information
about the other parties by polling their Informants.

Interactions: RequestInformation and QueryPartyInformation.

Environmental resources: It may read the PreferencesResource to get
guidelines about the information for which it must ask the other
parties.

Behaviour: It receives a collection of party references by means of inter-
action RequestInformation and uses interaction QueryPartyInfor-
mation to get the information it considers relevant from them.

To decide which information is relevant, the Inquirer may use the
PreferencesResource. In the process of polling the Informants, the
role can select different strategies of querying, depending on the
interaction standard and the type of information requested.

Role: Informant

Goal: It is responsible for publishing all public information that can be
useful to other parties in order to evaluate the chances to make an
agreement with it.

Interactions: QueryPartyInformation.
Environmental resources: It reads the PreferencesResource.

Behaviour: It responds the queries that have been requested using in-
teraction QueryPartyInformation. Usually, the information source
to create these responses is the PreferencesResource. However, all
preferences are not intended to be public; therefore the Informant
has to decide which subset of the preferences will be sent. This de-
cision can be very simple (e.g. annotating when some preference is
public) or more complex (e.g. the decision on what information is
public is determined by previous experiences). The Informant may

7.5. World modelling 111

also restricts the information it sends back depending on the re-
quester.

Role: WorldModeller

Goal: The goal is to build a model of the other parties together with a
model of the market. They are based on information supplied by
ExternallnformationProviders and previous negotiations.

Interactions: QueryExternallnformation.

Environmental resources: It may read the NegotiationHistory, the Sys-
temContextData, the PartyContextData, the NegotiationContext-
Data and the WorldModel to get information to create the models.
It also writes to the WorldModel to store the created models.

Behaviour: As described in Section §4.3, the WorldModeller must gather
information and analyse it to create models of the world. Infor-
mation is gathered either by querying ExternalinformationProviders
using interaction QueryExternallnformation to get information
such as the reputation or the geographical location of a specific
party, or by reading the last changes in the NegotiationHistory, the
SystemContextData, the PartyContextData and the Negotiation-
ContextData. Then, this information is analysed following some
algorithm such as those described in Section §4.3.2 and the results
are stored in the WorldModel.

Role: ExternallnformationProvider
Goal: It provides specific information about the market or other parties,
such as their reputation.
Interactions: QueryExternallnformation.
Environmental resources: None.

Behaviour: This role is domain-specific and, hence, there is no common
behaviour.

7.5.2 Interactions

There are three types of interactions in this organisation, namely: Query-
PartyInformation and QueryExternallnformation, which interact with exter-
nal parties, and RequestInformation, which is internal to the automated nego-
tiation system.

Interaction: RequestInformation

112

Chapter 7. The NegoFAST-Core reference architecture

Initiator: PartyCoordinator.

Partners: Inquirer.

Input: A query to get information about one party.
Output: The information requested.

Description: The aim of the interaction is to ask the Inquirer to query
other parties for the information that is necessary to start a negotia-
tion process with them.

Interaction: QueryPartyInformation

Initiator: Inquirer or party.

Partners: Party or Informant.

Input: A query to get information about one party.

Output: The public information about the party that was requested.

Description: The aim of the interaction is to query other parties to ob-
tain information about them that is relevant for starting the negoti-
ation process.

Interaction: QueryExternallnformation

Initiator: WorldModeller.

Partners: ExternallnformationProvider.

Input: A query for information about some party or the market.
Output: The information requested.

Description: Its goal is to query ExternallnformationProviders for infor-
mation about other parties. The data used in this interaction is
domain-specific.

7.6 Environmental resources

In NegoFAST-Core, we define several environmental resources that can

be read, modified or both by the roles. These environmental resources are
AgreementsResource, PreferencesResource, SystemContextData, PartyCon-
textData, NegotiationContextData, NegotiationHistory, and WorldModel.
Next, we detail them:

7.6. Environmental resources 113

AgreementsResource It stores all agreements with other parties within the
current system context. The goal of the AgreementsResource is to allow the
comparison of agreements already reached with current negotiations and to
allow the decommitment of one of them if necessary. The agreements stored
can be in two states: committed and decommitted. When added, all agree-
ments are in the committed state. If a decommitment from an agreement takes
place, the agreement changes to the decommitted state. An agreement that is
in the decommitted state cannot change back to a committed state.

Note that the AgreementsResource runs within a system context and,
hence, when the system context finishes, the AgreementsResource is copied
to the NegotiationHistory and deleted. Therefore, the responsibility of storing
the agreements for future reference, e.g. to monitor them, must be provided
by an external system.

PreferencesResource The preferences resource allows the roles in Nego-
FAST to have access to the user preferences and to evaluate and compare
agreements and proposals.

As stated in Section §3.3, user preferences are the features (i.e. a set of
statements that express capabilities and/or characteristics) and the require-
ments (i.e. a set of statements that specifies the needs of the user in terms of
the features wished in other parties) about the agreement and the other party.
Moreover, user preferences include negotiation guidelines that the automated
negotiation system must follow during the negotiation (e.g. the negotiation
deadline, the eagerness to reach a deal or specific criteria to be applied with
new customers). Section §3.3 details several models to express user prefer-
ences.

Together with the user preferences, the PreferencesResource must provide
a means to evaluate and compare agreements and proposals. This is made
through the so-called assessment mechanisms. An assessment mechanism
evaluates and compares agreements and proposals given a set of user pref-
erences. Note that assessment mechanisms do not only depend on the user
preferences model but on the model of agreements and proposals.

SystemContextData It stores information regarding the current system con-
text so that all roles in NegoFAST-Core have access to the information they
need about the context in which they are running. Typical information that
may be stored here is: an identifier of the user of the system, the moment when
the system context started and the party references that has been received and
the result of their processing.

114 Chapter 7. The NegoFAST-Core reference architecture

PartyContextData Its main goal is to store the state of each party context
(cf. Figure §7.4) and the information generated along its lifecycle: the pub-
lic information about the preferences of the other party (i.e. its features and
requirements) gathered during the getting information state; the negotiation
protocol selected together with its configuration if necessary, and the result
of the negotiating state (i.e. either the agreement created or fail otherwise). It
also stores the negotiation context that is negotiating this party context.

NegotiationContextData It stores information regarding each negotiation
context. This information includes the current state of the negotiation con-
text (cf. Figure §7.5) and the negotiation messages that have been exchanged
with the other parties.

WorldModel 1t represents the knowledge the automated negotiation sys-
tem has about the other parties, the market and the domain the negotiation is
about (cf. Section §4.3). Therefore, the world model may include, for instance,
knowledge about the preferences and negotiation style of a party and the mar-
ket price for a given service. Unlike the previously described environmental
resources, which run within a concrete system context, the WorldModel is
outside it. The reason is that the models are valid across several system con-
texts (e.g. the negotiation style of a party does not depend on the system con-
text). However the current status of the system context may have an influence
on those models (e.g. the negotiation style of a party may be more precise
if it takes the last negotiation messages exchanged into account). Therefore,
the WorldModel may take the current system context into account to provide
more accurate models.

NegotiationHistory It stores past negotiations. It is mainly intended for
building models based on previous interactions. The NegotiationHistory can
be seen as a list of all system contexts, party contexts and negotiation contexts
that have been processed by the automated negotiation system.

7.7 Summary

In this chapter, we have presented NegoFAST-Core, a protocol-independent
reference architecture for building automated negotiation systems. The next
chapter presents an extension to NegoFAST-Core that supports bargaining
protocols.

Chapter 8

The NegoFAST-Bargaining
reference architecture

Every extension of Knowledge arises
from maKing the conscious the unconscious.

Friedrich Nietzsche, 1844—1900
German classical Scholar, Philosopher and Critic of culture

he goal of this chapter is to detail a protocol-specific extension to the

NegoFAST-Core reference architecture. In so doing, we provide mecha-
nisms to tackle protocol-specific requirements with a greater detail. Specif-
ically, we focus on bargaining protocols because we believe they are the
most appropriate to accomplish the goals we set in Chapter §2.| This chap-
ter is organised as follows: in Section §8.1,| we review the main structure of
NegoFAST-Bargaining; in Sections §8.2,|§5.3,§8.4 and §8.5, we extend the Pro-
tocolHandler, NegotiationCoordinator, ResponseGenerator and Negotiation-
ContextData, respectively, with elements that are specific to bargaining proto-
cols; tinally, we summarise the ideas of this chapter in Section §8.6.

116 Chapter 8. The NegoFAST-Bargaining reference architecture

8.1 Introduction

The NegoFAST-Core reference architecture provides a protocol-independent
description of the roles, interactions and resources that compose an auto-
mated negotiation system. In this chapter, we detail the NegoFAST-Bargaining
reference architecture, depicted in Figure §8.1, which was briefly described
in Section §6.3.2. The NegoFAST-Bargaining reference architecture extends
NegoFAST-Core to deal with the specific requirements of concurrent proposal-
based bilateral negotiations of multi-term agreements. This is a type of bar-
gaining negotiation in which two parties exchange proposals sequentially in
order to reach an agreement (cf. Section §3.4).

The requirements of concurrent proposal-based bilateral negotiations of
multi-term agreements can be divided into: understanding several proposal-
based bilateral negotiation protocols, generating responses composed of pro-
posals for multi-term agreements and supporting concurrent bilateral negoti-
ations. Next, we detail how NegoFAST-Bargaining tackles them.

The understanding of several proposal-based bilateral negotiation proto-
cols is dealt with by specialising the ProtocolHandler in a BargainingProtocol-
Handler, which converts bilateral negotiation protocols in a previously defined
abstract protocol that is understood by the NegotiationCoordinator.

The response generation of proposals for multi-term agreements is tackled
by dividing the ResponseGenerator into the PerformativeSelector, which se-
lects the performative that is going to be used, and the BuilderManager and
ProposalBuilder, which deal with the creation of a proposal.

The support for concurrent bilateral negotiations is implemented by means
of three extensions: the environmental resource NegotiationContextData is
extended to store additional information about the negotiations; the concept
of negotiation policy is introduced, and the coordination task is divided into
the BilateralNegotiator and the BargainingCoordinator.

8.2 Protocol handler

The ProtocolHandler adapts a concrete negotiation protocol to an abstract
negotiation protocol and, hence, it makes the architecture independent from
the negotiation protocol selected. In NegoFAST-Bargaining, the abstract nego-
tiation protocol is a proposal-based bilateral negotiation protocol. At this level
of abstraction, it is not necessary to define all aspects of the abstract negotia-

8.2. Protocol handler 117
Other party
(Protocol Notary
handler)
AN A
Protocol N L Agreement
rotocol managemen Negotiation creation
i
ﬁ"rotocol—dependent Braioes hander \
roles
Protocol Configure Bargtaininlg
i handler protoco
negotiator handler
A
Convert
protocol
Coordination —
Negotiation
Incoming coordinator
negotiation Policies
/ manager
System Party v Request Submit
coordinator coordinator o . policies
negotiation_|_| Bargaining \”
coordinator Coordinate
negotiation | Bilateral
negotiator
Rl
Decision making Request
response
Request Response _
commit generator g Builder
approval Request manager
proposal 4
Commit Message Create
handler composer proposal
Proposal
builder
Environmental Bargaining
K resources context data /

Figure 8.1: The NegoFAST-Bargaining reference architecture.

tion protocol (cf. Section §10.4). However, there are several implications that
have an impact on the NegoFAST-Bargaining reference architecture:

Negotiations are bilateral, i.e. they are carried out between two parties only:
the initiator, which is the party that initiates the negotiation, and the
responder, which is the other party.

The negotiation is sequential, which means that the same party cannot send
two proposals in a row. Except for some negotiation messages that in-
clude reject-negotiation or withdraw performatives that can be sent

118 Chapter 8. The NegoFAST-Bargaining reference architecture

at any moment during the negotiation.

The protocol is proposal-based, i.e. negotiation messages contain either one
performative or one performative and one or more proposals. This
means that no additional arguments can be sent together with a proposal
as in argumentation-based protocols (cf. Section §3.4).

8.2.1 Roles

In NegoFAST-Bargaining, the ProtocolHandler remains as one role: the
BargainingProtocolHandler, which converts the negotiation protocol into an
abstract negotiation protocol. The description of the role is basically the same
but its behaviour is restricted with the aforementioned features of proposal-
based bilateral negotiation protocols.

Role: BargainingProtocolHandler

Goal: The BargainingProtocolHandler deals with the interaction with
the other parties following a concrete proposal-based bilateral ne-
gotiation protocol.

Interactions: ConfigureHandler, IncomingNegotiation, Negotiation,
and ProtocolConversion.

Environmental resources: None.

Behaviour: It must be configured to manage a proposal-based bilateral
negotiation protocol by means of interaction ConfigureHandler. It
also transforms the syntax of a concrete negotiation protocol into
negotiation messages that are understood by the other roles and
sends them using interaction ProtocolConversion. It also imple-
ments the inverse process by transforming negotiation messages
into the syntax of concrete negotiation protocols and sending them
to the other parties. Moreover, it enforces the rules of the negotia-
tion protocol and copes with the errors that may occur during the
interaction with the other parties.

8.2.2 Interactions

The only interaction related to the ProtocolHandler that is extended by
NegoFAST-Bargaining is the ProtocolConversion. This interaction is the im-
plementation of an abstract proposal-based bilateral negotiation protocol.

8.3. Negotiation coordinator 119

Interaction: ProtocolConversion

Initiator: BargainingCoordinator.
Partners: BargainingProtocolHandler.
Input: A negotiation message with an initial proposal.

Output: An agreement if the negotiation finishes successfully or noth-
ing if it fails.
Description: This interaction represents the implementation of an

abstract proposal-based bilateral negotiation protocol (cf. Sec-
tion §10.4 for a materialisation of this interaction).

8.3 Negotiation coordinator

To give full support to concurrent bilateral negotiations, the Negotiation-
Coordinator must not just coordinate each negotiation context independently,
but also must have a global vision of all negotiation contexts. In so doing, the
NegotiationCoordinator must guide the behaviour of one negotiation context
based on how well the other concurrent negotiations are performing. This is
achieved by means of the so-called negotiation policies, which are guidelines
about how to generate responses. For instance, if one negotiation is perform-
ing particularly well (i.e. the proposals from the other party are very appeal-
ing), the negotiation policies of the other negotiation contexts can be set to
make the ResponseGenerator to concede less.

8.3.1 Roles

In NegoFAST-Bargaining, the NegotiationCoordinator is divided into sev-
eral roles to support concurrent bargaining negotiations, namely: BilateralNe-
gotiator, BargainingCoordinator and PoliciesManager.

The coordination task is divided into the BilateralNegotiator, which coor-
dinates one negotiation context, and the BargainingCoordinator, which coor-
dinates several BilateralNegotiators.

To add support for negotiation policies, NegoFAST-Bargaining extends in-
teraction RequestResponse to enable the submission of negotiation policies to
the ResponseGenerator, and introduces the PoliciesManager, which chooses
negotiation policies for each negotiation to guide their behaviour.

120 Chapter 8. The NegoFAST-Bargaining reference architecture

Role: BargainingCoordinator

Goal: The BargainingCoordinator orchestrates the BilateralNegotiator,
the CommitHandler and the PartyCoordinator. Furthermore, it also
stores the current state of the concurrent negotiations in resource
BargainingContextData.

Interactions: RequestNegotiation, CoordinateNegotiation and Request-
CommitApproval.

Environmental resources: It stores the current state of concurrent nego-
tiations in resource BargainingContextData.

Behaviour: Its acts as a message dispatcher amongst PartyCoordinator,
BilateralNegotiator and CommitHandler. Specifically:

e When it receives a request to start a negotiation through inter-
action RequestNegotiation, it delegates it to the BilateralNego-
tiator by means of interaction CoordinateNegotiation.

e When it receives a commit approval request from a BilateralNe-
gotiator via interaction CoordinateNegotiation, it updates the
new state in the BargainingContextData uses and uses inter-
action RequestCommitApproval to forward the request to the
CommitHandler.

e When it receives a response for a commit approval request from
the CommitHandler, it updates the BargainingContextData and
forwards the response to the BilateralNegotiator.

e When it receives the result of the negotiation from a Bilateral-
Negotiator, it notifies it to the CommitHandler, the Bargaining-
ContextData and the PartyCoordinator.

Role: BilateralNegotiator

Goal: Its goal is to carry out a single bilateral negotiation by orches-
trating the BargainingProtocolHandler and the PerformativeSelec-
tor. Furthermore, it communicates with the BargainingCoordinator
to ask for approval before sending a binding negotiation message
and it receives negotiation policies from the PoliciesManager.

Interactions: CoordinateNegotiation, ProtocolConversion, RequestRe-
sponse, SubmitPolicies

Environmental resources: It writes to the BargainingContextData the
negotiation messages that have been received or sent.

Behaviour: This role implements, for each negotiation context, the state
machine of a negotiation context for a bilateral protocol (cf. Fig-
ure §8.2). This state machine is an extension of the state machine

8.3. Negotiation coordinator 121

start negotiation [initiator]

start negotiation [responder] approval rejected

message received

response generated ask approval

Asked
approval

Waiting Generating

negotiation failed commit rejected
approval accepted

. agreement created
Finished

Approved

Figure 8.2: State machine of a negotiation context for a bilateral protocol.

of negotiation contexts described in the previous chapter (cf. Fig-
ure §7.5). The extension involves dividing state negotiating into
state waiting, in which the negotiation context is waiting for the
other party to send a negotiation message, and state generating, in
which the automated negotiation system is building a negotiation
message by means of the ResponseGenerator.

The first step is to contact the BargainingProtocolHandler to ini-
tialise it. The BargainingProtocolHandler acts as an intermediary
between the BilateralNegotiator and the other party. Thus, all ne-
gotiation messages are sent and received by means of interaction
ProtocolConversion, which makes the BilateralNegotiator indepen-
dent from concrete negotiation protocols. The BargainingProtocol-
Handler informs the BilateralNegotiator of whether it is acting as
the initiator or the responder of the interaction. In other words, if
it must start the negotiation or it must wait for a negotiation mes-
sage from the other party. If it is initiator, it enters state generating.
Otherwise, it enters state waiting.

Waiting. This is the state in which the BilateralNegotiator is waiting
for a negotiation message from the other party. When a new
negotiation message is received by the BargainingProtocolHan-
dler, it sends the message to the BilateralNegotiator via inter-
action ProtocolConversion and the state machine enters state
generating to respond the received message.

Generating. In this state, the BilateralNegotiator interacts with the
PerformativeSelector by means of interaction RequestResponse
to obtain the negotiation message that shall be sent to the other

122 Chapter 8. The NegoFAST-Bargaining reference architecture

party. If the negotiation message generated is a binding one,
the BilateralNegotiator first forwards it to the BargainingCoor-
dinator via interaction CoordinateNegotiation and enters state
asked approval. Otherwise, it sends the negotiation message to
the other party by means of the BargainingProtocolHandler and
enters state waiting.

Asked approval. In this state, the BilateralNegotiator is waiting for
the approval of the binding negotiation message. If the ap-
proval is granted, the negotiation context enters state approved.
In other case, it moves back to state generating.

Approved. If the binding negotiation message is approved, the ne-
gotiation context enters this state and the binding negotiation
message is sent. In this case, if this is the last message of the
negotiation protocol (e.g. performative accept), it enters state
tinished. Otherwise, it waits in this state until the response of
the other party. If the other party rejects the binding negotia-
tion message, it moves back to state generating. Otherwise, it
enters state finished.

Finished. This is the final state in which the negotiation protocol
has ended.

In addition, during the whole negotiation, the BilateralNegotiator
may receive negotiation policies from the PoliciesManager.

Role: PoliciesManager
Goal: The goal of the PoliciesManager is to provide the BilateralNego-
tiators with negotiation policies to coordinate their behaviour.
Interactions: SubmitPolicies

Environmental resources: It may be necessary to read the Preferences-
Resource, the WorldModel, the NegotiationContextData and the
BargainingContextData to decide the negotiation policies.

Behaviour: The PoliciesManager determines the policies that are sent to
the BilateralNegotiators based on the current status of all negotia-
tions. It sends the negotiation policies to the BilateralNegotiator by
means of interaction SubmitPolicies.

8.3.2 Interactions

There are two interactions between the roles described in the section: Co-
ordinateNegotiation and SubmitPolicies.

8.4. Response generator 123

Interaction: CoordinateNegotiation

Initiator: BargainingCoordinator.

Partners: BilateralNegotiator.

Input: The BargainingProtocolHandler that acts as an intermediary dur-
ing the negotiation.

Output: A new agreement if the negotiation is successful or a fail other-
wise.

Description: This interaction involves the request for the BilateralNego-
tiator to start a negotiation, the notification of the results of the ne-
gotiation, and the submissions of commit approval requests from
the BilateralNegotiator to the BargainingCoordinator that are later
redirected to the CommitHandler.

Interaction: SubmitPolicies

Initiator: PoliciesManager.
Partners: BilateralNegotiator.
Input: Negotiation policies.
Output: Nothing.

Description: This interaction implements the submission of the chosen
negotiation policies to the BilateralNegotiator.

8.4 Response generator

The goal of the ResponseGenerator is to decide the negotiation messages
that shall be sent to the other parties. In a proposal-based bilateral negotiation
protocol this involves two tasks: selecting the performative to be used and
creating the proposal to be sent if necessary (cf. Section §4.2).

8.4.1 Roles

In NegoFAST-Bargaining, the ResponseGenerator is divided into the fol-
lowing roles: the PerformativeSelector, which chooses the performative out
of a set of allowed performatives, the BuilderManager, which selects the most
appropriate ProposalBuilder and invokes it, and the ProposalBuilders, which
are implementations of different algorithms to build proposals, such as those
described in Section §4.2.

124 Chapter 8. The NegoFAST-Bargaining reference architecture

Role: PerformativeSelector

Goal: The goal of the PerformativeSelector is to generate a negotiation
message by choosing the performative and requesting the accom-
panying proposal to the BuilderManager if necessary.

Interactions: RequestResponse and RequestProposal.

Environmental resources: The role may read the PreferencesResource,
the WorldModel, the SystemContextData, the PartyContextData
and the BargainingContextData to decide the performative.

Behaviour: The behaviour of the PerformativeSelector depends on
whether the performative depends on the proposal obtained from
the BuilderManager or not. If the performative is dependent, it first
uses interaction RequestProposal to obtain a proposal from the Buil-
derManager and then decides the performative. If the performative
is independent, the PerformativeSelector may decide the performa-
tive first and then, only if the performative involves the sending of
a proposal, it requests a proposal to the BuilderManager by means
of interaction RequestProposal. This avoids generating proposals
if they are not necessary. In addition, the PerformativeSelector may
also be able to cancel its operation and return a valid yet not optimal
negotiation message.

Role: BuilderManager

Goal: The goals of the BuilderManager are to select a ProposalBuilder,
to use it to obtain a proposal and to send this proposal back to the
PerformativeSelector.

Interactions: RequestProposal and CreateProposal.

Environmental resources: This role may read the PreferencesResource,
the WorldModel, the SystemContextData, the PartyContextData
and the BargainingContextData.

Behaviour: First, it receives a request to build a proposal from the Per-
formativeSelector by means of interaction RequestProposal. Then,
it selects one or several ProposalBuilders to obtain a proposal. This
selection may be based on the negotiation policies, the preferences,
the current state of the negotiations and world models. Next, it
requests each ProposalBuilder to generate a proposal via interac-
tion RequestProposal, chooses the most appropriate according to
some criteria and sends it back to the PerformativeSelector. Note
that the BuilderManager does not have to select several Proposal-
Builders necessarily; in many cases, it can select just one and return
the proposal that it generates. In addition, the BuilderManager may

8.4. Response generator 125

also be able to cancel its operation and return a valid yet not optimal
negotiation message.

Role: ProposalBuilder

Goal: The goal of the ProposalBuilder is to create proposals to be sent
to the other party. In Section §4.2, we report on several algorithms
that have been proposed to generate such proposals.

Interactions: CreateProposal.

Environmental resources: The role may use the PreferencesResource,
the WorldModel, the SystemContextData, the PartyContextData
and the BargainingContextData.

Behaviour: When a proposal is requested, a proposal creation algorithm
such as those described in Section §4.2 is executed and when it fin-
ishes, the proposal is returned. The ProposalBuilder may also sup-
port a cancellation of the proposal creation while the algorithm is
running and returns a not-optimal-but-acceptable proposal. This
is possible because some algorithms build proposals evolutionarily
and, hence, they can be interrupted and return a proposal, which is
not optimal, but valid.

8.4.2 Interactions

There are two interactions between the roles described in this section: Re-
questResponse, RequestProposal.

Interaction: RequestResponse

Initiator: BilateralNegotiator.
Partners: PerformativeSelector.

Input: A set of the negotiation performatives that can be used as a re-
sponse and the current status of the negotiation, including the last
negotiation message received and the negotiation policies.

Output: A negotiation message.

Description: The goal is to obtain negotiation messages that shall be
used by the BilateralNegotiator to send them to the other parties.

Interaction: RequestProposal

Initiator: PerformativeSelector.

126 Chapter 8. The NegoFAST-Bargaining reference architecture

Partners: BuilderManager.

Input: The selected negotiation performatives if any, the current status
of the negotiation, including the last negotiation message received
and the negotiation policies.

Output: A proposal.

Description: The goal of this interaction is to obtain a proposal as part of
the negotiation message that shall be sent as responses to the other
parties by the BilateralNegotiator.

Interaction: CreateProposal

Initiator: BuilderManager.
Partners: ProposalBuilder.

Input: The selected negotiation performatives if any, the current status
of the negotiation, including the last negotiation message received
and the negotiation policies, and in some cases, specific configura-
tion parameters for the proposal builder.

Output: A proposal.

Description: The goal of this interaction is to obtain a proposal as part
of the negotiation message that shall be sent as a response to the
other parties by the BilateralNegotiator.

8.5 Environmental resources

In NegoFAST-Core, we extend the NegotiationContextData with the so-
called BargainingContextData to store the state of all concurrent negotiations
so that it can be read by the roles of the reference architecture.

BargainingContextData 1t is a bargaining-specific extension of the resource
NegotiationContextData of NegoFAST-Core, whose goal is to provide infor-
mation about the current status of all concurrent negotiations.

The NegotiationContextData stores information regarding each negotia-
tion context, such as the current state of the negotiation context and the ne-
gotiation messages that have been exchanged with the other parties (cf. Sec-
tion §7.6). The BargainingContextData extends this information to support
the bargaining-specific states of the negotiation context (cf. Figure §8.2) and
to provide additional information such as the best utility value of all current
negotiation parties.

8.6. Summary 127

4Agreer_ﬁent> <«
creation

Protocol Management
9 Protpcpl Agreement
negotiation Negotiation creation
Protocol Configure ~ Bargaining
] " .
negotiator handler protocol handler
13
Request
protocol Convert
negotiation protocol
1
Coordination| Ig?g{gg? 77777
Incomin o 0 0
negotiatign negotiation Policies manager |
v ¥ 7 o000 Sul!:)rl‘nit
policies
User _ Request Party
] - System coordinator |« party | "
nteract processing coordinator 777
ReqtuetSt ~ Bilateral
negotiation w7 iator
d Coordinate | j‘fgf’t'?t?r/ 7
negotiation
~ Barganing
 coordnaor | Request
f response
[
World modelling Request Decision making
information Request
commit
approval N
Query N U gp 7 kA %%
— uirer 77 27
o, ‘ ~ composer |
information Commit handler * 2
Query % . Request
- party i |nformant Request proposal
information : h 4
adVISe 0000000
‘Builder manager
Query ////////////é//g/
4—— External » World modeller Commit advisor 777 A/ 4
information Create
proposal
Decommit /////////ffj
agreement Proposal builder |
System context Party context - Bargaining
Agreements Preferences 2 2
Environmental data data Z ?"E‘“?X‘/ d/at? Z
resources T e m e ———
r ! r N tiati !
| | egotiation
| World model : | history :
4 o a

Figure 8.3: NegoFAST-Core extended by NegoFAST-Bargaining.

128 Chapter 8. The NegoFAST-Bargaining reference architecture

8.6 Summary

In this chapter, we have presented the NegoFAST-Bargaining reference
architecture, which extends the NegoFAST-Core reference architecture with
elements that are specific to bargaining protocols. Figure §8.3| depicts the
whole NegoFAST reference architecture, including both NegoFAST-Core and
NegoFAST-Bargaining.

Chapter 9
The NegoFAST-Core framework

If you have a Knowledge framework,
let others light their candles at it.

Margaret Fuller, 1810—1850
American transcendentalist author and editor

n this chapter, we detail the NegoFAST-Core framework that we intro-

duced in Section §6.4.1/ This framework materialises the NegoFAST-
Core reference architecture by providing a data model, the interfaces to en-
vironmental resources, the roles, and the state machines of the coordination
roles. This chapter is organised as follows: in Section §9.1, we introduce the
main ideas and overview the framework; Section §9.2 details the data model of
the NegoFAST-Core framework; Section §9.3|defines the interfaces of the en-
vironmental resources of NegoFAST-Core; Section §9.4 |details the interfaces
of the interactions that are internal to the automated negotiation system; Sec-
tion §9.5 describes the state machines of the SystemCoordinator and the Par-
tyCoordinator; and Section §9.6|summarises the ideas of this chapter.

130 Chapter 9. The NegoFAST-Core framework

9.1 Introduction

The goal of this chapter is to detail a software framework that materialises
the NegoFAST-Core reference architecture (cf. Chapter §7). The NegoFAST-
Core framework provides a protocol-independent foundation for software
engineers to develop automated negotiation systems. This NegoFAST-
Core framework must be extended with protocol-specific frameworks that
deal with concrete details of negotiation protocols, such as the NegoFAST-
Bargaining framework described in the next chapter.

The NegoFAST-Core framework can be divided into the following pack-
ages (cf. Figure §9.1): package model, which defines a data model for the soft-
ware framework; package environment, which defines the interfaces of the
environmental resources; package interactions, which defines the interfaces
of the interactions that are internal to the automated negotiation system, and
package roles, which defines the state machines of the coordination roles.
Next, we detail each of them.

9.2 Data model

The data model defines the concepts that are used in automated negoti-
ation systems such as agreements, preferences and negotiation protocol (cf.
conceptual map in Section §6.2). These concepts are used by the other ele-
ments of the NegoFAST-Core framework.

The key aspect is that there are many different ways of expressing agree-
ments and preferences and there is no best way to represent them (cf. Sec-
tions §3.2 and §3.3). Therefore, the data model of the NegoFAST-Core frame-
work must support different ways of expressing agreements and preferences.
This is also the case of the proposals exchanged by the parties, which are heav-
ily influenced by the agreement model. This flexibility allows the automated
negotiation system to use simpler and more efficient algorithms when the
user does not require a complex model to express preferences and agreements.
This flexibility is achieved by specifying a generic model that defines the more
general concepts such as agreements, terms, proposals, requirements and fea-
tures. These concepts must be further refined to support concrete models for
expressing agreements and preferences like those described in Sections §3.2
and §3.3.

The refinement of concepts can be implemented in two complementary
ways. On the one hand, the concepts of the generic model are parameterised.

9.2. Data model 131

]]

model environment

’]]

<<import>> agreements preferences

A]]

) .
: <<import>> ' \ systemcontext partycontext
\

\
\
interactions \ —| —|
\
]] \

N negotiationcontext worldmodel

user configurehandler

L0]
_| _| R negotiationhistory events

incomingnegotiation incomingprotocolnegotiation \

H | T

requestinformation requestprotocolnegotiation

roles

<<Interface>>

requestnegotiation requestpartyprocessing ISystemCoordinator

<-- _<zirﬁp6rt_>>_ - <<Interface>>

requestadvise requestcommitapproval IParty Coordinator

Figure 9.1: NegoFAST-Core framework packages.

For instance, the terms of the agreements are parameterised by the type of con-
straint. On the other hand, the generic model itself may also be extended to
support advanced features. For instance, terms can be extended to add com-
pensation clauses or proposals can be extended to include additional negoti-
ation data about the terms specified in the proposal. As a proof-of-concept,
in Appendix §A, we detail a concrete model to express preferences and agree-
ments based on utility functions and assignment of values, respectively.

Preferences The preferences document is modelled by means of interface
IPreferencesDocument. To allow different ways of modelling preferences, in-
terface IPreferencesDocument (cf. Figure §9.2) is parameterised by the type

132 Chapter 9. The NegoFAST-Core framework

-
IFR : IStatement | features

G :IStatement |

<<Interfaces> requirements A
IPreferencesDocument ‘—*\l/ " i ISt . IStatement !
+getFormat() : URI <<Interface>> ~ T
+getFeatures() : FR [*] <<Interface>> IPartyInformation
+getRequirements() : FR [*] ‘features IStatement +getURI() : URI
+getNegotiationGuidelines() : G [] * |+getlanguage() : URI[1.] +getFeatures() : St [*]

+getUser() : URI +getSubject() : Subject +getRequirements() : St [*]
guidelines * { \ *
subject ,
1 requirements

<<Enum>>

Subject
-service
-party
-negotiationProcess

Figure 9.2: Data model of preferences.

of statements used to specify features and requirements and the type of
statements used to specify the negotiation guidelines. For instance, in Ap-
pendix §A, features and requirements are expressed using utility functions
whereas the negotiation guidelines are expressed using attribute-value pairs.

Interface IPreferencesDocument<FR: IStatement,G: IStatement> is as
follows:

> URI getFormat(): Returns a URI' that identifies the model used to ex-
press preferences.

> FR[*] getFeatures(): Returns a set of statements that express the fea-
tures of a party. For instance, in the case of a service provider, they ex-
press the characteristics of the service provided.

> FR[*] getRequirements(): Returns a set of statements that specify re-
quirements on other parties. For instance, the desired characteristics of
the service or good consumed or bought.

> G[*] getNegotiationGuidelines(): Returns a set of statements that
specify the negotiation guidelines that the automated negotiation sys-

1A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an
abstract or physical resource [13]. In NegoFAST, we use URIs to identify diverse elements of
the architecture that ranges from software artifacts that implements an interface, to a concrete
negotiation protocol or an external party

9.2. Data model 133

tem must follow. For instance, the negotiation deadline, the eagerness to
reach a deal or specific criteria for new customers.

> URI getUser(): Returns a URI identifying the user who sends the pref-
erences.

Statement A statement is a preference about one or several attributes that are
defined in one or several ontologies or vocabularies. Some examples of state-
ments are an utility function defined over an attribute, a constraint specified
on several attributes, a pair name-value or a rule relating several attributes.
Statements can be applied to the following subjects as defined by enumera-
tion Subject depicted in Figure §9.2:

> service: If the statement is applied to the good or service offered or
demanded. For instance, if it specifies the service interface or the service
cost.

> party: If the statement expresses characteristics of one party, not about
the good or service. Examples of this can be: Party Z is located in Spain
or Party X has a low reputation on service Y.

> negotiationProcess: If the statement is applied to the negotiation pro-
cess. For instance, if the statement specifies a negotiation deadline.

The interface of statements (IStatement) is very generic and must be extended
by concrete type of statements (cf. Appendix §A for an example). The interface
is depicted in Figure §9.2 and has the following method:

> URI[1..*] getLanguage(): Returns identifiers to the ontologies or vo-
cabularies that are used by attributes used in the statement.

Party information Interface IPartyInformation models the public informa-
tion offered by the parties about their preferences and is obtained by means of
role Inquirer. Like preferences, the party information is composed of two dif-
ferent sets of statements: requirements and features and, also like preferences,
it is parameterised by the type of statement used to express them. Therefore,
the interface IPartyInformation<S: IStatement> is as follows:

> URI getURI(): Returns the identifier of the party.

> S[x] getFeatures(): Returns the statements that express the features of
the party.

134

Chapter 9. The NegoFAST-Core framework

|_ |
yTerm: ITerm
<<nterface>> T 7] - F——————
IAgreement IC : IConstraint |
+getFormat() : URI <<Interface>>
+getTerms() : Term [1..%] ‘ L ITerm
+setTerms(val : Term [1..¥]) : void terms +getConstraint() : C
+getParties() : URI [2..%] +setConstraint(val : C) : void
+getParties(URI role) : URI [*] +getObligatedParty() : URI
+getRole(URI party) : URI +setObligatedParty(val : URI) : void
+addParty(URI party, URI role) : void
1. .*
|_ |
jTerm : ITerm | constraint

<<Interface>>
IProposal

1

<<Interface>>
IConstraint

+getFormat() : URI

+getTerms() : Term [1..%]
+setTerms(val : Term [1..¥]) : void
+getParties() : URI [2..%]
+getParties(URI role) : URI [*]
+getRole(URI party) : URI
+addParty(URI party, URI role) : void

terms

Figure 9.3: Data model of agreements and proposals.

> S[x] getRequirements(): Returns the statements expressing the re-
quirements of the party.

Agreement Agreements are modelled by interface IAgreement and are com-
posed of a set of terms. The different models of agreements are characterised
by different types of terms. Therefore, interface IAgreement is parameterised
by the type of terms used in it (e.g. terms as pairs attribute-value or terms as
constraints).

The interface IAgreement<Term: ITerm> is as follows (cf. Figure §9.3):

> URI getFormat(): Returns a URI that identifies the model used to ex-
press the agreement.

> Term[1..*] getTerms(): Returns a collection of terms that must de-
scribe both functional descriptions and non-functional guarantees of the
service. The terms used in an agreement must be fully specified and
ambiguities must be avoided.

> void setTerms(terms): Sets the terms that compose the agreement.

> URI[2..*] getParties(): Returns the URIs of the parties involved in
the agreement.

9.2. Data model 135

> URI[*] getParties(role): Returns the URIs of the parties involved in
the agreement with the given role.

> URI getRole(party): Returns the role that a given party plays in the
agreement. Typically these roles are provider and consumer.

> void addParty(party, role): Adds a new party to the agreement with
the given role.

Proposal Interface IProposal, depicted in Figure §9.3, models proposals.
Like agreements, proposals are parameterised by the type of terms it contains
and its interface is exactly the same. Their main difference is that propos-
als may allow some terms to be left open to be refined in later interactions
amongst the parties. Furthermore, proposals can include additional informa-
tion, e.g., data about some terms in the proposal.

Term Terms specify constraints over some attributes with which a party
must comply. Therefore, they are parameterised by the type of constraint
they enclose (e.g. equality, constraints over one attribute, constraints over sev-
eral attributes). Interface ITerm<C: IConstraint> (cf. Figure §9.3) defines the
generic interface of a term:

> URI getObligatedParty(): Returns the identifier of the party to whom
the term is applied to. Each term is to be applied to one of the parties
involved in the agreement or proposal and the party is obligated to fulfil
what it is specified in it. Obviously, the party must be one of those that
have been designated in the agreement or proposal as one of the parties
that are involved in it.

> void setObligatedParty(party): Sets the party that must comply with
the constraint specified in the term.

> C getConstraint(): Returns the constraint specified over one or several
attributes of a certain language.

> void setConstraint(constraint): Sets the constraint to be assigned to
the term.

Note that this is the generic interface of a term but it may be extended.
For instance, complex terms may include a set of compensations that will be
applied if the party does not comply with the constraints specified in the term.

136 Chapter 9. The NegoFAST-Core framework

<<Interface>>
INegotiationProtocollnstance
+getProtocol() : URI
+isInitiator() : boolean
+getConfiguration() : IStatement [*]

<<Interface>>
INegotiationMessage
+getContent() : Content performative 1
+setContent(c : Content) : void
+getPerformative() : Performative l_Te_rm_: I_T;nrn
+setPerformative(perf : Performative) : void <<Interface>> T<I:1t_erﬁc_e>_> -
+getSender() : URI @ > MessageContent | IProposal

+setSender(sender : URI) : void content 1

<<Interface>>
Performative

Figure 9.4: Data model of negotiation messages.

Negotiation protocol instance This element models the negotiation protocol
instance that is performed by a negotiation context. Figure §9.4 depicts its
interface (INegotiationProtocolInstance), and its defined as follows:

> URI getProtocol(): Returns an identifier of the negotiation protocol.
This identifier may have no semantics associated to it or it may be a
concept in an ontology like in References [105, 106].

> boolean isInitiator(): Returns whether the automated negotiation
system is the initiator of the negotiation protocol or not, i.e. who sends
the first message .

> IStatement[*] getConfiguration(): Returns the configuration of the
negotiation protocol, which may specify some specific characteristics of
the negotiation protocol such as a timeout.

Negotiation message Negotiation messages are composed of a performative
that expresses the intention of the sender about the message and the content of
the message. This content is usually a proposal. However, as we described in
Section §3.4, other kinds of information can be exchanged such as threats, re-
wards or arguments. Therefore, the negotiation message is parameterised by
the content of the message, which may be a proposal or other information.
The interface of a negotiation message is INegotiationMessage<Content:
IMessageContent> and has the following methods:

9.3. Environment interfaces 137
> Content getContent(): Returns the content of the negotiation message.
> void setContent(content): Sets the content of the negotiation message.

> Performative getPerformative(): Returns the performative of the ne-
gotiation message.

> void setPerformative(performative): Sets the performative of the ne-
gotiation message.

> URI getSender (): Returns the identifier of the party who sends the ne-
gotiation message.

> void setSender(sender): Sets the identifier of the party that sends the
negotiation message.

Performative Performatives are modelled by tagging interface Performative,
depicted in Figure §9.4, that must be refined by protocol-specific extensions,
cf. Section §10.2/ for a bargaining extension.

Message content The content of the message is modelled by interface
IMessageContent, which is a tagging interface that indicates which elements
may be part of a negotiation message. Interface IProposal is a type of
IMessageContent (cf. Figure §9.4).

9.3 Environment interfaces

In the NegoFAST-Core reference architecture, we define several environ-
mental resources that can be read, modified or both by the roles. The
NegoFAST-Core framework materialises them by defining the interfaces that
the software artifacts that implement them must expose. In addition, some
environmental resources provide a publish/subscription mechanism [42] to
avoid a continuous polling of the elements of the system to detect when
some event occurs. Each environmental resources that provides a subscription
mechanism must implement a method to subscribe to one or several events.
Then, when one of these events takes place, the subscribers receive the notifi-
cation by means of interface IEventListener, which is as follows:

138 Chapter 9. The NegoFAST-Core framework

<<Enum>>
AgreementEventType
-agreementCommited
-agreementDecommited

<<Interface>>
IAgreementsResource
+add(a : IAgreement) : URI <<use>>
+getAgreementState(agreementld : URI) : AgreementState
+getAgreement(agreementld : URI) : IAgreement
+setDecommitted(agreementld : URI) : void

+getCommittedAgreements() : IAgreement [*] <<Enum>>
+getDecommittedAgreements() : IAgreement [*] AgreementState
+getAgreements() : IAgreement [4] -agreementld 1 URI | 17 _committed
+subscribeEvent(event : AgreementEventType [1..*], eventListener : |[EventListener) : void -decommitted

Figure 9.5: Interface of AgreementsResource.

> void notify(source, event, eventInformation): Notifies that a sub-
scribed event has occurred and includes the source of the event. Option-
ally, it may include additional domain-specific information related with
the event.

EventType is a tagging interface that represents the supertype of all possi-
ble types of events.

AgreementsResource Its interface (IAgreementsResource) is simple, as de-
picted in Figure §9.5, and it includes the following methods:

> URI add(agreement): Adds a new agreement and returns a URI that
identifies it.

> AgreementState getAgreementState(agreementId): Queries the state
of an agreement given its URI (committed or decommitted).

> IAgreement getAgreement(agreementId): Obtains a concrete agree-
ment by its URL

> void setDecommited(agreementId): Marks an agreement as decommit-
ted, hence changing its state.

> IAgreement [*] getCommitedAgreements(): Returns committed agree-
ments.

> IAgreement [*] getDecommitedAgreements(): Returns all decommitted
agreements.

> IAgreement [*] getAgreements(): Returns all agreements.

9.3. Environment interfaces 139

> void subscribeEvent (event, eventListener): Subscribes to one or
several events. When the event occurs, the event listener is notified.

Interface IAgreementsResource provides a subscription mechanism for
events of type AgreementEventType, which are as follows:

> agreementCommitted: A new agreement has been created. The source of
the notification is the URI of the agreement.

> agreementDecommitted: An agreement has been decommitted. The
source of the notification is the URI of the agreement.

In addition, interface IAgreementsResource requires the AgreementState
enumeration, which defines the states in which an agreement in the repository
can be, namely:

> committed: The agreement was successful, and it is valid currently.

> decommitted: The agreement was successful, but it was decommitted
and, hence, it is not valid currently.

PreferencesResource The PreferencesResource (cf. Figure §9.6) allow the
elements in the negotiation system to have access to the user pref-
erences. It provides access to the preferences supplied by the user
(cf. IPreferencesDocument in the previous section) and methods to evalu-
ate and compare several proposals. In addition, it also may provide mech-
anisms to convert the preferences supplied by the user to a different prefer-
ences model. Its interface is IPreferencesResource, and it is composed of the
following methods:

> URI getUser(): Obtains the URI that identifies the user who sets the
preferences.

> IPreferencesDocument getPreferences(): Returns the preferences as
they were supplied by the user.

> IPreferencesDocument getPreferences(model): Returns the prefer-
ences converted to the preferences model specified by model if possible.
Note that not all conversions between preferences models are possible.

> double evaluate(proposal): Applies an assessment mechanism to
evaluate the given proposal and returns a normalised value.

> boolean satisfies(proposal): Applies an assessment mechanism to
analyse whether the proposal satisfies the minimum requirements es-

140

Chapter 9. The NegoFAST-Core framework

<<Interface>>
IPreferencesResource

+getPreferences() : IPreferencesDocument
+getPreferences(prefsModel : URI) : IPreferencesDocument
+getUser() : URI

+evaluate(proposal : IProposal) : double
+satisfies(proposal : IProposal) : boolean
+compare(pl : IProposal, p2 : IProposal) : int

F——————

IFR : IStatement
!G : IStatement

<<Interface>>
IPreferencesDocument

2

|
|
J

preferencesDocument

: Pref : IPreferencesDocument | N

P : IProposal

<<Interface>>
IAssessmentMechanism

SN <<use>>
N

| N

T
I
1
1
I
I
<<use>> |
1
1
]
1
1
1

-2

+evaluate(proposal : P) : double
+compare(pl: P, p2:P):int
+satisfies(proposal : P) : boolean

<<use>>

+getFormat() : URI
+getFeatures() : FR[*]
+getRequirements() : FR [*]
+getNegotiationGuidelines() : G [*]
+getUser() : URI

| .
Term: ITerm

<<Interface>> |~
> IProposal

-

Figure 9.6: Interface of PreferencesResource.

tablished by the user preferences. Note that this minimum is necessary
but not sufficient for a proposal to be accepted.

> int compare(pl, p2): Applies an assessment mechanism to compare
two proposals. If p1 is more appealing than p2, it returns a value greater
than 0; if p2 is more appealing than p1, it returns a value lower than 0,

and if they are equally appealing, it returns 0.

To evaluate proposals, the PreferencesResource uses an assessment mech-
anism. An assessment mechanism provides a way to evaluate a proposal or an
agreement and, hence, to compare several proposals to find the most appeal-
ing. Assessment mechanisms are parameterised by the model used to express
the preferences (i.e.IPreferencesDocument) and the model used to express the
terms of a proposal (IProposal). The interface (IAssessmentMechanism<Pref:
IPreferencesDocument, P: IProposal>)is as follows:

> double evaluate(proposal): Evaluates the given proposal.

> int compare(pl, p2): Compares both proposals.

> boolean satisfies(proposal): Analyses whether the proposal satisfies
the minimum established by the user preferences.

9.3. Environment interfaces 141

isual Pav@gm[@ﬁmdard Editip!
ISystemContextData
+getURI() : URI
+getUser() : URI
+getCreationDate() : Date

Figure 9.7: Interface of SystemContextData.

SystemContextData It provides access to the information stored related to
the system context. Its interface, ISystemContextData, as depicted in Fig-
ure §9.7, includes the following methods:

> URI getURI(): Returns the URI that identifies the current system con-
text.

> URI getUser(): Obtains the URI that identifies the user who set the pref-
erences.

> Date getCreationDate(): Returns the moment when the system context
was created.

PartyContextData Environmental resource PartyContextData stores infor-
mation related to the party contexts. This includes the current state and the
information generated while processing party references. As depicted in Fig-
ure §9.8, a party context, modelled by means of interface IPartyContext has
one associated party and one PartyState and may have information about the
party (IPartyInformation), the negotiation protocol selected for the negotia-
tion (INegotiationProtocolInstance) and one negotiation context in which
the negotiation takes place:

> URI getURI(): Returns an identifier for the party context.
> PartyState getState(): Returns the current state of the party context.
> void setState(state): Sets the current state of the party context.

> URI getParty(): Returns the identifier of the party reference that is be-
ing processed by this party context.

> IPartyInformation getInformation(): Returns the information gath-
ered about the given party for this party context. This information has
been gathered in the getting information state.

142 Chapter 9. The NegoFAST-Core framework

<<Interface>>
IPartyContextData P EnIT
+addPartyContext(party : URI) : URI PartyEventType
+getPar.tyContextsURI() TURI[] L ___ —?-paﬁyContextCreated
+getActivePartyContextsURI() : URI [*] <<use> partyContextFinished
+getPartyContextsURIByState(state : PartyState) : URI [*] stateChanged
+getPartyContext(context : URI) : IPartyContext
+subscribeEvent(events : PartyEventType [1..*], listener : IEventListener) : void
+subscribePartyContextEvent(context : URI, events : PartyEventType [1..*], listener : IEventListener) : void
+getPartyReference(context : URI) : URI
+setPartyState(context : URI, state : PartyState) : void
+getPartyState(context : URI) : PartyState
+addInformation(context : URI, info : IPartylnformation) : void
+getinformation(context : URI) : IPartyInformation
+setNegotiationProtocol(context : URI, p : INegotiationProtocollnstance) : void
+getNegotiationProtocol(context : URI) : INegotiationProtocollnstance <<Enum>>
+setNegotiationContext(context : URI, negotiation : URI) : void PartyState
+getNegotiationContext(context : URI) : URI pending
-gettingInformation
-prenegotiating
contexts -negotiating
. -finishedSuccessfully
-finishedUnsuccessfully
<<Interface>> -decommitted
IPartyContext State 1
+getURI() : URI
+getState() : PartyState 1~~~ -7
+setState(state : PartyState) : void —|St: IStatement |
<<Interface>>
+getParty() : URI i
+getinformation() : IPartylnformation information 1 (e e

+setlnformation(info : IPartylnformation) : void
+getNegotiationProtocol() : INegotiationProtocollnstance
+setNegotiationProtocol(protocol : INegotiationProtocollnstance) : void
+getNegotiationContext() : URI <<Interface>>
+setNegotiationContext(context : URI) : void protocal 1 INegotiationProtocollnstance

Figure 9.8: Interface of PartyContextData.

> void setInformation(info): Sets the information about the party that
has been gathered via role Inquirer.

> INegotiationProtocolInstance getNegotiationProtocol(): Returns
the negotiation protocol instance that has been selected for this party.

> void setNegotiationProtocol(protocol): Sets the negotiation proto-
col instance.

> URI getNegotiationContext(): Gets the negotiation context that nego-
tiates with the party

> void setNegotiationContext(URI context): Sets the negotiation con-
text that negotiates with the party.

9.3. Environment interfaces 143

The states of a party context are those depicted in Figure §7.4/and are mod-
elled through enumeration PartyState (cf. Figure §9.8):

v

>

pending: Waiting to be processed.

gettingInformation: Gathering information from the other party.
prenegotiating: Selecting a negotiation protocol.

negotiating: Performing the negotiation.

finishedSuccessfully: Negotiation with the party finishes with a new
agreement.

finishedUnsuccessfully: Negotiation with the party finishes without
reaching an agreement.

decommitted: Decommitted from a previously created agreement.

Building on those interfaces, environmental resource PartyContextData
must implement interface IPartyContextData, which provides access to all
party contexts of the automated negotiation system and provides a facade to
query and modify the party contexts (cf. Figure §9.8). The methods of inter-
face IPartyContextData, excluding those of the facade, which are the same as
the described by interface IPartyContext, are:

>

URI addPartyContext(party): Adds a new party context with a given
party and returns the URI that identifies it.

URI[*] getPartyContextsURIs(): Obtains the URIs of all party con-
texts.

URI[*] getActivePartyContextsURIs(): Obtains the URIs of all ac-
tive party contexts (ie. those party contexts whose state is not
finishedSuccessfully, finishedUnsuccessfully or decommitted).

URI[*] getPartyContextsURIsByState(state): Obtains the URIs of all
party contexts in a given state.

IPartyContext getPartyContext(context): Returns a reference to a
party context given its URIL

void subscribeEvent(event, listener): Subscribes to one or several
events. If the event is specific to a party context, it subscribes to that
event in all party contexts.

144

>

Chapter 9. The NegoFAST-Core framework

void subscribePartyContextEvent(context, event, listener): Sub-
scribes to one or several events of the given party context. Events that
are not specific to a party context must be subscribed to using method
subscribeEvent.

Interface IPartyContextData offers a subscription mechanism for events
of type PartyEventType, which are as follows:

>

>

>

partyContextCreated: A new party context is created. This is a not an
event specific to a party context. The source of the notification for this
event is environmental resource PartyContextData.

partyContextFinished: A party context finishes either successfully or
unsuccessfully. Like partyContextCreated, it is not specific to a party
context and the source of the notification is PartyContextData.

stateChanged: The state of the party context changes. This event is spe-
cific to a party context and the source of the notification is the party con-
text that generates it.

NegotiationContextData Environmental resource NegotiationContextData
stores information related to the negotiation contexts. A negotiation context
implements a negotiation protocol instance with one or more parties. These
parties are referenced by the party contexts that process each of them. There-

fore,

a negotiation context (interface INegotiationContext depicted in Fig-

ure §9.9) has one negotiation protocol, one state and several party contexts. In
addition, it stores all negotiation messages that have been exchanged as part
of the negotiation context:

v

URI getURI(): Returns an identifier for the negotiation context.

INegotiationProtocol getProtocol(): Gets the negotiation protocol
that has been selected for the negotiation context.

Date getStartDate(): Returns the date when the negotiation context
was started.

URI[1..*] getPartyContexts(): Returns the URIs of the the party con-
texts associated with the parties that are negotiating in this negotiation
context.

void addPartyContext(partyContext): Adds the party context associ-
ated with a party that is going to participate in the negotiation of this
negotiation context.

9.3. Environment interfaces 145

> NegotiationState getState(): Gets the current state of a negotiation
context.

> void setState(state): Changes the state of a negotiation context.

> void addNegotiationMessage (msg): Adds the negotiation message that
has been received or sent.

> INegotiationMessage getLastReceivedNegotiationMessage(): Gets
the last negotiation message that has been received.

> INegotiationMessage getNegotiationMessage(i): Gets the i-th zero-
based negotiation message that has been sent or received.

> long getNumberNegotiationMessages(): Gets the number of negotia-
tion messages that have been sent or received.

> INegotiationMessage[*]{ordered} getNegotiationMessages(): Gets
all negotiation messages that have been sent or received since the ne-
gotiation started.

The states of a negotiation context are those depicted in Figure §7.5 and are
modelled through enumeration NegotiationState (cf. Figure §9.9):

> negotiating: Exchanging non-binding negotiation messages amongst
the parties.

> askedApproval: Requested approval to send a binding negotiation mes-
sage to the CommitHandler.

> approved: Waiting the response of the other party after sending a bind-
ing negotiation message approved by the CommitHandler.

> finishedSuccessfully: Negotiation finished with an agreement.

> finishedUnsuccessfully: Negotiation finished without reaching an
agreement.

Building on those interfaces, environmental resource NegotiationContext-
Data implements interface INegotiationContextData, which provides access
to all negotiation contexts and provides a facade to query and modify them
(cf. Figure §9.9). The methods of interface INegotiationContextData, ex-
cluding those of the fagade, which are the same as the described by interface
INegotiationContext, are:

> URI addNegotiationContext(partyContext, protocol): Adds a new
negotiation context to negotiate with the party of the given party con-
text following the given protocol and returns the URI that identifies it.

146 Chapter 9. The NegoFAST-Core framework

<<Interface>>
INegotiationContextData
+addNegotiationContext(partyContext : URI, protocol : INegotiationProtocolinstance) : URI
+getNegotiationsURI() : URI [¥]
+getActiveNegotiationsURI() : URI [*]
L - <<Enum>>
+getNegotiationsURIByState(state : NegotiationState) : URI [¥] "
. - . NegotiationEventType
+countActiveNegotiations() : int
+getNegotiationContext(negotiation : URI) : INegotiationContext k<usess -stateChanged-
+subscribeEvent(events : NegotiationEventType [1..¥], listener : [EventListener) : void -messageReceived
+subscribeNegotiationEvent(negotiation : URI, events : NegotiationEventType [1..*], listener : |EventListener) -messageSent
+getNegotiationProtocol(negotiation : URI) : INegotiationProtocolinstance
+getStartDate(negotiation : URI) : Date
+getPartyContexts(negotiation : URI) : URI [1..¥]
+addPartyContext(negotiation : URI, partyContext : URI) : void
+getState(negotiation : URI) : NegotiationState
+setState(negotiation : URI, state : NegotiationState) : void
+addNegotiationMessage(negotiation : URI, msg : INegotiationMessage) : void
+getLastReceivedNegotiationMessage(negotiation : URI) : INegotiationMessage
+getNegotiationMessage(negotiation : URI, i : long) : INegotiationMessage
+getNumberNegotiationMessages(negotiation : URI) : long
+getNegotiationMessages(negotiation : URI) : INegotiationMessage [*]{ordered} ppr-E—
NegotiationState
negotiations negotiating
" -askedForApproval
<<Interface>> -gpp roved
L -finishedSuccessfully
INegotiationContext state 1~ |-inishedUnsuccessfully
+getURI() : URI
+getProtocol() : INegotiationProtocollnstance
+getStartDate() : Date
+getPartyContexts() : URI [1..]
+addPartyContext(partyContext : URI) : void <<Interface>>
+getState() : NegotiationState protocal 1 INegotiationProtocollnstance

+setState(state : NegotiationState) : void
+addNegotiationMessage(msg : INegotiationMessage) : void
+getLastReceivedNegotiationMessage() : INegotiationMessage

| . |
—{Content: MessageConten]

+getNegotiationMessage(i : long) : INegotiationMessage <<Interface>>
+getNumbngegot|at|onMes§ages() : Igng ‘m INegotiationMessage [
+getNegotiationMessages() : INegotiationMessage [*|{ordered}

Figure 9.9: Interface of NegotiationContextData.

> URI[*] getNegotiationURIs(): Obtains the URIs of all negotiation con-
texts.

> URI[x] getActiveNegotiationsURIs(): Gets the URIs of the ne-
gotiation contexts that are not in state finishedSuccessfully or
finishedUnsuccessfully.

> URI[*] getNegotiationsURIsByState(state): Obtains the URIs of all
negotiation contexts in a given state.

9.3. Environment interfaces 147

> int countActiveNegotiations(): Returns the number of active negoti-
ations.

> INegotiationContext getNegotiationContext(negotiation): Returns
a reference to the negotiation context given its URI.

> void subscribeEvent(events, listener): Subscribes to one or more
events in every negotiation context or to events that are not specific to a
concrete negotiation context, see below.

> void subscribeNegotiationEvent(context, events, listener): Sub-
scribes to one or several events of the given negotiation context.

These events are defined by enumeration NegotiationEventType:
> negotiationCreated: A new negotiation context is created.

> negotiationFinished: A negotiation context finishes either successfully
or unsuccessfully.

> stateChanged: The state of the negotiation context changes.
> messageReceived: A negotiation message is received.
> messageSent: A negotiation message is sent.

Events negotiationCreated and negotiationFinished are not specific to
a negotiation context and, hence, the source of the notification is environ-
mental resource NegotiationContextData and must be subscribed by means of
method subscribeEvent. Conversely, events stateChanged, messageReceived
and messageSent are specific to a negotiation context and the source of the no-
tification is the negotiation context that generates it.

WorldModel The WorldModel is implemented by means of two interfaces:
interface IEstimatorsLibrary and interface IEstimator (cf. Figure §9.10). An
estimator handles information about the parties, the market or a concrete do-
main, whereas the estimators library is a repository of all estimators that are
available to the automated negotiation system. Each estimator covers one as-
pect of the WorldModel, e.g., market reservation price, reputation, opponent
behaviour or proposals similarity.

Note that this allows to have complex estimators that build on several sim-
pler estimators and, hence, it enhances their reusability. For instance, an esti-
mator may aggregate the information provided by other estimators and, thus,
provides a more convenient way of accessing the information. In addition,

148 Chapter 9. The NegoFAST-Core framework

<<Interface>>
IConfigureEstimator
+configure(system : ISystemContextData, party : IPartyContextData, negotiation : INegotiationContextData, preferences :
IPreferencesResource, agreements : IAgreementsResource) : IEstimator
T
/:\ <<use>> :
! Y
<<Interface>> .7
|IEstimatorLibrary P
+registerEstimator(category : URI, estimator : IConfigureEstimator) : void e ’
+unregisterEstimator(estimator : |Estimator) : void L7
+getEstimator(category : URI) : IEstimator <<use>y”
+getEstimators(category : URI) : IEstimator [*] L7 ’
e ’ ‘
estimators e ’
1. 7 ’
<<Interface>> <<Interface>>
|Estimator |IEstimation
+estimate(context : URI, domainSpecificInfo : Object) : Object <<use>> +getEstimate() : Object
+estimateWithError(context : URI, domainSpecificinfo : Object) : IEstimation +getError() : double

Figure 9.10: Interface of WorldModel.

estimators can act as proxies for external information providers. For instance,
a reputation estimator may act as proxy for an external reputation server.

We distinguish between estimator categories, which are the different types
of estimator (e.g. a reputation estimator), and concrete estimators, which are
the actual software artifacts that provide algorithms to implement the estima-
tor categories. The estimators library decouples the elements of the automated
negotiation system from concrete estimators. For instance, an element of the
automated negotiation system may ask the estimators library for a reputation
estimator and the estimators library shall provide it. Estimator categories are
identified using URISs.

The estimators library interface includes the following methods:

> void registerEstimator(category, estimator): Registers a new con-
crete estimator that implements an estimator category and configures it
with the current environmental resources.

> void unregisterEstimator(estimator): Unregisters a estimator.

> IEstimator getEstimator(category): Returns the default concrete es-
timator that implements an estimator category.

> IEstimator [*] getEstimators(category): Obtains all concrete estima-
tors that implement an estimator category.

9.3. Environment interfaces 149

Unlike the previous environmental resources which run within a system
context, the WorldModel is outside it. The reason is that the model of the
elements involved in a negotiation is valid across several system contexts.
However, the system context does have an influence on those models, so
the estimators may use the system context to adapt the information it pro-
vides. To this end, when an estimator is registered in the estimators library, it
is configured with the current environmental resources (SystemContextData,
PartyContextData, NegotiationContextData, PreferencesResource and Agree-
mentsResource). Thus, the estimators library always returns estimators that
have been configured with the current environmental resources.

The configuration interface of an estimator is IConfigureEstimator, which
includes the following methods:

> IEstimator configure(system, party, neg, prefs, agreem): Con-
figures an estimator with the current environmental resources and re-
turns it.

Interface IEstimator includes methods to obtain the estimation for a given
context. The type of context (system, party or negotiation) depends on the
concrete estimator. Furthermore, estimators may require additional domain-
specific information that must be sent together with the context. For instance,
two proposals must be sent to an estimator that measures their similarity (cf.
Section §4.3.2 for more information about this estimator). Building on these
issues, the interface IEstimator includes, at least, the following methods:

> Object estimate(context, domainSpecificInfo): Obtains an estima-
tion for a particular context. The estimation may require domain-specific
information (see above). The returned value is a domain-specific struc-
ture as well.

> IEstimation estimateWithError (context, domainSpecificInfo): Re-
turns an estimation for a particular context with the associated error.

When the error associated with the estimation is required, an element that
implements interface IEstimation is returned. The interface just provides two
methods to access to both the estimation and the associated error:

> Object getEstimate(): Returns the estimation as a domain-specific
structure.

> double getError(): Returns the error associated with the estimation.

Regarding the update of the models provided by the estimators, there are
two ways of doing it, namely: online and offline estimation (cf. Section §4.3).

150 Chapter 9. The NegoFAST-Core framework

<<Interface>>
INegotiationHistory

+archive() : URI

+getArchiveURIs() : URI [*]

+getArchiveDate(ref : URI) : Date

+getAgreementsResource(ref : URI) : IAgreementsResource
+getPreferencesResource(ref : URI) : IPreferencesResource
+getSystemContextData(ref : URI) : ISystemContextData
+getPartyContextData(ref : URI) : IPartyContextData
+getNegotiationContextData(ref : URI) : INegotiationContextData

-ref: URI <<Interface>>
ISystemContextData

<<Interface>>
IPreferencesResource

<<Interface>>
INegotiationContextData

<<Interface>> <<Interface>>
IPartyContextData |IAgreementsResource

Figure 9.11: Interface of NegotiationHistory.

Offline estimation can be done by analysing previous interactions using the
NegotiationHistory. To perform online estimations, estimators may subscribe
to the notifications provided by the SystemContextData, PartyContextData
and NegotiationContextData. In this case, the estimator has to implement
interface IEventListener.

NegotiationHistory The NegotiationHistory (cf. Figure §9.11) is mainly in-
tended for the estimators to develop offline estimations. However, it can be
used by decision-making elements of the automated negotiation system, such
as the ResponseGenerator or the CommitHandler, to support their decisions.

The NegotiationHistory can be seen as a list of the environmental resources
of all system contexts that have been processed by the automated negotiation
system. Its interface (INegotiationHistory) contains the following methods:

> URI archive(): Archives environmental resources AgreementsRe-
source, PreferencesResource, SystemContextData, PartyContextData
and NegotiationContextData and returns a reference to the system con-
text in order access them later.

> Date getArchiveDate(ref): Returns the date when the environmental
resources were archived.

> IAgreementsResource getAgreementsResource(ref): Gets a reference

9.4. Interactions 151

to an implementation of interface IAgreementsResource that provides
access to all data stored in that environmental resource in the given sys-
tem context.

> IPreferencesResource getPreferencesResource(ref): Same as be-
fore, but for interface IPreferencesResource.

> ISystemContextData getSystemContextData(ref): Same as before, but
for interface ISystemContextData.

> IPartyContextData getPartyContextData(ref): Same as before, but
for interface IPartyContextData.

> INegotiationContextData getNegotiationContextData(ref): Same as
before, but for interface INegotiationContextData.

> URI[*] getArchiveURIs(): Queries the URIs of all past resources that
are stored in the negotiation history.

9.4 Interactions

We define the NegoFAST-Core framework in terms of the interactions be-
tween the roles described in the NegoFAST-Core reference architecture. There-
fore, for each interaction, we describe the protocol and the interfaces that must
provide the roles it involves.

UserInteraction This interaction is used by the user of the automated nego-
tiation system to provide the preferences and the references to parties with
whom to negotiate. Figure §9.12 depicts the interaction in which the User par-
ticipates, which must implement interface IUser, and the SystemCoordinator,
which implements interface ICoordinator.

Interface ICoordinator is as follows:

> void init(user, preferences): Starts a new negotiation context with
the given preferences.

> void startNegotiation(party): Requests the automated negotiation
system to initiate a negotiation with the given party.

> void terminate(): Finishes the negotiation context and, hence, all ac-
tive negotiation threads.

152 Chapter 9. The NegoFAST-Core framework

Userlnteraction states J

<<Interface>> .
ICoordinator
+init(user : 1User, preferences : IPreferencesDocument) : void
+terminate() : void
+startNegotiation(party : URI) : void

init()

ICoordinator startNegotiation()

Processing
IUser.agreementCreated()

ICoordinator.terminate()

User.end()

Ending
<<Interface>>
IUser

+agreementCreated(a : IAgreement) : void
+end() : void IUser.end()

Figure 9.12: Interaction UserInteraction.

Interface IUser is composed of the following methods:

> void agreementCreated(agreement): Notifies that the specified agree-
ment has been reached.

> void end(): Notifies that the automated negotiation system finished
working.

The interaction protocol is as follows: first, the User invokes method init
in interface ICoordinator to start the system context. After that, the User
may invoke method startNegotiation to initiate a negotiation with the given
party. At the same time, the SystemCoordinator notifies the User when a new
agreement has been created by invoking method agreementCreated.

The interaction protocol remains in that state until either the User finishes
the system context by invoking method terminate or one of the termination
conditions hold (cf. Section §7.2.1). In both cases, the SystemCoordinator fin-
ishes all active thread contexts and invokes method end to indicate the User
that the automated negotiation system has finished working.

IncomingProtocolNegotiation By means of this interaction, the Protocol-
Negotiator notifies the automated negotiation system that another party has
sent a request to start a protocol negotiation and asks for permission to pro-
ceed with it. In this interaction, the SystemCoordinator implements inter-
face IIncomingProtocolNegotiationReceiver, whereas the ProtocolNegotia-

9.4. Interactions 153

IncomingProtocolNegotiation states)

<<Interface>>
llncomingProtocolNegotiator
+acceptProtocolNegotiation(context : URI, party : URI, requester : IProtocolNegotiationRequester) : void
+rejectProtocolNegotiation(party : URI) : void

protocolNegotiationReceived()

fejectProtocolNegotiation()

<<Interface>>
lincomingProtocolNegotiationReceiver
+protocolNegotiationReceived(party : URI, incoming : lIncomingProtocolNegotiator) : void

‘acceptProtocolNegotiation()

Figure 9.13: Interaction IncomingProtocolNegotiation.

tor implements interface IIncomingProtocolNegotiator (cf. Figure §9.13).
The former interface is composed of one method:

> void protocolNegotiationReceived(party, incoming): Notifies that
a protocol negotiation request from the given party has been received
and asks for permission to proceed with it. It also includes a reference to
the ProtocolNegotiator (incoming) that shall process the request.

The latter interface has the following methods:

> void acceptProtocolNegotiation(ctx, party, requester): Grants
permission to start a protocol negotiation with the given party. In ad-
dition it assigns it to a new party context and gives a reference to the
element that must receive the result of the protocol negotiation.

> void rejectProtocolNegotiation(party): Rejects starting a protocol
negotiation with the given party.

The interaction protocol is simple. When the ProtocolNegotiator receives
a request to start a protocol negotiation from another party, it invokes
method protocolNegotiationReceived. Then, the SystemCoordinator de-
cides whether to start the protocol negotiation or not and responds to the Pro-
tocolNegotiator by invoking method acceptProtocolNegotiation or method
rejectProtocolNegotiation, respectively.

154 Chapter 9. The NegoFAST-Core framework

IncomingNegotiation states)

<<Interface>>
lincomingNegotiationReceiver
+negotiationReceived(party : URI, incoming : llncomingProtocolHandler) : void

negotiationReceived()

rejectNegotiation()

<<Interface>>
lincomingProtocolHandler
+acceptNegotiation(context : URI, party : URI) : IProtocolHandler
+rejectNegotiation(party : URI) : void

acceptNegotiation()

Figure 9.14: Interaction IncomingNegotiation.

IncomingNegotiation This interaction is much the same as the previ-
ous one, the difference being that, in this case, a negotiation request is
processed instead of a protocol negotiation request. As a consequence,
the participants are the SystemCoordinator, which implements interface
IIncomingNegotiationReceiver and the ProtocolHandler, which implements
interface IIncomingNegotiator (cf. Figure §9.14).

Interface ITncomingNegotiationReceiver is composed of one method:

> void negotiationReceived(party, incoming): Notifies that a negotia-
tion request from the given party has been received and asks for permis-
sion to proceed with it. It also includes a reference to the element that
shall process the request.

Interface ITncomingNegotiator has the following methods:

> IProtocolHandler acceptNegotiation(context, party): Grants per-
mission to start a negotiation with the given party. In addition it assigns
it to a new party context. This method returns a reference to the element
that shall handle the protocol.

> void rejectNegotiation(party): Rejects starting a negotiation with
the given party.

The interaction protocol is the same as the protocol of interaction Incom-
ingProtocolNegotiation.

9.4. Interactions 155

RequestPartyProcessing states)

coordinateParty Context()

<<Interface>>
IPartyContextCoordinator
+coordinatePartyContext(party : URI) : URI i
+startFromUser(context : URI) : void =l
+startFromProtocolNegotiation(context : URI) : IProtocolNegotiationRequester
+startFromNegotiation(context : URI, handler : IProtocolHandler) : void

+terminate(context : URI) : void
+terminateAll() : void

startFromUser()

startFromProtocolNegotiation()

startFromNegotiation()

<<Interface>>
IPartyProcessingRequester Processing
+agreementCreated(context : URI, agreement : IAgreement) : void

agreementCreated()

State machine for each party
context

Figure 9.15: Interaction RequestPartyProcessing.

RequestPartyProcessing This interaction is a request for the PartyCoordina-
tor to initiate a party context to process a party reference that has been received
by the SystemCoordinator. As depicted in Figure §9.15, there are two partic-
ipants in this interaction: the PartyCoordinator, which implements interface
IPartyContextCoordinator, and the SystemCoordinator, which implements
interface IPartyProcessingRequester.

The PartyCoordinator implements interface IPartyContextCoordinator,
which is composed of the following methods:

> URI coordinatePartyContext(party): Creates a party context to pro-
cess the given party reference and returns its identifier. Note that the

processing does not start until any of the next three start methods is in-
voked.

> void startFromUser (context): Starts the processing of the given party
context and indicates that the party reference came from the User.

> IProtocolNegotiationRequester startFromProtocolNegotiation(context):
Starts the processing of the given party context and indicates that the

156 Chapter 9. The NegoFAST-Core framework

party reference came from an incoming protocol negotiation. It returns
a reference to the element that shall process the result of the protocol
negotiation.

> void startFromNegotiation(context, handler): Starts the processing
of the given party context and indicates that the party reference came
from an incoming negotiation. In addition, it includes the ProtocolHan-
dler that shall manage the negotiation protocol instance.

> void terminate(context): Terminates the given party context.
> void terminateAll(): Terminates all active party contexts.
Interface IPartyProcessingRequester, which has the following methods:

> void agreementCreated(context, agreement): Notifies that an agree-
ment was reached with the given party

The interaction protocol for a given party context is depicted in Fig-
ure §9.15 and is as follows: first, the SystemCoordinator invokes method
coordinatePartyContext in interface IPartyContextCoordinator to start a
new party context for the given party reference. Then, depending on
the source of the party reference, it invokes either method startFromUser,
startFromProtocolNegotiation or startFromNegotiation. After that, ei-
ther the PartyCoordinator invokes method agreementCreated of interface
IPartyProcessingRequester when the agreement has been reached, or the
SystemCoordinator asks for the termination of the processing by invoking
method terminate. In addition, the SystemCoordinator may end all active
party contexts by invoking method terminateAll.

RequestInformation This interaction is a request for the Inquirer to ob-
tain the information from other parties that is necessary to start the negoti-
ation. It is an asynchronous request. As depicted in Figure §9.16, the par-
ticipants of this interaction are the Inquirer, which must implement inter-
face IInquirer, and the PartyCoordinator, which must implement interface
IInformationRequester.

Interface IInquirer has only one method:

> void queryInformation(context, party, requester): Requests the
Inquirer to get information from a party and includes the URI of the party
context and an identifier to the other party, so that the Inquirer can inter-
act with it. In addition, it includes a reference to the requester.

Interface IInformationRequester has one method:

9.4. Interactions 157
<<Interface>> Requestinformation states)
lInquirer
+querylnformation(context : URI, party : URI, requester : linformationRequester) : void
queryinformation()
Getting information
<<Interface>>
linformationRequester ‘ o

+informationNotification(context : URI, info : IPartylnformation) : void informefionNofiication()

Figure 9.16: Interaction RequestInformation.
> void informationNotification(context, partyInformation): It is

invoked when the information has been obtained, and it includes the
URI of the party context and the information gathered.

RequestProtocolNegotiation This interaction is a request for the Protocol-
Negotiator to agree on the negotiation protocol the other party. It is an asyn-
chronous request. It involves the ProtocolNegotiator, which implements in-
terface IProtocolNegotiator, and the PartyCoordinator, which implements
interface IProtocolNegotiationRequester (cf. Figure §9.17).

Interface IProtocolNegotiator is the following:

> void negotiateProtocol(context, party, equester): Initiates a pro-
tocol negotiation and includes the URI of the party context and an iden-
tifier of the other party, so that the ProtocolNegotiator can interact with
it. It also includes the requester that receives the result of the protocol

negotiation

Interface IProtocolNegotiationRequester has two methods:

> void successfulProtocolNegotiation(ctx, protocol, handler): In-
forms that the protocol negotiation finished successfully and includes
the URI of the party context, the selected negotiation protocol instance
and a reference to the ProtocolHandler that is configured to manage the

interactions with the other party.

> void failedProtocolNegotiation(context): Notifies that the protocol

negotiation for the given party context failed.

158 Chapter 9. The NegoFAST-Core framework

<<Interface>>
IProtocolNegotiator

+negotiateProtocol(context : URI, party : URI, requester : IProtocolNegotiationRequester) : void

<<Interface>>
IProtocolNegotiationRequester
+successfulProtocolNegotiation(context : URI, protocol : INegotiationProtocolinstance, handler : IBargainingProtocolHandler)
+failedProtocolNegotiation(context : URI) : void

RequestProtocolNegotiation states)

negotiateProtocol()

Negotiating protocol

ailedProtocolNegotiation()

successfulProtocolNegotiation(

Figure 9.17: Interaction RequestProtocolNegotiation.

<<Interface>>
IConfigurableProtocolHandler
+configure(context : URI, protocol : INegotiationProtocolinstance, party : URI) : IProtocolHandler

Figure 9.18: Interaction ConfigureHandler.

ConfigureHandler This interaction configures a ProtocolHandler, which is
protocol-specific, with the negotiation protocol instance and the reference to
the other party that were obtained in interaction RequestProtocolNegotiation.
It is a synchronous request. The ProtocolHandler must implement interface
IConfigurableProtocolHandler, which has one method:

> IProtocolHandler configure(context, protocol, party): Initialises
the ProtocolHandler with the party context, the negotiation protocol in-
stance and a URI that identifies the other party and returns a reference
to the ProtocolHandler that shall manage the interaction with the other

party.

9.4. Interactions 159

<<Interface>> RequestNegotiation states)

INegotiator
+negotiate(partyContext : URI, protocolHandler : IProtocolHandler, requester : INegotiationRequester) : void
negotiate()

+cancel(negotiationContext : URI) : void
Negotiating

<<Interface>>

INegotiationRequester States valid for each party
+success(partyContext : URI, a : IAgreement) : void context

+ail(partyContext : URI) : void

Figure 9.19: Interaction RequestNegotiation.

RequestNegotiation This interaction is the request for starting a negotia-
tion context that implements the execution of a negotiation protocol instance
with one or several parties. It also includes the notification of the results
of this negotiation and the request for cancellation of the negotiation if nec-
essary. As depicted in Figure §9.19, the PartyCoordinator must implement
INegotiationRequester interface, whereas the NegotiationCoordinator must
implement interface INegotiator, which has two methods:

> URI negotiate(partyCtx, handler, requester): Requests the Negoti-
ationCoordinator to start a negotiation. It includes the URI of the party
context, the reference to the ProtocolHandler that shall manage the inter-
action with the other party and the reference to the requester to notify
it about the results of the negotiation. It returns an URI to identify the
negotiation context that has been created.

> void cancel(negotiationContext): Requests the cancellation of the ne-
gotiation in the given negotiation context.

Interface INegotiationRequester is also composed of two methods:

> void success(partyContext, agreement): Informs that the given
agreement has been reached with the party processed by the specified
party context.

> void fail(partyContext): Indicates that the negotiation has failed for
the party processed by the given party context.

The interaction protocol for one party context is as follows (cf. Fig-
ure §9.19): first, the negotiation requester starts a negotiation by invoking

160 Chapter 9. The NegoFAST-Core framework

<<Interface>> RequestCommitApproval states)
ICommitHandler

+approvalRequest(context : URI, p : IProposal, t : ApprovalType, requester : ICommitRequester) : void
+ail(context : URI) : void
+success(context : URI) : void

approvalRequest()

Waiting approval

1
<<use>>

V
<<Interface>> <<Enum>> approved() rejected()
ICommitRequester ApprovalType

D S - Approved
+approved(context : URI) : void -commit
<<use>>

+rejected(context : URI) : void -accept

States valid for each approval request B‘

Figure 9.20: Interaction RequestCommitApproval.

method negotiate on the negotiator. Then, the negotiation can either suc-
ceed, in which case method success of interface INegotiationRequester is
invoked, or fail, in which case method fail is invoked. In addition, while
negotiating, the PartyCoordinator may cancel the negotiation at any time by
invoking method cancel.

RequestCommitApproval This interaction is to request approval for send-
ing a binding negotiation message (i.e. sending a commit or an accept). The
interaction is asynchronous. There are two participants (cf. Figure §9.20): the
CommitHandler, which implements interface ICommitHandler, and the Nego-
tiationCoordinator, which implements interface ICommitRequester.

Interface ICommitHandler has the following methods:

> void approvalRequest(context, proposal, type, requester): Re-
quests the CommitHandler to approve the sending of a binding nego-
tiation message and includes the negotiation context URI, the proposal,
the type of approval represented by enumeration ApprovalType, and a
reference to the requester.

> void fail(context): Notifies that an approval previously requested
has failed.

> void success(context): Notifies that the given negotiation context,
which received a previous approval, has successfully reached an agree-

9.4. Interactions 161

ment.

The type of approval is represented by enumeration ApprovalType, which
is composed of:

> commit: The approval is asked for sending a commit. This means that
the other party may or may not accept the proposal.

> accept: The approval is asked for sending an accept. This means that
the other party has already committed to the proposal and, hence, if ap-
proved, an agreement shall be reached.

Interface ICommitRequester includes the following methods:

> void approved(context): Notifies that the approval request has been
accepted for the given negotiation context.

> void rejected(context): Notifies that the approval request has been
rejected for the given negotiation context.

The protocol works as follows (cf. Figure §9.20): the NegotiationCoordi-
nator sends approval requests (approvalRequest) to the CommitHandler. If
one of those fails while waiting for the response (e.g. the other party sends a
reject negotiation message), the NegotiationCoordinator invokes method fail
together with the negotiation context in which the fail took place.

When the CommitHandler makes a decision, it invokes method approved
zero or more times with the negotiation context of the approved proposals. It
also invokes method rejected zero or more times with the negotiation context
of the rejected proposals. Note that not all proposals must be either accepted
or rejected at a time. Some may be postponed for a later decision.

For each approved binding negotiation message, the NegotiationCoordina-
tor responds by invoking method success, if the agreement was created, or
invoking method fail if it was not.

RequestAdvise This interaction is used to obtain a recommendation about
whether it is convenient to commit to an agreement or not. The interac-
tion is synchronous and involves the invocation of one method of interface
ICommitAdvisor, which is implemented by the CommitAdvisors:

> double getAdvise(context, proposal): Returns a normalised value
(between 0 and 1) that is a measure of how convenient committing to
that proposal is.

162 Chapter 9. The NegoFAST-Core framework

<<Interface>>
ICommitAdvisor

+getAdvise(context : URI, proposal : IProposal) : double

Figure 9.21: Interaction RequestAdvise.

9.5 State machines

There are two roles that coordinate the others in the NegoFAST-Core
framework. These roles are the SystemCoordinator and the PartyCoordinator.
In this section, we detail their behaviour in terms of a state-machine.

SystemCoordinator The SystemCoordinator coordinates the system con-
text and, hence, it manages the interaction with the User and receives the party
references from different sources. Its state machine is depicted in Figure §9.22
and it follows the states defined for the system context (cf. Section §7.2.1). The
state machine of the SystemCoordinator starts when the User invokes method
init of the SystemCoordinator. At that moment, the SystemCoordinator en-
ters state processing and stays there until the user sends message terminate
message or any other condition to terminate the system context holds (cf. Sec-
tion §7.2.1). In that case, all current party contexts are cancelled by invoking
method terminateAll in the PartyCoordinator.

During the processing state, the SystemCoordinator may receive party ref-
erences from the User by means of method startNegotiation; from the Proto-
colNegotiator by means of method protocolNegotiationReceived, and from
the ProtocolHandler by means of method negotiationReceived.

If the automated negotiation system is not interested in starting new ne-
gotiations, the SystemCoordinator may reject party references by invoking
method rejectProtocolNegotiation or method rejectNegotiation on the
ProtocolNegotiator and the ProtocolHandler, respectively. Party references
coming from the User cannot be rejected.

Alternatively, if the party reference is accepted, the SystemCoordina-
tor first invokes method coordinatePartyContext on the PartyCoordina-
tor to create a new party context; then, it invokes method startFromUser,
startFromProtocolNegotiator or startFromProtocolHandler, depending on
which was the source of the party reference; finally, if the source of the party
reference was the ProtocolNegotiator or the ProtocolHandler, the SystemCo-

9.5. State machines 163

protocolNegotiationReceived() [accepted] /
IPartyCoordinator.coordinatePartyContext()

IPartyCoordinator.startFromProtocolNegotiator() protocolNegotiationReceived() [! accepted] /
lincomingProtocolNegotiator.acceptProtocolNegotiation() IIncominiProtocolNegotiator.rejectProtocoINegotiation()
[terminate condition] /

IUser.end

l init() (Processing

startNegotiation() /)
IPartyCoordinator.coordinatePartyContext() terminate() /

IPartyCoordinator.startFromUser() IUser.end
\ _T

negotiationReceived() [accepted] / negotiationReceived() [! accepted] /
IPartyCoordinator.coordinatePartyContext() lincomingNegotiator.rejectNegotiation()
IPartyCoordinator.startFromNegotiator()

lincomingNegotiator.acceptNegotiation()

Figure 9.22: State machine of the SystemCoordinator.

ordinator notifies them that the party reference was accepted by invoking
method acceptProtocolNegotiation or method acceptNegotiation, respec-
tively.

PartyCoordinator The PartyCoordinator coordinates all party contexts and,
hence, it manages the interaction with the Inquirer, the ProtocolNegotiator
and the NegotiationCoordinator. Figure §9.23| depicts the state machine im-
plemented by the PartyCoordinator for each party context. Therefore, at run
time, the PartyCoordinator contains the parallel execution of many instances
of the state machines in Figure §9.23.

The state machine starts when the SystemCoordinator invokes method
coordinatePartyContext. Then, the state machine enters state pending. From
that state, the SystemCoordinator may receive message startFromUser, in
which case it sends message queryInformation to the Inquirer and enters
state getting information; it may receive a startFromProtocolNegotiator
message, in which case it enters state negotiating protocol; or it may re-
ceive a startFromProtocolHandler message, in which case it invokes method
negotiate on the NegotiationCoordinator and enters state negotiating.

In state getting information, the PartyCoordinator is waiting for the Inquirer
to get the information that is necessary to start the negotiation. Therefore,

164 Chapter 9. The NegoFAST-Core framework

coordinatePartyContext() .
terminate()

Getting information terminate()
startFromUser() /
linquirer.querylnformation(J
informationNotification() /
IProtocolNegotiator.negotiateProtocol()

Pending
o ra— terminate() ("Finished unsucessfully
startFromProtocolNegotiation() (_ Prenegotiating
failedProtocoINegotiation(L)
- -
startFromNegotiation()

successfulProtocolNegotiation() /
INegotiator.negotiate()
fail()

Negotiation terminate() /
INegotiator.cancel()
! Finished successfully l
success() /

IPartyProcessingRequester.agreementCreated()

Figure 9.23: State machine of the PartyCoordinator.

when the Inquirer invokes method informationNotification, the PartyCoor-
dinator invokes method negotiateProtocol of the ProtocolNegotiator and en-
ters state negotiating protocol. Alternatively, the PartyCoordinator may decide
to skip the protocol negotiation step. In that case, when it receives message
informationNotification, it sends message negotiate to the NegotiationCo-
ordinator and enters state negotiating.

In state negotiating protocol, the PartyCoordinator waits for the re-
sults of the protocol negotiation. If it is successful, it receives message
successfulProtocolNegotiation, invokes method negotiate on the Negoti-
ationCoordinator and enters state negotiating. If the protocol negotiation fails,
it receives message failedProtocolNegotiation and enters state end.

Finally, in state negotiating, the PartyCoordinator is waiting for the results
of the negotiation. If it is successful, it receives message success from the Ne-
gotiationCoordinator, it invokes method agreementCreated on interface IUser
and enters state end. If the negotiation fails, it receives message fail and
enters state end.

In addition, in all states, the PartyCoordinator may receive message
terminate. In that case, the state machine enters state end. Additionally, if

9.6. Summary 165

the party context was in state negotiating, it invokes method cancel on the
NegotiationCoordinator before entering state end.

9.6 Summary

In this chapter, we have described the NegoFAST-Core framework based
on the NegoFAST-Core reference architecture. We have defined the data
model, the interfaces of roles and environmental resources and the state ma-
chines of the coordination roles described in the reference architecture.

166 Chapter 9. The NegoFAST-Core framework

Chapter 10

The NegoFAST-Bargaining
framework

Here's the rule for bargains:
“Do other men, for they would do you.”
That's the true business precept.

Charles Dickens, 1812—1870
British Novelist

he goal of this chapter is to detail the NegoFAST-Bargaining framework,

which was introduced in Section §6.4.2.. This framework extends the
NegoFAST-Core framework to support bargaining protocols by materialising
the NegoFAST-Bargaining reference architecture (cf. Chapter §8)., This chapter
is organised as follows: Section §10.1 introduces the main ideas and overviews
the whole framework; Section §10.2 details the data model of the NegoFAST-
Bargaining framework; Section §10.3 defines the interfaces of the environ-
mental resources of the NegoFAST-Bargaining framework; Section §10.4 de-
fines the interfaces and the protocol of the interactions amongst the roles of
NegoFAST-Bargaining; Section §10.5 details the state machines that define the
behaviour of the coordination roles; tinally, Section §10.6 summarises the ideas
of this chapter.

168 Chapter 10. The NegoFAST-Bargaining framework

1]

model environment

—

bargainingcontext

N

A
) » <<import>>
<<import>> N

N

N I

A I
AN 1 <<import>>

N I

N 1

I

interactions N

protocolconversion requestresponse roles

<<Interface>>
| <<_<iT‘ﬂ[_JOFt>_>_ IBilateralNegotiator

requestproposal createproposal

_| <<Interface>>

submitpolicies coordinatenegotiation

IBargainingCoordinator

Figure 10.1: NegoFAST-Bargaining framework packages.

10.1 Introduction

In this chapter, we detail the NegoFAST-Bargaining framework, which ex-
tends the NegoFAST-Core framework to provide specific support for bargain-
ing protocols (cf. Section §3.4). The NegoFAST-Bargaining framework takes
the NegoFAST-Bargaining reference architecture (cf. Chapter §8) as a start-
ing point and materialises it in a similar way as the NegoFAST-Core frame-
work materialises the NegoFAST-Core reference architecture. The NegoFAST-
Bargaining framework can be divided into the packages depicted in Fig-
ure §10.1, which includes a data model, interfaces of environmental resources,
interactions and state machines for the roles that orchestrate the other roles.

In addition, as stated in Chapter §8, an abstract negotiation protocol must
be defined. This abstract negotiation protocol allows to make the Negotiation-
Coordinator role independent from specific negotiation protocols and, hence,
improve the reusability of the system. In NegoFAST-Bargaining, this protocol
is an abstract proposal-based bilateral negotiation protocol, cf. Section §10.4.

10.2. Data model 169

<<Interface>> <<Enum>>
INegotiationStatus BargainingPerformative
+getlnitialTime() : Date -cfp
+getGenerated() : INegotiationMessage -propose
+getReceived() : INegotiationMessage -commit
+getSent() : INegotiationMessage -accept
+getNegotiationPolicies() : INegotiationPolicy [*] -withdraw
+isApprovalRejected() : boolean -rejectProposal
-rejectNegotiation

<<Interface>>
INegotiationPolicy
+getPolicy() : URI
+getValue() : Object

Figure 10.2: Data model of NegoFAST-Bargaining.

Finally, since negotiations are bilateral, there is a one-one relationship be-
tween party context and negotiation context. This allows the NegoFAST-
Bargaining framework to use the same URI to identify a party context and
a negotiation context.

10.2 Data model

This section extends the data model of the NegoFAST-Core framework
(cf. Section §9.2) to represent the concepts that the NegoFAST-Bargaining
framework introduces. These concepts involve aspects related to the proto-
col, the status of a bargaining negotiation, and the negotiation policies.

Bargaining performatives The performatives managed by the NegoFAST-
Bargaining framework are those used in the abstract negotiation proto-
col. They are represented by enumeration BargainingPerformative (cf. Fig-
ure §10.2), which is a subtype of interface Performative defined in the
NegoFAST-Core framework. The elements of the enumeration are cfp,
propose, commit, accept, withdraw, rejectProposal and rejectNegotiation.

Negotiation policies The negotiation policies are modelled through inter-
face INegotiationPolicy, which has the following methods, cf. Figure §10.2:

> URI getPolicy(): Returns a URI that identifies the negotiation policy.

170 Chapter 10. The NegoFAST-Bargaining framework

> Object getValue(): Returns the value of the negotiation policy.

Status of a bargaining negotiation Interface INegotiationStatus repre-
sents the status of the negotiation in terms of the last negotiation messages that
have been sent or received. This status constitutes the basic information used
to build negotiation messages. Its methods are as follows, cf. Figure §10.2:

> Date getInitialTime(): Returns the time when the negotiation proto-
col instance started.

> INegotiationMessage getGenerated(): Returns the last negotiation
message that has been generated. Note that this does not mean that this
negotiation message was sent because it might have not been approved
by the CommitHandler.

> INegotiationMessage getReceived(): Returns the last negotiation
message that was received.

> INegotiationMessage getSent(): Returns the last negotiation message
that was sent to the other party.

> INegotiationPolicy[*] getNegotiationPolicies(): Returns the setof
negotiation policies that have been set for this negotiation context.

> boolean isApprovalRejected(): Returns whether the CommitHandler
did not approve the last negotiation message that was generated for this
negotiation or not. This information can be used to avoid entering in a
loop in which the same binding negotiation message is generated and
not approved by the CommitHandler.

10.3 Environmental resources

The NegoFAST-Bargaining reference architecture defines environmental
resource BargainingContextData, which extends the NegotiationContextData
of the NegoFAST-Core reference architecture to store bargaining-specific
information. Specifically, environmental resource BargainingContextData
must implement interface IBargainingContextData, which extends interface
INegotiationContextData (cf. Section §9.3) with the following methods (cf.
Figure §10.3):

> void getBargainingState(context): Returns the bargaining-specific
state of the negotiation context.

10.3. Environmental resources 171

<<Interface>>
INegotiationContextData

<<Enum>>
BargainingState

-generating
<<Interface>> -waiting
IBargainingContextData | <<use>>” -askedForApproval
+getBargainingState(context : URI) : BargainingState -approved

+setBargainingState(context : URI, newState : BargainingState) : void

-finishedSuccessfully
+getParty(context : URI) : URI

-finishedUnsuccessfully

Figure 10.3: Interface of BargainingContextData.

> void setBargainingState(context, newState): Sets the bargaining-
specific state of the negotiation context as newState.

> URI getParty(context): Returns the identifier of the party with which
the automated negotiation system is negotiating.

Enumeration BargainingState (cf. Figure §10.3) models the bargaining-
specific states of a negotiation context as detailed in Section §8.3.1. The states
are the following;:

> waiting: The negotiation context is waiting a negotiation message from
the other party.

> generating: The negotiation context is generating a negotiation message
to be sent to the other party.

> askedForApproval: The negotiation context is waiting for the approval
of the CommitHandler to submit a binding negotiation message.

> accepted: The negotiation context has the approval to send the binding
negotiation message, and it is waiting for the response of the other party.

> finishedSuccessfully: The negotiation context has finished its process-
ing successfully (i.e. an agreement has been reached).

> finishedUnsuccessfully: The negotiation context has finished its pro-
cessing unsuccessfully.

172 Chapter 10. The NegoFAST-Bargaining framework

i.commit

A

Responder turn,
Initiator proposed

Initiator turn,

r.propose Responder proposed

i.propose

i.rejectProposal

r.rejectProposal
Y, r.propose _

i.rejectProposal T commit r.rejectProposal

r.withdraw

r.commit

r.propose
i.propose

Responder turn, - - 1 Initiator turn, h —
Initiator committed Leommit Responder committed i-withdraw
r.commit ~ @@
i = initiator
r = responder

i.accept

Figure 10.4: State machine of the abstract bilateral negotiation protocol.

10.4 Interactions

In this section, we describe the protocol and interfaces that must provide
the roles involved in each interaction of the NegoFAST-Bargaining framework.
However, before detailing those aspects of the NegoFAST-Bargaining frame-
work, we must detail which is the abstract proposal-based bilateral negoti-
ation protocol that the NegoFAST-Bargaining framework supports. In Sec-
tion §3.4.1, we characterise negotiation protocols by means of five strongly-
related aspects: parties, performatives, rules, information exchanged, and
agreement terms negotiability. Consequently, our abstract protocol must de-
fine some of these aspects whereas others are left open to be defined by each
concrete negotiation protocol. In particular, these aspects are the following:

Roles: The negotiation is carried out between two parties: the initiator, which
is the party that initiates the negotiation, and the responder, which is the
other party. Note that both consumer and provider can act as initiators or
responders, and that we do not preclude the ability of a party to perform
several simultaneous negotiations.

10.4. Interactions 173

Performatives: The performatives allowed in our abstract protocol are: cfp,
reject-negotiation, reject-proposal, propose, commit, withdraw and
accept (cf. Table §3.1).

Rules: The rules imposed by the abstract protocol are as follows: it must start
with a negotiation message that includes a cfp, a propose or a commit
performative; the cfp performative can only be used in an initial nego-
tiation message; only committing proposals (i.e. commit performatives)
can be accepted; it is an alternating protocol, i.e. after one party sends a
message, the other party must respond and so on. The only exception
are negotiation messages that include reject-negotiation or withdraw
performatives that can be sent at any time during the negotiation. These
rules are formalised as the protocol state-machine in Figure §10.4.

Information exchanged: The type of information exchanged is restricted to
proposals and, hence, additional arguments cannot be sent together with
a proposal as in argumentation-based protocols.

Agreement terms negotiability: Again, the abstract protocol does not impose
any restriction on the negotiability of agreement terms. Therefore, as is
the case of most bargaining protocols, any term is negotiable.

We strongly believe that this abstract protocol supports all of the bargain-
ing protocols described in Section §3.4.2 except for the argumentation-based
ones because they require additional negotiation performatives and the ex-
change of arguments together with the proposals during the negotiation.

ProtocolConversion This interaction is the implementation of the ab-
stract proposal-based bilateral negotiation protocol described above, together
with some control messages. To this end, both the BargainingProtocol-
Handler and the BilateralNegotiator have one method in their interfaces
(IBargainingProtocolHandler and IBargainingNegotiator, respectively) for
each negotiation performative of the abstract proposal-based bilateral ne-
gotiation protocol, namely: accept, rejectProposal, rejectNegotiation,
propose, commit, cfp and withdraw (cf. Figure §10.5). Furthermore, in inter-
face IBargainingNegotiator, these methods include a set of bargaining per-
formatives together with the negotiation message. The reason is that the set of
negotiation performatives that can be used as a response changes depending
on the negotiation protocol (e.g. a negotiation protocol may not allow non-
binding proposals).

Together with these methods, interface IBargainingProtocolHandler in-
cludes the following one:

174 Chapter 10. The NegoFAST-Bargaining framework

<<Interface>>

IBargainingProtocolHandler
+init(context : URI, negotiator : IBargainingNegotiator) : void
+cfp(context : URI, msg : INegotiationMessage) : void
+propose(context : URI, msg : INegotiationMessage) : void
+commit(context : URI, msg : INegotiationMessage) : void
+accept(context : URI, msg : INegotiationMessage) : void
+withdraw(context : URI, msg : INegotiationMessage) : void
+rejectProposal(context : URI, msg : INegotiationMessage) : void
+rejectNegotiation(context : URI, msg : INegotiationMessage) : void

<<Interface>>

IBargainingNegotiator
+startNegotiation(context : URI, allowed : BargainingPerformative [1..¥]) : void
+error(context : URI, reason : String) : void
+cfp(context : URI, msg : INegotiationMessage, allowed : BargainingPerformative [1..]) : void
+propose(context : URI, msg : INegotiationMessage, allowed : BargainingPerformative [1..*]) : void
+commit(context : URI, msg : INegotiationMessage, allowed : BargainingPerformative [1..*]) : void
+accept(context : URI, msg : INegotiationMessage, allowed : BargainingPerformative [1..¥]) : void
+withdraw(context : URI, msg : INegotiationMessage, allowed : BargainingPerformative [1..]) : void
+rejectProposal(context : URI, msg : INegotiationMessage, allowed : BargainingPerformative [1..*]) : void
+rejectNegotiation(context : URI, msg : INegotiationMessage, allowed : BargainingPerformative [1..*]) : void

Figure 10.5: Interaction ProtocolConversion.

> void init(context, negotiator): Through this method, the Bilateral-
Negotiator notifies the BargainingProtocolHandler that it is ready to start
the negotiation and includes a reference to it.

Interface IBargainingNegotiator also includes additional methods:

> void startNegotiation(context, allowed): By means of this method,
the BargainingProtocolHandler notifies the BilateralNegotiator that it
must start the negotiation by sending a negotiation message with one
of the allowed performatives.

> void error(context, reason): Notifies that an error has happened
during the negotiation (e.g. a time-out or an unexpected message) and,
hence, the negotiation must end.

Before starting the negotiation protocol instance, a previous exchange of
messages must be carried out to setup the interaction. This is necessary be-
cause the BargainingProtocolHandler does not know the BilateralNegotiatora
priori and because the BilateralNegotiator does not know whether it is playing
role initiator or role responder in the negotiation. Therefore, the BilateralNe-
gotiator first invokes an initialisation method (init) on the BargainingProto-
colHandler with the negotiation context URI to initialise the interaction. This

10.4. Interactions 175

method lets the BargainingProtocolHandler know who the BilateralNegotiator
is. Then, the BargainingProtocolHandler responds with either a call to meth-
ods cfp or propose or commit, or a call to method startNegotiation together
with the set of allowed negotiation performatives.

Since this moment, each negotiation message coming from the other
party is translated into a call to the corresponding method of interface
IBargainingNegotiator. Together with the negotiation message coming from
the other party, the BargainingProtocolHandler sends the set of allowed nego-
tiation performatives that can be used to respond to that message.

Similarly, each negotiation message to be sent to the other party involves a
call to the corresponding methods of interface IBargainingProtocolHandler.
Then, the BargainingProtocolHandler translates the negotiation message into
the concrete syntax of a negotiation protocol and sends it to the other party.
These method calls follow the state machine depicted in Figure §10.4.

In addition, at any moment during the interaction, the BargainingProto-
colHandler may invoke method error of the BilateralNegotiator together with
a message describing the reason for the error (e.g. time out, invalid message
received or communication finished). This method involves the unsuccessful
finalisation of the negotiation.

CoordinateNegotiation This interaction represents the communication be-
tween the BargainingCoordinator and the BilateralNegotiator. The goal of this
interaction is to allow the BilateralNegotiator to send commit or accept ap-
proval requests (i.e. to ask permission to send a binding negotiation message)
to the BargainingCoordinator that are later redirected to the CommitHandler.
Furthermore, it also involves the sending of initialisation and finalisation mes-
sages to and from the BilateralNegotiator.

Interface IBargainingCoordinator, which is implemented by the Bargain-
ingCoordinator, is as follows:

> void commitApprovalRequest(context, proposal): Requestsapproval
to send a negotiation message composed of the commit performative
and the given proposal.

> void acceptApprovalRequest(context, proposal): Requestsapproval
to send a negotiation message composed of the accept performative and
the given proposal.

> void commitRejected(context): Notifies that the commit that has been
sent was rejected by the other party.

176 Chapter 10. The NegoFAST-Bargaining framework

> void finishedUnsuccessfully(context): Notifies that the given nego-
tiation context has finished unsuccessfully.

> void finishedSuccessfully(context, agreement): Notifies that the
given negotiation context has finished successfully and sends the result-
ing agreement.

The BilateralNegotiator implements interface ICoordinableNegotiator,
which is composed of the following methods:

> void init(context, coordinator, handler): Initialises the Bilateral-
Negotiator with a reference to the coordinator and another reference
to the BargainingProtocolHandler that manages the interaction with the
other party. After receiving this message, the BilateralNegotiator starts
the negotiation.

> void reject(context): Notifies the BilateralNegotiator that the ap-
proval request was rejected.

> void accept(context): Notifies the BilateralNegotiator that the ap-
proval request was accepted.

> void cancel(context): Cancels the negotiation.

Figure §10.6 depicts the state machine of the interaction for each ne-
gotiation context. It starts entering state negotiating with the invocation
of method init on the BilateralNegotiator. In state negotiating, the Bilat-
eralNegotiator may invoke method commitApprovalRequest and the inter-
action moves to state commit approval request or it may invoke method
acceptApprovalRequest and the interaction enters state asking approval. In
state asking approval request, there are two choices: the BargainingCoordina-
tor may send message reject and the interaction enters back state negotiating
or it may send message accept and the interaction enters state waiting result.
In this state, the BilateralNegotiator may send message finishedSuccessfully
and the interaction finishes, or the BilateralNegotiator may send message
commitRejected and the interaction enters back state negotiating. In addi-
tion, in states negotiating and waiting result, the BilateralNegotiator may send
message finishedUnsuccessfully, which causes the end of the interaction.

Similarly, the BargainingCoordinator may cancel the negotiation by invok-
ing method cancel on the BilateralNegotiator. If method cancel is invoked
in state negotiating or asking approval, the interaction finishes. However,
if the interaction is in state waiting result, it means that a binding negoti-
ation message was sent to the other party. As a consequence, if method

10.4. Interactions 177

<<Interface>>
ICoordinableNegotiator
+init(context : URI, coordinator : IBargainingCoordinator, handler : IBargainingProtocolHandler) : void
+reject(context : URI) : void
+accept(context : URI) : void
+cancel(context : URI) : void

CoordinateNegotiation states)

<<Interface>>
IBargainingCoordinator
+commitApprovalRequest(context : URI, p : IProposal) : void init()
+acceptApprovalRequest(context : URI, p : IProposal) : void
+commitRejected(context : URI) : void
+inishedUnsuccessfully(context : URI) : void f%[
+inishedSuccessfully(context : URI, a : IAgreement) : void

cancel()

Negotiating 1

J

finishedUnsuccessfully()

reject() commitApprovalRequest(), acceptApprovalRequest()

Asking approval)

accept()

cancel()

finishedSuccessfully()

Wiaiting result

commitRejected() finishedUnsuccessfully()

cancel()

[Canceling

finishedUnsuccessfully()

Figure 10.6: Interaction CoordinateNegotiation.

cancel is invoked in that state, the interaction must not finish immedi-
ately. Instead, the interaction enters state cancelling, in which it waits un-
til the BilateralNegotiator invokes either method finishedSuccessfully or
finishedUnsuccessfully.

SubmitPolicies This interaction implements the submission of negotiation
policies from the PoliciesManager to the BilateralNegotiator. The PoliciesMan-
ager implements interface IPoliciesManager, whereas the BilateralNegotiator
implements interface IPolicyReceiver.

Interface INegotiationPoliciesGenerator has only one method:

> INegotiationPolicy[*] initNegotiation(ctx, policyReceiver): Its
goal is twofold. On the one hand, it allows the BilateralNegotiator to
notify the PoliciesManager that there is a new bilateral negotiation that
must be provided with negotiation policies. On the other hand, it returns
the initial set of negotiation policies that shall guide the new bilateral
negotiation.

178 Chapter 10. The NegoFAST-Bargaining framework

<<Interface>> SubmitPolicies states J

INegotiationPoliciesGenerator
+initNegotiation(context : URI, neg : IPolicyReceiver) : INegotiationPolicy [*]
+endNegotiation(context : URI) : void

init()

Negotiating
<<Interface>>

IPolicyReceiver
+setNegotiationPolicies(context : URI, policies : INegotiationPolicy []) : void endNegoliation()

setNegotiationPolicies()

Figure 10.7: Interaction SubmitPolicies.

> void endNegotiation(context): Notifies the PoliciesManager that the
given negotiation context has finished and, hence, that it is not necessary
to provide new negotiation policies.

Interface IPolicyReceiver has also only one method:

> void setNegotiationPolicies(context, policies): Sets the negotia-
tion policies of the given negotiation context.

The interaction protocol is simple. When a new bilateral negotiation
starts, the BilateralNegotiator invokes method initNegotiation on the Poli-
ciesManager to notify it and to receive the initial set of negotiation policies.
Then, when the PoliciesManager finds it convenient, it submits a new set of
negotiation policies by invoking method setNegotiationPolicies. Finally,
when the negotiation context finishes, the BilateralNegotiator invokes method
endNegotiation to notify that no new negotiation policies are needed.

RequestResponse The goal of this interaction is to obtain a negotiation
message that shall be sent as a response to the other negotiating party.
The interaction is asynchronous and has two participants: the BilateralNe-
gotiator, which requests the negotiation message and implements interface
IResponseRequester, and the PerformativeSelector, which returns the gen-
erated negotiation message and implements interface IResponseGenerator.

Interface IResponseGenerator has the following methods:

> void generateResponse(context, allowed, status, requester): Re-
quests the generation of a new negotiation message for the given nego-
tiation context. It also provides the bargaining performatives that can be

10.4. Interactions 179

<<Interface>>
IResponseGenerator
+generateResponse(context : URI, allowed : BargainingPerformative [*], status : INegotiationStatus, requester : IResponseRequester) : void
+cancelGeneration(context : URI) : INegotiationMessage

RequestResponse states)
<<Interface>>
generateResponse()
IResponseRequester

+negotiationMessage(context : URI, msg : INegotiationMessage) : void

negotiationMessage(m)

cancelGeneration(

Figure 10.8: Interaction RequestResponse.

used in the negotiation message, the current status of the negotiation and
a reference to the requester that shall receive the generated negotiation
message.

> INegotiationMessage cancelGeneration(context): Cancels the gener-
ation of the message and returns either a valid negotiation message or a
null value if no valid negotiation message could be generated.

Interface IResponseRequester has only one method:

> void negotiationMessage(context, msg): Receives the generated ne-
gotiation message from the PerformativeSelector.

The interaction takes place as follows: when the BilateralNegotiator needs a
negotiation message as response, it invokes method generateResponse on the
PerformativeSelector. Then, the PerformativeSelector starts creating the nego-
tiation message and, when it finishes, it invokes method negotiationMessage
on the BilateralNegotiator with the generated negotiation message.

In addition, at any moment, the BilateralNegotiator may cancel the genera-
tion by invoking method cancelGeneration. In that case, the PerformativeSe-
lector must respond synchronously with a valid negotiation message or a null
value if no valid negotiation message could be generated.

RequestProposal The goal of this interaction is to obtain a proposal that
shall be sent as part of a negotiation message to the other negotiating party.

180

Chapter 10. The NegoFAST-Bargaining framework

<<Interface>>
IBuilderManager
+generateProposal(context : URI, selected : BargainingPerformative [*], status : INegotiationStatus, requester : IProposalRequester) : void
+cancelGeneration(context : URI) : IProposal

RequestProposal states)

<<Interface>>
IProposalRequester
+proposal(context : URI, msg : IProposal) : void

generateProposal()

proposal()

cancelGeneration(

Figure 10.9: Interaction RequestProposal.

Thi

s interaction is much the same as the previous one, the difference being

that the goal of the former is to obtain a whole negotiation message (i.e. a per-
formative and a proposal in this case), whereas the goal of the latter is just to
obtain the proposal. The interaction has two participants: the BuilderManager,
which provides the proposal and implements interface IBuilderManager, and

the

PerformativeSelector, which requests the proposal and implements inter-

face IProposalRequester.

Interface IBuilderManager has the following methods:

> void generateProposal(ctx, performat, status, requester): Re-
quests the generation of a new proposal for the given negotiation con-
text. It also provides the bargaining performatives that may be sent to-
gether with this proposal (selected), the current status of the negotia-
tion and a reference to the requester to send the proposal back.

> IProposal cancelGeneration(context): Cancels the generation of the
proposal and returns either a valid proposal or a null value if it could
not be generated.

Interface IProposalRequester has just one method:

> void proposal(context, proposal): Receives the proposal from the
BuilderManager.

The interaction protocol is exactly the same as the previous one.

10.4. Interactions 181

CreateProposal states J

generateProposal()
<<Interface>> 43
IProposalBuilder configure()
+configure(context : URI, builderConfig : Object) : void
+generateProposal(context : UR, status : INegotiationStatus, requester : IProposalRequester) : void Configured
+cancelGeneration(context : URI) : IProposal

generateProposal()

Generating

<<Interface>>
IProposalRequester
+proposal(context : URI, msg : IProposal) : void

proposal()

cancelGeneration()

Figure 10.10: Interaction CreateProposal.

CreateProposal The goal of this interaction is to obtain a proposal that shall
be sent as part of a negotiation message to the other negotiating party. The
difference is that this interaction allows a lower-level configuration prior to
the request of the new proposal. In addition, the participants are also differ-
ent. In this case, the ProposalBuilder is the creator of the proposal and imple-
ments interface IProposalBuilder, whereas the BuilderManager is now the
requester of the proposal (cf. Section §8.4.2) and, hence, it implements inter-
face IProposalRequester.

Interface IProposalBuilder has three methods:

> void configure(context, builderConfig): Configures the Proposal-
Builder for the given negotiation context. The configuration is specific to
each ProposalBuilder, and it is mainly intended to convert negotiation
policies into builder-specific configuration parameters.

> void generateProposal(context, status, requester): Requests the
generation of a new proposal for the given negotiation context. It also
provides the current status of the negotiation and a reference to the re-
quester to send the proposal back.

> IProposal cancelGeneration(context): Cancels the generation of the
proposal and returns either a valid proposal or a null value if it could
not be generated.

Interface IProposalRequester was described in the previous interaction.

182 Chapter 10. The NegoFAST-Bargaining framework

The interaction protocol is similar to the previous one, the difference be-
ing that before invoking method generateProposal, the BuilderManager may
configure the ProposalBuilder by invoking method configure. However, this
step is optional; if the BuilderManager does not configure the ProposalBuilder,
it shall take its default configuration.

10.5 State machines

In this section, we report on the state machines of the BilateralNegotiator
and the BargainingCoordinator roles, which coordinate the others.

BilateralNegotiator The goal of the BilateralNegotiator is to carry out a sin-
gle bilateral negotiation by orchestrating the BargainingProtocolHandler and
the response generation roles. Furthermore, it must communicate with the
BargainingCoordinator to coordinate with the other simultaneous bilateral ne-
gotiations and to ask for approval before committing to a proposal, and with
the PoliciesManager to receive negotiation policies that shall guide the gener-
ation of responses.

Figure §10.11 depicts the state machine of the BilateralNegotiator. It con-
sists of the following states: four states (waiting initial, waiting, waiting accept
and cancelling) in which the BilateralNegotiator is waiting for a message from
the other party, one state (generating response) in which the BilateralNego-
tiator is waiting for the PerformativeSelector to generate a response, and two
states (approving commit and approving accept) in which the BilateralNego-
tiator is waiting for the CommitHandler to decide on whether to send a binding
negotiation message or not.

The state machine starts when the BargainingCoordinator initiates the Bilat-
eralNegotiator by invoking method init with the URI of the negotiation con-
text and a reference to the BargainingProtocolHandler that manages the com-
munication with the other party. Then, the BilateralNegotiator invokes method
init of the BargainingProtocolHandler to initialise the interaction and waits
for its response in state waiting initial. The response can be startNegotiation
or a negotiation performative. In any case, when the response is received the
BilateralNegotiator invokes method generateResponse on the PerformativeS-
elector and waits for the response in state generating response. In addition, in
state waiting initial, the BilateralNegotiator may also receive message cancel.
In this case, it enters state cancelling.

183

10.5. State machines

10}09|9SaNIBWIONA = USH
JoyeuipioodBuiurebieg = 1009

13|pueH|0d0j0idhuIurefieg ay ul poylaw Buipuodsaliod ayi Buoaul Aq Aued Jayio ayy 0) w abessaw ay spuas = (w)abessappuas
eleqixajuodbulurebireg 8a1nosal Ul paniadal afiessall ay) Salols = ()abessajNpaniadal

()AInyssaaansunpaysiuly 1009
/ (J1ou8
(AInyssaaansunpaysiuly 1009
/ (1o18
()AlInysseaansunpaysiuly 1009
()abessaypanadal
/ (uonenoBenoafes
()KInjssaansunpaysiuly 1002 (Jjeoued
(uonenobaNioalal)abessappuas
()obessaNpaniadal
1 (uonrenoBanioalal ‘()resodoidioales ‘()melpyum ‘()asodoid ‘(uwwod ‘()djp
()AlInyssa2anspaysiuly 1009 ﬁ
Dimssenonunpotst oo (abessanpaneoa i Ooues
g / Ordaaoe
1 (uonenobanioalal —_—
Bunrem
(AlInyssaaansunpaysiuly 1009
/(1018
(AlInjssaoanspaysiuly 1009 (1soued
()aBessaj\paniadal 1daooe Bunrem
/ | (hdaose ()a6uodsayeressuabusb
. ()asuodsayarelsuab uah
Opaioaleyui0 1000 ()obessapypaniasal
abessa|\paniadal :
(tu)abessanpuas \ \ . 0 . P 1 Omeapym ‘(resodoldioafal ‘(Jasodoud ‘(nwwod ‘()djo
/ ()anoudde 1 Omespyum ‘(Onwwod ‘()djo “()asodoud ‘()resodoidioalal
()esuodsayarelauab uab 4 A
()AInyssaaansunpaysiuly 1009 1 (100las
(uonenobiaNioales)abessappuas (w)abessappuas
1 Qows ‘(pougo \JLIOD Buinoiddy (hsanbay|eroiddyyiwwod’1000 1 [(w)resodoidioaleys! .
/ [(w)nwwodsi] (w)ebessapyuonenofiou || (wymelpyumst (AL BUREM
(AlIngssaoonsunpaysiuly 1003 1] (jebessapuonenobou
(w)abessappuas | Sush
/ [(w)uonenobanioaleysi] (w)sbessapuonenobau (Jjosuo mmmwa_ocm e
()AInyssa2ansunpaysiuly’ 1003 g o . Om»mwmmu_uw)_ome
(AINISS399NSUNPaYSILY 1009 (uorenoBenaslaijefiessoppuss 1 Oresodoidoafas ‘(mespynm ‘(nwwod ‘(Jasodoud ‘()djo
(uomenoBonnosial)abiessappuas (Juonessuaneouey uab (Jesuodsayarelouab ush
/(1013 “()j2oued Y S 1 (1oua ‘(jpaued Y / (uonenoBanyeEls
_ (1sanbayrenoiddyrdedse 000 i .
MIENEL) ()nurs|pueH|oa0i0idBulurebireg|
- —
o>__ewmmumw=ﬁwwwwuw_w§_mwm 306 Buthowddy I [{wndaooyst] (w)abessapuonenobau \7 ()uorrenoBanyuI JoresauaDSaIdlod|
WP . 1 O
1 ()anoxdde ()asuodsayarelauab uah

| Qoafas .

ator.

!

f the BilateralNegot

State machine o

Figure 10.11

184 Chapter 10. The NegoFAST-Bargaining framework

The BilateralNegotiator leaves state generating response when either the
BargainingProtocolHandler invokes method error, the BargainingCoordina-
tor invokes method cancel or the PerformativeSelector invokes method
negotiationMessage. In the first two cases, the BilateralNegotiator in-
vokes method cancelGeneration in the PerformativeSelector and method
finishedUnsuccessfully in the BargainingCoordinator and enters state fin-
ished. In the third case, the transition of the BilateralNegotiator depends
on the performative of the generated negotiation message: if the perfor-
mative is accept, it invokes method acceptApprovalRequest in the Bar-
gainingCoordinator and enters state approving accept; if the performative is
rejectNegotiation, it invokes method rejectNegotiation in the Bargain-
ingProtocolHandler and method finishedUnsuccessfully in the Bargaining-
Coordinator and moves to state finished; if the performative is commit, it
invokes method commitApprovalRequest in the BargainingCoordinator and
enters state approving commit; and if the performative is either propose,
withdraw or rejectProposal, it invokes the corresponding method in the Bar-
gainingProtocolHandler and enters state waiting.

In state approving accept, the BilateralNegotiator waits for an approve
or reject message. If the message is approve, the BilateralNegotia-
tor invokes method accept in the BargainingProtocolHandler and method
finishedSuccessfully in the BargainingCoordinator and enters state fin-
ished. If the message is reject, the BilateralNegotiator invokes again method
generateResponse in the PerformativeSelector and moves back to state gen-
erating response to wait for another response. In addition, the BilateralNe-
gotiator may also receive message cancel or message error. If this is the
case, it invokes method rejectNegotiation in the BargainingProtocolHandler
and method finishedUnsuccessfully in the BargainingCoordinator and en-
ters state finished.

Similarly, in state approving commit, the BilateralNegotiator waits for the
BargainingCoordinator to respond with an approve or reject message. If the
response is approve, the BilateralNegotiator invokes method commit in the
BargainingProtocolHandler and enters state waiting accept. If the response is
reject, the BilateralNegotiator behaves as in state approving accept: invokes
method generateResponse and enters state generating response. In addition,
the BilateralNegotiator may also receive message cancel or message error,
in which case the BilateralNegotiator behaves as in state approving accept as
well.

In states waiting and waiting accept, the BilateralNegotiator waits for a
new negotiation message. The difference being that in state waiting accept,
the BilateralNegotiator has sent a binding negotiation message and it is wait-

10.5. State machines 185

ing for its acceptance whereas in state waiting, it has not. In both states, if
the negotiation message is rejectNegotiation or error, the BilateralNego-
tiator invokes method finishedUnsuccessfully in the BargainingCoordinator
and enters state finished. If the negotiation message is either cfp, commit,
propose, rejectProposal or withdraw, the BilateralNegotiator invokes method
generateResponse in the PerformativeSelector and enters state generating re-
sponse. In this case, if the BilateralNegotiator is in state waiting accept, it
also invokes method commitRejected in the BargainingCoordinator. In state
waiting accept, the negotiation message may also be accept, in which case it
invokes method finishedSuccessfully in the BargainingCoordinator and en-
ters state finished. Besides a negotiation message, the BilateralNegotiator may
also receive message cancel. In this case, it enters state cancelling.

In state cancelling, the negotiation has been cancelled but by the Bar-
gainingCoordinator but the other party has not been notified (i.e. message
rejectNegotiation has not been sent) because the BilateralNegotiator was
waiting for a negotiation message from the other party. When this negoti-
ation message arrives, if it is accept, the BilateralNegotiator invokes method
finishedSuccessfully in the BargainingCoordinator and enters state finished.
Otherwise, the BilateralNegotiator invokes method rejectNegotiation in the
BargainingProtocolHandler and method finishedUnsuccessfully in the Bar-
gainingCoordinator and enters state finished.

In addition, at any moment, the PoliciesManager may send negotiation
policies to the BilateralNegotiator (setNegotiationPolicy).

BargainingCoordinator The BargainingCoordinator is chiefly a message
dispatcher amongst the BilateralNegotiator, the CommitHandler, the PartyCo-
ordinator and the BargainingContextData. Its tasks include: initialising and
finalising negotiations and coordinating the approval requests between the
CommitHandler and the BilateralNegotiators.

The first task involves the following: whenever the PartyCoordinator in-
vokes method negotiate, it creates a new negotiation context and invokes
method init on a BilateralNegotiator. Similarly, when a BilateralNegotiator
invokes either method fail or method succeed, it forwards them to the Par-
tyCoordinator. Finally, if the PartyCoordinator invokes the cancel method, it
forwards it to the corresponding BilateralNegotiator.

The second task involves coordinating the approval requests: the Bargain-
ingCoordinator receives commit approval requests and accept approval re-
quests from the BilateralNegotiators. For each of them, it forwards them to
the CommitHandler by invoking the approvalRequest method. Similarly, it

186 Chapter 10. The NegoFAST-Bargaining framework

forwards messages accept and reject from the CommitHandler to the cor-
responding BilateralNegotiators. Finally, it forwards the commitRejected or
success message from the BilateralNegotiator to the CommitHandler.

10.6 Summary

In this chapter, we have described the NegoFAST-Bargaining framework,
which refines the NegoFAST-Bargaining reference architecture to extend the
NegoFAST-Core framework to support bargaining protocols. To this end, we
have defined the data model, the interfaces of the roles and environmental
resources and the state machines of the coordination roles described in the
reference architecture.

Part IV

Final remarks

Chapter 11

Conclusions

I Know not what 1 may appear to the world,

but to myself I have been only liKe a boy playing on the seashore,
diverting myself in now and then finding a smoother

pebble or a prettier shell than ordinary,

whilst the great ocean of truth lay all undiscovered before me.

Sir Isaac Newton, 1642—1727
English scientist and philosopher

Both SOA and BPM initiatives are enabling technologies that help compa-
nies bridge the gap between businesses and IT. In a service-oriented approach,
agreements play a major role to regulate the functional, non-functional proper-
ties, and guarantees of a service [4, 83, 93]. Reaching such agreements usually
require the provider and the consumer to negotiate on multiple terms. It is
not surprising then that many researchers have focused on automating such
negotiation [11, 22, 38, 44, 104, 122]. In particular, they have developed ne-
gotiation models, protocols and algorithms, usually implemented as software
agents, that try to mimic some aspects of human behaviour, while removing
an often-cited disadvantage [27], namely, the slowness of human negotiations.

More specifically, we believe that the automation of service agreement ne-
gotiations shall improve the service-provisioning process as a part of the busi-
ness’ supply-chain, mainly in open and dynamic markets in which the flex-
ibility in business relationships, the openness to new providers and the best
exploitation of company’s resources are key aspects in the business manage-
ment strategies.

190 Chapter 11. Conclusions

The goal of this dissertation was to support the idea that it is convenient to
develop a software framework that provides engineering support to make the
development of automated negotiation systems easier in the context of nego-
tiating service agreements in open and dynamic environments. In this disser-
tation, we presented a strong motivation for this idea; described the problems
that appear when negotiating in such environments, and detail why current
approaches to build automated negotiation systems are not appropriate for
service negotiations in open and dynamic environments (cf. Chapter §2).

NegoFAST is our approach to building such automated negotiation sys-
tems. It is defined at three levels of abstraction: a reference architecture,
a software framework and a proof-of-concept implementation. To enhance
the reusability of NegoFAST, it has been divided into a protocol-independent
part, NegoFAST-Core, and protocol-specific extensions. In this dissertation,
we have developed a bargaining-specific extension, NegoFAST-Bargaining.
However, other extensions can be implemented.

NegoFAST provides direct support to deal with the problems of service
negotiations in open and dynamic environments described in Chapter §2,
namely: multi-term negotiations, heterogeneous parties, partial information
about parties and dynamic markets.

Multi-term negotiations are dealt with by providing generic data structures
that support multi-term agreements and negotiation proposals and expressive
preferences models (cf. Section §9.2).

NegoFAST tackles the heterogeneity of parties in open environments by
promoting a clear separation of concerns thanks to the generic data model and
to well-defined interfaces between the elements that conform the system (cf.
Chapter §9 and Chapter §10). This allows an automated negotiation system to
support easily multiple protocols and negotiation intelligence algorithms by
implementing several ProtocolHandlers (cf. Section §7.3) and ResponseGen-
erators or CommitHandlers (cf. Section §7.4), respectively. In addition, Nego-
FAST gives support to allow the negotiability of protocols by means of the
ProtocolNegotiator (cf. Section §7.3).

The problem of negotiating with partial information about parties is dealt
with as follows: first, the generic data model makes it explicit the difference
between different types of knowledge about parties (cf. Section §9.2); second,
Inquirer, Informant (cf. Section §7.5), and estimators acting as proxies for exter-
nal information providers (cf. Section §9.3) allow the automated negotiation
system to get information from different sources; and third, the events mech-
anism implemented on several environmental resources (cf. Section §9.3) and
the NegotiationHistory that enables offline estimation (cf. Section §7.5) makes

191

it easier the development of estimators that build world models.

Finally, the problem of coping with dynamic markets is faced with the fol-
lowing mechanisms: first, the NegotiationCoordinator (BargainingCoordinator,
PoliciesManager and BilateralNegotiator in NegoFAST-Bargaining) makes it
possible to carry out several negotiations at the same time (cf. Section §7.2
and Section §8.3); second, the BuilderManager enables the dynamic selection
of different intelligence algorithms, implemented in several ProposalBuilders,
depending on the current state of the negotiations (cf. Section §8.4); third,
the CommitHandler and its CommitAdvisors facilitate an assessed creation of
agreements to avoid committing to more agreements than the system can af-
ford (cf. Section §7.4); and fourth, the events mechanism and the Negotiation-
History make it possible the development of models of characteristics of the
market that may have an influence on the negotiation process.

The only aspect identified in Section §2.2 that is not fully supported by
NegoFAST is the decommitment. Currently, the decommitment support in
NegoFAST is kind of naive and it is just detailed at a high level of abstraction.
The main reason is that decommitment is still a novel topic that deserves a
specific research line on its own.

Anyhow, the results in this dissertation cannot be seen as the concluding
end of a path, but as the motivation for further research on this topic. Amongst
the many issues that remain open or can be improved, we think that the most
exciting is to develop more protocol-specific extensions to NegoFAST-Core.
The most interesting protocol-specific extensions are an auctioning extension
and an argumentation-based extension. The auctioning extension implies ex-
tending the ProtocolHandler, NegotiationCoordinator and ResponseGenera-
tor to the specific requirements of auctions. This involves deciding not only
which proposal must be send to the other parties, like in bargaining protocols,
but also, when this proposal shall be made. The argumentation-based exten-
sion is more challenging because it requires an extension of the data model to
support the exchange of logical arguments together with proposals. Further-
more, a language to express these logical arguments should be developed.

In addition, another interesting topic that deserves further research is the
study of more advanced ways of expressing preferences related to the negoti-
ation process so that the user can give higher-level business rules that regulate
the behaviour of the automated negotiation system. This research involves re-
viewing the interaction between the user and the automated negotiation sys-
tem, the data model to express preferences, and an analysis of how preferences
should affect the behaviour of the elements that compose the automated ne-
gotiation system.

192 Chapter 11. Conclusions

Part V
Appendices

Appendix A

Use case: Submitting computing
jobs

n the previous chapters, we detail the NegoFAST-Core and NegoFAST-

Bargaining frameworks, which provide an infrastructure to ease the de-
velopment of automated negotiation systems. The goal of this chapter is to
exemplity the use of these frameworks to build an automated negotiation sys-
tem in a computing job submission scenario. The chapter is organised as fol-
lows: in Section §A.1, we motivate and describe the scenario; Section §A.2,
Section §A.3, Section §A.4 and Section §A.5 detail the steps that are necessary
to build the automated negotiation system; finally, Section §A.6 summarises
the ideas of this chapter.

196 Appendix A. Use case: Submitting computing jobs

A.1 Introduction

This use case focuses on the submission of a computing job to a job host-
ing service. This is a common scenario in grid environments in which several
computational resources are used to execute the requests of other elements of
the system. Furthermore, this scenario is also becoming increasingly popu-
lar in interorganisational scenarios, in which companies that have intensive
computational needs outsources them to computing services companies.

In this context, service agreements must be created between job submitters
and job hosting services that set the terms under which the job shall be exe-
cuted. These terms may include details such as the nature of the process to be
executed, the resources required for the execution or any scheduling require-
ments such as job start or job completion deadlines [4]. As a consequence, it
is appealing for both job submitters and job hosting services to use automated
negotiation systems in order to reach these agreements on their behalf.

Note that the negotiations in this scenario are multi-term because there are
more than one term involved in the negotiation. In addition, chiefly in interor-
ganisational scenarios but also in grid environments of large corporations, it is
likely to find heterogeneous job hosting services that may implement a great
variety of negotiation protocols and present very diverse behaviours during
the negotiation. Finally, it is an intrinsically dynamic scenario because the
execution conditions that a job hosting service can offer depend heavily on
the current resource availability. Since the availability of resources is likely to
change frequently, agreements should be created on demand. Furthermore,
if agreements are created automatically, the usage of resources can be fine-
tuned. This is specially relevant for computing services companies, which
may use their idle time by selling it at a lower cost.

A variety of different use cases can be defined in this scenario. For instance,
job submitters may initiate bilateral negotiations with job hosting services or
job hosting services may auction available resources and job submitters bid
for them. However, since the goal of this chapter is not to discuss the differ-
ent choices to implement this scenario, but to exemplify the instantiation of
the NegoFAST framework, we focus on a particular use case. This use case
is depicted in Figure §A.1 and is as follows: first, the job submitter sends its
agreement preferences to its automated negotiation system. These preferences
may include both requirements about the job execution and guidelines regard-
ing the negotiation process. Then, when the automated negotiation system
receives references to job hosting services, it starts a bilateral negotiation with
them. When an agreement is reached, the automated negotiation system no-
tifies the job submitter and sends it the agreement. Finally, the job submitter

A.l. Introduction 197

Automated .
Negotiation | o h_o Al
System of A 0. Preferences service A
S:tom'at'ed 0. Preferences Job hosting
gotiation] g
System of B g SEMERE
Job submitter’s 4. Agreement created
Automated with job submitter
Negotiation
System

A Automated q
Negotiation ¢ Job hp Silnlg
System of N 0. Preferences service N

1. Preferences
2. Job hosting services’ 4. Agreement created
references with B

A 4

5. Job submission

Job submitter

Figure A.1: Computing job submission scenario.

sends the job to the job hosting service, and it shall be executed following the
terms established in the agreement.

To build the automated negotiation system, we take August as a start-
ing point and we extend it to fulfil the requirements of this use case. Au-
gust is a proof-of-concept implementation of the NegoFAST framework (both
NegoFAST-Core and NegoFAST-Bargaining) that provides an implementa-
tion of the coordination roles (SystemCoordinator, PartyCoordinator, Bargain-
ingCoordinator and BilateralNegotiator), the environmental resources and the
generic data model. In addition, it provides an infrastructure that implements
the communication amongst the roles of the system.

However, there are still several parts of the system that need to be detailed,
namely: the concrete model in which preferences, agreements and proposals
are expressed; an implementation of the roles that implement negotiation pro-
tocols (i.e. at least one BargainingProtocolHandler); and an implementation
of the decision making roles (i.e. at least one PerformativeSelector, one Buil-
derManager, one ProposalBuilder and one CommitHandler). Optionally, other
roles can be implemented to negotiate protocols (a ProtocolNegotiator), to get
and provide information (an Inquirer and an Informant), to model the world (a
WorldModeller implemented by means of several estimators), and to improve
the coordination of concurrent negotiations (a PoliciesManager).

198 Appendix A. Use case: Submitting computing jobs

Next, we detail the decisions and implementations that have been made
to build an automated negotiation system for the job submitter. A similar
development process and sample execution could have been defined for the
job hosting service.

A.2 Preferences, agreements and proposals

The generic data model of NegoFAST implemented in August must be fur-
ther refined to a particular way of expressing preferences, agreements and pro-
posals. This refinement can be implemented in two complementary ways. On
the one hand, the concepts of the generic model are parameterised by concrete
aspects. Particularly, preferences are parameterised by the type of statements,
and agreements and proposals are parameterised by the type of terms. On the
other hand, the generic model itself may also be extended to support advanced
features. For instance, terms could be extended to add compensation clauses
or proposals could be extended to include additional negotiation data about
the terms specified in the proposal. Therefore, in its simplest form, this re-
finement involves only the definition of the different types of statements that
shall be used in the preferences by extending interface IStatement, and the
definition of the types of terms that shall be used in agreements and proposals
by extending interface ITerm.

As a consequence, the first step is on deciding which models are appropri-
ate to express the preferences, agreements and proposals. Before making this
decision, it is important to bear in mind that the models selected have a strong
influence on the algorithms that must be implemented by the decision mak-
ing roles (chiefly PerformativeSelector, BuilderManager and ProposalBuilder).
Generally speaking, the more expressive the model, the less variety of algo-
rithms are available to negotiate with them. Therefore, a trade-off shall be
made between the expressiveness of the models and the availability of nego-
tiation algorithms that deal with them.

In our case, we have opted for a commonly used model, for which there
are a variety of algorithms available. Specifically, terms of agreements and
proposals are name-value pairs and statements can be of two types: name-
value pairs for negotiation guidelines and weighted utility functions for re-
quirements and features. This decision is implemented as follows (cf. Fig-
ure §A.2): regarding agreements and proposals, interface ITermis extended by
interface ITermLite, which is parameterised by interface IEquals. IEquals is
a type of constraint that supports equality constraints only; regarding prefer-
ences, interface IPreferencesDocument is parameterised to use statements of

A.2. Preferences, agreements and proposals 199

o= .l !
IFR:IStatement | <<hind>> -
___ G:Istatement | <FR->IWeightedUtility, - f<<lnter a;9>it
<<Interface>> G->INameValue> referencesDocLite
—@ |PreferencesDocument +getRequirement(attribute : URI) : IWeightedUtility

+getFeature(attribute : URI) : IWeightedUtility
+getNegotiationGuideline(attribute : URI) : INameValue

requirements guidelines

<<Interface>>
IWeightedUtility
+getAttribute() : URI
+getWeight() : double
+getDomain() : Interval
N +getUtilityFunction() : UtilityFunction
+getWeightedUrtility(o : Object) : double

features

*

requirements

<<Interface>>
IStatement Q

<<Interface>>

INameValue
+getAttribute() : URI guidelines
+setValue(value : Object) : void
+getValue() : Object

*

<<hind>>
<Term->ITermLite>

<<Interface>>
IProposal

<<Interface>>
IProposalLite

|
C : IConstraint | <<bind>> terms 1.x

<<Interface>> <C->IEquals> <<InterfaF:e>>
ITerm ITermLite
) conslraim& 1
constraint
1 <<Interface>>
IEquals
<<Interface>> +getVariable() : URI
IConstraint +setValue(value : Object) : void
+getValue() : Object
+satisfies(v : Object) : boolean

Figure A.2: Preferences, agreements and proposals models.

type IWeightedUtility to express requirements and features, and statements
of type INameValue to express negotiation guidelines. The former implements
utility functions as those described in Section §3.3, whereas the latter imple-
ments name-value pairs.

200 Appendix A. Use case: Submitting computing jobs

ISimpleBilatgralProtocol

ISimpleBilateralProtocol

| <<component>> El
1 SimpleProtocolHandler

1

1

1

1

1

1

V

r - ontext :
BilateralHandler SimpleProtocolState
L -==2 1
IBargainingProtocolHandler stats
1
m A /o
IBargainingNegotiator 0
1
1
1 <<instantiate>>
1
1
1
1
T} --->| SimpleProtocolHandler — FirstSendingState FinishedState
. WaitingState
IConfigurableProtocolHandler
InitialState
SendingState

Figure A.3: Implementation of negotiation protocol roles.

A.3 Negotiation protocols

The NegoFAST-Bargaining framework defines an abstract negotiation pro-
tocol and lets role BargainingProtocolHandler to deal with particular bargain-
ing protocols. This role must deal with the errors, e.g. delays or unknown
messages, convert the negotiation messages of the bargaining protocol to the
data models provided by the NegoFAST framework and its extensions, and
implement interaction ProtocolConversion to communicate with the Bilateral-
Negotiator. It must also provide the BilateralNegotiator with the performatives
that can be used as response to the current negotiation message.

Consequently, the first step is to decide which the most appropriate proto-
cols are. To make this decision, we must pay attention to the expressiveness
of the proposals for which it allows, the restrictions that it poses over the con-
tents of the proposals and the performatives it allows, cf. Section §3.4. In ad-
dition, the negotiation protocol has also an influence on the decision-making
algorithms.

A.4. Decision-making roles 201

We have selected a common negotiation protocol described by Sierra
and others and detailed in Section §3.4. The implementation of this protocol
(cf. Figure §A.3) involves the definition of interface ISimpleBilateralProtocol
that represents the interface with the other party; the implementation of class
BilateralHandler, which implements both ISimpleBilateralProtocol and
IBargainingProtocolHandler and uses the state pattern [54] to deal with the
protocol; and the implementation of class SimpleProtocolHandler, which im-
plements interface IConfigurableProtocolHandler and simply returns new
instances of class BilateralHandler.

A.4 Decision-making roles

The NegoFAST framework specifies the interface and protocol of decision-
making roles, which include PerformativeSelector, BuilderManager, Propos-
alBuilder and CommitHandler. However, neither the NegoFAST framework
nor August provide any implementation. To build an automated negotiation
system, at least an implementation of each of them must be provided. Specif-
ically, an automated negotiation system must provide one implementation of
the PerformativeSelector and the CommitHandler, and must provide one or
more implementations of the BuilderManager and the ProposalBuilder. Nev-
ertheless, there is usually just one BuilderManager that selects, configures and
invokes several ProposalBuilders.

As a consequence, the next step is on deciding which algorithms should
implement these decision-making roles. Section §4.2 reviews many of these
algorithms and Section |§7.4.1 and Section §8.4.1 outline some alternatives to
implement them. This decision may be influenced by the model used to ex-
press agreements, proposals and preferences and the bargaining protocol be-
cause the use of a particular algorithm may depend on a certain preferences
model or a concrete bargaining protocol. However, generally speaking, only
ProposalBuilders and BuilderManager are influenced by them. In particular,
ProposalBuilders are heavily influenced because their algorithms are based on
the models of proposals and preferences and they must obey the restrictions
that the negotiation protocol poses over the contents of the proposals. Instead,
BuilderManager just must be aware of them to select and configure the appro-
priate ProposalBuilder.

In our case, the PerformativeSelector (class PerformativeSelector in Fig-
ure §A.4) implements a simple algorithm that selects performative accept
if the utility of the received proposal exceeds an user-defined thresh-
old. Otherwise, it selects performative commit. There are two Propos-

202 Appendix A. Use case: Submitting computing jobs

<<component>>

<<component>> BuilderManager

PerformativeSelector

N
J

IResponseRequester IProposalRequester

IResponseGenerator }

PerformativeSelector | = 2 BuilderManager
IBuilderManager
o)

L

<<component>>
DecisionPointCommitHandler
ICommitHandler DecisionPointCommitHandler <<§9m0r?ent>> ! <<compo.nent>> {l
S InitialBuilder ! NDFBuilder

1 1
Y L v V

. J InitialBuilder NegotiationDecisionFunctionsBuilder

ICommitRequester
0. \l/executors
StrategyExecutor <<Interface>>
I~ Tactic
meesss= ===
TimeTactic BehaviourTactic

Figure A.4: Implementation of decision-making roles.

alBuilders implemented (cf. Figure §A.4), InitialBuilder, which creates
the initial proposal by selecting the values that maximise the utility, and
NegotiationDecisionFunctionsBuilder, which implements the decision-
making algorithms proposed by Faratin and others (cf. Section §4.2). As a
consequence, the implementation of the BuilderManager is also simple: if it
is the first negotiation message, it selects InitialBuilder, in other case, it
selects NegotiationDecisionFunctionsBuilder. The implementation of the
CommitHandler (cf. Figure §A.4) is based on decisions points, i.e. binding ne-
gotiation messages are waiting for approval until a decision point takes place.
In that case, a number of binding negotiation messages are approved and the
others are rejected. In our implementation, decision points take place when
the number of binding negotiation messages waiting for approval exceeds a
threshold or the negotiation deadline is close.

A.5. Optional roles 203

A.5 Optional roles

There are other optional roles (ProtocolNegotiator, Inquirer, Informant,
WorldModeller and PoliciesManager) that are not strictly necessary to imple-
ment an automated negotiation system, but provide additional features that
may be appropriate for automated negotiation systems as detailed in Sec-
tion §2.2. Furthermore, decision-making roles may require some estimators
in the WorldModeller.

The decision of whether implementing these roles depends on the particu-
lar scenario we are tackling with the automated negotiation systems. If it is a
scenario with heterogeneous parties, it may be convenient to allow a protocol
negotiation prior to the negotiation to agree on which negotiation protocol to
use. If the scenario involves negotiating with parties of which the automated
negotiation system has no previous knowledge, it may be necessary to pro-
vide an information exchange mechanism by means of the Inquirer and the
Informant, and to build analysis-based models of the other parties by means
of the different estimators that are part of the WorldModeller. If the scenario
is dynamic, it may be convenient to develop a PoliciesManager that helps in
the coordination of concurrent negotiations (cf. Section §8.1). Regarding the
implementation itself, the ProtocolNegotiator just implements a standard pro-
tocol for negotiating negotiation protocols; Inquirer and Informant implement a
protocol™ for exchanging information such as WS-MetadataExchange [7]; and
the estimators of the WorldModeller implement some modelling algorithms
such as those described in Section §4.3.

In our case, we consider that we have heterogeneous parties and that
our scenario is dynamic, but that we do not require a vast amount of pre-
vious knowledge of the other parties because we are just going to establish
very short-term relationships with them (i.e. the submissions of only one
job). Therefore, we just provide the ProtocolNegotiator and a simple Poli-
ciesManager. The ProtocolNegotiator (cf. Figure §A.5) implements a simple
protocol negotiation protocol based on the SNego protocol[63]. This protocol
involves an initiator, implemented by class ProtocolNegotiatorInitiator,
that sends a set of accepted negotiation protocol instances to the other party,
and a responder, implemented by class ProtocolNegotiatorResponder, that
either accepts one of the negotiation protocol instances or rejects the pro-
tocol negotiation. The PoliciesManager (cf. Figure §A.5), implemented by
class SimplePoliciesManager, is very simple and just sets several policies

fNote that it is not necessary to implement a full protocol. For instance, Inquirer and In-
formant may implement the exchange of proposals that conform the first steps of the WS-
Agreement specification [4].

204 Appendix A. Use case: Submitting computing jobs

<<component>> El
N\ SimpleProtocolNegotiator
4 ()
IProtocolNegotiationRequester ProtocolNegotiator <<instantiate>> IProtocolNegotiationlnitiator
-1 - --=-= A C
1

IProtocolNegotiator 1 7 ~
\/ - IProtocolNegotiationResponder

ProtocolNegotiatorInitiator

) ——0
lincomingProtocolNegotiationReceiver | - - - - - - ProtocolNegotiatorResponder ProtocolNegotiationResponder
llncomingProtocolNegotiator IProtocolNegotiationlnitiator
<<component>> El
PoliciesManager
INegotiationPoliciesGenerator SimplePoliciesManager

N

IPolicyReceiver

Figure A.5: Implementation of optional roles.

(threshold, deadline, agreementsNumber and eagerness) based on the pref-
erences given by the user and gives them default values if the user does not
specify them in his or her preferences.

A.6 Summary

In this chapter, we have presented one use case of an automated negoti-
ation system, and we have detailed an instantiation of the NegoFAST frame-
work to support it.

Appendix B

Use case: Hosting computing jobs

he goal of this chapter is to show some of the reusability capabilities of

the NegoFAST framework. To this end, we describe the changes that
have to be made to the implementation of the automated negotiation system
described in Appendix §A to use a different decision-making model. It is or-
ganised as follows: in Section §B.1, we review the automated negotiation sys-
tem of Appendix §A|and overview the changes to be made in this appendix;
Section §B.2) Section §B.3,) Section §B.4 and Section §B.5 detail the steps that
are necessary to build the automated negotiation system;, tinally, Section §B.6
summarises the ideas of this chapter.

206 Appendix B. Use case: Hosting computing jobs

B.1 Introduction

The main design goal of the NegoFAST framework is to enhance the
reusability of the elements of the system so that they can be interchangeable.
To illustrate this reusability, in this chapter we take the automated negotiation
system described in Appendix §A as a starting point and we analyse the ad-
ditional development it involves to change it to negotiate on behalf of the job
hosting service instead of the computing job submitter. This involves, at least,
providing new implementations for some decision-making roles (i.e. Perfor-
mativeSelector, BuilderManager and ProposalBuilders). It may also involve
changes in the way of expressing preferences or agreements, and it may re-
quire some estimators to provide it with models of the other parties or the
market. The new decision-making model is inspired on the Nash bargaining
solution [95]. Section §B.4 details this decision-making model. In addition,
the automated negotiation system must be provided with an estimator of the
utility function of the other party.

B.2 Preferences, agreements and proposals

Currently, the model used to express agreements, proposals and prefer-
ences is an usual one, for which there are a variety of algorithms available.
Specifically, it expresses terms of agreements and proposals as name-value
pairs and preferences statements are expressed as name-value pairs for negoti-
ation guidelines and weighted utility functions for requirements and features.

The new decision-making model only requires an utility function that ex-
presses the preferences of the user. Therefore, the model does not need to
be changed to be used with the new decision-making model and, hence, the
implementation can be fully reused.

B.3 Negotiation protocols

The protocol implemented in Appendix §A is a usual negotiation protocol
described by Sierra and others, cf. Section §3.4. It is a simple bargaining ne-
gotiation protocol in which both parties exchange binding proposals until an
agreement is reached or one party decides to finish the negotiation.

Since the automated negotiation system is going to negotiate in the same

B.4. Decision-making roles 207

scenario and the change in the decision-making model does not have any in-
fluences on the negotiation protocol, the implementation of the Bargaining-
ProtocolHandler can be reused.

B.4 Decision-making roles

The NegoFAST framework divides the decision-making model into four
decisions, each implemented by a different role. These decisions are: selecting
a performative, which is implemented by the PerformativeSelector; selecting
the proposal creator, implemented by the BuilderManager; creating a proposal,
implemented by the ProposalBuilder; and approving the sending of a binding
proposal, implemented by the CommitHandler. Now, we have to analyse the
differences between the new decision-making model and that implemented in
Appendix §A/in order to determine which role implementations can be reused
and which roles must be implemented again.

As we mention in the introduction of this appendix, the new decision-
making model is inspired on the Nash bargaining solution [95]. In this article,
Nash describes the so-called Nash Bargaining Game, which is a simple two-
player game used to model bargaining interactions. In the Nash Bargaining
Game two players demand a portion of some good (usually some amount of
money). If the two proposals (x and y) sum to no more than the total good (i.e.
x +y < z), then both players get their demand. Otherwise, both get d, which
represents the disagreement point.

A Nash bargaining solution is a (Pareto efficient) solution to a Nash Bar-
gaining Game with the following constraints: invariant to equivalent utility
representations; Pareto optimality (cf. Section §3.1); independence of irrele-
vant alternatives, which means that if A is preferred to B, then introducing a
third option X, must not make B preferred to A; and symmetric for all players
in the game (i.e. parties in the negotiation). Under this circumstances, rational
agents will choose the Nash bargaining solution, which is the pair of proposals
(x,y) that maximises: [u;(x) —ws(d)/[uz(y) — uz(d)|, where u;(x) is the utility
function for player 1 (e.g. the consumer), u,(x) is the utility function for player
2 (e.g. the provider).

Following this idea, the decision-making model of a player involves the
following steps. First, it starts with a proposal that maximises its utility. Then,
in the following proposals, it concedes by trying to maximise the product of
both utility functions, assuming that u;(d) = u,(d) = 0.

The concession between two consecutive proposals (x,, and x,1) is de-

208 Appendix B. Use case: Hosting computing jobs

<<component>>

ProposalBasedPerformativeSelector <<component>> El

NashBuilderManager

O - - > ProposalBasedSelector @ -
IResponseGenerator . NashBuilderManager
N F—-2 IBuilderManager >
< O
IResponseRequester -

T
1
IProposalRequester 1
1

<<component>>

<<component>> El InitialBuilder
ServerCommitHandler
ICommitHandler InitialBuilder <<component>>
A - \ NashinpiredBuilder
J ServerCommitHand|er !

ICommitRequester \

NashlInspiredBuilder

v

Y Y

|EstimatorLibrary |Estimator

Figure B.1: Implementation of decision-making roles.

fined as follows: u(xny1) = d(t)uq(xn), where & : R — [0, 1] determines the
amount of concession between two consecutive proposal and depends on the
time elapsed since the beginning of the negotiation.

Performative accept is selected instead of sending a counter proposal
when the utility of the received proposal (y») is higher than the utility of its
potential response (xn41): Wi(yn) > Wi (Xny1).

Regarding the approval of binding negotiation messages, since we take the
perspective of a job hosting service, there is no restriction about the number
of agreements that we can reach provided that we do not exceed the server
capacity.

After detailing the new decision-making model, we can extract the follow-
ing conclusions about the changes we have to make with the decision-making
roles:

e The implementation of the PerformativeSelector must change because

B.5. Optional roles 209

the criterion to select performative accept is not an user-defined thresh-
old, but depends on the proposal received and its potential response.

e There are two implementation of ProposalBuilders. One is the
InitialBuilder, which creates the initial proposal by selecting the val-
ues that maximise the utility and was described in Appendix §A. The
other has to be developed and implements the above-described algo-
rithm inspired on the Nash bargaining solution.

e The implementation of the BuilderManager is almost the same as in Ap-
pendix §A, but it uses the Nash-inspired builder instead of the negotia-
tion decision functions builder.

e The implementation of the CommitHandler must change because it does
not control any restriction about the number of agreements that can be
reached and it is not decision-point based (cf. Section §A .4).

Figure §B.1 depicts the structure of the implementation of decision-
making roles, in which the PerformativeSelector is implemented by class
ProposalPerformativeSelector; the BuilderManager is implemented by
class SimpleBuilderManager; the ProposalBuilders are implemented by class
InitialBuilder and class NashInspiredBuilder, and the CommitHandler is
implemented by class ServerCommitHandler. In addition, note that class
NashInspiredBuilder requires an estimator of the utility function of the other
party that is described in the next section.

B.5 Optional roles

The automated negotiation system described in Appendix §A imple-
ments two optional roles: ProtocolNegotiator and PoliciesManager (cf. Sec-
tion §A.5). The former implements a simple protocol negotiation based on the
SNego protocol, whereas the latter sets several policies (threshold, deadline,
agreementsNumber and eagerness) based on the preferences given by the user
and gives them default values if the user does not specify them in his or
her preferences. In our case, we can reuse them both. The only consid-
eration is that the agreementsNumber policy, if set, shall be ignored by the
CommitHandler.

However, as mentioned above, an estimator of the utility function of the
other party is required to implement the Nash-inspired builder. This is im-
plemented by means of class UtilityFunctionEstimator, which implements
interface IEstimator as depicted in Figure §B.2. The implementation is based

210 Appendix B. Use case: Hosting computing jobs

<<component>>
UtilityFunctionEstimator

UtilityEstimator

|[Estimator

>7

INegotiationContext

N
1
I
1
EventsManager

|IEventListener

Figure B.2: Implementation of utility function estimator.

on the mechanism described in Reference [115] to deduce the importance the
other party gives to the negotiation terms from the other party’s proposals his-
tory. This mechanism is based on the idea that the most important attributes
for the other party are the ones with less variations between proposals. For
example, if we are not interested in delivery time, it makes no difference to
us to change it as the other party demands it. But, in the case of the price, it
is important to us to try to keep it as stable as possible with small variations.
Building on this idea, Ros and Sierra [115] define the variability of a term in a
window of size m of the proposals history as follows:

2261 Y eili] — Y [

f(4) = T

where y[j] is the value of term j in the last proposal made by the other
party, t is the current time, m > 1 and A; is the difference between the maxi-
mum and the minimum value that j can take. This variability measure allows
to calculate the weight the other party gives to each attribute in its utility func-
tion. The utility function of the other party for each attribute is estimated as
the opposite as our utility function. Note that the estimator uses the event
mechanism provided by the environmental resources to get updates when a
new negotiation message has been sent or received and, hence keep up to date
the estimation.

B.6 Summary

In this appendix, we have modified the decision-making model of the au-
tomated negotiation system described in Appendix §A and have shown how

B.6. Summary 211

the implementation of the model to express preferences, agreements and pro-
posals; the implementations of the protocol management roles; the implemen-
tations of ProtocolNegotiator and PoliciesManager; and even the implementa-
tions of some decision-making roles can be fully reused. Moreover, we have
described a Nash-inspired decision-making model.

212 Appendix B. Use case: Hosting computing jobs

Appendix C

Use case: Strategies equilibrium

n this appendix we face the problem of finding the equilibrium between

a number of strategies. We show how to integrate the NegoFAST frame-
work with a Java framework for genetic algorithms (JGAP) in order to apply a
known evolutive approach to calculate the equilibrium amongst strategies. It
is organised as follows: in Section SC.1, we introduce concepts about strategies
equilibrium and describe the genetic algorithm we use to calculate evolution-
arily stable strategies; Section §C.2|details the steps that are necessary to build
an automated negotiation system that represents the individuals during the
execution of the evolutive algorithm; Section §C.3 describes the integration
of such automated negotiation system with JGAP; tinally, Section §C.4 sum-
marises the ideas of this chapter.

214 Appendix C. Use case: Strategies equilibrium

C.1 Introduction

One of the most important elements of the theoretical study of a negotia-
tion model is its equilibrium. The earliest concept of equilibrium was the Nash
equilibrium [96]. Informally, a set of strategies are in Nash equilibrium if each
party has chosen a strategy and no party can benefit by changing his or her
strategy while the other players keep theirs unchanged.

A consequence of the Nash equilibrium is that, assuming the parties in
the negotiation are rational and that they have full knowledge of the prefer-
ences of the other parties, each party will select an equilibrium strategy when
choosing independently because it is the more profitable for them. Therefore,
the Nash equilibrium provides valuable information to predict the outcome
of a negotiation assuming, first, that every party takes the most profitable ac-
tion given his expectations of what the others will do, and second, everyone
is correct in the expectations of what the others will do, or equivalently every
one ends up doing what is expected of him or her [89]. However, Nash equi-
librium is hard to calculate in the general case [25], and it often needs to be
considered in an ad-hoc manner such as in Reference [46].

An alternative approach to calculate equilibrium strategies is the so-called
evolutionarily stable strategies (ESS). ESS were defined and introduced by
Smith and Price [124] and were later developed by Smith [125]. Here, it is
assumed that, instead of a single set of players, the game is played by large
populations of players. Players are individuals with biologically encoded,
heritable strategies. The individuals reproduce themselves and are subject
to the forces of natural selection (with the payoffs of the game representing
biological fitness). It is assumed that the alternative strategies of the game oc-
casionally occur, via a process like mutation, and for a strategy to be an ESS, it
must be resistant to these mutations.

In this appendix, we are interested in building a system that uses genetic
algorithms to calculate ESS. In particular, we show how to integrate the Nego-
FAST framework with JGAP [1], a Java framework for genetic algorithms, in
order to develop such a system.

In the literature, there are several approaches to apply evolutionary meth-
ods, usually genetic algorithms, to bargaining [40, 45, 90, 137]. In this use
case, we follow an approach similar to Fatima and others [45]. In this paper,
the authors argue that, since bargaining involves two parties with different
utility functions (consumer and provider), the population should be divided
into two subpopulations: one representing the consumer and the other rep-
resenting the provider. In such asymmetric configurations, the evolution of

C.2. The automated negotiation system 215

strategies in each subpopulation affects the evolution of strategies in the other
subpopulation (i.e., the strategies co-evolve). Thus, it is studied the compet-
itive co-evolution in which the fitness of an individual in one population is
based on direct competition with individuals of the other population.

The chromosome of an individual configures its negotiating behaviour, i.e.
its decision-making model. Furthermore, in many approaches [45, 90], chro-
mosomes also encode the requirements and features of the individual in terms
of utility functions. Therefore, chromosomes is an expression of individuals’
preferences, in which the negotiation behaviour is expressed as negotiation
guidelines. For instance, if the negotiation behaviour is based on negotia-
tion decision functions [44] (cf. Section §4.2 and Section §A.4), the chromo-
some encodes the tactic to create the proposals (time-based, resource-based or
behaviour-based), and the parameters that configure each tactic [90].

The fitness function of an individual in both populations is determined by
competition between the individuals in the two populations. Each individual
competes against either a subset or all of the other individuals in the other
population. The average utility obtained by the individual in these negotia-
tions is the individual’s fitness value. In the next stage, a new generation of
individuals is created for each population using selection, crossover and mu-
tation [45].

Next, we detail how to build an automated negotiation system, based on
the NegoFAST framework, that can be used to implement the individuals of
both populations. Then, we describe how to integrate that automated negoti-
ation system with a genetic algorithms Java framework in order to develop a
system that calculates ESS.

C.2 The automated negotiation system

We are interested in building an automated negotiation system that repre-
sents the individuals of both populations during the execution of the genetic
algorithm. This entails that we must create a lightweight automated negotia-
tion system because many of them shall be instantiated during each stage of
the execution of the genetic algorithm, one for each individual in both popu-
lations. Furthermore, in this use case we are just interested in analysing the
behaviour of different negotiation decision functions in bilateral negotiations.
Therefore, other parts of the automated negotiation system must be imple-
mented so that they interfere as little as possible in the negotiation result.

These requirements determine many of the decisions that are necessary to

216 Appendix C. Use case: Strategies equilibrium

make while developing an automated negotiation system, which are the con-
crete model in which preferences, agreements and proposals are expressed;
an implementation of the roles that implement negotiation protocols; an im-
plementation of the decision making roles; and implementations of additional
roles that provide advanced features to the automated negotiation system to
cope with heterogeneous parties in dynamic scenarios. Next, we detail each
of these decisions for our automated negotiation system.

C.2.1 Preferences, agreements and proposals

The information stored in an individual’s chromosome is mapped onto
the preferences of the individual’s automated negotiation system. Preferences
contain two kinds of information. On the one hand, they keep information
regarding the requirements and features of the individual, which should be
expressed in a way that can be interpreted by the strategies that are being
studied. In this case, the strategies are negotiation decision functions that
are designed to work with weighted utility functions. On the other hand,
preferences keep negotiation guidelines for the automated negotiation sys-
tem. These negotiation guidelines can be used to configure the negotiation
behaviour of the automated negotiation system. In this case, that means that
we shall use one negotiation guideline for each gene that expresses the nego-
tiation behaviour in the chromosome (i.e. the tactic that shall be used to create
proposals and its configuration). Therefore, negotiation guidelines can be ex-
pressed as name-value pairs. Regarding agreements and proposals, the model
chosen is imposed by negotiation decision functions, i.e. the terms of agree-
ments and proposals are name-value pairs. Note that this model for express-
ing preferences, agreements and proposals is the same as the one described in
Section §A.2.

C.2.2 Negotiation protocols

We choose to use the negotiation protocol described by Sierra and others
[119] and detailed in Section §3.4. It is a simple bargaining negotiation pro-
tocol in which both parties exchange binding proposals until an agreement is
reached or one party decides to finish the negotiation.

We have chosen this protocol for two reasons: first, because it is simple
and, hence, it helps to build a lightweight automated negotiation system; sec-
ond, because it was the protocol used in the paper in which negotiation de-
cision functions were first described [44] and, hence, it helps to minimise the

C.2. The automated negotiation system 217

impact that the negotiation protocol may have in the negotiation result. This
protocol was already implemented in Appendix §A, therefore we can reuse its
implementation.

C.2.3 Decision-making roles

The decision-making roles are heavily influenced by the strategies under
consideration, in this case negotiation decision functions, and the fact that we
want to minimise the influence of other parts of the automated negotiation
system in the negotiation result. This has the following implications:

e The implementation of the PerformativeSelector must follow the be-
haviour described in Reference [44], which involves selecting performa-
tive accept when the utility of the received proposal (y,) is higher than
the utility of its potential response (xn+1): Wi (yn) > Wi (xn41) and select-
ing performative commit otherwise. This implementation of the Perfor-
mativeSelector has been already described in Section §B.4.

e There is only one implementation of the ProposalBuilders. It is the
NegotiationDecisionFunctionsBuilder, which implements negotia-
tion decision functions and is described in Section §A 4.

e The implementation of the BuilderManager is simple and its only task is
to configure the NegotiationDecisionFunctionsBuilder with the val-
ues specified by the negotiation guidelines.

e Regarding the CommitHandler, its implementation must not interfere
with the decisions made by the other decision-making roles in order to
minimise its influence. Therefore, the best alternative is to implement
a CommitHandler that approves all binding negotiation messages. Fur-
thermore, this has an interesting side-effect: it allows the automated ne-
gotiation system to carry out n simultaneous but independent negotia-
tions, i.e. the negotiations with all individuals of the other parties shall
be carried out in parallel.

Summarising, only two trivial new implementation of roles must be
provided: an implementation of the BuilderManager that configures the
NegotiationDecisionFunctionsBuilder according to the negotiation guide-
lines and an implementation of the CommitHandler that approves all binding
negotiation messages.

218 Appendix C. Use case: Strategies equilibrium
C.2.4 Optional roles

Decision-making roles do not require any additional elements such as an
estimator to work properly. Therefore, we are not going to use any optional
roles in this automated negotiation system to keep the system as simple as
possible.

C.3 Integration with JGAP

After defining the automated negotiation system that implements the in-
dividuals of both populations (consumer and provider), it is necessary to de-
velop an implementation of genetic algorithms to carry out the evolution of
the populations. To avoid implementing a genetic algorithm from scratch, we
use JGAP [1], which is a Genetic Algorithms and Genetic Programming com-
ponent provided as a Java framework. It provides basic genetic mechanisms
that can be easily used to apply evolutionary principles to problem solutions.

The implementation of a genetic algorithm using JGAP is simple and in-
volves the following steps:

Instantiation of a sample chromosome (class Chromosome).

Definition of a fitness function by extending class FitnessFunction or
BulkFitnessFunction. The former is used to evaluate each individual
separately, whereas the latter is used to evaluate the whole population.

Creation of a configuration object to set up the execution.

Create the population and evolve it.

Figure §C.1 depicts the integration between the automated negotia-
tion system and JGAP implemented by ANSFitnessFunction. This inte-
gration is carried out, on the one hand, by implementing abstract class
BulkFitnessFunction and, on the other hand, by implementing interface
IUser. Therefore ANSFitnessFunction plays role User in the automated ne-
gotiation system.

The whole system works as follows. First, component Initialiser (cf.
Figure §C.1) instantiates a sample chromosome, sets up the execution of the
algorithm by creating two configuration objects (one for each population), cre-
ates two populations and co-evolves them.

C.3. Integration with JGAP 219

<<component>> a r\f }

Initialiser BulkFitnessFunction

<<component>>
Chromosome ANSFitnessFunction

p
<<component>> a @

JGAP IU§er @ IPreferencesResource
ICoordinator

<<component>>
AutomatedNegotiationSystem

Genotype

Figure C.1: Integration of the automated negotiation system with JGAP.

The first step of an evolution cycle is calculating the fitness function
for each individual. In this step, JGAP invokes the implementation of
BulkFitnessFunction provided by ANSFitnessFunction. To calculate the fit-
ness function, ANSFitnessFunction first maps the chromosomes of each in-
dividual onto preferences that are understood by the automated negotiation
system and, then, it uses the preferences to initialise the automated negoti-
ation system (one per individual). Next, it sends to all automated negotia-
tion system of one population, say the consumers population, the references
of all automated negotiation system of the other population in order to start
the negotiations. Note that due to the implementation of the CommitHandler,
all negotiations are independent from each other (cf. Section §C.2.3). When
an agreement is reached between a consumer and a provider, the automated
negotiation system sends it to ANSFitnessFunction. Finally, when all nego-
tiations finish, ANSFitnessFunction uses the PreferencesResource to evaluate
the utility of all agreements that have been reached. The fitness value is the
mean of all those utilities.

With the fitness value calculated for all individuals of both populations, the
genetic algorithm continues its execution. This evolution cycle is repeated a
number of times until the chromosomes of the individuals of both populations
stabilise. These chromosomes define the evolutionarily stable strategies of the
negotiation we are considering.

220 Appendix C. Use case: Strategies equilibrium

C.4 Summary

In this appendix, we are interested in building a system that calculates
equilibrium strategies by means of genetic algorithms. Particularly, we de-
scribe how to use the NegoFAST framework to build a lightweight automated
negotiation system that represents the individuals of both populations during
the execution of the genetic algorithm and how to integrate it with JGAP, a
genetic algorithm Java framework.

Appendix D

Auctions

Auctions are a popular and effective method for procuring goods and ser-
vices [5]. There are many types of auctions depending on a variety of criteria
and there have been several attempts to create a taxonomy that covers them
all [8,127]. Below, we describe the main characteristics of auctions following
the high-level aspects of negotiation protocols described in Section §3.4.

Parties: Depending on the parties, auctions may be regular auctions, reverse
auctions and double auctions. A regular auction is an auction in which
there are many consumers of a good or service and only one provider. In
a reverse auction, the configuration is the opposite, i.e., there is a unique
consumer and many providers. This type of auction is also known as
procurement auction. Finally, in a double auction, there are many con-
sumers and providers selling and buying goods or services at a time.

Performatives: The basic performatives in an auction are bid, accept, reject
and inform (information sent by the auctioneer to all bidders related to
the state of the auction). Some auctions also include a withdraw perfor-
mative like in those defined in the Trading Agent Competition [2].

Rules: Rules determines characteristics such as the number of rounds, which
bids can be submitted, when the auction finishes, who the winner is, or
which the final agreement is. These rules can be significantly different
from one type of auction to another.

Information exchanged: In auctions, the most basic type of information ex-
changed is a bid. However, it is also common to receive information
about the other parties” bids. In particular, depending on the informa-
tion revealed, auctions may be either sealed or public. In a sealed auc-
tion, a party does not know the bids submitted by the others; in a public
auction, all parties know the bids the other parties have submitted.

222 Appendix D. Auctions

Agreement terms negotiability: Depending on the terms under negotiation,
auctions can be classified into:

e One type of item, one attribute: This is the most typical configu-
ration: there is only one type of good or service auctioned and the
only attribute under negotiation is the price. However, in some auc-
tions, the number of goods or services that are being sold or bought
can also be a part of the bids.

e One type of item, multiple attributes: It is an extension of one-
attribute auctions to support negotiations with terms other than the
price. In References [15, 131], it is argued that this type of auc-
tions are specially useful in reverse auctions, i.e., in procurement
scenarios. In these cases, it is common that the consumer is inter-
ested in more terms than price. For instance, Bichler [15] present the
case of large food retailers, where consumers are interested in prod-
uct quality, price, terms of payment and delivery. Multi-attribute
auctions usually follow the same rules as single-attribute auctions.
The only difference is that, whereas in common auctions the im-
provement of the bid is clear for the bidder (i.e. the higher the
price, the higher the utility), in multi-attribute auctions, it is nec-
essary to guide the bidder in that process [14]. There are several
approaches to that, namely: in the Auction Maker Controlled Bid
Mechanism [130], the auction maker discretises the attributes un-
der negotiation and represents a preference path for the bidders.
An alternative is presented in Reference [14] following the articles
by Che [23] and Branco [17]; in this case, the auction maker reveals
a scoring function to the bidders based on its utility function.

e Combinations of items, one attribute: In these auctions, several
types of items are auctioned at the same time and bidders can bid
on combinations of these types of items. The advantage of these
auctions over one-type-of-item auctions is when bidders have non-
additive values for the goods or services that are being auctioned.
For instance, the value of a estate for a bidder may be significantly
increased if it also obtains and adjacent estate [73].

e Combinations of items, multiple attributes: Although these auc-
tions are theoretically possible, in practice they are not used because
of their complexity.

Although concrete implementations of auctions may have specific details
that make them slightly different, the most significant types of auctions are as
follows (summarised in Table §D.1):

223

9INgLIj}e dUO “Swal
jo SUoTyRUIqUIO))

anqre
auo “wat Jo adAy sup

S9INQLI}JE [BIDAS /U0
‘wayr Jo adhy sup

S9IN(LI}JE [RIDAIS /U0
wayr Jo adhy suQ

anqrie
duo “wdyr Jo adAy sup

SIINQLI}Ie [LIDAIS /U0
‘way Jo adAy eup

pa[eas /d1qnd

o1and

pore9s

po[e9s

drand

oTand

SIQUUIM
Ay} SOPISP I2duonONe
9y} ‘spoog jo suoneu
-IqUIOD JNOge SIDUID
-joxd Burssaxrdxa spig

paImndaxa
SI openy e “Jse ue
sayojewr piq e usym
‘A[snonunjuod papnu
-qns aIe SYSk pue spIg

piq 3say3my
puodas st ao1id “piq 159
Y31y sI 1ouuIm ‘spiq
IRY} Jwqns sanIe

PIq3se

Y31y st aoud ‘piq 359
Y31y ST IuUIM ‘spiq
IRy} JWAnS SonIe]
spiq Ayred ou ayrym

}I SI9OMO[J9duondne
oy pue ooud wmuun
-Xew ay} YIM SpIeIg
Spiq 1oy}

asrer ysnw sanaed pue
ooud orqeidedoe wmnw
-IUTW Y} YHIM SHIRIG

9SI19A91 J10 TR 39y

o1qnoq

9SIDASI IO TeN3Y

9SI9A91 10 Te[N39Y

9SIDASI IO T3y

9SISAII 10 Te N3N

[eLI0}eUIqUIO))

9[qnOop snonunuo))

AompdIA

pareas aotrd-jsitg

yomg

ystjsug

Ayiqeno8aN

uorjeurrojuy

sa[ny

sane

uopPNy

Table D.1: Summary of auction protocols.

224 Appendix D. Auctions

English auctions: They are always regular or reverse auctions. There is only
one good or service auctioned at the same time and there may be either
only one or several attributes under negotiation. An English auction
starts with the minimum acceptable price and parties must raise their
bids until either nobody bids higher during a certain time or a time limit
is reached. The higher bid wins the auction and all bids are public.

Dutch auctions: These auctions are always regular or reverse auctions as
well, and, like English auctions, only one good or service is auctioned
at the same time. However, in Dutch auctions there must be only one
attribute under negotiation, which is usually the price. Dutch auctions
start with the maximum price and the auctioneer lowers it while no party
bids, the first one that bids, wins the auction. Like English auctions,
Dutch auctions are public.

First-price sealed auctions: They are always regular or reverse auctions, in
which only one type of time with either one or multiple attributes are
auctioned. Unlike English and Dutch auctions, these auctions are sealed,
which means bids are not public. In these auctions, the parties submit
their bids and the winner of the auction is the party with the highest bid.
The price paid is the price of the highest bid.

Vickrey auctions: They are exactly like first-price sealed auctions except that,
whereas in first-price sealed auctions, the price paid is the price of the
highest bid; in second-price sealed auctions, the price is the second high-
est bid.

Continuous double auctions: A continuous double auction has a fixed-
duration time period during which buy orders (bids) and sell orders
(asks) are submitted continuously without any restrictions. Usually, con-
tinuous double auctions are limited to price and quantity. When a buy
order matches in price and quantity with a sell order, a trade is executed
immediately. An example of continuous double auctions is a stock ex-
change market.

Combinatorial auctions: These auctions are usually regular auctions or re-
verse auctions. There is only one attribute under negotiation, which is
the price, but the bidders can bid on combinations of goods or services.
The problem of these auctions is that the number of available combina-
tions poses problems on the rules and the information exchanged. Re-
garding the negotiation rules, each bidder sends its bids expressing their
preferences about several combinations of goods or services. After re-
ceiving all bids, the auctioneer must decide who the winner is. However,
unlike other types of auctions, in combinatorial auctions, determining

225

who the winner is is a complex problem [117]. De Vries and Vohra [35]
formulates the problem using integer constraint programming, whereas
Sandholm [117] describes several approaches based on optimisation-
problems algorithms such as greedy algorithms or dynamic program-
ming. Some commercial software such as Quotes [112] also provides
mechanisms to assess the winner in combinatorial auctions. The other
problem combinatorial auctions must face is how to transmit bidder’s
preferences in a succinct way to the auctioneer [35], i.e. which informa-
tion is exchanged. One approach is to send preferences in the form of
restrictions [99]; an alternative is to rely on an oracle, which is a program
that given a bidder and a combination of goods or services, computes
the bid for it [117].

226 Appendix D. Auctions

Bibliography

[4]

[5]

[7]

[8]

Java genetic algorithms package (JGAP), 2008. Available at http://jgap.
sourceforge.net

Trading agent competition. http://www.sics.se/tac/, 2008

L. Amgoud, S. Belabbes, and H. Prade. Towards a formal frame-
work for the search of a consensus between autonomous agents. In
Proceedings of the 4th international joint conference on Autonomous
agents and multiagent systems, pages 537-543. ACM Press, 2005. DOI:
10.1145/1082473.1082555

A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. WS-Agreement Specifica-
tion, 2007. Available at http://www.ogf.org/documents/GFD.107.pdf

P. Anthony and N. R. Jennings. Developing a Bidding Agent For Multi-
ple Heterogeneous Auctions. ACM Transactions Internet Technology, 3
(3):185-217,2003. DOI:110.1145/857166.857167.

R. Ashri, I. Rahwan, and M. Luck. Architectures for negotiating agents.
In Multi-Agent Systems and Applications III: 3rd International Cen-
tral and Eastern European Conference on Multi-Agent Systems, volume
2691 of Lecture Notes in Computer Science, pages 136-146, 2003. DOIL:
10.1007/3-540-45023-8 14.

K. Ballinger, B. Bissett, D. Box, F. Curbera, D. Ferguson, S. Graham, C. K.
Liu, F. Leymann, B. Lovering, R. McCollum, A. Nadalin, D. Orchard,
S. Parastatidis, C. von Riegen, J. Schlimmer, J. Shewchuk, B. Smith,
G. Truty, A. Vedamuthu, S. Weerawarana, K. Wilson, and P. Yendluri.
WS-MetadataExchange Specification, 2004. Available at http://www.ibm.
com/developerworks/library/specification/ws-mex/

C. Bartolini, C. Preist, and N. R. Jennings. Architecting For Reuse: A
Software Framework For Automated Negotiation. In F. Giunchiglia,

http://jgap.sourceforge.net�
http://jgap.sourceforge.net�
http://www.sics.se/tac/�
http://dx.doi.org/10.1145/1082473.1082555�
http://www.ogf.org/documents/GFD.107.pdf�
http://dx.doi.org/10.1145/857166.857167�
http://dx.doi.org/10.1007/3-540-45023-8_14�
http://www.ibm.com/developerworks/library/specification/ws-mex/�
http://www.ibm.com/developerworks/library/specification/ws-mex/�

228

[10]

[11]

[12]

[17]

Bibliography

J. Odell, and G. Weis, editors, Agent-Oriented Software Engineering
III: Third International Workshop, volume 2585 of Lecture Notes in
Computer Science, pages 88-100. Springer-Verlag, 2003. DOI:10.1007/
3-540-36540-0 7

C. Bartolini, C. Preist, and N. R. Jennings. A Software Framework
For Automated Negotiation. In R. Choren, A. Garcia, C. Lucena, and
A. Ramonovsky, editors, Software Engineering For Multi-Agent Sys-
tems III: Research Issues and Practical Applications, volume 3390 of Lec-
ture Notes in Computer Science, pages 213-235. Springer Verlag, 2005

C. Bartolini, C. Preist, and N. R. Jennings. A Software Frame-
work For Automated Negotiation. Technical report HPL-2006-33,
HP Labs, 2006. Available at http://www.hpl.hp.com/techreports/2006/
HPL-2006-33.html.

M. Benyoucef, H. Alj, K. Levy, and R. K. Keller. A Rule-Driven Approach
for Defining the Behaviour of Negotiating Software Agents. In DCW
‘02: Revised Papers from the 4th International Workshop on Distributed
Communities on the Web, pages 165-181. Springer-Verlag, 2002. DOIL:
10.1007/3-540-36261-4 16.

M. Benyoucef and M.-H. Verrons. Configurable e-negotiation systems
for large scale and transparent decision making. Group Decision and
Negotiation, 17(4):211-224, 2007. DOI:|10.1007/s10726-007-9073-y.

T. Berners-Lee, R. Fielding, and L. Masinter. RFC3986: Uniform Re-
source Identifier (URI): Generic syntax, 2005. Available at http://www.
ietf.org/rfc/rfc3986.txt

M. Bichler and H. Werthner. A classification framework of multidimen-
sional, multi-unit procurement negotiations. In Proceedings 11th In-
ternational Workshop on Database and Expert Systems Applications.,
pages 1003-1009, 2000. DOI:110.1109/DEXA.2000.875149.

M. Bichler. An experimental analysis of multi-attribute auctions.
Decision Support Systems, 29(3):249-268, 2000. DOI: 10.1016/
S0167-9236(00)00075-0.

N. Bieberstein, S. Bose, L. Walker, and A. Lynch. Impact of service-
oriented architecture on enterprise systems, organizational structures,
and individuals. IBM Systems Journal, 44(4):691-708, 2005

F. Branco. The design of multidimensional auctions. The RAND Journal
of Economics, 28(1):63-81, 1997

http://dx.doi.org/10.1007/3-540-36540-0_7�
http://dx.doi.org/10.1007/3-540-36540-0_7�
http://www.hpl.hp.com/techreports/2006/HPL-2006-33.html�
http://www.hpl.hp.com/techreports/2006/HPL-2006-33.html�
http://dx.doi.org/10.1007/3-540-36261-4_16�
http://dx.doi.org/10.1007/s10726-007-9073-y�
http://www.ietf.org/rfc/rfc3986.txt�
http://www.ietf.org/rfc/rfc3986.txt�
http://dx.doi.org/10.1109/DEXA.2000.875149�
http://dx.doi.org/10.1016/S0167-9236(00)00075-0�
http://dx.doi.org/10.1016/S0167-9236(00)00075-0�

Bibliography 229

[18]

[19]

[27]

[28]

P. Brereton. The software customer/supplier relationship. Communica-
tions of the ACM, 47(2):77-81, 2004. DOI:[10.1145/966389.966394

A. Brown and G. Grant. Framing the Frameworks: A Review of IT Gov-
ernance Research. Communications of the Association for Information
Systems, 15(712):696-712, 2005

A.Byde, M. Yearworth, K.-Y. Chen, and C. Bartolini. AutONA: a system
for automated multiple 1-1 negotiation. In IEEE International Confer-
ence on E-Commerce, pages 59—-67, 2003. Available at http://ieeexplore.
ieee.org/xpls/abs_all.jsp?arnumber=1210234.

J.J. Castro-Schez, N. R. Jennings, X. Luo, and N. R. Shadbolt. Acquiring
domain knowledge for negotiating agents: a case of study. International
Journal of Human-Computer Studies, 61(1):3-31, 2004. DOI: 10.1016/].
ijhcs.2003.09.006

M. K. Chang and C. C. Woo. A speech-act-based negotiation protocol:
design, implementation, and test use. ACM Transactions Information
Systems, 12(4):360-382, 1994. DOI:10.1145/185462.185477

Y.-K. Che. Design competition through multidimensional auctions. The
RAND Journal of Economics, 24(4):668—-680, 1993. Available at http://
www.jstor.org/stable/2555752.

H.-M. Chen, R. Kazman, and A. Garg. Bitam: an engineering-principled
method for managing misalignments between business and it archi-
tectures. Science of Computer Programming, 57(1):5-26, 2005. DOI:
10.1016/}.scic0.2004.10.002

X. Chen and X. Deng. Recent development in computational complexity
characterization of nash equilibrium. Computer Science Review, 1(2):
88-99, 2007. DOI: 10.1016/].cosrev.2007.09.002.

D. Chiu, S. Cheung, P. Hung, S. Chiu, and A. Chung. Developing e-
Negotiation support with a meta-modeling approach in a Web services
environment. Decision Support Systems, 40(1):51-69, 2005. DOI: 10.
1016/].dss.2004.04.004.

S. P. M. Choi, J. Liu, and S.-P. Chan. A genetic agent-based negotia-
tion system. Computer Networks, 37(2):195-204, 2001. DOI:10.1016/
S1389-1286(01)00215-8.

R. M. Coehoorn and N. R. Jennings. Learning on Opponents Preferences
to Make Effective Multi-Issue Negotiation Trade-Offs. In Proceedings of
the 6th International Conference On Electronic Commerce, pages 59-68.
ACM Press, 2004

http://dx.doi.org/10.1145/966389.966394�
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1210234�
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1210234�
http://dx.doi.org/10.1016/j.ijhcs.2003.09.006�
http://dx.doi.org/10.1016/j.ijhcs.2003.09.006�
http://dx.doi.org/10.1145/185462.185477�
http://www.jstor.org/stable/2555752�
http://www.jstor.org/stable/2555752�
http://dx.doi.org/10.1016/j.scico.2004.10.002�
http://dx.doi.org/10.1016/j.cosrev.2007.09.002�
http://dx.doi.org/10.1016/j.dss.2004.04.004�
http://dx.doi.org/10.1016/j.dss.2004.04.004�
http://dx.doi.org/10.1016/S1389-1286(01)00215-8�
http://dx.doi.org/10.1016/S1389-1286(01)00215-8�

230

[29]

[30]

[38]

Bibliography

M. Comuzzi, C. Francalanci, and P. Giacomazzi. Trade-off based nego-
tiation of traffic conditioning and service level agreements in diffserv
networks. In Proceedings of the 19th International Conference on Ad-
vanced Information Networking and Applications, pages 189-194. IEEE
Computer Society, 2005. DOI:10.1109/AINA.2005.330

C. Crawford, G. Bate, L. Cherbakov, K. Holley, and C. Tsocanos. Toward
an on demand service-oriented architecture. IBM Systems Journal, 44
(1):81-107, 2005

K. Czajkowski, I. T. Foster, C. Kesselman, V. Sander, and S. Tuecke.
SNAP: A Protocol For Negotiating Service Level Agreements and Coor-
dinating Resource Management in Distributed Systems. In D. G. Feitel-
son, L. Rudolph, and U. Schwiegelshohn, editors, Job Scheduling Strate-
gies For Parallel Processing, 8th International Workshop, volume 2537 of
Lecture Notes in Computer Science, pages 153-183. Springer, 2002

Q. Dai and R. J. Kauffman. Business models for internet-based b2b elec-
tronic markets. International Journal of Electronic Commerce, 6(4):41-
73,2002.

A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Lud-
wig, M. Polan, M. Spreitzer, and A. Youssef. Web Services On Demand:
WSLA-Driven Automated Management. IBM Systems Journal, 43(1):
136-158, 2004.

J. Dang and M. Huhns. Concurrent multiple-issue negotiation for
internet-based services. Internet Computing, IEEE, 10(6):42-49, 2006.
DOI:10.1109/MIC.2006.118.

S. De Vries and R. Vohra. Combinatorial auctions: A survey. INFORMS
Journal on Computing, 15(3):284-309, 2003. DOI: 10.1287/ijoc.15.3.284.
16077

M. Dean and G. Schreiber. OWL web ontology language reference. http:
/lwww.w3.org/TR/owl-ref/, 2004

J. Dujmovic. A Method for Evaluation and Selection of Complex Hard-
ware and Software Systems. The 22nd Intl Conference for the Resource
Management and Performance Evaluation of Enterprise CS. CMG, 96:
368-378, 1996

A. Elfatatry and P. Layzell. Negotiating in Service-Oriented Envi-
ronments. Communications of the ACM, 47(8):103-108, 2004. DOI:
10.1145/1012037.1012044

http://dx.doi.org/10.1109/AINA.2005.330�
http://dx.doi.org/10.1109/MIC.2006.118�
http://dx.doi.org/10.1287/ijoc.15.3.284.16077�
http://dx.doi.org/10.1287/ijoc.15.3.284.16077�
http://www.w3.org/TR/owl-ref/�
http://www.w3.org/TR/owl-ref/�
http://dx.doi.org/10.1145/1012037.1012044�

Bibliography 231

[39]

A. Elfatatry and P. J. Layzell. A negotiation description language. Soft-
ware, Practice and Experience, 35(4):323-343, 2005. DOI: 10.1002/spe.
638

T. Ellingsen. The Evolution of Bargaining Behavior. The Quarterly Jour-
nal of Economics, 112(2):581-602, 1997

M. Esteva, J. A. Rodriguez-Aguilar, C. Sierra, P. Garcia, and J. L. Ar-
cos. On the formal specifications of electronic institutions. In Agent
Mediated Electronic Commerce, The European AgentLink Perspective,
volume 1991 of Lecture Notes in Computer Science, pages 126-147.
Springer, 2001

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many
faces of publish/subscribe. ACM Computing Surveys, 35(2):114-131,
2003. DOI:110.1145/857076.857078

P. Faratin, C. Sierra, and N. R. Jennings. Using Similarity Criteria to
Make Trade-Offs in Automated Negotiations. Artificial Intelligence,
142:205-237, 2002. DOI:10.1016/S0004-3702(02)00290-4

P. Faratin, C. Sierra, and N. R. Jennings. Negotiation Decision Func-
tions For Autonomous Agents. International Journal of Robotics
and Autonomous Systems, 24(3-4):159-182, 1998. DOI: 10.1016/
S0921-8890(98)00029-3

S. Fatima, M. Wooldridge, and N. Jennings. Comparing equilibria for
game theoretic and evolutionary bargaining models. In 5th Interna-
tional Workshop on Agent-Mediated E-Commerce, pages 70-77, 2003.
Available at http://eprints.ecs.soton.ac.uk/8568/.

S. S. Fatima, M. Wooldridge, and N. R. Jennings. Bargaining with incom-
plete information. Annals of Mathematics and Artificial Intelligence, 44
(3):207-232, 2005. DOI:110.1007/s10472-005-4688-7

S. S. Fatima, M. Wooldridge, and N. R. Jennings. An agenda-based
framework for multi-issue negotiation. Artificial Intelligence, 152(1):1-
45,2004. DOI: 10.1016/S0004-3702(03)00115-2

S. S. Fatima, M. Wooldridge, and N. R. Jennings. A Comparative Study
of Game Theoretic and Evolutionary Models of Bargaining For Software
Agents. Artificial Intelligence Review, 23(2):187-205, 2005. DOI: 10.
1007/s10462-004-6391-1.

FIPA. FIPA Dutch Auction Interaction Protocol Specification,
2001. Awvailable at http://standards.computer.org/fipa/specs/fipa00032/
XC00032F.pdf

http://dx.doi.org/10.1002/spe.638�
http://dx.doi.org/10.1002/spe.638�
http://dx.doi.org/10.1145/857076.857078�
http://dx.doi.org/10.1016/S0004-3702(02)00290-4�
http://dx.doi.org/10.1016/S0921-8890(98)00029-3�
http://dx.doi.org/10.1016/S0921-8890(98)00029-3�
http://eprints.ecs.soton.ac.uk/8568/�
http://dx.doi.org/10.1007/s10472-005-4688-7�
http://dx.doi.org/10.1016/S0004-3702(03)00115-2�
http://dx.doi.org/10.1007/s10462-004-6391-1�
http://dx.doi.org/10.1007/s10462-004-6391-1�
http://standards.computer.org/fipa/specs/fipa00032/XC00032F.pdf�
http://standards.computer.org/fipa/specs/fipa00032/XC00032F.pdf�

232

[50]

[54]

[55]

[59]

[60]

Bibliography

FIPA. FIPA English Auction Interaction Protocol Specification,
2001. Awvailable at http://standards.computer.org/fipa/specs/fipa00031/
XC00031F.pdf

FIPA. FIPA Iterated Contract Net Interaction Protocol Specification,
2001. Available at http://www.fipa.org/specs/fipa00030/XC0O0030F.pdf

FIPA. FIPA Contract Net Interaction Protocol Specification, 2002. Avail-
able at http://www.fipa.org/specs/fipa00029/

S. Frolund and J. Koistinen. Quality-of-service specification in dis-
tributed object systems. Distributed Systems Engineering, 5(4):179-
202, 1998. Available at http://www.iop.org/EJ/article/0967-1846/5/4/005/
ds8404.pdf

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-
ements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1994

H. Gimpel, H. Ludwig, A. Dan, and B. Kearney. PANDA: Specifying
Policies For Automated Negotiations of Service Contracts. In Inter-
national Conference on Service-Oriented Computing, Lecture Notes in
Computer Science, pages 287-302. Springer-Verlag, 2003. DOI:110.1007/
094513

G. Governatori and Z. Milosevic. Dealing with contract violations:
formalism and domain specific language. In 9th IEEE International
EDOC Enterprise Computing Conference, pages 46-57, 2005. DOI:
10.1109/EDOC.2005.13.

G. Governatori. Representing business contracts in ruleml. International
Journal Cooperative Information Systems, 14(2-3):181-216, 2005. DOI:
10.1142/50218843005001092

D. G. Gregg and S. Walczak. Auction advisor: an agent-based online-
auction decision support system. Decision Support Systems, 41(2):449—
471, 2006. DOI:/10.1016/j.dss.2004.07.007.

B. N. Grosof and T. C. Poon. Sweetdeal: representing agent contracts
with exceptions using xml rules, ontologies, and process descriptions.
In Proceedings of the 12th international conference on World Wide Web,
pages 340-349. ACM Press, 2003. DOI:10.1145/775152.775200.

Y. Guo,]J. P. Muller, and C. Weinhardt. Learning user preferences for
multi-attribute negotiation: An evolutionary approach. In Multi-Agent

http://standards.computer.org/fipa/specs/fipa00031/XC00031F.pdf�
http://standards.computer.org/fipa/specs/fipa00031/XC00031F.pdf�
http://www.fipa.org/specs/fipa00030/XC00030F.pdf�
http://www.fipa.org/specs/fipa00029/�
http://www.iop.org/EJ/article/0967-1846/5/4/005/ds8404.pdf�
http://www.iop.org/EJ/article/0967-1846/5/4/005/ds8404.pdf�
http://dx.doi.org/10.1007/b94513�
http://dx.doi.org/10.1007/b94513�
http://dx.doi.org/10.1109/EDOC.2005.13�
http://dx.doi.org/10.1142/S0218843005001092�
http://dx.doi.org/10.1016/j.dss.2004.07.007�
http://dx.doi.org/10.1145/775152.775200�

Bibliography 233

[61]

[65]

[66]

Systems and Applications III: 3rd International Central and Eastern Eu-
ropean Conference on Multi-Agent Systems. Proceedings, volume 2691
of Lecture Notes in Artificial Intelligence, pages 303-313, 2003. DOI:
10.1007/3-540-45023-8 29

M. He, N. R. Jennings, and H.-F. Leung. On Agent-Mediated Electronic
Commerce. IEEE Transactions On Knowledge and Data Engineering, 15
(4):985-1003, 2003

P. C. K. Hung, H. Li, and J.-]. Jeng. WS-Negotiation: An Overview of
Research Issues. In Proceedings of the 37th Annual Hawaii International
Conference on System Sciences. IEEE Computer Society, 2004. Available
at http://portal.acm.org/citation.cfm?id=962749.962847.

IETE. SNego protocol. http:/tools.ietf.org/html/draft-ietf-cat-snego-08,
1998

N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, M. Wooldridge,
and C. Sierra. Automated Negotiation: Prospects, Methods and Chal-
lenges. Group Decision and Negotiation, 10:199-215, 2001. DOIL:
10.1023/A:1008746126376

J.Jin and K. Nahrstedt. Qos specification languages for distributed mul-
timedia applications: a survey and taxonomy. Multimedia, IEEE, 11(3):
74-87,2004. DOI:'110.1109/MMUL.2004.16

C. Jonker, V. Robu, and J. Treur. An agent architecture for multi-
attribute negotiation using incomplete preference information. Au-
tonomous Agents and Multi-Agent Systems, 15(2):221-252, 2007. DOI:
10.1007/s10458-006-9009-y.

C. Kalmbach and D. Palmer. eCommerce and alliances: how eCom-

merce is atfecting alliances in value chain businesses. Accenture LLP,
2002

A. H. Karp. Rules of engagement for automated negotiation. In Proceed-
ings of the 1st IEEE International Workshop on Electronic Contracting,
pages 32-39, 2004. DOI:10.1109/WEC.2004.1319506.

A. H. Karp. Getting Agents to Negotiate Good Deals: A Progress Report.
Technical report HPL-2002-161, HP Laboratories, 2002

A. H. Karp. Representing Utility for Automated Negotiation. Technical
report HPL-2003-153, HP Laboratories, 2003. Available at http://www.
hpl.hp.com/techreports/2003/HPL-2003-153.html.

http://dx.doi.org/10.1007/3-540-45023-8_29�
http://portal.acm.org/citation.cfm?id=962749.962847�
http://tools.ietf.org/html/draft-ietf-cat-snego-08�
http://dx.doi.org/10.1023/A:1008746126376�
http://dx.doi.org/10.1109/MMUL.2004.16�
http://dx.doi.org/10.1007/s10458-006-9009-y�
http://dx.doi.org/10.1109/WEC.2004.1319506�
http://www.hpl.hp.com/techreports/2003/HPL-2003-153.html�
http://www.hpl.hp.com/techreports/2003/HPL-2003-153.html�

234

[71]

[72]

[76]

[79]

[81]

Bibliography

A. H. Karp. Rules of Engagement For Automated Negotiation. Technical
report HPL-2003-152, HP Laboratories, 2003. Available at http://www.
hpl.hp.com/techreports/2003/HPL-2003-152.html

A.H. Karp, R. Wy, K.-Y. Chen, and A. Zhang. A Game Tree Strategy For
Automated Negotiation. In Proceedings of the 5th ACM conference on
Electronic commerce, pages 228-229. ACM Press, 2004. DOI: 10.1145/
988772.988807

F. Kelly and R. Steinberg. A Combinatorial Auction with Multiple Win-
ners for Universal Service. Management Science, 46(4):586-596, 2000

J. B. Kim and A. Segev. A Framework For Dynamic EBusiness Ne-
gotiation Processes. In IEEE International Conference On Electronic
Commerce, pages 84-91. IEEE Computer Society, 2003. Available at
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=1210237.

J. B.Kim and A. Segev. A web services-enabled marketplace architecture
for negotiation process management. Decision Support Systems, 40(1):
71-87,2005. DOI:10.1016/).dss.2004.04.005.

M. Klein, P. Faratin, H. Sayama, and Y. Bar-Yam. Protocols For Nego-
tiating Complex Contracts. IEEE Intelligent Systems, 18(6):32-38, 2003

R. Kowalczyk. Fuzzy e-negotiation agents. Soft Computing, 6(5):337-
347,2002. DOI:110.1007/s00500-002-0187-5.

R. Kowalczyk and V. Bui. On Constraint-Based Reasoning in E-
Negotiation Agents. In Agent-Mediated Electronic Commerce III, pages
31-46. Springer-Verlag, 2001

K. Kurbel and I. Loutchko. A model for multi-lateral negotiations on
an agent-based job marketplace. Electronic Commerce Research and
Applications, 4(3):187-203, 2005. DOI:10.1016/).elerap.2005.01.002.

C. Li, J. Giampapa, and K. Sycara. Bilateral negotiation decisions with
uncertain dynamic outside options. In Proceedings of the 1st IEEE Inter-
national Workshop on Electronic Contracting, pages 54-61, 2004. DOI:
10.1109/WEC.2004.1319509.

C. Li, J. Giampapa, and K. Sycara. Bilateral negotiation decisions with
uncertain dynamic outside options. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, 36(1):31-44,
2006. DOI:10.1109/TSMCC.2005.860573.

http://www.hpl.hp.com/techreports/2003/HPL-2003-152.html�
http://www.hpl.hp.com/techreports/2003/HPL-2003-152.html�
http://dx.doi.org/10.1145/988772.988807�
http://dx.doi.org/10.1145/988772.988807�
http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=1210237�
http://dx.doi.org/10.1016/j.dss.2004.04.005�
http://dx.doi.org/10.1007/s00500-002-0187-5�
http://dx.doi.org/10.1016/j.elerap.2005.01.002�
http://dx.doi.org/10.1109/WEC.2004.1319509�
http://dx.doi.org/10.1109/TSMCC.2005.860573�

Bibliography 235

[82]

[88]

[89]

[90]

[91]

P. F. Linington, Z. Milosevic,]J. Cole, S. Gibson, S. Kulkarni, and S. Neal.
A unified behavioural model and a contract language for extended
enterprise. Data & Knowledge Engineering, 51(1):5-29, 2004. DOI:
10.1016/j.datak.2004.03.005

G. Lodi, F. Panzieri, D. Rossi, and E. Turrini. SLA-Driven clustering of
qgos-aware application servers. IEEE Transactions on Software Engineer-
ing, 33(3):186-197, 2007. DOI:110.1109/TSE.2007.28.

A. Ludwig, P. Braun, R. Kowalczyk, and B. Franczyk. A framework
for automated negotiation of service level agreements in services grids.
In Business Process Management Workshops, volume 3812 of Lecture
Notes in Computer Science, pages 89-101. Springer, 2006. DOI:/10.1007/
11678564 9.

H. Ludwig, A. Dan, and R. Kearney. Cremona: An Architecture and Li-
brary For Creation and Monitoring of WS-Agreements. In Proceedings
of the 2nd International Conference On Service Oriented Computing.
ACM Press, 2004

X. Luo, N. R. Jennings, and N. Shadbolt. Acquiring tradeoff preferences
for automated negotiations: A case study. In Agent-Mediated Electronic
Commerce V, volume 3048 of Lecture Notes in Computer Science, pages
37-55. Springer, 2004. Available at http://www.springerlink.com/content/
fbj3j7a6fmnelyry

X. Luo, N. R. Jennings, N. Shadbolt, H.-F. Leung, and J. H. Lee. A fuzzy
constraint based model for bilateral, multi-issue negotiations in semi-
competitive environments. Artificial Intelligence, 148(1-2):53-102, 2003.
DOI: 10.1016/S0004-3702(03)00041-9

O. Martin-Diaz. Emparejamiento Automatico de Servicios Web usando
Programacion con Restricciones. PhD thesis, Universidad de Sevilla,
2007

A. Mas-Colell. Nash equilibrium and economics: Remarks. Computer
Science Review, 1(2):100-102, 2007. DOI: 10.1016/j.cosrev.2007.10.002

N. Matos, C. Sierra, and N. R. Jennings. Determining successful negoti-
ation strategies: an evolutionary approach. In Y. Demazeau, editor, Pro-
ceedings of the 3rd International Conference on Multi-Agent Systems,
pages 182-189. IEEE Press, 1998. Available at http://citeseer.ist.psu.edu/
matos98determining.html

P. McBurney, R. M. V. Eijk, S. Parsons, and L. Amgoud. A dia-
logue game protocol for agent purchase negotiations. Autonomous

http://dx.doi.org/10.1016/j.datak.2004.03.005�
http://dx.doi.org/10.1109/TSE.2007.28�
http://dx.doi.org/10.1007/11678564_9�
http://dx.doi.org/10.1007/11678564_9�
http://www.springerlink.com/content/fbj3j7a6fmnelyry�
http://www.springerlink.com/content/fbj3j7a6fmnelyry�
http://dx.doi.org/10.1016/S0004-3702(03)00041-9�
http://dx.doi.org/10.1016/j.cosrev.2007.10.002�
http://citeseer.ist.psu.edu/matos98determining.html�
http://citeseer.ist.psu.edu/matos98determining.html�

236

[101]

[102]

Bibliography

Agents and Multi-Agent Systems, 7(3):235-273, 2003. DOI: [10.1023/A:
1024787301515

C. Molina-Jimenez, S. Shrivastava, and J. Warne. A method for speci-
fying contract mediated interactions. In 9th IEEE International EDOC
Enterprise Computing Conference, pages 106-115, 2005. DOI:10.1109/
EDOC.2005.1

C. Molina-Jimenez, J. Pruyne, and A. van Moorsel. The Role of Agree-
ments in IT Management Software. In R. de Lemos, C. Gacek, and A. Ro-
manovsky, editors, Architecting Dependable Systems III, volume 3549
of Lecture Notes in Computer Science, pages 36-58. Springer-Verlag
GmbH, 2005. DOI:10.1007/11556169 2.

R. Myerson and M. Satterthwaite. Efficient Mechanisms for Bilateral
Trading. Journal of Economic Theory, 29(2):265-281, 1983

J. Nash. The Bargaining Problem. Econometrica, 18(2):155-162, 1950

J. Nash. Non-cooperative games. The Annals of Mathematics, 54(2):
286-295, 1951

T. D. Nguyen and N. R. Jennings. Reasoning About Commitments in
Multiple Concurrent Negotiations. In Proceedings of the 6th Interna-
tional Conference On E-Commerce, pages 77-84, 2004

T. Nguyen and N. Jennings. Managing commitments in multiple
concurrent negotiations. Electronic Commerce Research and Appli-
cations, 4:362-376, 2005. Available at http://www.ecs.soton.ac.uk/~nrj/
download-files/ecra05.pdf

N. Nisan. Bidding and allocation in combinatorial auctions. In Proceed-

ings of the 2nd ACM conference on Electronic commerce, pages 1-12.
ACM Press, 2000. DOI:110.1145/352871.352872

N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic ws-
agreement partner selection. In Proceedings of the 15th international
conference on World Wide Web, pages 697-706. ACM Press, 2006. DOI:
10.1145/1135777.1135879

L. Olsina and G. Rossi. Measuring web application quality with we-
bgem. IEEE MultiMedia, 9(4):20-29, 2002. DOI: 10.1109/MMUL.2002.
1041945

OMG. Negotiation facility specification, 2002. Available at http://www.
omg.org/cgi-bin/doc?formal/2002-03-14

http://dx.doi.org/10.1023/A:1024787301515�
http://dx.doi.org/10.1023/A:1024787301515�
http://dx.doi.org/10.1109/EDOC.2005.1�
http://dx.doi.org/10.1109/EDOC.2005.1�
http://dx.doi.org/10.1007/11556169_2�
http://www.ecs.soton.ac.uk/~nrj/download-files/ecra05.pdf�
http://www.ecs.soton.ac.uk/~nrj/download-files/ecra05.pdf�
http://dx.doi.org/10.1145/352871.352872�
http://dx.doi.org/10.1145/1135777.1135879�
http://dx.doi.org/10.1109/MMUL.2002.1041945�
http://dx.doi.org/10.1109/MMUL.2002.1041945�
http://www.omg.org/cgi-bin/doc?formal/2002-03-14�
http://www.omg.org/cgi-bin/doc?formal/2002-03-14�

Bibliography 237

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

A. Ordanini. What drives market transactions in b2b exchanges? Com-
munications of the ACM, 49(4):89-93, 2006. DOI: http://doi.acm.org/10.
1145/1121949.11219583

S. Paurobally, P. J. Turner, and N. R. Jennings. Automating Negotiation
For M-Services. IEEE Transactions On Systems, Man, and Cybernetics,
Part A, 33(6):709-724, 2003

J. Pérez, M. Bravo, R. Pazos, G. Reyes, J. Frausto, V. Sosa, and M. Lépez.
Design of a shared ontology used for translating negotiation primitives.
In International Conference on Computational Science and Its Applica-
tions, volume 3983 of Lecture Notes in Computer Science, pages 169—
178, 2006. DOI:10.1007/11751632 18

S. Phelps, V. Tamma, M. Wooldridge, and I. Dickinson. Toward Open
Negotiation. IEEE Internet Computing, 8(2):70-75, 2004

I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Par-
sons, and L. Sonenberg. Argumentation-Based Negotiation. The
Knowledge Engineering Review, 18(4):343-375, 2003. DOI: 10.1017/
S0269888904000098

H. Raiffa. The art and science of negotiation. Harvard University Press,
1982

S. D. Ramchurn, N. R. Jennings, and C. Sierra. Persuasive Negotia-
tion For Autonomous Agents: A Rhetorical Approach. In Procedings of
the IJCAI Workshop On Computational Models of Natural Argument,
pages 9-17, 2003

M. Resinas, P. Fernandez, and R. Corchuelo. Towards automated service
trading. In Proceedings Of The International Conference On E-Business,
pages 38-45, 2006.

M. Resinas, P. Ferndndez, and R. Corchuelo. An analysis of service
trading architectures. In K. Bauknecht, B. Proll, and H. Werthner, ed-
itors, 7th International Conference on E-Commerce and Web Technolo-
gies, volume 4082 of Lecture Notes in Computer Science, pages 203-212.
Springer, 2006. DOI:10.1007/11823865 21.

A. Reyes-Moro, J. Rodriguez-Aguilar, M. Lépez-Sanchez, J. Cerquides,
and D. Gutiérrez-Magallanes. Embedding decision support in e-
sourcing tools: Quotes, a case study. Group Decision and Negotiation,
V12(4):347-355, 2003. DOI:110.1023/A:1024824005214.

http://dx.doi.org/http://doi.acm.org/10.1145/1121949.1121953�
http://dx.doi.org/http://doi.acm.org/10.1145/1121949.1121953�
http://dx.doi.org/10.1007/11751632_18�
http://dx.doi.org/10.1017/S0269888904000098�
http://dx.doi.org/10.1017/S0269888904000098�
http://dx.doi.org/10.1007/11823865_21�
http://dx.doi.org/10.1023/A:1024824005214�

238

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Bibliography

J. Reynolds and R. Mofazali. The complete e-commerce book: design,
build and maintain a successful web-based business. CMP Books, 2000

S. Rinderle and M. Benyoucef. Towards the automation of e-negotiation
processes based on web services - a modeling approach. In 6th Inter-
national Conference on Web Information Systems Engineering, volume
3806 of Lecture Notes in Computer Science, pages 443-453. Springer,
2005. DOI:10.1007/11581062 34.

R. Ros and C. Sierra. A negotiation meta strategy combining trade-off
and concession moves. Autonomous Agents and Multi-Agent Systems,
12(2):163-181, 2006. DOI:/10.1007/s10458-006-5837-z.

A. Ruiz-Cortés, O. Martin-Diaz, A. Durén-Toro, and M. Toro. Improving
the automatic procurement of web services using constraint program-
ming. International Journal Cooperative Information Systems, 14(4):
439-468, 2005. DOI:110.1142/S0218843005001225

T. Sandholm. Algorithm for optimal winner determination in com-
binatorial auctions. Artificial Intelligence, 135(1-2):1-54, 2002. DOI:
10.1016/S0004-3702(01)00159-X

T. Sandholm and V. Lesser. Leveled commitment contracts and strategic
breach. Games and Economic Behavior, 35(1):212-270, 2001.

C. Sierra, P. Faratin, and N. R. Jennings. A Service-Oriented Negotiation
Model Between Autonomous Agents. In Proceedings of the 8th Euro-
pean Workshop On Modelling Autonomous Agents in a Multi-Agent
World, pages 17-35. Springer-Verlag, 1997

C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A framework
for argumentation-based negotiation. In Proceedings of the 4th Inter-
national Workshop on Intelligent Agents IV, Agent Theories, Architec-
tures, and Languages, pages 177-192. Springer-Verlag, 1998. Available
at http://veracruz.lania.mx/~pablo/articles/jennings.pdf

K. M. Sim and C. Y. Choi. Agents that react to changing market situa-
tions. Systems, Man and Cybernetics, Part B, IEEE Transactions on, 33
(2):188-201, 2003. DOI:110.1109/TSMCB.2002.805694.

K. M. Sim and S. Y. Wang. Flexible negotiation agent with relaxed deci-
sion rules. Systems, Man and Cybernetics, Part B, IEEE Transactions on,
34(3):1602-1608, 2004. DOI:'10.1109/TSMCB.2004.825935.

K. M. Sim and E. Wong. Toward market-driven agents for electronic
auction. Systems, Man and Cybernetics, Part A, IEEE Transactions on,
31(6):474-484, 2001. DOI:10.1109/3468.983399.

http://dx.doi.org/10.1007/11581062_34�
http://dx.doi.org/10.1007/s10458-006-5837-z�
http://dx.doi.org/10.1142/S0218843005001225�
http://dx.doi.org/10.1016/S0004-3702(01)00159-X�
http://veracruz.lania.mx/~pablo/articles/jennings.pdf�
http://dx.doi.org/10.1109/TSMCB.2002.805694�
http://dx.doi.org/10.1109/TSMCB.2004.825935�
http://dx.doi.org/10.1109/3468.983399�

Bibliography 239

[124] J. M. Smith and G. R. Price. The logic of animal conflict. Nature, 246
(5427):15-18, 1973. DOI:10.1038/246015a0

[125] J. M. Smith. Evolution and the Theory of Games. Cambridge University
Press, 1982

[126] R.Smith. The contract net protocol: High-level communication and con-
trol in a distributed problem solver. IEEE Transactions on Computers, 29
(12):1104-1113, 1980. DOI: http://doi.ieeecomputersociety.org/10.1109/
TC.1980.1675516

[127] M. Strobel and C. Weinhardt. The Montreal Taxonomy for Elec-
tronic Negotiations. = Group Decision and Negotiation, 12(2):143-
164, 2003. Available at http://www.ingentaconnect.com/content/klu/grup/
2003/00000012/00000002/05119337.

[128] M. Strobel. Design of roles and protocols for electronic negotiations.
Electronic Commerce Research, 1(3):335-353, 2001. DOI: 10.1023/A:
1011554323604.

[129] S. Y. Su, C. Huang, J. Hammer, Y. Huang, H. Li, L. Wang, Y. Liu,
C. Pluempitiwiriyawej, M. Lee, and H. Lam. An internet-based nego-
tiation server for e-commerce. The VLDB Journal on Very Large Data
Bases, 10(1):72-90, 2001. DOI:110.1007/s007780100051

[130] J. Teich, H. Wallenius, and J. Wallenius. Multiple-issue auction and mar-
ket algorithms for the world wide web. Decision Support Systems, 26
(1):49-66, 1999. DOI: 10.1016/S0167-9236(99)00016-0.

[131] J. E. Teich, H. Wallenius, J. Wallenius, and A. Zaitsev. Designing elec-
tronic auctions: An internet-based hybrid procedure combining aspects
of negotiations and auctions. Electronic Commerce Research, V1(3):301-
314, 2001. DOI:10.1023/A:1011550222695

[132] V. Tosic, B. Pagurek, K. Patel, B. Esfandiari, and W. Ma. Management
applications of the web service offerings language (wsol). Information
Systems, 30(7):564-586, 2005. DOI:10.1016/).i1s.2004.11.005.

[133] D. Trastour, C. Bartolini, and C. Preist. Semantic Web Support For the
Business-to-Business E-Commerce Pre-Contractual Lifecycle. Comput-
ing Networks, 42(5):661-673, 2003

[134] D. Tsichritzis. Electronic commerce. Centre Universitaire pur lalnfor-
matique (University of Geneva), 1998

http://dx.doi.org/10.1038/246015a0�
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TC.1980.1675516�
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TC.1980.1675516�
http://www.ingentaconnect.com/content/klu/grup/2003/00000012/00000002/05119337�
http://www.ingentaconnect.com/content/klu/grup/2003/00000012/00000002/05119337�
http://dx.doi.org/10.1023/A:1011554323604�
http://dx.doi.org/10.1023/A:1011554323604�
http://dx.doi.org/10.1007/s007780100051�
http://dx.doi.org/10.1016/S0167-9236(99)00016-0�
http://dx.doi.org/10.1023/A:1011550222695�
http://dx.doi.org/10.1016/j.is.2004.11.005�

240

[135]

[136]

[137]

[138]

[139]

Bibliography

M. T. Tu, E. Griffel, M. Merz, and W. Lamersdorf. A Plug-in Architecture
Providing Dynamic Negotiation Capabilities For Mobile Agents. In Mo-
bile Agents: Second International Workshop. Proceedings., volume 1477
of Lecture Notes in Computer Science, pages 222-236. Springer-Verlag,
1998. DOI:110.1007/BFb0057642

M. Tu, C. Seebode, F. Griffel, and W. Lamersdorf. Dynamics: An actor-
based framework for negotiating mobile agents. Electronic Commerce
Research, 1(1 - 2):101-117, 2001. DOI:10.1023/A:1011575629387

H. P. Young. An evolutionary model of bargaining. Journal of Economic
Theory, 59(1):145-168, 1993.

E. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multia-
gent systems: The Gaia methodology. ACM Transactions on Software
Engineering and Methodologies, 12(3):317-370, 2003. DOI: 10.1145/
958961.958963

D. Zeng and K. Sycara. Bayesian Learning in Negotiation. International
Journal Human-Computer Studies, 48(1):125-141, 1998

http://dx.doi.org/10.1007/BFb0057642�
http://dx.doi.org/10.1023/A:1011575629387�
http://dx.doi.org/10.1145/958961.958963�
http://dx.doi.org/10.1145/958961.958963�

This document was typeset on 2008/7/11 using REBO «2.11 for IKTEX ...
Should you want to use this document class, please send mail to
contact@tdg-seville.info.

mailto:contact@tdg-seville.info�

