BRINGING THE KNOWLEDGE ON
THE WEB TO SOFTWARE AGENTS

0

A FRAMEWORK FOR DEVELOPING SEMANTIC
WRAPPERS

JOSE LUIS ARJONA
UNIVERSITY OF SEVILLA

DOCTORAL DISSERTATION
ADVISED BY DR. RAFAEL CORCHUELO

e/%
»

TGheD.stnbuted
"'SEVILLE

DECEMBER, 2004

First published in December 2004 by
The Distributed Group

ETSI Informatica

Avda. de la Reina Mercedes s/n
Sevilla, 41012. SPAIN

Copyright (© MMIV The Distributed Group
http://www.tdg-seville.info
contact@tdg-seville.info

In keeping with the traditional purpose of furthering science, education and research,
it is the policy of the publisher, whenever possible, to permit non-commercial use and
redistribution of the information contained in the documents whose copyright they
own. You however are not allowed to take money for the distribution or use of these
results except for a nominal charge for photocopying, sending copies, or whichever
means you use redistribute them. The results in this document have been tested care-
fully, but they are not guaranteed for any particular purpose. The publisher or the
holder of the copyright do not offer any warranties or representations, nor do they
accept any liabilities with respect to them.

Classification (ACM 1998): D.2.2 Design Tools and Techniques: Software libraries;
D.2.11 Software Architectures; H.3.5 Online Information Services: Web-based ser-
vices; 1.2.4 Knowledge Representation Formalisms and Methods: Representation lan-
guages; 1.2.6 Learning: Concept learning, Induction, Knowledge acquisition; 1.2.11
Distributed Artificial Intelligence: Intelligent agents, Multiagent systems.

Support: Partially supported by the Spanish Ministry of Science and Technology
under grants TIC-2000-1106-C02-01, FIT-150100-2001-78, TIC2003-02737-C02-01, and
Castilla-La Mancha Local Government under grant PCB-02-001.

UNIVERSITY OF SEVILLA

The committee in charge of evaluating the dissertation presented by
José Luis Arjona in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Computer Engineering, hereby recommends
of this dissertation and awards the author the

grade
Miguel Toro Bonilla
Catedratico de Universidad
Univ. de Sevilla
Mario G. Piattini Velthuis Carlos Delgado Kloos
Catedratico de Universidad Catedratico de Universidad
Univ. de Castilla-La Mancha Univ. Carlos IIT de Madrid
Rafael Berlanga Llavori Emilio Santiago Corchado Rodriguez
Titular de Universidad Titular de Universidad
Univ. Jaume I Univ. de Burgos

To put record where necessary, we sign minutes in

Baum - Bdume
Rmcl - Rb‘u:)et’
Zeoller - 2V
Herprt-Freaw

Information and Knowledge by Melanie, aged twelve.

To Sina.
She gives semantics to my life.

Contents

Acknowledgements il ix
N o 11 1 o 4 xi
ReSUmMeN .. ittt ittt it ittt tieeeteeeeenesennennnns xii1
I Preface
T Introductionciiiiiiiiiinteeeneeeeeeennnnnnnns 3
1.1 Research context s 4
1.1.1 Softwareagents il 4
1.1.2 Ontologies i 5
1.1.3 Information and knowledge 6
1.2 Summary of contributions oL 8
1.3 Structure of this dissertation 10
II Background information

From information to knowledge 15
2.1 Introduction 16
2.2 Knowledge representation oo 16

221 Formalisms 17

2.2.2 Traditional languages 19
23 Thenowadaysweb i 20
24 Thesemanticweb 22

i Contents
2.5 Reasoning on the semanticweb 25
2.6 SUMMATY 26
3 Extracting information fromtheweb 29
3.1 Introduction 30
3.2 Characterising Wrappersoiiiiiiiiiiiiiia.. 30
3.3 Common inductive wrappersiiiiiiin.. 33
3.4 Wrappers maintenance, 35
35 Summary ... 37
4 Extracting knowledge fromtheweb 39
4.1 Introduction 40
4.2 Common ontology extraction systems 40
4.3 Common instance extractionsystems 42
4.4 Common knowledge base extraction systems 44
45 Summary ... 45
5 Webservicesoooiiiiiiiiiiiiiiiiiiiiiiiiienne, 47
51 Introduction i 48
52 Nowadayswebservices 48
5.3 Semanticwebservices i 50
54 Summary 51
IIT Our approach
6 Motivationciiiiiiiiiiiiiiiiiiiiiiiii 55
6.1 Introduction i 56
6.2 Problems 56
6.3 Analysis of current solutions o 57
6.3.1 Thesemanticweb, 57
6.3.2 Inductive wrappers il 58
6.3.3 Ad-hocsolutions il 59
6.3.4 Web knowledge extraction systems 59
6.4 DISCUSSION 60
6.5 SUMMAry 61
7 The WebMeaning framework 63

7.1 Introduction i, 64

Contents 111

7.2 Preliminariest e 64
721 Webpagesooiiiiii 66
7.2.2 Output format of syntactic wrappers 66
7.2.3 Assertions aboutindividuals 67
7.2.4 Result of the knowledge extraction process 70

7.3 CoredefinitioNscuiuiniii e 70
7.3.1 Syntacticwrappers i 70
7.3.2 Syntactic verifiers oo 72
7.3.3 Semantic translators 72
7.3.4 Semanticverifiers 73
7.3.5 Bringingitall together 73

74 SUMMATY ... 74

8 Semantictranslation i i, 75

8.1 Introductiont 76

8.2 Problem definition 76

8.3 A representation for individuals 000 78

8.4 Semantic descriptions il 79
8.4.1 Cardinality constraints on properties 81
8.4.2 Semantics of a semantic description 81

8.5 Building semantic descriptions oL 84
8.5.1 Collapsable vertices 84
8.5.2 Collapsablepaths 84
8.5.3 Collapsing individual trees 88

8.6 Relating information and semantic descriptions 89
8.6.1 Influence areas and mirrored influence areas 91
8.6.2 Building the location information 93

8.7 Semantic translators 98

8.8 Summary 98

9 A materialisation of the semantic translation problem .. 99

9.1 Introduction it 100

9.2 Building semantic descriptions L 100
921 Algorithm 102
9.2.2 COrrectnessouuiiiiii e 106
923 Complexityo 107

9.3 Calculating locations L. 107

931 Algorithm 108

iv Contents
0.3.2 COorrectnesso 111
933 Complexitycooiiiiiiiiiii 112
9.4 Semantic translator 112
941 Algorithm 112
9.4.2 COrreCtneSS . ..o vt v ittt e e e e 118
9.43 Complexity 118
95 Summary 119
10 A proof-of-concept implementation 121
10.1 Introduction oot 122
10.2 The architecture 122
103 Realisationo oo it 124
104 Summary ... 125
IV Final remarks
11 Conclusions and futureworkccevvvevo... 129
V Appendices
A Mathematical notescoiiiiiiiiiiieinnnennn 133
AT NOtation . ..o 133
A2 Plotkin’s method 133
A3 The Treedatatypeco oo 136
B Equivalence between Aboxes and IndividualTrees 139
B.1 Building an IndividualTree from an Abox 140
B.2 Building an IndividualTree from an Abox 142
C ACIONYMS ..ttt ittt ittt iiieenenennenns 145
Bibliography o il 147

List of Figures

1.1

21

3.1
3.2
3.3

51
52

6.1

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Information vs. knowledge ool 7
Ontological web languages evolution 24
Life cycle of an inductive wrapper 31
Structured, semi-structured and unstructured web pages 32
Life cycle of the maintenance of inductive wrappers 36
The infrastructure needed to support web services 49
The IBM web services architecturestack 50
Semantic web evolution 58
Semantic translator workflow 65
Sample of StructuredInformation L. 68
An ontology about eating houseso oL 69
Activities to build a semantic translator 77
Anindividual tree 78
A semantic description ool 80
Different types of edges in a semantic description 82
Partitioning a labelled tree into collapsable paths 87
The builSD functiont 90
Areasof Influence 92
Mirrored areas of influence i 94
The translation relation 96

vi List of Figures

9.1 Requirements for algorithm buildSD 101
9.2 Example of how buildSDworks 103
9.3 StructuredInformation (repetition of Figure §7.2(b)) 108
9.4 Example of how buildLocworks 109
9.5 Example of how sematicTranslatorworks 113
10.1 The WebMeaning architecture 123
10.2 A realisation of WebMeaning 124

10.3 Three distinct scenarios in WebMeaning 126

List of Tables

2.1 Expressiveness of most relevant ontological web languages 23
2.2 Features of some reasoners for the semanticweb 27
3.1 Features of some inductive wrappers 33
4.1 Knowledge extraction proposals 41

A.1 Summary of the notation used in this dissertation 134

viii List of Tables

Acknowledgements

Acknowledgement of one another’s faults
is the highest duty imposed by our love of truth.

Ambrose G. Bierce, 18421914
Newspaper columnist

I am in no doubt that the best moment during the development of your
Philosophiee Doctor Thesis and the writing of your dissertation is when you
finish them both. Not only because you reach the end of a hard way, but
also because you can have a few minutes to relax, look back, and put your
gratitude to many people in black ink.

Many individuals, friends and colleagues have been instrumental in mak-
ing this dissertation a reality. Pivotal in this role was my research advisor,
Dr. Rafael Corchuelo, since I would not have been able to finish my work
without his help. Since he was the advisor of my master thesis, he has always
trusted me and has always had the suitable, right words in every situation.

The help of a good research team is of uttermost importance. I have been
lucky since my thesis work has been developed in the bosom of The Dis-
tributed Group, who have given me the encouragement and support I have
needed since the beginning. Chiefly Dr. Miguel Toro, for his cheerful willing-
ness to proof-read and criticise this document; without his support, I could
not have begun this work. I shall never forget the arguments I had with Dr.
David Ruiz, Dr. Antonio Ruiz and Joaquin Pefia, or the breakfasts with José
A. Pérez, Octavio Martin and David Benavides, which made my long working
hours more bearable. Pablo Trinidad has joined to our group recently, and I
am sure he shall be a valuable colleague in future.

This research also benefited tremendously from colleagues at other univer-
sities. I would like to thank to Dr. Carlos Delgado at Carlos III University of

X Acknowledgements

Madrid, Dr. Rafael Berlanga at Jaume I University of Castellén, and Dr. Asun-
cién Goémez-Pérez at Technical University of Madrid for providing me with
valuable insights and feedback for our research work.

Finally, and most important, I thank my parents for bringing me into this
world and for supporting me unconditionally in the pursuit of my life; and to
my wife, Sina, without whose love, support and tenacity, not a word would
have been written.

Abstract

You will have only an opportunity
to maKe a first impression.

Popular saying

In recent years, the web has consolidated as one of the most important
knowledge repositories. A major challenge for software agents has become
sifting through an unwieldy amount of data to extract meaningful informa-
tion. This process is difficult because of the following reasons: first, the in-
formation on the web is mostly available in human-readable forms that lack
formalised semantics that would help agents understand it; second, the in-
formation sources are likely to change their structure, which usually has an
impact on their presentation but not on their semantics; and, third, it is a huge
repository with about 4200 Terabytes of information readily available.

The members of The Distributed Group have been working on distrib-
uted systems since 1997. They have focused on multiparty interaction models
which provide the programmer with adequate mechanisms to describe com-
plex interactions from a conceptual point of view. Results obtained have been
materialised in major journal publications and theses. The research work
in this dissertation opened a new research path in the group. It focuses on
enabling the design and implementation of clean, reusable, understandable
agents. Currently, this research path is being reinforced in Joaquin Pefia’s
thesis, in which mechanisms to abstractedly describe complex interactions in
multi-agent societies are been developed.

In this dissertation, we present a new framework to extract semantically-
meaningful information from today’s non-semantic web. Its main advan-
tages are that it associates semantics with the information extracted, which
improves agent interoperability; it can also deal with web changes, which im-
proves adaptability; furthermore, it achieves a complete separation of issues

xii Abstract

in the task of knowledge extraction, automating the development of distrib-
uted knowledge extractors. Last, the detailed study of other authors” work
proves that our proposal constitutes a novel, original contribution.

Resumen

Solo tendrds una oportunidad
de dar una primera impresion.

Dicho popular

En los dltimos afios la web se ha consolidado como uno de los reposito-
rios de informacién mds importantes. Un gran reto para los agentes software
ha sido tratar con esa cantidad, poco manejable de datos, para extraer infor-
macién con significado. Este proceso es dificil por las siguientes razones: en
primer lugar, la informacién en la web tiene como objeto su consumo por seres
humanos y no contiene una descripcién de su seméntica, lo que ayudaria a los
agentes entenderla; en segundo lugar, la web cambia continuamente, lo que
tiene generalmente un impacto en la presentacion de la informacién pero no
en su semantica; por tltimo, es un enorme repositorio con 4 200 Terabytes de
informacion lista para ser consumida.

Los miembros de The Distributed Group han estado trabajando en sis-
temas distribuidos desde 1997. Concretamente, han trabajado en modelos de
interacciéon multipartitos que proporcionan al programador los mecanismos
adecuados para describir interacciones complejas desde un punto de vista
conceptual. Los resultados obtenidos se han materializado en publicaciones
en revistas importantes y tesis doctorales. El trabajo de investigacion en esta
memoria abrié una nueva linea de investigacion en el grupo. Su objetivo es
facilitar el disefio e implementacién de agentes software. Actualmente, esta
linea de investigacion se refuerza con la tesis de Joaquin Pefia, en la que se es-
tdn desarrollando mecanismos para describir abstractamente las interacciones
complejas en sociedades multi-agentes.

En esta memoria presentamos un nuevo marco de trabajo para la extrac-
cién de informacion con significado de la web sintactica actual. Sus princi-
pales ventajas son: asocia semdntica a la informacién extraida, mejorando
la interoperabilidad del agente; trata los cambios en la web, potenciando la

Xiv Resumen

adaptabilidad; ademads, establece una separacién de responsabilidades en la
tarea de extraccion, automatizando el desarrollo de extractores de conocimien-
to distribuidos. Por tltimo, el detallado estudio del trabajo relacionado de-
muestra que nuestra propuesta constituye una contribucién original.

Part 1
Preface

Chapter 1

Introduction

There is nothing more difficult to take in hand,

more perilous to conduct, or more uncertain in its success,
than to take the lead in the introduction

of a new order of things.

Niccolo Machiavelli, 1469—1527
Italian dramatist, historian, and philosopher

n this dissertation, we report on our work to design a new framework that

helps software agent developers to construct software agents able to unveil the
semantically-meaningful information residing on today’s non-semantic web. In this
chapter, we first introduce the elements that constitute the context of our research work
in Section §1.1; we then summarise our main contributions in Section §1.2; finally,
we describe the structure of the dissertation in Section §1.3.

4 Chapter 1. Introduction

1.1 Research context

In this section, we present a bird’s eye view of the main concepts we use
through the rest of the dissertation. First, we introduce the software agents
paradigm in Section §1.1.1; our view of ontologies in the web context is pre-
sented in Section §1.1.2; finally, the difference between information and knowl-
edge is shown in Section §1.1.3.

1.1.1 Software agents

A software agent is a piece of software that exhibits the characteristics
tirstly described by Wooldridge and Jennings in Ref. [122], namely: autonomy,
reactivity, pro-activity and social ability. Autonomy means that an agent op-
erates without direct intervention of other agents or humans and has control
over its actions and its internal state. Reactivity means that an agent perceives
its environment and responds in a timely fashion to changes that occur in it.
Pro-activity means that an agent does not simply react to changes in the en-
vironment, but exhibits goal-directed behaviour and takes the initiative when
it considers it appropriate. Social ability means that an agent interacts with
other agents (if it is needed) to complete its tasks and helps or contends with
others to achieve their goals. Many researchers agree in that this vision is just
as a characterisation; depending on their community, they also attach new at-
tributes to software agents, e.g., mobility in distributed systems, adaptability
in machine learning, or intelligence in artificial intelligence.

Autonomy, reactivity, pro-activity and social ability are not Boolean prop-
erties. We need to think in terms of dimension or measure of degree of them
[83] in such a way that a software agent is a piece of software that exceeds a
certain predefined threshold value for these attributes. Therefore, software ap-
plications that deserve to be called agents do not necessarily need to exhibit a
maximum degree of autonomy, reactivity, pro-activity and social ability. Prop-
erties are not quantifiable and the adjustment of the threshold is totally subjec-
tive. Thus, software agents range from a simple procedure with prescriptive
directions to new generation software that truly exhibits learning and artificial
intelligence capabilities.

Nwana presents in Ref. [98] a classification of existing agent-based soft-
ware. Seven different types of agents are defined: collaborative, interface,
mobile, information, reactive, hybrid and smart agents. He also argues that
some of these types could be seen as characteristics in a multi-dimensional
space, therefore enabling the development of heterogeneous agent systems.

1.1. Research context 5

He presents the motivation and benefits of each type, as well as some applica-
tion examples. For the purposes of this dissertation, we focus on information
agents.

Information agents are software agents that typically have access to mul-
tiple, heterogeneous and geographically distributed information web sources,
and manage relevant information on behalf of their users or other agents. This
includes retrieving, extracting, analysing, manipulating, and integrating infor-
mation. These agents are used frequently to analyse competitors” offers or to
forecast what their future directions shall be based on the information resid-
ing on some web pages [23, 48, 69], e.g., BargainFinder which compares CDs
prices amongst Internet stores for CDs, or Jasper which works on behalf of a
user or community of users to store, retrieve and inform other agents of useful
information on the web. In this dissertation, we focus on this kind of agents,
that is, information agents that need pieces of information residing on web to
accomplish their goals, what ever they are.

1.1.2 Ontologies

The term ontology has been used for long time ago in philosophy, and
refers to a philosophical theory about the nature of existence. This term was
redefined later in artificial intelligence. Currently, there exist many definitions
of the term ontology, providing different and complementary points of views
of the same idea: ontologies are models of the world. Guarino [56] established
a comprehensive survey of the ontology definition from the artificial intelli-
gence community.

Nowadays, in the artificial intelligence community, the most cited ontology
definition is the one by Gruber [54, 55]:

An ontology is an explicit specification of a conceptualisation.
This definition was refined by Borst in Ref. [17]:
Ontologies are defined as a formal specification of a shared conceptualisation.

Studer and his colleagues analysed previous definitions and explained some
terms [117]:

Conceptualization refers to an abstract model of phenomena in the world by
having identified the relevant concepts of those phenomena. Explicit means

6 Chapter 1. Introduction

that the type of concepts used, and the constraints on their use are explicitly
defined. Formal refers to the fact that the ontology should be machine read-
able. Shared reflects that the ontology should capture consensual knowledge
accepted by the communities.

Another important definition was given by Berners-Lee and his colleagues
in the context of the semantic web [15]:

An ontology is a document or file that formally defines the relations among
terms. A typical ontology has a taxonomy defining the classes and their rela-
tions and a set of inference rules powering reasoning functions.

Two main ideas follow from this definition: the former is that, in the seman-
tic web, an ontology is more than a simple taxonomy of concepts; the latter
is that an ontology should enable automatic reasoning on the domain being
described.

For the purposes of this dissertation, an ontology is a formal explicit de-
scription of concepts and relationships amongst them in a domain of discourse
that allows us to specify knowledge about the information on web. It is com-
posed of the following elements: concepts that represent entities in the do-
main, properties describing relationships amongst them or their attributes, re-
striction on properties, and axioms to model axioms.

1.1.3 Information and knowledge

Information and knowledge have been defined in several contexts, e.g.,
philosophy, information technology, social sciences or economy. The defini-
tion that we use in this dissertation is established in the context of the semantic
web, this means that the model used for the representation of the information
or knowledge is the web, and that software agents are the consumers of infor-
mation or knowledge.

Information are facts, statements about a particular subject, without a for-
mal, explicit description of their semantics. The web is a suitable model for the
representation of information. In the web model, we use HTML [104, 105] for
publishing information on the web. HTML documents are text files that con-
sist of tags that are used to specify how a web browser renders the information
residing in them for human consumption.

Knowledge is information that a software agent can understand. In order
to understand information on the web, a software agent needs an ontology

1.1. Research context 7

/

Individual instances:

Book(B_1) N
isbn(B_1, "0201633612")
title(B_1,"Design Patterns")
Amazon.com publisher(B_1, "Addison-Wesley Pub Co")
author(B_1,A_1), author(B_1,A_2)

KNOWLEDGE author(B_1,A_3), author(B_1,A_4)

|:1> Author(A_1), Author(A_2)
Author(A_3), Author(A_4)
name(A_1,"Erich Gamma")

name(A_1,"Richard Helm")
name(A_1,"Ralph Johnson")
name(A_1,"John Vlissides") Y

Ontology:

Vx 3y e isbn(x, y) = Book(x)

Vx o3y, zeishn(x,y) Aisbn(x,z) = y=z
Vx 3y e title(x, y) = Book(x)

Vx o3y, zetitle(x,y) Atitle(x,z) = y =z
Title: Design Patterns Vx e3y & publisher(x,y) = Book(x)
ISBN: 0201633612

Authors: Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides
publisher: Addison-Wesley Pub Co Vx e 3y e name(x, y) = Author(x)

Vx 3y, z ® name(x, y) Aname(x,z) = y =z Y,

NOILVINHOALNI

Vx o3y, z e publisher(x,y) A publisher(x,z) = y =z
Vx ® Jy ® author(x, y) = Book(x) A Author(y)

Figure 1.1: Information vs. knowledge.

that specifies the semantic information about that information, and a set of
individual instances that relate the information on the web with the concepts
specified in the ontology (an ontology with a set of individual instances of
concepts is a knowledge base). The term “understand” refers to the ability of
automatically reasoning on the knowledge, and there exist several degrees of
reasoning, from the classification of concepts and individuals (taxonomy), to
the discovery of new knowledge from axioms specified in the ontology.

Figure §1.1 illustrates the difference between information and knowledge.
It offers us two views: the former is a piece of information; it is represented as
simple text which is not a suitable representation format for software agents to
formal automatic reasoning, since there is not an external specification of the
semantics of information on text; reasoning on this information requires to em-
bed the knowledge about the text into the functional logic of software agents.
The latter is a piece of knowledge composed of an ontology formulated in
first-order logic and a set of individual instances that relates the information
on web with the ontology; software agents are able to reason automatically on
this view, because there exists an explicit description of the semantics.

8 Chapter 1. Introduction

1.2 Summary of contributions

Our dissertation focuses on providing engineering support for software
developers when information agents that require a piece knowledge residing
on web pages to satisfy their goals need to be build. We have analysed the
most important proposals in knowledge extraction carefully, and concluded
that they are not usually well-suited to be applied to the development of soft-
ware agents able to “understand” the information on the web at a sensible cost
because of three problems, namely: the web is user-friendly, that is, the im-
plied meaning of the terms that appear in web pages can be easily interpreted
by humans, but there is not a reference to the ontology that describes them pre-
cisely, which complicates communication and interoperability amongst agents
[15]; the layout and the appearance of web pages may change unexpectedly,
which does not change the meaning of the information they provide, but
may invalidate unexpectedly the automatic extraction methods used so far
[19, 46, 82, 116]; last, the web is huge and distributed, so handcrafted solu-
tions are infeasible and automatisation and distribution are necessary features
to take advantage of this potential.

Our main result is a new framework to which we refer to as WebMeaning.
Its main advantages are that it associates semantics with the information ex-
tracted, which improves agent interoperability; it can also deal with changes
to the structure of a web page, which improves adaptability, and it achieves a
complete separation of issues in the task of knowledge extraction, automating
the development of distributed knowledge extractors.

Many results have materialised in publications in conferences and journals.
Below is a list of publications in which we point out the main cornerstones
during the development of our results:

2001: We analysed the information extraction problem in the context of a mul-
ti-agent society, and proposed a reference architecture for software agents
to access to the information in the web. The results were presented in the
ZOCO meeting [6].

2002: We refined our results and devised an abstraction mechanism to bring
the knowledge on the web to software agents. This mechanism was de-
fined as core agents called knowledge channels in a multi-agent society.
The results were published as a short paper in the 14th Conference on
Advanced Information Systems Engineering (CAiSE '02) [9], and as reg-
ular paper in UPGRADE /Novatica [30].

We reported on two case studies in which our work was valuable: the
former was the personalisation of web sites based on users’ profiles (the

1.2. Summary of contributions 9

2003:

2004:

information from the web that is interesting to a user can be extracted au-
tomatically and displayed in a suitable form); this work was presented at
The Adaptive Hypermedia and Adaptive Web-Based Systems (AH2002)
Conference [8]. The latter was to develop a web agent that helps a Span-
ish political party decide if it should organise an outdoors meeting to
attract voters; data mining techniques establish the agent decision rules
and our framework feeds them with information from the web; this
work was published in the International Journal of Computers, Systems
and Signals [29].

We polished our ideas and devised a formalisation of the kernel of our
framework and the results were published as short paper in the 15th
Conference on Advanced Information Systems Engineering (CAiSE "03),
and as regular paper in the 2003 IEEE/WIC International Conference on
Web Intelligence (WI2003) [11].

Recently, we have submitted a paper describing the main results in this
dissertation to the Software: Practice and Experience journal.

Other important results are the citations, because they transmit us that our
research work is on the good way. Below is a complete list of references to our
work:

Conference and journal citations. Our work has been cited in the context of

knowledge management and software agents by the following papers:
“Enhancing the adaptivity of an existing website with an epiphyte rec-
ommender system” [109] in the journal of New Review of Hypermedia
and Multimedia; “An Ontology-Based Knowledge Management Plat-
form” [3] presented at the Workshop on Information Integration on the
Web (IIWEB’03) at IJCAI'03; “Agent Systems Today: Methodological
Considerations” [100] presented at the International Conference on Man-
agement of e-Commerce and e-Government; “A Generic Model for Dis-
tributed Real-Time Scheduling Based on Dynamic Heterogeneous Data”
[16] presented at the Pacific Rim International Workshop on Multi-Agent
Systems; “A Multi-agent System for Semantic Information Retrieval”
[121] presented at the 17th Conference of the Canadian Society for Com-
putational Studies of Intelligence; we would like to mention a reference
from a paper!! we cannot understand because it is in Japanese.

Recommended bibliography. Our work appears as recommended bibliogra-

phy in the doctoral course “Retrieval and extraction of information from

Hhttp://www.im.fju.edu.tw/conference/proceeding.htm

10 Chapter 1. Introduction

the Web” offered by the Department of Computer Science at the Rosario
National University (Argentina)™?. Also, in an undergraduate course of-
fered by the Department of Computer Engineering & Informatics at the
University of Patras (Greece)™. Last, the Multimedia Web Search Agents
(DIOGENES) research project™, at the Department of Computer Science
and Engineering in The University of Texas at Arlington recommends
one of our papers for reading.

Thesis. The Master Thesis “Using Software Agents to Index Data for an E-
Travel System” [95] from the Computer Science Department at Okla-
homa State University at Tulsa, references our work in the context of
information extraction.

Technical reports. The technical report “The World of Travel: A Comparative
Analysis of Classification Methods” [51], from the Computer Science De-
partment at Oklahoma State University at Tulsa, references our work in
the context of a categorisation of travel-related web resources.

1.3 Structure of this dissertation
This dissertation is organised as follows:

Part I: Preface. It comprises this introduction only.

Part II: Background information. Here, our goal is to provide the reader with
a deep understanding of the research context in which our results have
been developed. In Chapter §2, we present the current web, then the
new semantic web is presented; we also report on the formalisms and
languages that enable the transition to this new web era. In Chapter §3
and Chapter §4, we focus other proposals, which are classified and pre-
sented proposals along two different dimensions: information extraction
and knowledge extraction. In Chapter §5, we report on the web ser-
vices since they are the key to the proof-of-concept implementation of
our framework.

Part III: Our contribution. It is the core of our dissertation, and it is organ-
ised into five chapters. In Chapter §6, we motivate our research and
prove that current solutions are not practical enough. In Chapter §7,

Zhttp://www.unr.edu.ar
Bhttp://ceid.upatras.qgr/proptyxiaka/diplomatikes/tsakali0405.pdf
Yhttp://ranger.uta.edu/~alp/ix

1.3. Structure of this dissertation 11

we rigorously formalise the WebMeaning framework; we also define the
knowledge extraction process as a compound of four activities, namely:
information extraction, information verification, translation of informa-
tion into knowledge, and semantic verification. In Chapter §8, we focus
on presenting our proposal for the translation of information into knowl-
edge from a very abstract point of view. In Chapter §9, we materialise it
by defining the implementation of three algorithms. Finally, in Chapter
§10, we devise a proof-of-concept implementation of our framework; it
defines a comprehensive architecture based on SOA in which the core
elements of WebMeaning are mapped onto web services.

Part I'V: Final Remarks. It consists of one chapter in which we report on our
main conclusions and future research directions.

Part V: Appendices. We summarise the mathematical notation we use in Ap-
pendix §A; and we prove the equivalence between two data structures
for representing knowledge in Appendix §B. Appendix §C spells out
most acronyms used in this dissertation.

12

Chapter 1. Introduction

Part 11

Background information

Chapter 2

From information to knowledge

Internet is so big, so powerful and pointless
that for some people it is a complete substitute for life.

George Carlin, 1937—
American comedian and actor

‘ Z he nowadays web was designed as an information source for human consump-

tion. An important goal for the future web is that software applications should
be able to participate. This amounts to a transition from a syntactic web to a seman-
tic web in which metadata expresses information residing on the web in a machine-
readable form, that is, programs can read and “understand” it, c.f. Section §1.1.3 for a
definition of what we mean by “understand”. This chapter is organised as follows: in
Section §2.2, we introduce several concepts from the knowledge representation field to
understand the previous transition; in Section §2.3, we discuss on the characteristics
of the nowadays web; then the future web, which is being currently settled, is pre-
sented in Section §2.4; Section §2.5 briefly presents current strategies for reasoning
in the future web; finally, Section §2.6 summarises the ideas in this chapter.

16 Chapter 2. From information to knowledge

2.1 Introduction

The current World Wide Web is a repository of information. The main con-
sumers of this information are humans, who are aware of its value. According
to the UCLA Center for Communication Policy, the web is viewed as an im-
portant source of information by the vast majority of people who go online; in
2002, 60.5 percent of all users considered the Internet to be a very important or
extremely important source of information [45]. The idea of having a fully ac-
cessible repository of information propitiated that researchers began working
on proposals whose goal was to manage the information on the web [12, 44].
Nowadays, managing this information is a big challenge because the web is
a massive, distributed, dynamic, unbeknownst, and syntactic repository of
structured, semi-structured and unstructured web documents.

The current web is changing to a new semantic environment in which
agents are able to understand the web content, to run around it, and to per-
form complex actions for their users with less human intervention [15]. This
change requires a lot of research work, and the integration of technologies
from fields such as software engineering or artificial intelligence in order to
develop the infrastructure that shall make it a reality.

Ontologies [28] play an important role to fulfill the vision of a web for
agents consumption. They provide a representation of a shared conceptual
model of a particular domain that can be communicated across people and
agents. Thus, ontologies allow us to specify semantic information about the in-
formation on the web. In addition, ontological web languages shall represent
these conceptual models in machine-understandable forms, while reasoners
shall allow agents to reason and compute over those models.

2.2 Knowledge representation

In this preliminary section, we provide a brief description of the formalisms
and languages from a central subfield of artificial intelligence called knowl-
edge representation. Research in knowledge representation focuses on highly
expressive formalisms and languages to represent knowledge bases and on
powerful reasoning services over them.

The difference between a formalism and a language is in the abstraction
level at which they represent knowledge. Formalisms, also known as para-
digms, are at the bottom level; they are the foundation of knowledge repre-
sentation languages; that is, languages build on one or more formalisms; thus,

2.2. Knowledge representation 17

languages aim to represent knowledge bases at higher abstraction levels. For
instance, frame systems, and first-order logic are two formalisms that are com-
bined in the Ontolingua [38] knowledge representation language to provide a
distributed collaborative environment to manage ontologies.

Note that there is an important difference between the notion of ontology
and the formalism or language for expressing it. Many different formalisms
or languages from different communities are used to express the same concep-
tual model. For instance, research in databases is related to the representation
of the structure of information, and mainly deals with efficient storage and
retrieval with powerful query languages. In the databases field, models are
used to express the overall logical structure of a database graphically; e.g., the
entity-relationship model. Also when constructing software applications, the
software engineer uses models to represent the domain of the problem, for
instance, class diagrams. However, in the database and software engineering
tields reasoning over the knowledge plays a minor role.

2.2.1 Formalisms

Formalisms for knowledge representation are classified into non-logical
and logical. Non-logical formalisms were developed motivated by the idea
that logic could not be the right formalism for knowledge representation; they
are based on cognitive experiments about how knowledge is stored in human
brains. On the other side, logical formalisms are logic-oriented approaches to
knowledge representation.

Semantic networks, frame systems, and conceptual graphs are the most
important non-logical formalisms in current use, namely:

Semantic networks. This formalism was introduced in 1967 by Quillian [107].
It is a graphical notation for representing knowledge in patterns of inter-
connected vertices, and directed and labelled edges (directed graph). A
great variety of semantic network formalisms were proposed [18], since
then. In all these formalisms, vertices represent concepts or individuals,
whereas the edges represent relations amongst concepts or properties at-
tached to a concept. This formalism was criticised for lack of a precise
semantics. Some researches aimed to specify the semantics of semantics
networks and this led to the definition of the first description logic.

Frame systems. Minsky introduced frame systems in 1975 [92]. A frame is a
data structure for representing a concept or situation in an object-oriented
way that typically consists of slots (or attributes), where each slot can be

18 Chapter 2. From information to knowledge

attached a description or a procedure; a collection of frames is organ-
ised and interconnected in frame systems. The declarative or monotonic
part of this formalism is described semantically in first-order logic, but
there is not a precise semantic description for the non-declarative or non-
monotonic part of frame systems.

Conceptual graphs. They were introduced by Sowa in 1984 [114]. This for-
malism is the most popular to represent knowledge in a graphical way,
and can be viewed as a descendant of frame systems and semantic net-
works. Conceptual graphs are labelled graphs where “concept” nodes
are connected by “relation” nodes. This formalism is given a formal se-
mantics by translating them into first-order formulae. This means that
not only can we represent knowledge using it, but also reason about it.

First-order logic, description logics, and non-monotonic logics are the most
popular logical formalisms, namely:

First-order logic. It is the most important and expressive knowledge repre-
sentation formalism. It allows to represent complex facts about the world
in a domain of discourse and to infer conclusions. Furthermore, it guar-
antees that, if the initial facts were true then conclusions are true, too. It
is a well understood formal language, with well-defined syntax, seman-
tics and inference rules. However, first-order logic is semi-decidable, i.e.,
the inference problem is computationally not tractable.

In order to solve this problem, it is possible to define decidable frag-
ments of first-order logic. For instance, if £ denotes a first order logic
over unary and binary predicates with at most k variables, and C* de-
notes a first-order logic over unary and binary predicates with at most
k variables and counting quantifiers 3", 3%"; then both £2 and C? are
NEXPTIME-complete.

Description logics. This is a family of knowledge representation formalisms
with a formal, logic-based semantics [13]. It is considered a unifying for-
malism for structured representation, since, for instance, frames, object-
oriented representations, or data base entity-relation diagrams can be
formulated with description logics. The formal semantics of a descrip-
tion logics language is specified using a subset of first-order logic; thus,
description logics can be seen as fragments of first-order logic.

The knowledge base represented in a description logics-based system is
divided into two parts: the Tbox (terminological box), which defines the
structure of the domain, and the Abox (assertional box), which describes
a concrete example of the domain. The Tbox consists of a set of axioms

2.2. Knowledge representation 19

that can be either concept definition axioms or concept inclusion or sub-
sumption axioms. Concept definition axioms allow to define a new con-
cept in terms of other previously defined concepts; the concept inclusion
or subsumptions axiom allow to state that a concept is considered more
general than other. An Abox consists of a set of assertional axioms that
can be either concept assertions or property assertions. A concept asser-
tion states that an individual is an instance of a concept, and a property
assertion states one individual is related to another by a given role.

Non-monotonic logics. The term non-monotonic logic denotes a family of
formalisms devised to capture and represent defeasible inference [79].
This kind of inference allows reasoners to draw conclusions tentatively,
reserving the right to retract them in light of further information. Such
inferences are called non-monotonic because the set of conclusions does
not increase with the size of the knowledge base. This is in contrast with
classical first-order logic, in which inferences can never be undone by
new information. There exist three major approaches to formalising non-
monotonic reasoning, namely: circumscription, default logic and modal
logic. In circumscription [88], theories are written in classical first-order
logic, however the entailment relation is not classical; the idea of default
logic [71] is to reason in first-order logic but to have available a set of de-
fault rules which are used only if an inference cannot be obtained within
the first order formulation; modal logic was designed to express pos-
sibility, necessity, belief, knowledge, temporal progression, obligations
and other modalities.

2.2.2 Traditional languages

Languages for knowledge representation are classified into traditional lan-
guages [27] and ontological web languages. This classification is motivated by
the semantic web, that is, the development of new web-centric languages that
focus on specifying the semantics of information contained on web pages and
the exchange of ontologies across the web. Here, we present a sketch of most
popular traditional languages only since the ontological web languages shall
be presented latter in the semantic web context.

CARIN. It is a family of languages, each of which combines a description
logic £ with non-recursive Horn rules without functions [81]. For in-
stance, CARIN-L is one such language whose knowledge base is formed
by three components: a description logic terminology, a set of Horn

20 Chapter 2. From information to knowledge

rules, and a set of ground facts. There exist sound and complete al-
gorithms which provide reasoning services over CARIN-L knowledge
bases.

Frame logic. It integrates frames and first-order logic for specifying object-
oriented databases, frame systems, and logical programs [76]. Its main
achievement is to integrate conceptual modelling constructs as classes,
attributes, inheritance, or axioms, into a coherent logical framework.
Frame logic has a model-theoretic semantics and a sound and complete
resolution-based proof theory.

LOOM. It is a language and an environment for constructing intelligent ap-
plications [85]. The core of LOOM is a knowledge representation system
that is based on description logics and production rules. Knowledge in
LOOM consists of definitions, rules, facts, and default rules. A deductive
engine uses forward-chaining, semantic unification and object-oriented
truth maintenance technologies in order to compile the knowledge into a
network designed to efficiently support on-line deductive query process-
ing.

OCML. It supports the construction of knowledge models by means of sev-
eral types of constructs [93]. It allows the specification of functions, rela-
tions, classes, instances and rules. To make the execution of the language
more efficient, it also adds some extra logical mechanisms for efficient
reasoning, e.g., procedural attachments. It offers mechanisms to query
knowledge represented using an OCML model.

Ontolingua. It provides a distributed collaborative environment in order to
browse, create, edit, modify, and use ontologies [38]. The language to
represent knowledge is based on frame systems and first-order predicate
calculus in KIF [52] notation. It allows to build ontologies by either using
a frame ontology vocabulary, KIF expressions, or both languages simul-
taneously (including KIF expressions in definitions based on the frame
ontology vocabulary). There exists an inference engine for Ontolingua.

2.3 The nowadays web

The current web was described the W3C as follows [14]:

It is a wide-area hypermedia information retrieval initiative aiming to give
universal access to a large universe of documents.

2.3. The nowadays web 21

Since then, it has overcome all the initial expectations. Not only is it the biggest
universally accessible information repository, but also has important reper-
cussions on society. A good example is Europe’s Information Society thematic
portal™, which defines a set of activities that aim at developing modern public
services and a dynamic environment for e-business. Amongst these activities
are eGovernment (for the exchange of governmental practices), eHealth (a set
of tools and services for keeping citizens informed, administrative support,
and home care/tele-medicine), or eLearning (new multimedia technologies to
improve the quality of learning and services as remote exchanges and collab-
oration).

The idea of having a fully accessible repository of information propitiates
that researchers from database [44] or artificial intelligence [12] fields began
working on proposals whose goal was to manage information on the web.
However, the web has some characteristics that makes it hard to manage the
information it provides, namely [61]:

The web is syntacticc. HTML documents are text files that consist of tags that
are used to specify how to render information, but there is not a reference
to the semantic information that describes the meaning of this informa-
tion. HTML was never meant for computer consumption, but for human
presentations.

The web is dynamic. The web is changing all the time [19, 82, 116]. Francisco-
Revilla et al. [46] presented a categorisation of web change based on the
nature of the changes, namely: content or semantic, presentation, struc-
tural and behavioral. The former refers to modifications of the page con-
tents from the point of view of the reader; the second are changes related
to the document representation that do not reflect changes in the topic
presented in the document; the third refers to the underlying connec-
tion of the document to other documents (hyperlinks); the latter refers
to modifications to the active components of a document (changes in
scripts, plug-ins or applets).

The web is massive. According to Cyveillance.com, estimations for the
year 2000 indicate that the surface web, i.e., static publicly available
pages, is composed of about 2.5 billion web pages, with a rate of growth
of 7.3 million pages per day. With this information, it is possible to es-
timate the total amount of information on the surface ranges from 10
to 20 Terabytes. The size of the deep web, i.e., pages that exist only on
demand, is estimated to be 550 billion web pages, which amounts to ap-
proximately 4 200 Terabytes of information.

thttp://europa.eu.int/information_society/eeurope/2005

22 Chapter 2. From information to knowledge

Furthermore, this information is not centralised. From an abstract point
of view, the web is a directed graph whose nodes are web pages and
whose edges are links between them. Each web page or web resource
can reside on a different machine. Therefore the information on the web
is spread out over thousands of computers, making it a distributed sys-
tem that provides the content available to any user from any location in
the world with an Internet connection.

2.4 The semantic web

The semantic web was defined in Ref. [15] as follows:

The semantic web is an extension to the current web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation.

The semantic web is not a separate web but an extension to the current one.
This extension is achieved by annotating web pages with metadata that de-
scribes the concepts that define the semantics associated with the information
in which we are interested. The semantic web shall simplify and improve the
accuracy of current information extraction techniques tremendously. Never-
theless, this extension requires a great deal of effort to annotate current web
pages with semantics.

Ontological web languages enable the specification of ontologies and the
annotation of information in web pages with semantics. A semantic web page
has two different views: the former is for human consumption, a document in
HTML format that browsers render to a friendly multimedia document (cur-
rent web pages); the latter is for software agents consumption, a structured
document with semantic metadata annotations (references to concepts and
properties defined in some external ontologies) of the information of interest.

Ontological web languages are influenced by the knowledge representa-
tion field. However, they differ from traditional knowledge representation
formalisms in that they are web-centric languages. The main features that
have been identified for web ontology languages are the following [62, 64]:

i. They extend existing web standards such as HTML, XML, RDEF-S, en-
abling their integration with other web technologies.

2.4. The semantic web 23

| Language | Score | Normalised score | Underlying formalism |

XOL 2.5 33.33 Frame systems

SHOE —1.5 3.70 Frame systems

OML 10.5 92.59 Conceptual graphs

RDEF-S —2.0 0 Semantic networks

OIL 11.5 100 Description logics
DAML+OIL | 11.5 100 Description logics

OWL 11.5 100 Description logics

Table 2.1: Expressiveness of most relevant ontological web languages.

ii. They enable the definition of diverse, potentially conflicting ontologies
to deal with a decentralised web.

iii. They enable the evolution of the vocabularies as human understanding
improves in order to handle the rapid evolution of the web.

iv. They are scalable to deal with the huge size of the web.

v. They must be specified formally and must provide automated reasoning
support, in order to be useful for agents.

vi. They must have an “adequate” expressive power in order to represent
the knowledge residing on the web at a sensible computing cost.

There are many ontological languages that aim at specifying the knowl-
edge on the web, e.g.: SHOE [84], RDE-S/RDF [20], XOL [73], OML [75],
DAML-ONT [90], OIL [40, 41], DAML+OIL [64, 89], or OWL [34]. Table §2.1
summarises the results of an analysis presented in Ref. [53] that was carried
out to compare their main features, e.g., the possibility of defining instances
of concepts, defining axioms or using cardinality constraints. A value of 1 was
assigned to each supported feature, a value of -1 was assigned to each un-
supported feature, and a value of 0.5 to each partially supported feature. The
result of this numerical conversion is shown in the score column. The nor-
malised score column shows the result of normalising the scores to a [0, 100]
interval. It can be readily observed that the languages with the best scores are
OIL, DAML+OIL and OWL; they obtain the same score due to the kinship re-
lationships amongst them (OWL is the W3C standardisation of DAML+OIL,
and DAML+OIL is an extension to OIL). Note that expressiveness and reason-
ing support in these languages are related with the language underlying for-
malism; that is, languages based on logic formalisms obtain the higher scores,

24

Chapter 2. From information to knowledge

OIL combine language
vOg;Leur;:;es components Revision and W3C
standardisation

RDF DAML
supersy ML 'j\> RDF/S (DAML+OIL) ':> @ik
SEL extek DAML-ONT /
combine language

vocabularies

components

superset of
HTML |:“> SHOE

extends HTML to
represent knowledge

1992 1998 1999 2000 2001 2002 2003 >

Figure 2.1: Ontological web languages evolution.

whereas languages based on non-logic formalisms obtain the lower scores. All
of the languages, except for XOL and OML, have automatic reasoning sup-
port.

Next, we present a brief description of the most important languages in the

ontological web languages evolution (c.f. Figure §2.1), namely: RDF-S/RDEF,
SHOE, DAML+OIL, and OWL.

RDF and RDF-S. They were developed by the W3C to provide a standard

way of specifying data about something (RDF) and their interpretation
(RDEF-S) [20]. The main characteristic of RDF is that it is used as a general
framework for the integration and exchange of knowledge described in
more expressive ontological web languages, e.g., OIL, DAML+OIL, or
OWL build on RDF-S and extend it with richer modelling primitives,
but use RDEF-S constructs as much as possible in order to maintain com-
patibility amongst them.

The RDF data model [106] is based on a semantic network model. It
consists of a set of RDF statements, each of which is a sentence that has
three parts: a subject, a predicate and an object. Both statements and
predicates can be used as the subjects or objects of other statements. In
RDF parlance, the subject is a resource, which is anything that can be
identified on the web by a URI (web pages, people or flowers), and the
object can be a resource or a literal that expresses aspects, characteristics,
attributes, or relations used to describe the subject resource; the predi-
cate is the resource that defines the relationship between the subject and
object. The semantics of the data model is defined by translating RDF

2.5. Reasoning on the semantic web 25

data model statements into sentences in first-order logic, and giving a
set of axioms that constrain the possible interpretation [43].

SHOE. It was one of the very first attempts at defining an ontology language
for the web [84]. It is an extension to HTML that allows to annotate
web pages with machine-readable knowledge. It is based on the frame
formalism, and allows to add Horn clauses. The semantics of SHOE is
defined by extending the standard model-theoretic approach for definite
logic with mechanisms to handle distributed ontologies.

DAML+OIL. It is the effort of a merger between the languages DAML-ONT,
which was developed by DARPA, and OIL, which was developed in the
context of the European IST OnToKnowledge project [42]. DAML+OIL
takes a frame approach to describe the structure of a domain, i.e., we
can define the structure using classes and properties [64, 89]. An on-
tology consist of a set of axioms that assert relationships between these
classes and properties. Formally, DAML+OIL is a syntactic serialisation
of a very expressive description logic [65], with a DAML+OIL ontology
corresponding to a description logic terminology (Tbox).

OWL. It is the ontology web language that is currently being developed by
the W3C web ontology working group [34], and it is a W3C recommen-
dation since February 2004. OWL was designed as a revision of the
DAML+OIL web ontology language. As DAML+OIL, OWL combines
the standard modelling primitives from the frame-based formalism with
the formal semantics and reasoning services provided by description
logics. There are only minor changes between OWL and DAML+OIL.

According to the W3C Recommendation, OWL provides three increas-
ingly expressive sub-languages designed for use by specific communi-
ties of implementers and users, namely: OWL Lite, for users who need a
classification hierarchy and simple constraints only; OWL DL, for users
who want the maximum expressiveness while retaining computational
completeness (all conclusions are guaranteed to be computable) and de-
cidability (all computations are guaranteed to finish in finite time); and
OWL Full, for users who want maximum expressiveness and the syntac-
tic freedom of RDF with no computational guarantees.

2.5 Reasoning on the semantic web

Ontological web languages allow to represent the knowledge residing on
the web independently from the applications that consume it, but depending

26 Chapter 2. From information to knowledge

on the domain. In addition, a number of reasoners allow to perform com-
plex tasks on this knowledge, namely: checking the ontology for consistency,
i.e., to verify the syntax and usage of the ontology language and to ensure
that the individual instances meet all of the constraints imposed by the ontol-
ogy; computing entailments including satisfiability, i.e., checking whether a
concept expression not always denote the empty concept; subsumption, i.e.,
checking whether a concept is considered more general than a second one; or
processing queries both from human users and software agents.

Reasoners use different logic approaches to perform these tasks. Reasoners
based on description logics focus on computability, which enables the defini-
tion of decidable and efficient reasoning algorithms while retaining a consid-
erable degree of expressiveness. Reasoners based on full first-order logic theo-
rem provers focus on expressiveness, and they are able to deal with languages
that are more expressive, but reasoning on first-order logic is not computa-
tionally tractable in general.

Table §2.2 summarises the previous ideas by analysing the most popu-
lar reasoners, namely: cwm'?, Fact’®, F-OWL™, Pellet”®, RACER™, Surnia'?,
TRIPLE™, Hoolet™, and XSB1?. Because of the similarity between DAML+OIL
and OWL, we use OWL to refer to both languages. From this table, it is not
difficult to realise that much work remains to be done in this area.

2.6 Summary

In this chapter, we have presented two different views of the web: the
former is the current web, a huge changing repository of syntactic information
for human consumption; the latter is the semantic web, a huge repository of
knowledge for software agent consumption. They are not two separate and
different webs, since they both are supported by the same computers as web
pages. We have shown that ontological web languages play an important role
to fulfill the vision of the semantic web, because they allow the specification of
ontologies and the annotation of the information in web pages with semantics.

Phttp://www.w3.0rg/2000/10/swap/doc/cwm. html
Bhttp://www.cs.man.ac.uk/~horrocks/FaCT
Mhttp://fowl.sourceforge.net
Bhttp://www.mindswap.org/2003/pellet
Yhttp://www.sts.tu-harburg.de/~r.f.moeller/racer
http://www.w3.0rg/2003/08/surnia
Bhttp://triple.semanticweb.org
Phttp://owl.man.ac.uk/hoolet
0phttp://www.cs.sunysb.edu/~sbprolog/xsb-page.html

27

2.6. Summary

“qam 21JUVLIS Y] 40f SLIUOSVIL IUU0S JO SaINJVI] 1T'T el

uon
Suryeds Suryeos Surreos | 310ddns -e)Tu|
HOHS 100 I100J I00J | XOQV ON | A | umou)|
91418 91418
WIO[] WIOF] 104 | 10y | 10ad A12nQ
dqe
ON ON Sax ON Sax Sox ON Sax ON -paq
IDPIYD
Adou9}
-SISU0D
o] o] apard
ON ON ON ON| -IMO| -IMO ON ON | ON -wo)
1a [1a 1a T 1a
HOHS “IMO E(aR] “IMO -“IMO -“IMO -“IMO “IMO | Q¥ | woddng
IdpIo
TY3TH
1 ‘Qurerq uo
WIOF] 104 ‘U0 104 1a 1d ‘w10l 14 | Wol] | paseg
dsX | MI0oH | A1dNIL| erwmg| yaOv¥ | wIRd | TMO- | peg | wmd |

28

Chapter 2. From information to knowledge

Chapter 3

Extracting information from the web

Where is the wisdom we have lost in Knowledge?
Where is the Knowledge we have lost in information?

Thomas Stearns Eliot, 1888—1965
British critic, dramatist and poet

(Z oday’s web is an enormous and valuable source of information. This chapter

presents several proposals that aims at unveiling the information residing on
the web. 1t is organised as follows: Section §3.1 is an introduction to the chapter; in
Section §3.2, we present some features that allow to characterise information extrac-
tion proposals; then, the main proposals are presented in Section §3.3; in Section §3.4,
we present the necessity of maintaining information extraction systems to deal with
web changes; finally, Section §3.5, summarises the ideas in this chapter.

30 Chapter 3. Extracting information from the web

3.1 Introduction

The algorithms used for extracting information from the web are called
wrappers [36]. They can be codified manually using properties of a web page,
usually looking for strings that delimit the data to be extracted. Manual wrap-
per generation is the approach chosen in proposals such as TSIMMIS [24],
ARANEUS [91], or JEDI [68]. Their goal is to integrate heterogeneous infor-
mation sources such as traditional databases and web pages so that the user
can work on them as if they were homogeneous information sources. An im-
portant contribution to the field of information extraction was provided by
Kushmerick [78]. He introduced induction techniques and defined a new class
of wrappers called inductive wrappers, which are algorithms that use a num-
ber of extraction rules generated by means of automated learning techniques,
e.g., inductive logic programming, statistical methods, and inductive gram-
mars. These rules allow to set up a generic algorithm to extract information
from similar pages automatically. Figure §3.1 illustrates the life cycle of an
inductive wrapper.

Unfortunately, wrappers have a limited life period, and they need main-
tenance. The wrapper maintenance problem consists of two parts: wrapper
verification and wrapper reconstruction. A wrapper verification system de-
termines if a wrapper is broken, which happens if the information extracted is
not the expected, which may be due to changes on the web that have invali-
dated the logic of the wrapper; wrapper reconstruction consists of building a
new wrapper adapted to the changes. The wrapper maintenance problem has
been paid little attention, since, there exist very few proposals in the literature.
Therefore, this task is usually achieved by developing domain-dependent ver-
ifiers manually.

3.2 Characterising wrappers

In the literature concerning information extraction, the terms record, frame,
and template refer to the same idea: a data structure for representing the infor-
mation extracted, which typically consists of slots or attributes; furthermore,
these terms are used indistinctly to refer to an extracted feature. In this dis-
sertation, we use the frame and attribute terms. Next, we present a simple
classification of wrappers according to the kind of frames and web pages with
which they can work.

3.2. Characterising wrappers 31

Pages to Web
be labelled pages

j Extracted
Wrapper data
induction Wrapper f—
| — —> —> =

system

Labelled
web pages

Figure 3.1: Life cycle of an inductive wrapper.

Single-slot vs. multi-slot extraction. A wrapper is able to perform single-slot
extraction if it can only extract isolated attributes from a web page. A
wrapper is able to perform multi-slot extraction if it can locate a pattern
and searches recursively for similar patterns in a web page and links
together attributes into frames.

Structured, semi-structured and unstructured web pages. Hsu and Dung in-
troduced a categorisation of web pages based on the structuredness of
attributes that users want to extract from them [67], namely: structured,
semi-structured and unstructured web pages. A web page is structured
if it provides itemised information; that is, the information has a pre-
defined, strict format that allows to define the delimiters of every piece
of information easily. A web page is semi-structured if it may contains
frames with missing attributes, or attributes with multiple values, or at-
tribute permutations; usually, inductive techniques are used to extract
information from semi-structured web pages. A web page is considered
unstructured if linguistic knowledge is required to extract frames cor-
rectly. Wrappers for these pages typically obtain patterns that build on
syntactic relations between words or semantic classes of words. Figure
§3.2 illustrates an example of structured, semi-structured and unstruc-
tured web pages.

This categorisation is interesting because the techniques used in infor-
mation extraction determine the kind of web pages that can be handled.
For instance, if the system uses natural language processing techniques,
it shall work fine on unstructured pages, but not with web pages in
which information is not in sentential form [32]; since it is not easy to

32 Chapter 3. Extracting information from the web

<restaurant>
<name>Taco</name>
<close>Monday</close>
<close>Sunday</close>
<address>
<number>234</number>
<street>Taylor</street>

<city>Pittsburgh</city> X
</address> 234 Taylor 150 Connecticut

<address> Pittsburgh Ha.rrisburgh
<number>150 </number> Ph: 2314800, 2324800

<street>Connecticut</street>
<city>Harrisburgh</city>
<phone>2314800</phone>
<phone>2324800</phone>
</address>
</restaurant>

Restaurant: Taco Close on: Monday & Sunday

(a) An structured web page (b) An semi-structured web page

The Taco restaurant closes on Monday and
Sunday. It’s located in the heart of Pittsburgh, at
234 Taylor. Also, if you live in Harrisburgh, there
is a Taco at 150 Connecticut and you can make
reservations at 2314800 and 2324800 phone
numbers.

(c) An unstructured web page

Figure 3.2: Structured, semi-structured and unstructured web pages.

3.3. Common inductive wrappers 33

| Name | Struc. | Semi-struc. | Unstruc. | S-slot | M-slot | Hi. |
RAPIER v v v
SRV v v v
WHISK v v v v v
WIEN v v v
SoftMealy v v v
STALKER v v v v

Table 3.1: Features of some inductive wrappers.

delimit the scope of a piece of data because of the HTML tags used to
specify how to render it (which implies these techniques are not appro-
priate in general [60] to extract information from structured and semi-
structured web pages).

Tabular vs. hierarchical information. Wrappers can also be classified based
on how the information is structured on web pages. Most wrappers ex-
tract information structured in a relational or tabular manner. There is
also a few able to extract hierarchically nested structured information,
that is, values for attributes are presented with the information organ-
ised as if they were trees rather than tabulary.

3.3 Common inductive wrappers

Next, we describe the most relevant inductive wrappers systems, namely:
RAPIER, SRV, WHISK, WIEN, SoftMealy, and STALKER. Their characteris-
tics are summarised in Table §3.1. The first three columns indicate the type
of web pages with which they can deal; the following two columns indicate
whether the wrapper can perform single-slot and /or multi-slot extraction, re-
spectively; the last column indicates whether the wrapper can extract hierar-
chical information.

RAPIER. It takes pairs of documents and filled frames and induces extraction
rules that directly extract fillers for the attributes in the frame [22]. The
inductive algorithm used by RAPIER is based on several inductive logic
programming systems. The extraction rules generated with RAPIER are
based both on syntactic information (delimiters) and semantic informa-
tion (content description). They are indexed by a frame name and an

34

Chapter 3. Extracting information from the web

attribute name and have three parts: a pre-filler pattern that must match
the text preceding the information to be extracted (a left delimiter), a
filler pattern that describes the structure of the information to be ex-
tracted, and a post-filler pattern that must match the text following the
information to be extracted (a right delimiter).

SRV. It generates first-order logic extraction rules that are based on features

that are simple, e.g., length, character type or relational, e.g., next and
previous token to the attribute to be extracted [47]. Using first-order
logic to represent rules makes them very expressive. The learning pro-
cedure consists of identifying and generalising the features found in the
training examples, which need to be many or otherwise the procedure
does not produce good results.

WHISK. It generates rules that are based on regular expression patterns that

have two components: one that describes the context that makes an at-
tribute relevant and another that specifies the exact delimiters of the
attribute to be extracted [113]. Depending on the structure of the web
pages, WHISK generates patterns that rely on either of the components:
for unstructured web pages it uses context-based patterns; for struc-
tured pages, it uses delimiter-based patterns; and for semi-structured
web pages, both approaches are used.

WIEN. It introduces several types of wrappers that assume that items are al-

ways in fixed, known order, and that web pages have an HLRT organi-
sation [78] . This means that there is a Head delimiter, a set of Right and
Left delimiters for each attribute to be extracted, and a Tail delimiter at
the end. This makes WIEN unable to handle permutations or missing
attributes. The extraction rules generated by WIEN are similar to those
generated by WHISK, the difference being that WIEN only uses delim-
iters that immediately precede and follow the data to be extracted.

SoftMealy. It generates wrappers that are non-deterministic finite automata

in which the states represent the facts to be extracted and the transitions
amongst them represent contextual rules that define the separators be-
tween them [66]. It allows both semantic classes and disjunctions; thus, it
works well with web pages that have attribute permutations or missing
attributes; however, in order to deal with attribute permutations, Soft-
Mealy must be trained with samples that include each possible ordering
of the attributes to be extracted.

STALKER. It performs hierarchical information extraction on structured and

semi-structured web pages [94]. To address the problem of hierarchical
information extraction, STALKER uses a formalism based on trees called

3.4. Wrappers maintenance 35

ECT that specifies the output schema for the extraction task. For each
node on ECT, STALKER generates extraction rules and an iteration rule
if it represents an attribute that can be repeated. The extraction process
is performed in a hierarchical manner.

3.4 Wrappers maintenance

A wrapper may broke due to changes on web pages. Francisco-Revilla
et al. [46] presented a classification of web changes based on the nature of the
change. They distinguish four kinds of change, namely: content or semantic,
presentation, structural, and behavioral. We use it to illustrate the kinds of
changes that can break a wrapper:

Content or semantic changes. This refers to modifications of the page con-
tents from the reader’s point of view. For instance, Amazon . com changed
the way it presents the authors of a book by adding the preposition “by”
before the name of the first author. A wrapper, affected by this change,
might extract “by Erich Gamma” instead of “Erich Gamma”.

Presentation changes. They are related to the way the contents are rendered,
but not to the contents themselves. This kind of changes can break a
wrapper that uses tag-based extraction rules to analyse the structure of
the web page.

Structural changes. This refers to the underlying connection of the web page
to other web pages. Because wrappers extract information from web
pages and not from the destination of links in web pages, this kind of
changes do not usually affect them.

Behavioral changes. This refers to modifications to the active components of
a web page, e.g., scripts, plug-ins or applets. The active components are
ignored by wrappers, thus, this kind of changes do not affect them.

Wrapper maintenance consists of two tasks, namely: wrapper verification
and wrapper reconstruction. The former consist of examining the information
extracted by a wrapper and deciding whether it is working correctly. The lat-
ter consist of rebuilding a new wrapper when it is broken; the new wrapper
can be rebuilt by hand (manual), training it again with new sample data (semi-
automatically) if we are using an inductive wrapper, or by automatically con-
structing a set of sample labelled web pages and applying re-induction (au-
tomatically). Figure §3.3 illustrates a wrapper system that uses a verifier and
that re-generates wrappers automatically if they are broken.

36 Chapter 3. Extracting information from the web

Pages to Web
be labelled pages

Extracted

= | Wrapper | data
w ||
= | |:: > induction > Wrapper |:: >
- g system | —
(/2] | | [}
1 '
= | Labelled | <>
g I Web pages & |
=X Automatic C Wrapper
= | re-labelling verification
o | Change

detected

Figure 3.3: Life cycle of the maintenance of inductive wrappers.

To the best of our knowledge, there exist only two proposals that aim at
solving the problem of wrapper maintenance, namely: RAPTURE and Dat-
aProG. The former deals with wrapper verification, and the latter deals with
wrapper verification and wrapper reconstruction.

RAPTURE. It is a domain-independent verifier [77] that describes each at-
tribute by a collection of statistical features, such as average word length,
word count, number of special characters, or number of digits. It learns
the parameters of normal distributions describing the feature distribu-
tions of the extracted information using positive training examples. In-
dividual attribute probabilities are then combined to produce an overall
probability that the wrapper extracted the information correctly. If this
probability exceeds a threshold specified by the user, RAPTURE decides
that the wrapper is correct; otherwise, it is broken.

DataProG. Itis a domain-independent wrapper maintenance system [80] that
verifies wrappers by applying machine learning techniques. It learns
a set of patterns that describe the features of attributes from positive
training examples. These features include the patterns that describe the
common beginnings (or endings) of an attribute. During the verifica-
tion phase, the wrapper is used to generate a new set of test examples
from the same web pages used in the training phase. Then, it computes
the features associated with the attributes of the test examples. If the
distributions of both sets are statistically the same at some significance

3.5. Summary 37

level, the wrapper is judged to be extracting correctly; otherwise, it is
judged to have failed. DataProG achieves the wrapper re-induction task
by implementing an automatic labelling algorithm. This algorithm is a
mixture of supervised and unsupervised learning algorithm that uses a
set of patterns to identify examples of the data field on web pages. The
patterns used are the ones learned in the verification task, and the ones
obtained from other features related with the structural information of
web pages.

3.5 Summary

In this chapter, we have unveiled the web as a rich source of information.
We have presented syntactic wrappers as algorithms for the extraction of syn-
tactic information from the web. Finally, we have shown that, due to the in-
herent web dynamism, they have a limited life period and need maintenance.

38

Chapter 3. Extracting information from the web

Chapter 4
Extracting knowledge from the web

The beginning of Knowledge is the
discovery of something we do not understand.

Frank Herbert, 1920—1986
American science fiction novelist

oday’s web is an enormous and valuable source of knowledge. This chapter
classifies and presents several proposals that aim at unveiling the knowledge

residing on the web. It is organised as follows: in Section §4.1, we introduce and
classify the knowledge extraction proposals; then, they are summarised in Sections
§4.2, §4.3, and §4.4; finally, Section §4.5 summarises the ideas in this chapter.

40 Chapter 4. Extracting knowledge from the web

4.1 Introduction

Knowledge extraction systems deal with exploiting the semantic aspects of
the information residing on the Web. The research work done in this area can
be classified into three categories: ontology extraction, instance extraction or
knowledge base extraction. The former aims at extracting models (ontologies)
underlying the information residing on the Web; the second aims at extracting
a set of individual instances that relates the information on the Web with the
concepts specified in an external ontology; the latter extracts ontologies as well
as individual instances.

Table §4.1 summarises the characteristics of the knowledge extraction sys-
tems we have studied. The first two columns indicate the kind of knowledge
extraction system, and their main objective, respectively; the third column
refers to the name of the proposal; the fourth column presents the type of
web pages that are handled (unstructured, semi-structured or structured); the
last column indicates the main methods underlying the proposal.

4.2 Common ontology extraction systems

Ontology extraction systems focus on discovering the semantic informa-
tion residing on web pages. According to their goal, they are classified into
ontology learning and schema learning, and a summary is presented in Table
§4.1.

Ontology learning systems deal with the extraction of ontological knowl-
edge from information sources in which this knowledge is considered to be
implicit; they mainly focus on the extraction of ontologies from natural lan-
guage documents. Relevant proposals in ontology learning are WebOntEX,
Text-To-Onto, ASIUM, and INTHELEX, namely:

WebOntEx. It is a system to extract web ontologies semi-automatically by
analysing unstructured and semi-structured web pages that are in the
same application domain, and to convert the ontology into XML DTD
[57]. The main module of WebOntEXx is a heuristic analyser module,
which uses inductive logic programming to classify the concepts into
entity types, to get the relationships, attributes, superclass/subclass hi-
erarchies, and to store this knowledge in a relational database.

Text-To-Onto. It is a framework for maintaining and extracting ontologies
from unstructured web documents [86]. It uses data mining and natural

41

4.2. Common ontology extraction systems

‘sppsodoad u013ov43xa a8pajmouy :T'F d[qeL

Sureysno [ednydIeIary | PaINJONI}S-TWAG | murwouQ | uorer3ajur uoreULIO] | a |
Surssadoxd
aden3uey remyeN pamnjonnsun INUIN
Sururuwr eyep ‘3urssadoxd
e . UOT}RjOUUR DJULWIIG
aden3uey renyeN pamnjonnsun INVTID
Surssadoad
aden3uey remyeN paInjonnsun DIvnbmay
, PoIIINLS uonyendod £3o103u
Surures-suryoey | -Twes paInionng II—dIM
saouesuy
aseqele(] paInionng reanbg
Surssadoxd
Surramsue uornsany)
aden3ue] [eanjeN paInjonnsun | aseqruui() /3Ieis
S931} UO DIeag POINIONI)S-TUIDG ‘Te 32 Suo) D
S931} UO DIedg POINIONI)S-TUIDG IOUTWIOAI], ururea] ewaydg
suo1ssa1dxa Jo UOT)esLIO}
-oey pue uonisodwoda paInjonng peny
Surururerd
-oxd 01301 aanponpuyl paInjonnsun XATIH.LNI
3urraysnio Teonyd A3o103u0
-IeIdNy pue mmsawu:ou paInjonnsun INNISV Surures] 4301010
Sururur eyep ‘3urssadoxd
aden3ue] [eanjeN paInjonnsun 0JU()-03-}X3],
Sururwrerd paInionns
-oxd o130f eAnoONpu] | -TWAS ‘paInjonasun XTUOJOM
| SPOYRNA | urewo(J | resodoi | aanpalqQ | asoding |

42 Chapter 4. Extracting knowledge from the web

language processing techniques to assist the ontology engineer in im-
porting and reusing existing ontologies, extracting ontologies from web
documents, adapting them to their prime purpose, refining them, and
validating the result.

ASIUM. It is a cooperative machine learning system that is able to acquire
subcategorisation frames and ontologies for specific domains from syn-
tactically parsed technical texts in natural language [39]. It is based on
an unsupervised clustering method.

INTHELEX. It is defined as a fully incremental, multi-conceptual closed loop
learning system for the induction of hierarchical theories from examples.
This means that the learned theory is checked to be valid on any new
example available, and a revision system is activated in case of failure
[37].

Schema learning systems deal with the extraction of knowledge about the
internal structure of documents. Schema learning for structured data [50, 99]
focuses on the inference of XML DTDs, XML-Schemas, or RDF-Schemas that
describe a set of tree-structured XML documents. Schema learning for semi-
structured data [26, 96, 123, 124] focuses on the discovering of common sub-
trees in web pages. In Table §4.1, we present a couple of schema learning
systems along with their main features.

4.3 Common instance extraction systems

Instance extraction systems focus on extracting individual instances of con-
cepts and properties specified in an external ontology. They are classified into
question answering, ontology population, and semantic annotation systems.

Question answering systems attempt to provide interfaces by means of
which an agent can query the web as if it was a knowledge base. Common
answering systems are Squeal, Omnibase and START, namely:

Squeal. It aims at viewing the web as an enormous database in which struc-
tural relationships are represented as database relationships [115]. This
goal is achieved by means of the Squeal ontology, which is specified as
an SQL database schema. SQL can be used to get knowledge about the
structure of a web page, which is possible because Squeal relates hyper-
text conventions to semantic relationships.

4.3. Common instance extraction systems 43

Omnibase and START. START is a natural language question answering sys-
tem and Omnibase is a virtual database that provides uniform access to
web resources [74]. The authors argue that their main goal is to develop
a “smart reference librarian” that knows where to find relevant knowl-
edge, even if it is not able to answer a question directly. START uses
natural machine-parseable language annotations to describe the kinds
of questions that some knowledge is able to answer.

Ontology population systems attempt to feed ontologies with instances ex-
tracted from web pages. WEB—KB, and ArtEquAKT are popular ontology
population systems, namely:

WEB—KB. This project aimed at developing a probabilistic, symbolic knowl-
edge base that mirrors the contents of the web [31]. WEB—KB works
on an ontology that defines the concepts and relations of interest, and a
set of training data composed of web pages labelled with semantic in-
formation that represents instances of the ontology. With these inputs,
and applying several machine learning algorithms, the system learns to
extract information from similar pages and hyperlinks on the web.

ArtEquAKT. This project aims at extracting individual instances about artists
from the web to populate an ontology automatically [2]. The individ-
ual instances and the ontology form a knowledge base that is used to
generate dynamic personalised presentations tailored to the user needs
(narrative bibliographies). Although the application domain is quite re-
stricted, we mention it since it is one of the very few proposals that exists
in the field of ontology population systems.

Semantic annotation systems attempt to enrich web pages with semantic
annotations, which is the motto of the semantic web initiative. Some anno-
tation tools like Yawas', CritLink'?, or Annotea’™ aim at creating user com-
ments on web pages to help users have a better understanding of web con-
tents. However, we are not interested in such tools, but in others that allow to
annotate web pages with ontological web languages, which are very suited for
web agents. CREAM and MnM range amongst the most important, namely:

CREAM. ltis an annotation workbench that allows to construct metadata us-
ing a domain ontology [58, 59]. The workbench comprises inference ser-
vices, a crawler, a document management system, ontology guidance,

Hhttp://www. fxpal.com/people/denoue/yawas
2http://crit.org
Bhttp://www.w3.0rg/2001/Annotea

44 Chapter 4. Extracting knowledge from the web

document editors, document viewers, and a meta-ontology. The imple-
mentation of CREAM supports the semi-automatic annotation of web
pages. It is based on the Amilcare information extraction system, which
is an inductive wrapper able to perform single slot extraction on unstruc-
tured web pages. CREAM annotates web pages by using knowledge ex-
traction rules that are learned from a marked-up set of annotated web

pages.

MnM. It provides both automatic and semi-automated support for marking-
up web pages with semantic contents [119]. It integrates a web browser,
an ontology editor, and an information extraction tool into a workbench
that helps users to annotate their web pages semantically.

MnM defines a process model composed of five main activities, namely:
browse, markup, learn, test, and extract. In the browse activity, a spe-
cific set of knowledge components is chosen from a library of knowledge
models on an ontology server. During the markup activity, the chosen
set of knowledge components is selected to form the basis of an informa-
tion extraction mechanism; a set of documents are manually marked up.
During the learn activity, a learning algorithm is run over the marked up
set of documents to learn the extraction rules. During the test activity, the
information extraction mechanism is run over a set of test documents to
assess its precision and recall measures. Last, during the extract activ-
ity, an information extraction mechanism is selected and run on a set of
documents.

4.4 Common knowledge base extraction systems

To the best of our knowledge, OntoMiner is the only proposal that aims at
extracting both ontology and individual instances from web pages [33]. It is
a system that uses datamining techniques to construct specialised domain on-
tologies and populating them by organising and mining a set of user-supplied
web sites. It is presented as an information integration system that transforms
legacy HTML documents into semantic web documents and encodes domain
knowledge to facilitate automated reasoning.

OntoMiner works on the URLs of the home pages of 10 to 15 domain spe-
cific taxonomy-directed web sites that characterises the domain of interest.
Next, OntoMiner uses several algorithms that detect the HTML regularities
to identify hierarchical relationships amongst the most important key domain
concepts and turns them into hierarchical structures encoded as XML. Then, it

4.5. Summary 45

expands the mined concept taxonomy with sub-concepts by selectively crawl-
ing through the links corresponding to key concepts. Finally, OntoMiner ex-
tracts instances from web pages by obtaining the hierarchically partitioned
instance segments and then finding the corresponding children.

4.5 Summary

In this chapter, we have unveiled the web discovering a rich source of
knowledge. We have classified and presented systems that exploit the se-
mantics aspects of the information residing on the web. These systems are
of interest because, nowadays, it is not realistic to assume that the semantic
web has already lived up to the hype.

46

Chapter 4. Extracting knowledge from the web

Chapter 5

Web services

It would appear that we have reached

the limits of what it is possible to achieve with
computer technology, although one should be
careful with such statements, as they

tend to sound pretty silly in five years.

Johann von Neumann, 1903—1957
Computer scientist and mathematician

ur goal in this chapter is to provide the reader with an insight into the web
services technology. It is organised as follows: Section §5.1 introduces this
chapter; Section §5.2 presents the concept of web service and the family of standards
that are current trends in their development; Section §5.3 briefly describes the seman-
tic web services technology; finally, Section §5.4 summarises the main ideas in this

chapter.

48 Chapter 5. Web services

5.1 Introduction

Web services have emerged as the next generation of web-based technol-
ogy for exchanging information. They support interoperable machine-to-ma-
chine interaction over the web, which enables applications to connect to each
other in a platform and programming language independent manner. Web
services are defined as units of work, each handling a specific functional task
with universally defined interfaces. Tasks can be combined into business-
oriented tasks to handle particular business transaction which propitiates the
vision of web services as a technology that enables dynamic business-to-busi-
ness interactions.

In the context of the semantic web, some researches are working on seman-
tic web services, which aim at automating web services by employing seman-
tic web technology for service description. The challenge is the serendipitous
interoperability, i.e., to enable software agents to automatically locate and in-
teract with services provided by unknown partners.

5.2 Nowadays web services

The term web service is fairly self-explanatory since it refers to having ac-
cess to services on the web, but there is more to it than that since the current
use of the term refers to the architecture, standards, technology and business
models that make web services possible. According to one of the most com-
mon definitions [97]:

Web services are a new breed of web applications. They are self-contained, self-
describing, modular applications that can be published, located, and invoked
across the web using standard protocols and languages such as XML, WSDL,
SOAP, or UDDI.

The infrastructure required to support web services builds on three roles:
service provider, service consumer and registry; and three verbs that describe
the interactions between them: register, find, and bind. Figure §5.1 illustrates
this idea. A service is an implementation of a service description, and a ser-
vice description is the metadata that describes the service. This metadata must
include sufficient information for a service consumer to have access to the ser-
vice it describes, including its interface and its location. A service provider
registers a service description into a service registry and a service consumer

5.2. Nowadays web services 49

Service
consumer
Fing.
o
a Registry
l . \e(
. eg\s
Service ®
provider

Figure 5.1: The infrastructure needed to support web services.

can then find the service description and its implementations by means of a
registry. The interface part of the service description is known to an appli-
cation developer so that the application can be implemented to communicate
with services of that type.

Previous three interactions of register, find and bind in an interoperable
manner are achieved using a layered web services architecture that is illus-
trated in Figure §5.2. The upper layers build on the capabilities provided by
the lower layers. The vertical towers represent requirements that must be ad-
dressed at every level of the stack. In this section, we use this architecture to
guide the presentation of the family of standards, which are current trends in
the development of web services.

The network layer. Itis the foundation of the architecture stack. Web services
must be network-accessible so that they can be invoked by a consumer.
The ubiquity characteristic of the HTTP protocol makes it the standard
network protocol, although others are possible, e.g., SMTP, IIOP, or RML

SOAP. It is a W3C standard for XML-based messaging [112]. It is defined as
a lightweight protocol for exchange of information in a decentralised,
distributed environment.

WSDL. Itis a W3C standard that builds on XML schema to define an XML vo-
cabulary for defining the interfaces of web services. A WSDL description
provides two pieces of information: an application-level service descrip-
tion, or abstract interface, and the specific protocol-dependent details
that consumers must follow to access the service. This separation allows
the reusing of abstract definitions amongst different providers.

50 Chapter 5. Web services

Service flow and composition
BPEL4WS

Service discovery and publication

uDDI =

=5

o | 2 =

Service description 3 & o

c [X X)

WSDL = (2| o

= 3 1

< |2 @

3| s

XML-based messaging P
SOAP

Network

HTTP

Figure 5.2: The IBM web services architecture stack.

UDDI. It provides a mechanism for consumers to find businesses worldwide
and a mechanism for registering the products and services of a business
for others to discover [5]. A key point is that the UDDI specification was
developed to enable businesses to quickly, easily and dynamically find
and transact business with one another, where transactions do not refer
to software transactions only, but traditional brick-and-mortar transac-
tions as well.

BPEL4WS. It builds on IBM’s WSFL and Microsoft’s XLANG to provide a
language for the formal specification of business processes.

5.3 Semantic web services

The semantic web has motivated some researches to work on the semantic
web services as an attempt to overcome the previous limitations. Semantic
web services aim at mechanising web services by employing semantic web
technology [4]. This refers to the ability to discover, invoke, compose and
monitor their execution automatically. Automatic discovery involves the au-
tomatic location of web services that provide a particular service and that ad-
here to some constraints; automatic invocation involves the automatic execu-
tion of an identified web service by a software agent; automatic composition

5.4. Summary 51

involves the automatic selection, composition and interoperation of web ser-
vices to perform some task, given a high-level description of an objective; fi-
nally, automatic execution monitoring refers to the ability to find out in which
state a request is and whether any problems have appeared.

The three main proposals in this field are OWL-S, SWWS, and METEOR-S,
namely:

OWL-S/DAML-S. It is an OWL-based web service ontology that supplies
web service providers with a core set of markup language constructs
for describing the properties and capabilities of their web services in un-
ambiguous, computer-interpretable form [87].

SWWS. Its main goal is to establish comprehensive frameworks to support
semantic web services [21]. The authors are working on providing a
comprehensive web service description framework defining a web ser-
vice discovery framework, and developing a scalable web service mid-
dleware.

METEOR-S. Its main goal is to add semantics to the complete web process
life cycle by providing constructs for adding semantics to WSDL, UDD],
and BPEL4WS [110, 111, 120].

54 Summary

In this chapter, we have presented web services as a promising design ap-
proach for making computing systems more flexible and cost-effective; then,
we have presented semantic web services, which aim at automating web ser-
vices by employing semantic web technology for service description.

52

Chapter 5. Web services

Part 111
Our approach

Chapter 6

Motivation

Ability is what you 're capable of doing.
Motivation determines what you do.
Attitude determines how well you do it.

Lou Holtz, 1937—
American football coach

ecently, unveiling the web has been one of the most interesting research areas

in the computer science or engineering fields. However, current solutions are
not practical enough since they are not able to cope with a user-friendly, changing
and huge web. Our goal in this chapter is to present these problems and motivate the
need for a new solution. It is organised as follows: in Section §6.1, we introduce the
chapter; in Section §6.2, we present these problems in detail; in Section §6.3, we prove
that none of the current solutions solve these problems at a time; in Section §6.4, we
discuss our results; finally, Section §6.5 summarises the main ideas in this chapter.

56 Chapter 6. Motivation

6.1 Introduction

In recent years, the design of reference architectures for systems distrib-
uted on the Internet has attracted an increasing number of researchers and
practitioners who have focused on platforms, languages, middlewares, or in-
teroperability concerns. The main reason for such a great interest is that this
network has experienced a rapid shift from information and entertainment to

electronic commerce, which has gained importance and grown exponentially
[72, 108, 118].

A major challenge for marketspace participants has become sifting through
an unwieldly amount of information to find useful products and services. For-
tunately, the technology has evolved and the Internet has matured to a point in
which sophisticated new generation agents exist. They enable efficient, com-
prehensive searches on the vast web information repository, and can circum-
vent some problems related to slow Internet access and free up prohibitively
expensive surf time by operating in the background. In order for such agents
to be reliable and interoperable, they must be able to access the knowledge
the web contains, which is difficult because the web is user-friendly, chang-
ing, huge and distributed.

The semantic web shall bring meaning to the web, making it possible for
software agents to understand the information it contains. However, current
trends seem to suggest that it is not likely to be adopted in the immediate fu-
ture. Thus, the extraction of meaningful information from the web becomes
a serious problem for current software agents. Some authors are working on
proposals that aim at unveiling the information or knowledge residing on the
web to allow software agents to retrieve and manipulate pertinent informa-
tion. Unfortunately, no solution seems to be appropriate enough in the context
of software engineering. The reason is that they do not address the aforemen-
tioned problems at a time, but independently.

6.2 Problems

Three main problems make it difficult to develop software agents able to
exploit the information residing on the nowadays web, namely:

The web is user-friendly. Software agents need to have a common under-
standing of their working domains in order to communicate with each
other, and perform complicated task on behalf of their users. The gap be-
tween what a software agent understands and the available user-friendly

6.3. Analysis of current solutions 57

web content may prevent software agents from being able to reason au-
tomatically about the knowledge residing on the web.

On account of this observation, it is clear that it would be desirable for a
practical solution to enable agents to understand the information resid-
ing on the web. An agent that has an ontology that specifies the semantic
information about the information on a web site, should have access to
a set of individual instances that relates the information on the web site
with the concepts specified in the ontology.

The web changes continuously. The web is dynamic, changes continuously
and evolves unexpectedly, which makes it difficult for software engi-
neers to develop software agents able to take advantage of the web as an
information source. Software agents use this information to accomplish
their goals, then, if the information is corrupted it can result in malfunc-
tion with unexpected effects.

Since web changes are not avoidable, it is clear that it would be desirable
for a practical solution to embrace web changes and to minimise the cost
of maintenance when they occur.

The web is huge and distributed. It connects many heterogeneous informa-
tion sources, and thereby, a potentially immense number of sites from
which an agent can extract knowledge. Dealing with the extraction of
this information manually is infeasible and automatisation and distribu-
tion are necessary features to take advantage of this potential.

The previous desiderata are necessary to provide reliable support for de-
veloping web agents that need to be able to understand the information on
the web at a sensible cost. By “sensible cost”, we mean the there should be
a balance amongst automatic reasoning, adaptability, and automatisation and
distribution that minimises their development and maintenance costs.

6.3 Analysis of current solutions

Our goal in this section is to prove that none of the systems presented in
Chapter §3 and Chapter §4 address the aforementioned problems at a time.

6.3.1 The semantic web

The semantic web shall simplify and improve the knowledge extraction
process by changing it into querying a semantically annotated information

58 Chapter 6. Motivation

25

—_~

(2]

2

S 20 -

n

3

£ 15

=

3

o 10

]

o

|

s 5

<

[a]

O T T 1" +TT 7T "1 "—"*"1T "7 "7 ___~'»UvU "1 71 7
O —m— = - = N AN A N O O 0 0 ¥ g 9«
2292232229222 ¢3¢
0O = C O = C O = C O = C
8 85 8 85 %8 85 % 8 85 &
[T I, = T BV, B e B BV B o B B, 1
Date

Figure 6.1: Semantic web evolution.

source. Nevertheless, it requires a great deal of effort to annotate current web
pages with semantics. Figure §6.1 shows the semantic web evolution as of
the time of writing this document. The figures suggest that there are very
little annotated pages available if we compare them with the number of non-
annotated pages. The DAML crawler™ reports 21 025 annotated web pages in
September 2004, which is a negligible figure if we compare it with 550 billion,
which is the estimated total number of web pages'?. Current trends seem to
suggest that the semantic web is not likely to be widely adopted in the forth-
coming years [63].

Therefore, today, it is not realistic to assume that software agents can un-
derstand the web. This argues for researchers to continue working on devel-
oping new proposals for extracting knowledge from the web, and on improv-
ing the existing ones in the meanwhile. These proposals will be useful as long
as the semantic web is not in widespread use.

6.3.2 Inductive wrappers

Induction wrappers are suited to extract information from the web at a
sensible cost. They automatise the process of building wrappers, and they
can be combined with verifiers to embrace web changes; they can even be

Hhttp://www.daml.org/crawler
2http://www.cyveillance.com

6.3. Analysis of current solutions 59

combined with re-induction systems to recover from errors without human
intervention (self-healing). However, they do not associate semantics with the
data they extract, this being their major drawback. Thus, they allow to use the
extracted data in other applications by embedding all the knowledge about
them into their functional logic.

6.3.3 Ad-hoc solutions

Other solutions are the ad-hoc applications with built-in knowledge to
translate the information from today’s non-semantic web into semantically-
meaningful information. The problem here is due to the dynamism inherent
to web sites. They are wired to properties of web pages or characteristics of the
information to extract; changes on the web break them easily, which increases
their maintenance costs.

6.3.4 Web knowledge extraction systems

As we mentioned in Chapter §2, neither proposals in schema learning
(from ontology extraction systems) nor in question answering (from ontology
population systems) are related with our work. Ontology learning systems
deal with the extraction of concepts and relationships amongst them, which
is still an open problem. In general their accuracy is not enough for typical
applications. To increase the accuracy, they usually reduce their scope of ap-
plication by focussing on a concrete domain and handling only one kind of
web pages (unstructured web pages). These ideas justifies that the semantic
information about data on a web page must be described by an human knowl-
edge engineer, and this is the approach we use in our framework.

Our work is closely related to the proposals in ontology population, se-
mantic annotation and knowledge base extraction. However, our focus is
clearly different since we are concerned with the development of software ap-
plications, that is, with software engineering.

Ontology population. Feeding external ontologies with instances extracted
from web pages is the proposal by WEB—KB [31] and ArtEquAKT [2].

In WEB—KB, rules learned can be used in others web sites in the same ap-
plication domain, which makes this solution able to deal with web changes.
It automatises the process of extracting instances from the web but it can be
achieved only after a difficult training phase, which makes the cost of this

60 Chapter 6. Motivation

automatisation excessive. It uses the SRV wrapper to extract syntactic infor-
mation, which constraints it to single slot extraction on structured and semi-
structured web pages. Furthermore, the synchronisation of the knowledge on
a web site with the knowledge on the knowledge base, makes it not suitable
for web sites in which the information changes continually, e.g., stock values.

ArtEquAKT works on a concrete domain (biographies of artists) and han-
dles unstructured web pages, which reduces their scope of application. Fur-
thermore, ArtEquAKT is not able to deal with changes on the web.

Semantic annotation. CREAM [58, 59] and MnM [119] are similar systems,
they provide a workbench so that users can annotate web pages with meta-
data. The last versions are able to semi-automatically annotate web pages by
using inductive wrappers. Their major drawback is that web sites to annotate
are supposed to be static. Furthermore, they focus on unstructured web pages,
which reduces their scope of application significantly.

Summing up, they are solutions from the web site provider perspective,
and not from the consumer of the information residing on web site. In general,
it may not be appropriate to wait for the provider of a web site to decide to
annotate semantically its web pages, because we are looking for solutions that
work in the current non-semantic web.

Knowledge base extraction. Ontominer [33] is a solution for information
integration that aims at converting traditional legacy web sites into semantic
enabled web sites. It automatically extracts a taxonomy from web sites that are
taxonomy-directed, and, thus, has the same drawbacks as ontology learning
systems. As semantic annotation systems, it is a solution from the web site
provider perspective. With respect to individual instances extraction, it also
works on a static environment and it is addressed by the taxonomy obtained
automatically, which precludes the reusing of existing ontologies or selecting
the chunks of knowledge of interest from a web site.

6.4 Discussion

From the previous discussion, it follows that a framework able to extract
knowledge, to embrace web changes, and to automatise the development of
distributed knowledge extractors is very desirable from a practical point of
view.

6.5. Summary 61

WebMeaning is our approach to extract semantically-meaningful informa-
tion from today’s non-semantic web. It provides engineering support for soft-
ware developers to build web information agents at a sensible cost. WebMean-
ing achieves separation of issues in developing knowledge extractors that we
call semantic wrappers. Such wrappers are composed of a syntactic wrap-
per to extract syntactic information from the Web, a syntactic verifier to verify
the information extracted, a semantic translator to give semantics to the ex-
tracted information, and a semantic verifier to check the knowledge semanti-
cally. These elements may be freely integrated as a whole to produce semantic
wrappers. WebMeaning allows to substitute them easily, which reduces the
impact of changes and improves reusability.

In order to extract information from the web and to verify it, WebMean-
ing can use existing inductive wrappers and wrapper verifiers, respectively.
This allows us to take advantage of all the work developed in these fields,
to exploit their automatisation in dealing with syntactic information, and to
cover a wide range of web sites. Our proposal for building semantic trans-
lator is formalised in Chapter §8 and a materialisation is given in Chapter
§9; here, we present several guides that help develop domain-independent
semantic translators semi-automatically. Knowledge is semantically checked
using reasoners that allows to detect inconsistencies in the information source
used to feed a web site. Finally, we present a proof-of-concept implementation
in Chapter §10, this can be seen as a comprehensive SOA-based architecture
that promotes distribution of the elements of which a semantic wrapper is
composed.

6.5 Summary

Our goal in this chapter was to motivate the reason why we embarked
on the development of this thesis. We have analysed the problems involved
in extracting knowledge from the web, and have proved that none of them
succeeds in addressing them at a time. This proves that our contribution is
original and advances the state of the art a step forward.

62

Chapter 6. Motivation

Chapter 7
The WebMeaning framework

If you have Knowledge, let others light their candles at it.

Margaret Fuller, 1810-1850
American transcendentalist author and editor

ur goal in this chapter is to present the framework we have devised to deal

with the problem of developing software agents able to understand the cur-
rent syntactic web. It is organised as follows: Section §7.1 presents an informal intro-
duction by mean of a simple activity diagram; Section §7.2 introduces some prelimi-
nary concepts; Section §7.3 defines the elements of framework rigorously; finally, we
summarise our contributions and publications in Section §7.4.

64 Chapter 7. The WebMeaning framework

7.1 Introduction

As we state in the previous chapter, the primary focus of our research work
is to provide engineering support so that software developers can develop
agents that need a piece of knowledge residing on web pages to satisfy their
goals. This is materialised as an abstract framework called WebMeaning that
provides a foundation for developing semantic wrappers. Semantic wrappers
are designed on the principle of separation of issues. The criterion used is to
make each major step in the knowledge extraction process an activity, which
is performed by a different artefact; thus, a semantic wrapper is the artefact
responsible for orchestrating these artefacts.

Figure §7.1 uses the SPEM notation based on UML 2.0 to give a good in-
tuitive understanding of the activities involved in extracting knowledge from
the web; namely: information extraction, information verification, translation
of information into knowledge, and semantic verification. These activities
are performed by the syntactic wrapper, syntactic verifier, semantic transla-
tor, and semantic verifier artefacts, respectively. The semantic wrapper or-
chestrates to all them as follows: given a web page, the semantic translator
invokes the syntactic wrapper to extract the syntactic information of interest
from it; then, the syntactic verifier checks whether the information extracted
is syntactically valid; if it is not valid, it then reports a syntactic error; on the
contrary, the information is translated into instances of an ontology by the se-
mantic translator artefact. Again, the knowledge is checked to detect semantic
errors; if the knowledge is not semantically valid, the semantic verifier reports
a semantic error; otherwise the knowledge is returned.

In this chapter, we present a complete formalisation of the WebMeaning
framework. It is a foundation intended to be instantiated to develop a family
of knowledge extraction systems. It defines the basic building blocks to create
them and makes explicit where adaptations for specific functionality should
be made.

7.2 Preliminaries

To define the inputs and outputs of the elements in Figure §7.1 we define
four data types, namely: web page, structured information (the output format
of syntactic wrappers), Abox (the output format of semantic translators), and
the result of the process of knowledge extraction.

65

7.2. Preliminaries

\

o Hoday

[preAl

[preAuy]
10119

unsey

(il

xoqy

yoday

L

7 anuewss

FLTTTICYY

Hnsay onuewasg xoqy

/ uonew.oyul

lojejsues}
xoqy ogueweg PaInoNAS

uoneoIaA
abpajmouyy

o9
onoejuAs
uoday

1|}

uolejsuel}
onuewsas

unsay onoejuAg painjonng

wonewO oddem)

painonis onoeuAs obed qam

abed qam

uonoeixa
uonew.oyu|

uoneOILIBA
uonew.ojuj

uonoel}xa abpajmouy

Figure 7.1: Semantic translator workflow.

66 Chapter 7. The WebMeaning framework

7.2.1 Web pages

Web pages are modelled by introducing a basic type called WebPage. It
represents the set of all existing web pages.

[WebPagel

Note that we not delve into the structure of web pages since, although it is
well defined by W3C, it is irrelevant for us. As long as syntactic wrappers deal
with them, our proposal is completely independent from actual web pages.

7.2.2 Output format of syntactic wrappers

We define the StructuredInformation data type to represent the output for-
mat for wrappers, c.f. Figure §7.1. It is defined as a set of HierarchicalSlots,
which allows us to deal with wrappers able to perform multi-slot extraction.
The HierarchicalSlot data type is composed of a tree called t and a pair of func-
tions: vertexAttributes and vertexHLevel that allows us to represent hierarchical
information. The Tree data type is defined in Appendix §A, and it specifies
a rooted connected acyclic graph composed of a set of vertices and a set of
edges. Function vertexHLevel maps edges onto values of the Label free type,
which represents the set of all labels. Each label represents a hierarchical
level. Function vertexAttributes maps vertices onto seq Attribute, which rep-
resents a piece of information provided in a hierarchical level and it allows
us to set a location for each attribute, which solves the problem of represent-
ing attribute permutations. Attribute represents an attribute to be extracted,
and it is specified as a set of literals, which allows us to deal with missing at-
tributes, i.e., the empty set, or attributes with multiple values, i.e., a set with
cardinality greater than one. Furthermore, four predicates formalise the re-
quirements for a StructuredInformation: the first and the second state that func-
tions vertexAttributes and vertexHLevel are defined for all vertices in f; the third
states that all of the slots at a same hierarchical level are at the same depth
in the tree and they have the same number of attributes; the latter constraints
that all vertices must have one attribute at least.

[Literal, Label]
StructuredInformation == F HierarchicalSlot
Attribute == T Literal

7.2. Preliminaries 67

_HierarchicalSlot
t: Tree
vertexAttributes : Vertex - seq Attribute
vertexHLevel : Vertex -+ Label

dom vertexAttributes = t.vertices
dom vertexHLevel = t.vertices
Y wq,ws : Vertex ’ w1 #£ w2 /\ vertexHLevel(w;) = vertexHLevel (w;) e
#oertexAttributes(w,) = #vertexAttributes(ws) /\ sameDepth(t, w1, w;)
YV w : dom vertexAttributes o
#oertexAttributes(w) > 0

Example 7.1 Figure §7.2(b) shows the StructuredInformation extracted by using a
multi-slot wrapper from the web page in Figure §7.2(a). There are three hierarchical
levels, namely: HO, which abstracts the information about a restaurant (name and
closed days), H1, which abstracts information about addresses (number, street, and
city), and H2, which encapsulates some information about phones (number). Each hi-
erarchical slot represents information about one restaurant, its addresses, and phones
per address; for instance, the first hierarchical slot represents a restaurant with two
addresses where the second address has two phone numbers; the second hierarchical
slot represents a restaurant with only one address and no phone numbers. The third
hierarchical slot represents a restaurant with one address and one phone number.

7.2.3 Assertions about individuals

Individual instances are represented in WebMeaning using the description
logics formalism, i.e., they are specified as Aboxes. As mentioned in Subsec-
tion §2.2.1, an Abox is a set of axiomatic assertions. There exist two kinds of
assertions: concept assertions and property assertions. A concept assertion
states that an individual is a concept instance; a property assertion states that
an individual is related to another individual (relationship between two con-
cept instances), or to a literal by a given property name (value of an attribute
associated with a concept).

The scheme below sketches the structure an Abox. It has a declarative part
containing a set of concept names, a set of property names, a set of individ-
ual names, a set of concept assertions, and a set of property assertions. The
predicate part is empty, because this part is well-formalised in the literature,
so there is no need to repeat it here [13].

[ConceptName, PropertyName, IndividualName)

68 Chapter 7. The WebMeaning framework

Name: Taco Close on: Monday & Sunday

Address: 234 Taylor
Pittsburgh

Address: 150 Connecticut
Harrisburgh
Phone: 2314800
Phone: 2324800

Name: Paradise
Address: 213 Market

Name: FireMeal Close on: Monday

Address: 122 West
New York

Phone: 2344800
(a) Web page

fsuucturedlnformation
<{“Taco"}, - \
{*Monday”, HO ° <{“Paradise’}, {}> HO G <“{MF|reMe’:aI b
“Sunday”}> {*Monday"}>

<{"234", {*Taylor"},

H {*Pittsburgh’}>

<{*1507}, wryq wqoom fu ”
H1 {“Connecticut’}, H1 ° {<{M 2':11rie}t”’) - Hi F‘{’\IL?AIEY};){rkY\}ISSt)!
{“Harrisburgh”}> ’

<{"2314800")> H2

<{"2324800"}> H2 <{"2344800”}>J

(b) StructuredInformation

Figure 7.2: Sample of StructuredInformation.

7.2. Preliminaries 69

EatingHouse
D name
D closed —hasAddress—> Address | _hasPhone-> Phone
O hasAddress D street D number
D number
o inCity ——inCity—> City
O hasPhone D name
Restaurant Bistro
D name D name
D closed D closed
O hasAddress O hasAddress

Figure 7.3: An ontology about eating houses.

- Abox
conceptNames : F ConceptName

propertyNames : F PropertyName

individualNames : F IndividualName

conceptAssertions : F(conceptNames x individualNames)

propertyAssertions : IF(propertyNames x individualNames x (individualNames U Literal))

Example 7.2 Figure §7.3 illustrates graphically a Tbox about eating houses. Using
this Tbox, we can define an Abox for our case study as follows:

a = (conceptNames ~~ {Restaurant, Address, City, Phone},
propertyNames ~ {name, closed, hasAddress, street, number, inCity, hasPhone},
individualNames ~ {RID, AIDq, AID;, CID+, CID,, PID+, PID,},
conceptAssertions ~ {(Restaurant, RID+), (Address, AID1),
(Address, AID;), (City, CID1), (City, CID;), (Phone, PIDy),
(Phone, PID>)}
propertyAssertions ~ {(name, RIDy, “Taco”), (closed, RIDy, “Monday”),
(closed, RIDy, “Sunday”), (hasAddress, RIDv, AIDy), (street, AIDy, “Taylor”),
(number, AIDy, “234"), (inCity, AID1,CID1), (name, CID1, “Pittsburgh”),
(hasAddress, RIDq, AID>), (street, AID», “Connecticut”), (number, AID,, “150”),
(inCity, AID,, CID;), (name, CID,, “Harrisburgh”), (hasPhone, AID, PID+),
(number, PID+, “2314800"), (hasPhone, AID,, PID,),
(number, PID,, “2324800”)})

70 Chapter 7. The WebMeaning framework

This Abox uses the vocabulary in a.conceptNames U a.propertyNames to state
assertions about one individual of concept Restaurant. For instance, concept assertion
(Restaurant, RID¢) means that RID, is an instance of the concept Restaurant; the
(hasAddress, RIDy, AIDy) property assertion means that AID; is an address of the
restaurant RID,, and (name, RID, “Taco”) asserts that the name of RID, is “Taco”.

Last, according to the description logics formalism, a knowledge base is
modelled as the cartesian product of Thox and Abox types. Note that introduc-
ing the Thox as a free type provides maximal freedom in choosing a concrete
description logic.

[Tbhox]
KnowledgeBase == Tbox x Abox

7.2.4 Result of the knowledge extraction process

The result of the knowledge extraction process is an enumerated data type.
We introduce a set called Result that is the smallest set containing the three
distinct constants OK, SYNTFAIL, and SEMFAIL. OK means that there were
not any failures in the knowledge extraction process. SYNTFAIL informs of a
syntactic failure, and SEMFAIL informs of a semantic failure.

Result == OK | SYNTFAIL | SEMFAIL

7.3 Core definitions

The core of our framework is a set of definitions by means of which we
define the elements presented in Figure §7.1 rigorously.

7.3.1 Syntactic wrappers

Definition 7.1 (Syntactic wrappers) A syntactic wrapper is a function that takes
a web page as input and returns a structured view of the information of interest.

7.3. Core definitions 71

The axiomatic function below formalises a syntactic wrapper. It is mod-
elled as a partial function because its domain is a subset of web pages that
defines its scope, i.e., the web pages with which the wrapper can be used.

‘meper : WebPage + StructuredInformation

‘dom Wrapper # @

WebMeaning is open to use any existing inductive wrapper system, hand-
crafted wrappers, or APIs provided by web sites to extract information. Im-
plementing inductive wrappers generator allows to atomatise the develop-
ment of wrappers. Handcrafted wrappers are rapidly developed, but main-
taining them is expensive; nevertheless, this strategy can be interesting when
changes on a web site are not frequent or are kept under control. Furthermore,
some web sites provide APIs to access the information they offer. For instance
Google. com for information retrieval, Amazon . com for books, or Imdb. com
for movies.

When selecting the implementation of an inductive wrapper or a hand-
crafted wrapper, developers should ask themselves a few questions about the
characteristics of the web site in which the information resides and how the
information is presented, namely:

Is it needed single-slot or multi-slot extraction?

Are web pages structured, semi-structured or unstructured?

Do web pages contain slots with missing attributes, multi-valuated at-
tributes, or attribute permutations?

Is the information on web page structured hierarchically or tabularily?

For instance, regarding the web page in Figure §7.2(a), it is clear that we
need to deal with semi-structured web pages and hierarchical information ex-
traction. These features argue for the development of a handcrafted wrapper
or the use of an inductive wrapper generator. In table §3.1, we summarise the
main features of most common current wrappers. Thus, a good election might
be STALKER for single-slot extraction or a handcrafted wrapper for multi-slot
extraction.

72 Chapter 7. The WebMeaning framework
7.3.2 Syntactic verifiers

Definition 7.2 (Syntactic verifiers) A syntactic verifier is a predicate that takes the
information extracted by a wrapper as input and holds if the wrapper is working cor-
rectly. We call them syntactic verifiers because the decision about the wrapper’s being
valid is based solely on syntactic properties of the information extracted.

‘SyntuctiCVeriﬁer : StructuredInformation

Thus, wrapper W is reliable if it satisfies the following formula:

Vp : WebPage | p € dom W e SyntacticVerifier(W(p))

WebMeaning addresses the problem of web changes by defining syntac-
tic verifiers. It is open to use any existing generator of wrapper verifiers as
RAPTURE and DataProG or handcrafted syntactic verifiers. As in inductive
wrappers systems, implementing a generator allows to automatise the devel-
opment of syntactic verifiers. When developing handcrafted syntactic veri-
fiers, a result from Kushmerick’s work is interesting [77]: he found that the
HTML density feature (fraction of ‘<” and “>" characters in the extracted infor-
mation) alone can correctly identify almost all of the changes in the sources he
monitored. If the syntactic wrapper used is an API provided by a web site, it is
not necessary to implement a syntactic verifier since predicate SyntacticVerifier
should hold trivially for any web page in web site.

7.3.3 Semantic translators

Definition 7.3 (Semantic translators) For each si : StructuredInformation, the
goal of a semantic translator is to find a semantically equivalent a : Abox defined
in terms of the vocabulary of an ontology using the available information (such as in-
dividual instances, an external ontology, or mapping information supplied by users).

‘Semantichnslator : WebPage + Abox

‘dom SemanticTranslator # @

Before implementing a semantic translator it is necessary to determine the
most suitable language for our needs. We can decide to bet for maximum

7.3. Core definitions 73

expressiveness, or for computational issues, or to keep a balance between ex-
pressiveness and computational issues. The ideas in Chapter §2, summarised
in Tables §2.1 and §2.2, can help in this selection. Depending on the language
used we can take advantage of using different reasoners. For instance, if we
use OWL-Lite, then we can use the RACER reasoner; but if we use OWL-Full
then we must be aware that there does not exist a complete and decidable
reasoner for this language.

We present further details on building semantic translators in the forth-
coming chapters, namely: Chapter §8 introduces them abstractly, and Chapter
§9 presents concrete algorithms to guide in their development.

7.3.4 Semantic verifiers

Definition 7.4 (Semantic verifiers) A semantic verifier checks the satisfiability of
sets of object instances of the ontologies. That is, it checks whether the instances are
consistent with the constraints defined in the ontology.

It is specified as a predicate that checks the knowledge base satisfiability
using a complete and decidable reasoner.

‘SemanticVeriﬁer : KnowledgeBase

Note that semantic verifiers detect inconsistencies in the information source
used to feed a web site, whereas syntactic verifiers detect changes in the layout
of a web site that invalidate the extraction process. The solution to semantic
errors is not to rebuild the syntactic wrapper since it works well, but to wait
for the information to be corrected or to look for another site that offers the
same information.

As mentioned previously, if there are not reasoners for the ontological lan-
guage used, then the knowledge extracted cannot be checked, i.e., predicate
SyntacticVerifier would hold trivially for any Abox. In table §2.2, we sum-
marise the main features of most common current reasoners; thus, it can help
in the selection of a suitable reasoner.

7.3.5 Bringing it all together

Definition 7.5 (Semantic wrappers) A semantic wrapper is a function that takes
a web page as input, and returns a set of instances of concepts defined in an ontology
that represents the information of interest.

74 Chapter 7. The WebMeaning framework

Below, we specify a semantic wrapper as an axiomatic function. It rigor-
ously presents the collaboration amongst concrete elements, namely: a wrap-
per (W), a syntactic verifier (V), a semantic translator (ST) and a semantic ver-
ifier (SV). The collaboration was informally introduced in Section §7.1. The
NULLABOX represents an empty Abox.

NULLABOX == { conceptNames = &, propertyNames = &, individualNames = &,
conceptAssertions = @, propertyAssertions = & |

SemanticWrapper : WebPage + Abox x Status

Y/ p : WebPage; a : Abox; si: StructuredInformation | p € dom Wrapper o
(SemanticWrapper(p) = (a, OK) A
si=W(p) A\ V(si) /\a=ST(si) /\ SV(a))
V
(SemanticWrapper(p) = (NULLABOX, SYNTFAIL) A
si = W(p) /\— V(si))
V
(SemanticWrapper(p) = (NULLABOX, SEMFAIL) A
si=W(p) /\ V(si) N a =ST(si) /\— SV(a))

We present further details on building semantic wrappers in Chapter §10,
which presents a comprehensive architecture that provides support for devel-
oping semantic wrappers.

7.4 Summary

In this chapter, we have presented a formalisation of an abstract framework
that defines a family of knowledge extraction systems. Chapter §10 comple-
ments this chapter by providing a proof-of-concept implementation that maps
the framework elements into software elements. The main results were pub-
lished at the 2003 IEEE/WIC International Conference on Web Intelligence
(WI'03) [11].

Chapter 8

Semantic translation

‘Everywhere one seeks to produce meaning, to make the world

signify, to render it visible. We are not, however, in danger of lacKing meaning;
quite the contrary, we are gorged with meaning and

it is Killing us.

Jean Baudrillard, 1929—

French semiologist

n this chapter, we present a proposal for semantic translation. It is organised as

follows: in Section §8.1, we introduce the main ideas; Section §8.2 defines the
problem of semantic translation and overviews our solution; Section §8.3 introduces
a notation to represent individuals instances; Section §8.4 specifies formally semantic
descriptions, a notation to represent the semantics of the information extracted from
the web; Section §8.5 defines how semantic descriptions are built and Section §8.6 how
they are related with the information extracted from the web; Section §8.7 formalises
our solution to semantic translation; finally, Section §8.8 summarises the ideas in this
chapter.

76 Chapter 8. Semantic translation

8.1 Introduction

In this chapter, we present our solution for semantic translation from an
abstract point of view. It involves the unravelling of the semantics of the in-
formation to be extracted and the relation of previous unravelled semantics
with pieces of extracted data. The results from these tasks allow us to set up
a domain independent algorithm, to which we refer to as semantic translator,
that automatically gives semantics to the information extracted by a wrapper.
Thus, the abstractness with which we illustrate our proposal provides us with
a maximal degree of implementation freedom, as we illustrate in Chapter §9.
There we report on an efficient implementation, but others can be integrated
smoothly.

8.2 Problem definition

To pursuit the problem of semantic translation, we make some assump-
tions about the attributes in a hierarchical slot, the relationships amongst hier-
archical levels, and the way in which hierarchical slots are translated, namely:

Assumption 1. We assume that each attribute in a hierarchical slot is the value
of one property associated with a concept. That is, the value of one prop-
erty cannot be computed from other attributes. For instance, if the on-
tology in Figure §7.3 had only one property to refer to the number and
street of concept Address, then, the wrapper should extract two attributes
for hierarchical level H1, i.e., ({“234 Taylor”, “Pittsburgh”}) instead of
({2347, “Taylor”, “Pittsburgh”}). Overcoming this assumption will re-
quire preprocessing the StructuredInformation extracted by the wrapper,
which is not difficult, but irrelevant for this proposal.

Assumption 2. Each edge between two vertices in a hierarchical slot repre-
sents a property with multiple values that relates two different concepts.
This is not a shortcoming since missing properties are represented by
means of an empty set, and single-value properties are represented by
means of a singleton.

Assumption 3. The information to be extracted must deal with only one con-
cept, which cannot be further subclassified or specialised. For instance,
all the information extracted from web site in Figure §7.2(a), refers to
restaurants or bistros, but never to restaurants and bistros at the same
time.

8.2. Problem definition 77

Unravelling the

semantics
— Setting semantic
{> — translator
man i Semantic
i Semantic
Aboxes semantic ant Semantio
description description o

Setting
semantic
translator translator

Location
information j

Semantic

Relating information
with semantics

Semantic
description

Build -
location Location
information information

Structured
information

Figure 8.1: Activities to build a semantic translator.

Given the definition of semantic translator in Chapter §7 and the previous
assumptions, our solution to semantic translation involves three tasks, which
are sketched in the activity diagram in Figure §8.1, namely:

Unravelling the semantics of the information to be extracted. We use a set of
examples of assertions of individuals to get a description of the seman-
tics involved in defining these individuals.

Relating the information extracted with semantic information. We use a set
of pairs of structured information and Aboxes to infer the location infor-
mation that allows to relate the semantic description obtained in previ-
ous task with the output format of the wrapper. The location provides
information about how properties in a semantic description are related
with attributes in a hierarchical slot.

Setting up a domain independent semantic translator. The semantic transla-
tor is provided with the global semantic description and the location
information obtained in the previous tasks to give semantics to the in-
formation extracted by the wrapper automatically.

78 Chapter 8. Semantic translation

Restaurant
RID;

)
@ éoe
Address
AID;

dress:

hasy dd’ess

hasAd

Address
AID,

{*Taco} {*Monday”, #
¢

“Sunday”} \@

1)

{“Taylor"} 234

s*Sk) aasp

T O
ol
o\ N ’500

O
City
CID1

{“Connecticut”} {*150"}

On,

Phone Phone
PID, ¥ | PID,

number

R«‘
e 77

City
CID,

@

3>
number
o
@number

{“Pittsburgh”} {(“Harrisburgh”} ~ {*2314800"} {“2324800}

Graphical notation

VertexType EdgeT
VertexIdentifier - —EdgeType—»-
‘ ‘ Attribute ‘ ‘

Concept FILLER

vertex vertex Property

Figure 8.2: An individual tree.

8.3 A representation for individuals

The Abox specification in Chapter §7 is an abstract specification that defines
assertional knowledge accurately. Now, we present a concrete specification of
assertions about one individual in an Abox based on trees (the equivalence
between these specifications is proved in Appendix §B).

Definition 8.1 (Individual trees) An individual tree is a representation of an indi-
vidual in some Abox as a tree. There are two types of vertices: vertices that represent
concepts assertions and vertices that represent attributes. Edges represent properties
and they establish relationships between two concept instances vertices, or between a
concept instance vertex and a vertex that represents literal values.

Example 8.1 Figure §8.2 illustrates the individual referred to as RID; in the Abox
in Example §7.2.

For the sake of readability, we define a new type that is widely used in
this chapter. The LabelledTree data type describes a tree in which vertices are

8.4. Semantic descriptions 79

labelled with concept names and edges are labelled with property names. We
use the special concept name FILLER to represent literal values. The assertions
in the predicate part of the scheme constrain that filler vertices do not have any
children and leaves are labelled with FILLER. Predicate isLeaf is specified in
Appendix SA.

~LabelledTree
t : Tree
vertexType : Vertex + ConceptName
edgeType : Edge - PropertyName

dom vertexType = t.vertices

dom edgeType = t.edges

Y(v1,02) : t.edges o vertexType(vy) # FILLER

Y v : t.vertices | isLeaf (t,v) e vertexType(v) = FILLER

Below, we define the IndividualTree scheme, which includes the variable [t
whose type is a LabelledTree and two new functions that add two new labels
to vertices: function vertexIndividualName maps vertices onto the individuals
names defined in the Abox and function vertexAttribute maps vertices onto
Attribute. The predicates constraint the domain of vertexIndividualName and
vertexAttribute to concept vertices and filler vertices, respectively.

_Individual Tree
It : LabelledTree

vertexIndividualName : Vertex + IndividualName
vertexAttribute : Vertex = Attribute

dom vertexIndividualName = {v : It.t.vertices ‘ It.vertexType(v) # FILLER e v}
dom vertexAttribute = {v : It.t.vertices ’ It vertexType(v) = FILLER e v}

8.4 Semantic descriptions

Semantic descriptions allow to represent the semantics of the information
extracted from the web as a tree. Thus, they define the semantics involved in
the individual trees that represent the individuals instances offered by a web
site.

80 Chapter 8. Semantic translation

Restaurant Graphical notation
R ted,
4$ (epeated) — EdgeTyp
VertexType ‘ ‘ ‘ ‘

()
706; ‘
@%

Concept FILLER Propert
vertex vertex perty
Address

5
9'\‘8‘3

6 ol Ll T

%
o =5 7

& T

N 2 e

Figure 8.3: A semantic description.

Definition 8.2 (Semantic descriptions) A semantic description is a simple nota-
tion to represent the semantics of the information extracted by a wrapper as a tree. It
defines concepts that represent entities in a domain, properties describing relationships
amongst concepts or attributes, and cardinality constraints on properties.

Example 8.2 Figure §8.3 shows a semantic description for our case study. It is ren-
dered to English as follows: an instance of the Restaurant concept has three properties,
namely: name, closed, and hasAddress. The first two properties are attributes. Prop-
erty hasAddress relates two concepts, a Restaurant with one or more Address. Concept
Address is defined by properties street, number, inCity, and Phone. inCity relates the
Address concept with concept City (an address optionally is located in a city). The
City concept has a Literal as name. Finally, a Phone has a Literal as number. Note
that literals are always associated with filler vertices.

The following scheme specifies a semantic description. It is composed of a
labelled tree and a set of vertices (repeated) that defines cardinality constraints
on properties. The predicates state that only concept vertices can be in the
repeated set and that there are not any collapsable vertices on labelled trees.
The concept of collapsable vertices is formalised in Section §8.5. Intuitively,
the predicate constraints that there is not more than one vertex representing
the same piece of semantics.

8.4. Semantic descriptions 81

- SemanticDescription
It : LabelledTree
repeated : IF vertices

Vu : It.t.vertices | It.vertexType(u) = FILLER o u ¢ repeated
Y su : FIt.t.vertices @ — collapsableVertices(It, su)

8.4.1 Cardinality constraints on properties

Figure §8.4 illustrates graphically the meaning of cardinality constraints
on edges of a semantic description. Edges are classified according to the type
of vertices and whether they are in the repeated set. The classification is as
follows:

i. An edge P between two concept vertices C, and C, in which the vertex
associated to C, is in the repeated set of the semantic description states
that P represents a multiple relation ([0 .. n], n > 0), in other words, P
relates one instance of C, with zero or more instances of C,.

ii. An edge P between two concept vertices C, and C, that are not in the
repeated set of the semantic description states that P is an optional relation
([0 .. 1]), in other words, P optionally relates one instance of C, with one
instance of C,.

iii. An edge P between a concept vertex C, and a filler vertex states that P is
a multiple relation ([0 .. n]), in other words, P relates one instance of C,
with zero or more FILLERs.

8.4.2 Semantics of a semantic description

The formal semantics of a semantic description is specified using first-
order interpretations. Let £ be a logical language; a semantic description is
interpreted as a tuple (P, A), where P is a subset of the vocabulary of predicate
symbols of £ and A is a subset of well-formed formulae in £. Thus, a semantic
description is interpreted as a subset of £ in which concepts and properties
are specified by unary and binary predicates, respectively.

Given sd : SemanticDescription, then, the translation is as follows:
e Each concept name in the semantic description is interpreted as a unary

predicate symbol. Furthermore, Literal is considered a concept name that
represents the set of all possible strings.

82 Chapter 8. Semantic translation

Semantic Individual
description tree

(b) Optionality.

Cx Cx

o &

(c) Attribution.

Figure 8.4: Different types of edges in a semantic description.

8.4. Semantic descriptions 83

e Each property name is a binary predicate symbol.

e Each property name adds an axiom that constrains the domain and range
of properties:

Vxe dy e P(x,y) =

(Cxy (%) A\ (Cyy (2)) V (Cry (1) AN (Cyy (%)) V...V (Cy () /N (Cy, (1))
where P is the property name, and the pairs (C,,, C,,) are elements of the
set{(v1,v;) : sd.lt.t.edges | sd.lt.edgeType(vy,v2) = P o (sd.lt.vertexType(vy),
sd.It.vertexType(v,))}.

e Each edge (v, v;) in the semantic description of type (ii) adds an axiom
that states that the cardinality of the corresponding property is zero or
one, namely:

Vx,y,z e P(x,y) /\P(x,2) A\ Ce(x) N Cy(y) N C.(z) = y =z
where

P == sd.lt.edgeType(v1,v2), Cy == sd.It.vertexType(v1), and
Cy == sd.lt.vertexType(v3)

e Note that, edges of the type (i) and (iii) do not provide any information
about cardinality on properties, therefore there can exist more than one
property assertion for a same concept.

Note that, an interpretation of concepts and properties defined by previ-
ous axioms over the domain of the extracted information is a set of ground
predicates.

Example 8.3 In our study case, the interpretation is as follows:

P = {[From concept names]
Restaurant, Address, Phone, City, Literal
[From property names]
name, closed, hasAddress, street, number, inCity, hasPhone}
A = {[From property names]
Vxe Jy e name(x,y) = (Restaurant(x) AN Literal(y)) V (City(x) AN Literal(y))
Vxe Jy e closed(x,y) = Restaurant(x) AN Literal(y)
Vxe Jy e hasAddress(x,y) = Restaurant(x) /\Address(y)
Vxe Jy e street(x,y) = Restaurant(x) AN Literal(y)
Vxe Jy e number(x,y) = (Address(x) /A Literal(y)) V (Phone(x) /\ Literal(y))
Vxe dy e inCity(x,y) = Address(x) A City(y)
Vxe Jdy e hasPhone(x,y) = Address(x) /\ Phone(y)
[From edge (114,17)]
Vx,y,z e inCity(x,y) AN inCity(x, z) /\ Address(x) /\ City(y) AN City(z) = y =z}

84 Chapter 8. Semantic translation

8.5 Building semantic descriptions

At the beginning of the previous section, we present the relation between a
semantic description and an individual tree informally. Now, we formalise it.
Semantic descriptions are built from individual trees, which are collapsed to
infer the semantic information behind individuals. Two concepts allow us to
formalise and build semantic descriptions, namely: collapsable vertices and
collapsable paths.

8.5.1 Collapsable vertices

Definition 8.3 (Collapsable vertices) A set of vertices in a labelled tree are col-
lapsable if they all have a common parent, the edges that relate the common parent
with the set of vertices are labelled with the same property name, and there is not
a vertex that does not belong to the set of vertices that fulfill the two previous con-
straints.

Predicate collapsableVertices formalises this definition. It holds if a set of ver-
tices are collapsable in a labelled tree. It is specified as follows:

collapsableVertices : LabelledTree x F Vertex

Y It : LabelledTree; sv : F Vertex o collapsableVertices(lt, sv) &
v : Vertex; pn : PropertyName | sv C children(lt.t,v) e
(V vy : sv e It.edgeType(v,v,) = pn) /\
(V vy : children(lt.t,v) \ sv It.edgeType(v, vy) # pn)

The labelled tree of an individual tree may have collapsable vertices; how-
ever, a semantic description has not any collapsable vertices. For instance, the
sets of vertices {v4,vs} and {v12, 3} in Figure §8.2 are collapsable; this means
that properties hasAddress and hasPhone have multiple cardinality. The same
information is provided in the semantic description in Figure §8.3 by indicat-
ing that vertices 14, and ug are in the repeated set of the semantic description.

8.5.2 Collapsable paths

We define a path in a labelled tree as a sequence of vertices in which every
vertex is connected in that tree to the succeeding vertex in the sequence. We
only consider paths that connect the root vertex to leaf vertices, thus, the root

8.5. Building semantic descriptions 85

vertex belongs to every path in a tree. Every path has an associated pattern,
which is an alternated sequence of vertex types and edges types such that ver-
tices are replaced by their vertex type, and between two vertex we add the
name of property that connects them. For instance, path (v;,v4,vs) from the
labelledTree in Figure §8.2 is associated to the pattern (Restaurant,hasAddress,
Addpress, street, FILLER). Formally, paths, and patterns are defined as data
types. In addition, function pattern takes a labelled tree and a path that be-
longs to that tree as input and outputs the pattern associated to the path.

Path == seq Vertex
PathPattern == seq(ConceptName U PropertyName)

pattern : LabelledTree x Path + PathPattern

Y It : LabelledTree; p : Path; q: PathPattern | p € paths(lt.t) e pattern(lt,p) =q &
#g=2x#p—1/\
Vi:1. . #peq(2xi—1)=ItvertexType(p(i)) /\
Vi:l.. #p—1eq(2xi)=IltedgeType(p(i),p(i +1)))

Different paths can fit into the same path pattern. We define a binary rela-
tion of equality that relates paths based on the pattern they follow in a labelled
tree. This relation is specified as follows:

‘, ~ _: (LabelledTree x Path) « (LabelledTree x Path)

Y It;,1t5 : LabelledTree; p1,p2: Path; (Ity,p1) ~ (It2,p2) &
pattern(lty,p1) = pattern(ltz, p2)

Lemma 8.1 The binary relation of equality is an equivalence relation on Path.

Proof To prove this lemma we need to show that ~ is reflexive, symmetric and
transitive. These properties are easily satisfied, because ~ is a restatement of
the equality relation in the language of sets. The proof is as follows:

Reflexivity. For any (It,p) : LabelledTree x Path, it follows that pattern(lt,p) =
pattern(lt, p); therefore (It,p) ~ (It,p).

86 Chapter 8. Semantic translation

Symmetry. Let (It1,p1), (It2,p2) : LabelledTree x Path; it follows that

(It1,p1) ~ (It2,p2)

& [by definition of ~]
pattern(lty,p1) = pattern(ltz, p2)

&S [symmetry of equality in the language of sets]
pattern(lty, p2) = pattern(lty, p1)

& [by definition of ~]

(It2,p2) ~ (It1,p1)
Transitivity. Let (Ity,p1), (It2,p2), (It3,p3) : LabelledTree x Path; it follows that

(It1,p1) ~ (It2,p2) /\ (It2,p2) ~ (It3,p3)

& [by definition of ~]
pattern(lty,p1) = pattern(ltz, p2) /\pattern(ltz,pz) = pattern(lt3, p3)

&S [transitivity of equality in the language of sets]
pattern(lty,p1) = pattern(lt3, p3)

= [by definition of ~]

(It1,p1) ~ (It3,p3)

This concludes the proof. 0

Definition 8.4 (Collapsable paths) A set of paths is collapsable if all of its paths
are related by the ~ relation.

The equality relation allows to define a partition of a set of paths into equiv-
alence classes, i.e., all of the elements that are equivalent to each other are put
into the same class. Each equivalent class corresponds to a set of collapsable
paths. Then, collapsable paths in a labelled tree are defined by the quotient set
of paths in a labelled tree by the ~ relation.

_/~: LabelledTree — FF Path

V1t : LabelledTree; ssp : F'F Path; sp : F Path | sp = paths(It) e It /~ = ssp &
(sp = Ussp) /\
(Vp:spedpp,pg:ssplpp #pgepepp/\pepg) /\
(Vpp:sspe (Vp,q:ppe (it,p) ~ (It,q)) /\ (Bpq:ssp,q:pq | pp # pq e
(It,p) ~ (It,q))

Example 8.4 Figure §8.5 illustrates the partition of a labelled tree into collapsable
paths. The labelled tree comes from the individual tree in Figure §8.2.

8.5. Building semantic descriptions 87

JP1 - P3-—__ -P4
~
/ N ' ~ ~
/ Restauranl// I @estaurant\ ~ - /’ Restaurant \ N
/ | N N
s S 1 g N\
/ P2t BN, Y .
& SO Y 5 T .
// o // / Restaurant \ ! < ! - 0 \\
/ o /, /’ v l l, v \
/ / / \
(\ /) S / n Address Address | | n Address Address
\ / [! ’ /
~-7 / / 5 y ’
3 & 2 <& /
/ / o £ £ § /
(o’ / | v 3 /
/ l V;
\\ / \ // \ /
N4 \ \ /
- ~N — 4 \ P d
== P35 -_ TTemmm T - ’— P6 . “~———-"
I RN / =~ N
~ i N
| Restaurant N | Restaurant
| AN ‘ \\
‘ n
V2 T N oYy \
\ E(, 84 U’s \ 1 d‘\YO' \
v 8 k N VR
\
\
\\ n Address E{‘Address \' Address
\
\\ % £ ,’ \ 3 o
% o % 2,
\\ Z £ | \ gj Yo,
! \
\\ n ey vin | City ’I \ ig Phone Phone \|
\
\ : ! \ i ! [
Vg 5 ! Vg £ !
\ ! \ 2 5]
\ / \ /
\ ’ d \ 4
- \ /
\ Ve
N - \ e
~_ —— \ _-
~ —

Figure 8.5: Partitioning a labelled tree into collapsable paths.

88 Chapter 8. Semantic translation

The labelled tree of an individual tree may have collapsable paths; how-
ever, the labelled tree in a semantic description has not any collapsable paths.
For instance, the paths (v1,v4,v¢) and (v1, vs, V) in Figure §8.2 are collapsable
because they both follow the pattern: (Restaurant, hasAddress, Address, number,
FILLER). In the semantic description in Figure §8.3, they are collapsed as path

<u1 y Ug, u5>'
Lemma 8.2 The partition of a labelled tree into collapsable paths is unique.

Proof The proof is straightforward because collapsable paths are equivalent
and they are defined as a quotient set of the ~ relation. Note that, the partition
of a set induced by an equivalent relation is unique [25]. O

Theorem 8.1 If a labelled tree has not any collapsable vertices, then it has not any
collapsable paths.

Proof Suppose there is it : IndividualTree with collapsable paths, then there
exist at least two distinct paths p;, and p, in it.lt, such that (It,p;) ~ (It,p2).
According to the definition of collapsable vertices, it does not exists a vertex v
in p7, and p; such that p; (i) = v/\p,(i) = v/\p1 (i4+1) #pa(i+1), then p; = pa.
It contradicts our initial assumption that it has not any collapsable vertices,
but has collapsable paths. So we can conclude that the original proposition
must be true. O

Note that the necessary part is not true in general. For instance, if we re-
move vertices vy, vg, 014, and vy from the individual tree in Figure §8.2, then it
has not collapsable paths, but vertices v, and vs are still collapsable.

8.5.3 Collapsing individual trees

Function buildSD takes an individual tree as input and outputs a semantic
description. It collapses paths by defining a total bijection that maps the set
of paths that belongs to the partition of the labelled tree of the individual tree
onto paths of the semantic description. Collapsable vertices are detected and
included in the repeated set of the semantic description.

buildSD : IndividualTree — SemanticDescription

Y it : IndividualTree; sd : SemanticDescription e buildSD(it) = sd &
f vit.lt /~ — paths(sd.lt.t) e
Y pp:domf; p:pp e (it.t,p) ~ (sd.lt,f(pp)) /\
Vpp:domf; p,q:pp; n:2. #p | p(i) #q0) Apli—1)=qli—1) e
fpp)(i) € sd.repeated

8.6. Relating information and semantic descriptions 89

Example 8.5 Figure §8.6 illustrates how buildSD works. It shows the collapsable
paths, the paths onto which they are mapped in the semantic description, and the
repeated vertices.

Function buildSD allows to build a semantic description from one individ-
ual tree. However, this might not to comprise all the semantic information
needed to define all the instances of the individuals offered by a web site. We
are interested in the semantic description that conforms to the semantics of
any individual, which we call global semantic description and can be obtained
by merging semantic descriptions. Function mergeSDs takes a set of semantic
descriptions as input and outputs a semantic description that contains all the
semantic information residing on all of the semantic descriptions that takes as
input. It is specified as follows:

mergeSDs : F SemanticDescription — SemanticDescription

V ssd : F SemanticDescription; sd : SemanticDescription e mergeSDs(ssd) = sd &
V' sdy : ssd; p : paths(sdy.lt.t) e 3, q : paths(sd.lt.t) e
(sdy.lt,p) ~ (sd.It,q) /\ (Vi: 1. #p | pli) € sdy.repeated o q(i) € sd.repeated)) /\
Vp s paths(sd.lt.t) e Isdy : ssd; q: paths(sd.lt.t) e (sdy.lt,p) ~ (sd.lt,q) /\
Vp:paths(sd.It.t); i:1..#p | p(i) € sd.repeated o
Jsd, : ssd; g : Path | g € paths(sd.It.t) e (i) € sdy.repeated

Let 7 be the set of individuals in a web site and SD the global semantic
description, then SD = buildGlobalSD(Z), where function buildGlobalSD is de-
fined as the result of merging all of the semantic descriptions obtained from
the elements in Z:

‘buildGlobalSD : F IndividualTree — SemanticDescription
‘Vpit : F IndividualTree o buildGlobalSD (pit) = mergeSDs({it : pit ® buildSD(sd)})

8.6 Relating information and semantic descriptions

According to the assumptions in Section §8.2, each filler vertex in a seman-
tic description represents one attribute in the hierarchical slot that appears in
a hierarchical level. Thus, the extracted information can be univocally related
to a semantic description by providing location information for filler vertices.
The attribute that a filler vertex represents can be referenced by a hierarchi-
cal level and by a natural index to distinguish amongst several vertices in the

90

Chapter 8. Semantic translation

Partitioned labelled tree
in collapsable paths

JP1 -~ P3-~__ -Pa
/ N ' ~ <
/ Res(auranl// 1 %Res(auram\\\ ! Restaurant N
/ \ N .
’, N
// p ad P2-\\ \\ 8N, N "
roE 7/ ~ 3 \ 3
2 7 Restaurant N | £ %, \
! / N % \
(/ // / Py
7
\\ / ,/ K s
s 5 /s
! ;[;
{ K !
1
\
/ \
N0

2|l -
o~ P5 .
N

~
Restaurant ~

Address is in the
Repeated set

i
|
\
\
\

K
54
"%
85,

hasAddres:

%,
Phone is in the
Repeated set

Semantic a
- estaurant
description
%
%
5
S & %
Patterns Part Paths in SD 7 U
Restaurant, name, FILLER P1={<vy, vo>} <Uuy, Ux> é n R
Address
Restaurant, closed, FILLER P2={<vy, v3>} <uj, Ug>
Restaurant, hasAddress, Address, street, FILLER P3={<v1, V4, V6>, <V4, Vs, Vg>} <Uq, Ug, Us> \@e\ él'? ’% /}e\%
2 $ = 0/

Restaurant, hasAddress, Address, number, FILLER | P4={<vy, v4, V7>, <V, Vs, V10>} <Uy, Ug, Ug> ~ 3 g
Restaurant, hasAddress, Address, inCity, PACity, P5={<v1, Va4, Vg, V14>, <Us. Us. U, Us>
name, FILLER Vi, Vs, Vi, Vis>} Ler o n Phone
Restaurant, hasAddress, Address, hasPhone, P6={<v1, Vs, V12, V16>, Ui Us Ug. U
Phone, number, FILLER <Vy, Vs, Via, Vi7>} <Ui, Us, Us, Ur0> !

£ 3

g 5

2

Figure 8.6: The builSD function.

8.6. Relating information and semantic descriptions 91

same hierarchical level. For instance, vertex u, in the semantic description of
Figure §8.7 represents the first attribute of vertices at the HO level of the hier-
archical slot; and ug represents the third attribute of vertices at the H1 level.
Two concepts allow us to formalise this, namely: influence areas and mirrored
influence areas.

8.6.1 Influence areas and mirrored influence areas

Each concept vertex in the repeated set in a semantic description or root ver-
tex defines an influence area; thus, filler vertices in the same area of influence
take values from the same hierarchical level.

Definition 8.5 (Influence areas) The area of influence of a repeated or root vertex v
in the labelled tree of a semantic description is composed of all of the vertices that are
reachable from v without passing through any other repeated vertex. Formally:

influenceArea : SemanticDescription x [F Vertex

Vsd: SemanticDescription; sv : IF Vertex e influenceArea(sd, sv) &
J,v:s0 ’ v € sd.repeated V v = root(sd.lt.t) e sv \ {v} =
{p : paths(sd.lt.t); n,i: N | p(n) = v/Nien+1 ..#p/\
(Bj:n+1..iep(j) € sd.repeated) o p(i)}

Example 8.6 Figure §8.7 illustrates a partition of the semantic description into in-
fluence areas. There are three different areas defined by the root vertex (Restaurant)
and the repeated vertices (Address and Phone). The area defined by Restaurant is as-
sociated to hierarchical level HO; the filler vertices from this area take their value from
the vertices in the hierarchical slot at level HO. And so on.

Since semantic descriptions are obtained from individual trees so that ver-
tices and paths in individual trees are mirrored to vertices and paths in seman-
tic descriptions, influences areas in a semantic description are mirrored also in
individual trees. Thus, each concept vertex that is mirrored to a repeated set in
the semantic description or to the root defines a mirrored influence area, i.e.,
thus, filler vertices in the same area of influence take values from the same
vertex in the hierarchical slot.

92

Chapter 8. Semantic translation

-

~<_
e ~
il Restaurant\
/ \
/ !
/ .-~ Semantic

-

H1 {“Connecticut’}, \

y LT T T TS ~. Hierarchical
K %y ! <{Taco, °N slot
/ & & %/t description \HO {"Monday”, y
!] % Sunday’}> 1
I /d‘ > //
| 7 —_————
1 I/ H\\\\
\\ AddreSS\1 ————————————————
N / I wqmam
Ny 7 I {234, {“Taylor’, <1507, A
|
.

{“Pittsburgh”}>

{“Harrisburgh}> \
/

Influence areas Level on hierarchical slot
{us, Uz, us} HO
{us, us, U, U7, U} H1
{us, u1o} H2

Figure 8.7: Areas of influence.

Definition 8.6 (Mirrored influence areas) The mirrored area of influence of ver-
tex v in the labelled tree of an individual tree that is associated to a vertex in the
repeated set of the semantic description or is the root is composed of all of the ver-
tices reachable from v without passing through any other vertex that is mirrored to a
repeated vertex in the semantic description.

mirroredInfluenceArea : SemanticDescription x IndividualTree x F Vertex

Vsd: SemanticDescription; it : IndividualTree; sv : F Vertex e
mirroredInfluenceArea(sd, it,sv) &
3, su : sd.lt.t.vertices | influenceArea(sd, su) e
(Vv : sv e mirrorlnSD(sd, it,v) € su /\
Fv € it.lt.t.vertices | v & sv e mirrorInSD(sd, it,v) € su)

Function mirrorInSD takes a semantic description, an individual tree, and
a vertex that belongs to the labelled tree of the individual tree as input and
outputs the mirrored vertex in the semantic description.

8.6. Relating information and semantic descriptions 93

mirrorInSD : SemanticDescription x IndividualTree x Vertex - Vertex

Vsd: SemanticDescription; it : IndividualTree; v,u : Vertex e
mirrorlnSD(sd,it,v) =u &
dp1 :paths(It.It.t); py: paths(sd.lt.t); i: N | pi(i) = v /\ (sd.lt,p1) ~ (it.lt,p2) @
p2(i) =u

Example 8.7 Figure §8.8 illustrates a partition of our running individual tree into
mirrored influence areas. There are five different areas defined by the root vertex
(Restaurant) and the vertices that are mirrored to vertices in the repeated set of the
semantic description (Address and Phone). The area defined by Restaurant is associ-
ated to hierarchical level HO; filler vertices from this area take their values from vertex
wo in the hierarchical slot. The areas defined by v4 and vs, which represent instances
of concept address, are associated to vertices w, and w3 in the hierarchical slot; since
the Address concept in the semantic description is associated to hierarchical level H1,
w, and w3 are labelled with H1. We omit the remaining details, which should not be
a problem to the reader.

8.6.2 Building the location information

According to the previous ideas, we devise the Location type data. It maps
filler vertices in a semantic description into hierarchical levels (vertexLevel) or
natural indices (vertexPosition) to indicate univocally which attribute each filler
vertex represents inside the hierarchical level.

Location
vertexPosition : Vertex — N
vertexLevel : Vertex + Label

Before specifying how to obtain the location information, we formalise the
relationships amongst an individual tree, a hierarchical slot, a global seman-
tic description, and the location function. Predicate translation allows to relate
them. It is based on the idea that a semantic description can be viewed as a
container of patterns, where each pattern is defined by an influence area; hier-
archical slots materialise influence mirrored areas from these patterns. Thus,
translation uses a total bijection function that maps vertices in the hierarchi-
cal slots into mirrored influence areas in the individual tree, in such a way
that filler vertices in the individual tree take their attributes from the location
information provided by their mirrored vertices in the semantic description.
Furthermore, the edges in the hierarchical slot are mapped onto the edges of

94 Chapter 8. Semantic translation

7
Restaurant/
RID;

Individual
tree

/
\ {"Taco”} “ o)
\ {*Monday”, / 7 T\
\ “Sunday’)//,/\@9 £ %
\\ P Ay 3
ST c

\\
\ I
N
N |
|
|
|
~ . S . \ /
S (“Pittsburgh”} / ~ {"Harrisburgh’} ;- |{*2314800"Y {“2324800")/
NS // \\\~_// \ -7 _’/
-TT T -~ Hierarchical
s ™
<{‘Taco’}, "\ slot
\ HO {"Monday”,
Reflected influence areas | Vertex on hierarchical slot AN - Sunday"}> /l
e~
{v1, vz, va} Wy
{Va, Ve, V7, Vg, V14} w2 LT Ty T TNy T T =~ S
I g e Y] <1507, \
{Vs, Vo, V10, V11, Vis} w; 1 H1 <{'234, {"Taylor)’\\ H1 {“Connecticut’}, \
{"Pittsburgh’}>) {*Harrisburgh”}> |
{Viz, Vig} Wy M e /
{Vvi3, vi7} Ws

<{*23248007)> \

Figure 8.8: Mirrored areas of influence.

8.6. Relating information and semantic descriptions 95

the individual tree that connects vertices defining mirrored influence areas
(the types of the edges are obtained from the semantic description). The auxil-
iary function subtreeRoot outputs the root of a subtree which is represented as
a set of vertices, and it is defined in Appendix §A.

translation : IndividualTree x HierarchicalSlot x SemanticDescription x Location

Y it : IndividualTree; hs : HierarchicalSlot; sd : SemanticDescription; loc : Location e
translation(it, hs,sd, loc) & 3f : hs.t.vertices — F it.It.t.vertices o
Vsv: ran f o mirroredInfluenceAreas(sd, it, sv) AN
YVw:domf; v: Vertex | v € f(w) /\ it.It.vertexType(v) = FILLER e
it.vertexAttribute(v) =
hs.vertexAttributes(w)(loc.vertexPosition(mirrorInSD(sd, it,v))) /\
loc.vertexLevel (mirrorInSD(sd, it, v)) = hs.vertexHLevel(w))) /\
Y(wy,ws) : hs.t.edges @ 3,v1,v; : Vertex o
v1 = subtreeRoot(it.It.t, f(w1)) Novy = subtreeRoot(it.It.t, f(w3)) /\
(v1,v2) € it.lt.edges A
sd.lt.edgeType(mirrorInSD(sd, it,v1), mirrorInSD(sd, it,v3)) =
it.It.edgeType(vq,v7)

Example 8.8 Figure §8.9 illustrates two examples of the relationships amongst an
individual tree, a hierarchical slot, a global semantic description and the location func-
tion. An X in the location information represents any value (it is not of interest in the
example).

Let Z'H be the set of pairs of individual trees and hierarchical slots in a web
site, and SD its corresponding global semantic description, then the location
information £OC is obtained as LOC = buildLocation(ZH,SD), where func-
tion buildLocation is defined from predicate translation, and it ensures that the
location information is well-defined for every element in Z'H:

buildLocation : F(IndividualTree x HierarchicalSlot) x SemanticDescription — Location

Y ih : F(IndividualTree x HierarchicalSlot); sd : SemanticDescription; loc : Location e
buildLocation(ih,sd) = loc &
dom loc.vertexPosition = {u : sd.It.t.vertices | sd.It.vertexType(u) = FILLER o u} /\
dom loc.vertexLevel = {u : sd.lt.t.vertices | sd.lt.vertexType(u) = FILLER o u} AN
Y (it, hs) : ih e translation(it, hs, sd, loc)

Chapter 8. Semantic translation

96

] 2H oin

€ IH en

L LH °on

2z LH sn

z OH n

1 OH °n
uonisod | |1aA9) [eaiyoselalH | @s 1eqojb ul xaaA

uojjew.oyul
uoed0]

{.008veez,} {.008viez,} {.ubngsiued,} {.ubingspid, }
M U e a Q91
2 2 E] S |enpiAlpuj
T - {.0g1,} {anonosuuo,} {vez,} {JoiheL,}

qld ‘ald [g, a0 [, ‘aio
suoud suoyd Ao Ao

Z. &
.G«\\ /@@,v {.kepung,

‘Kepuon,} {ooel}
fay
ssaIppy

Jaquinu:

‘ai
JueIne)say

Jaquinu
weu

uondiiosap %
onuewsas %
1eqo|o

“ jueineisay H
101s

|eo1ydJesalq

<{,ubanasieq,}
‘{anonosuuog,} e IH
{05k

<{.Aepung,

¢ Kepuop,}
{.ooeL,}>

ion.

The translation relat

Figure 8.9

8.6.

Relating information and semantic descriptions

Restaurant

RID;
HO ° <{“Paradise™}, {}>

%

§ %
I 3
%
®

Address
{“Market’}, {}>

{“Paradise”}

Hierarchical Individual &
slot tree i! i
v ﬁ {"Market’} {213"}
Restaurant i j

% Global
T "
% semantic
X,
B description

Location
information

N
@ Address - " " -
Vertex in global SD | Hierarchical level | Position

X

5 ' HO 1

& & 3 Ty,
&9 § 2 /%O/) Us X X
Us H1 2
" R Us H1 1

Cit:
R4 Phone Uy X X
Uso X X

Figure 8.9: The translation relation (Cont’d).

98 Chapter 8. Semantic translation

8.7 Semantic translators

The problem of semantic translation is solved by setting up a generic al-
gorithm, called semantic translator, with the global semantic description and
the location information obtained previously. It uses these data to automati-
cally give semantics to any StructuredInformation extracted by a wrapper. Since
we defined StructuredInformation to be a set of HierarchicalSlot, the semantic
translator translates each tree in the set; furthermore, it uses toAbox, which is
defined Appendix §B).

‘semantichnslator : SemanticDescription x Location x StructuredInformation — Abox

Vsd: SemanticDescription; loc : Location; si : StructuredInformation; a : Abox e
semanticTranslator(sd, loc, si) =
U{V hs : si; it : IndividualTree | translation(it, hs, sd, loc) e toAbox(it)}

8.8 Summary

In this chapter, we have defined our solution for the problem of semantic
translation. The main results were published at the 2003 IEEE/WIC Interna-
tional Conference on Web Intelligence (WI'03) [11], the First International At-
lantic Web Intelligence Conference (AWIC 2003) [7], and the 15th Conference
on Advanced Information Systems Engineering (CAiSE’03) [10].

Chapter 9

A materialisation of the semantic
translation problem

The worst thing one can do is not to try,

to be aware of what one wants and not give in to it,
to spend years in silent hurt wondering if

something could have materialised, never Knowinyg.

David Viscott, 1938—
American psychiatrist

n this chapter, we present an implementation of semantic translators. It is or-

ganised as follows: Section §9.1 presents a brief introduction; Section §9.2 il-
lustrates the implementation of an algorithm to build semantic descriptions; Section
§9.3 presents an algorithm to obtain the location information; Section §9.4 focuses on
the implementation of the semantic translator generic algorithm; finally, in Section
§9.5, we summarise the chapter.

100 Chapter 9. A materialisation of the semantic translation problem

9.1 Introduction

Abstractness provides us a maximal degree of implementation freedom,
but it is not practical enough unless we devise an implementation. In this
chapter, we present a materialisation of the semantic translation problem. It
consists of three algorithms: the first takes care of building global semantic
descriptions, the second is responsible for calculating location information,
and the third is a domain-independent semantic translator. We also prove that
these algorithms are correct implementations with respect to specification in
Chapter §8.

We describe the materialisation by means of Plotkin’s transition rules since
this technique has proved to be both simple and powerful [102], c.f. Appendix
SA. Note that our main goal is not to report on the many optimisations that are
possible, but to demonstrate that the framework can be implemented using
finite-state machines. Nevertheless, we point out some tips that may help
optimise the implementation, but we do not present many details since they
fall outside the scope of this dissertation.

9.2 Building semantic descriptions

In the previous chapter, we explain how a semantic description is built
by merging the semantic information provided by all of the individuals in a
web site. Inductive methods seem to be a good election for implementing an
algorithm to solve this problem. However, in this materialisation, we follow
a simpler strategy that requires users to have a good understanding of the
semantics relations residing on a web site. It requires the user to build an Abox
with information about one individual that fulfills the following requirements:

Requirement 1. All of the properties and concept names that are needed to
render the information on the web page to instances appear in the Abox.

Requirement 2. Each property with multiple cardinality ([0. .n] or [1. .n]) must
appear two times at least. That is, there exists more than one property
assertion in the Abox that state that the same concept instance is related
to other concept instances.

Requirement 3. Each optional property ([0 .. 1]) appears once. That is, there
exists only one property assertion in the Abox that states that a concept
instance is related to only one concept instance or to literal values.

9.2. Building semantic descriptions 101

Restaurant

RID,
g
X o
9 5 has,
‘\a‘“ c>°r° 3 Addfess
@
<
Address
AID,
{"Taco’} {*Monday”, B %
“Sunday” £ £ v
Yy} &8 g Q_’Z e o
City
CID;
{“Taylor’} {*234"} b {"Connecticut’} {“1507}
g
8
{“Pittsburgh”} {“Harrisburgh’} ~ {“2314800"} {“2324800"}

(a) An individual tree (repetition of Figure §8.2)

Name: Taco Close on: Monday & Sunday

Address: 234 Taylor
Pittsburgh

Address: 150 Connecticut
Harrisburgh
Phone: 2314800
Phone: 2324800

Name: Paradise
Address: 213 Market

Name: FireMeal Close on: Monday

Address: 122 West
New York
Phone: 2344800

(b) Web page (repetition of Figure §7.2(a))

Figure 9.1: Requirements for algorithm buildSD.

The previous requirements ensure that the Abox comprises all the seman-
tic information needed for the translation of all of the individuals in the web
site. For the sake of convenience, the algorithm is presented in terms of in-
dividual trees instead of Aboxes (as mentioned in the previous chapter, they
are equivalent notations for representing individuals, but the former is better

suited to design our algorithms).

Example 9.1 The indvidual tree in Figure §9.1(a) does not fulfill the previous re-
quirements because address AIDy has not any phone numbers. It should have more
than one phone number because the hasPhone property has multiple cardinality ac-
cording to the information provided by the web page in Figure §9.1(b).

102 Chapter 9. A materialisation of the semantic translation problem

9.21 Algorithm

The algorithm buildsSD takes an individual tree that fulfills the previous
constraints as input, and outputs a global semantic description. It works as
follows: initially, the labelled tree of the semantic description is a clone of the
labelled tree of the individual tree, and the set of repeated vertices is empty.
Then, it traverses the cloned labelled tree by processing concept vertices. The
processing consists of computing the collapsable vertices that are children of
the concept vertex being studied. For each set of collapsable vertices with
more that one element, the algorithm prunes the subtrees associated to all of
the collapsable vertices except for one, which is added to the set of repeated
vertices. The algorithm terminates when the labelled tree in the semantic de-
scription is traversed completely.

Figure §9.2 shows a trace of the bui1dsD algorithm. The first vertex to be
studied is the root vertex v;; Figure §9.2(a) shows the unique part that belongs
to the collapsable vertices of v;. The algorithm prunes the subtree associated
to us (it is indifferent to take v4 or vs) and adds the other vertex to the repeated
set of the semantic description and to set of vertices to be studied. In Figure
§9.2(b), vertex v, is studied. Concept vertices of v4 are partitioned into two
parts. The first part has a concept vertex only, and it is added to the set of
vertices to be studied. The second part has two concept vertices. Again, the
subtree associated to one of these vertices is pruned and the other vertex is
added to the set of repeated vertices and to set of vertices to be studied. Figure
§9.2(c) shows the semantic description obtained.

Configurations: The configurations we need to define the buildsD algo-
rithm are four-tuples defined as:

Configpsp == IndividualTree x LabelledTree x F Vertex x [F Vertex

where the first element refers to an individual tree that fulfills the previous re-
quirements; the second and third elements compose the semantic description
for which we are looking (a labelled tree and a set of repeated vertices); the
last element records the vertices to be studied.

Predicates and functions: Two functions are used to update configurations,
namely: pruneSubtrees and partitionChildren. In addition, function cloneLt is
used to define the initial configuration of the algorithm. They are specified as
follows:

9.2. Building semantic descriptions 103

AY
J
%
$,o K SPho,
USCity iPhone Phone

®

(a) Studying vertex v,

name
number-
number-
&name—@v\ /
number-
number-

Restaurant Restaurant
g
& 5
AR S o &
S o é o &
E=
R
Address Address
% %
£? A, oy X
X ¢ % Maspy i SN
©f
;) "one SR ¢ 4%
- \
. R
U Phone i
(%) @5 v Juseiyy | Phone) (%) e Jow [frone
Ne—— N — g
& I}) o
e}
g £ g £
(= =1 c =1
= =

O
O3
&~
@~

(b) Studying vertex v4 (c) Resulting semantic description

Figure 9.2: Example of how buildSD works.

104

Chapter 9. A materialisation of the semantic translation problem

i. Function pruneSubtrees prunes the subtrees associated to a set of vertices

ii.

iii.

in a given labelled tree. It removes the set of vertices taken as input, and
the vertices reachable from them (all of their descendants). The edges
that hit one of previous vertices are removed, too. Furthermore, func-
tions vertexType and edgeType are updated to maintain information about
the remaining vertices and edges only.

pruneSubtrees : LabelledTree x F Vertex - LabelledTree

Y It1,1t5 : LabelledTree; svq,sv; : F Vertex | sv1 C Ity.t.vertices o
pruneSubtrees(lt;,sv1) = lt; &
svy = {p : paths(lt1.t); v:svy; i,j: N ‘ vE ranp/\p(i) = v/\j >ie p(j)}/\
It.t.vertices = Ity .t.vertices \ sva /\
Ity.t.edges = {(v1,v2) : Ity.t.edges ® vy & 50U, AN, ¢ svy e (01, v2)} /\
Ity.vertexType = {v : Itp.t.vertices ® v+ Ity.vertexType(v)} /\
Ity.edgeType = {e : It,.t.edges ® e — Ity.edgeType(e)}

Function partitionChildren partitions filler children of a concept vertex,
and outputs a set of sequences of vertices. The range of each sequence
represents a maximal set of collapsable vertices. A vertex with filler chil-
dren only results in the empty set.

partitionChildren : LabelledTree x Vertex + IF seq Vertex

Y It : LabelledTree; v : Vertex; ssv : [seq Vertex | v € lt.t.vertices @
(notFillerChildren(lt,v) # @ /\partitionChildren(lt, V) =ssv &
Vsv:ssve collapsableVertices(It, ran sv) A
#notFillerChildren(It,v) = | J{sv : ssv e ransv} A
Vsv: ssv e #sv = #ranso) V
(notFillerChildren(It,v) = @ /\partitionChildren(lt, v) =)

‘notPillerChildren : LabelledTree x Vertex + F Vertex

Y It : LabelledTree; v : It.t.vertices o notFillerChildren(It,v) =
{vy : children(v) | It vertexType(vy) # FILLER}

Function cloneLt clones a labelled tree. It is specified by defining a total
bijection function that maps vertices between labelled trees. Note that
this definition is just a semantic characterisation, and that it is not in-
tended to be executable since we think that this topic is well-covered in
the literature.

9.2. Building semantic descriptions 105

cloneLt : LabelledTree — LabelledTree

Y 1tq,1t5 : LabelledTree o cloneLt(lt;) = It &
3f @ Itq.t.vertices —» It;.t.vertices ®
Y(v1,v2) : Itq.t.edges ®
(f(v1),f(v2)) € It.t.edges /\
Itq.edgeType(vy,v2) = Ita.edgeType(f (v1),f(v2)) A
Y v : Ity .t.vertices o It1.vertexType(v) = Ity.vertexType(f(v))

Rules: The buildsD algorithm is defined by the following rules that define
a homogeneous relation between configurations.

i. If the vertex being visited has children of type concept, then we use func-
tion partitionChildren to partition them into collapsable vertices. The first
element of each sequence is added to the tail of sv (the set of vertices to
be studied); furthermore, if the sequence to which the vertex belongs has
more than one element, it is added to the rep set. Subtrees associated to
vertices at the tail of the sequence are pruned from /t.

(it, It, rep,sv) —ggp (it It rep’, sv') [;Z zg]
v == member(sv)
pc == partitionChildren(It,v)

where sv/ == (sv \ {v}) U{s : pc @ head(s)}
It == pruneSubtrees(It,| J{s : pc e rantail(s)})
rep’ ==rep U{s : pc | #s > 1 @ head(s)}

ii. If the vertex being visited has not any filler children, we update the ver-
tices to be studied by removing it from the sequence.

sv#@}

(it, It rep, sv) —pgp (it, It, rep,sv’) [pc=9

v == member(sv)
where pc == partitionChildren(It,v)
st/ == sv \ {v}

106 Chapter 9. A materialisation of the semantic translation problem

Algorithm: The algorithm is specified as the application of the previous rules
as many times as necessary to reach the final configuration (it, It, rep, ()) from
the initial configuration (it,cloneLt(it.lt), @, (root(it.It.t))). It is formalised as
follows:

buildsD : IndividualTree + SemanticDescription

Y it : IndividualTree; sd : SemanticDescription; It : LabelledTree; rep : F Vertex o
buildsD(it) =sd &
(it, cloneLt(it.It), &, (root(it.It.t))) _I>BSD (it, It, rep, () A
sd.It = It /\ sd.repeated = rep

9.2.2 Correctness

Since the individual tree taken as input fulfills the requirements presented
at the beginning of this section, the semantic description comprises all the
semantic information needed for the translation of all of the individuals on a
web site.

Theorem 9.1 (Termination) Algorithm buildSD terminates.

Proof Initially, the labelled tree of the semantic description is a clone of the
labelled tree of the individual tree. The algorithm traverses the cloned indi-
vidual tree by processing concept vertices only. Vertices to be processed are
recorded in the sv set. Once a concept vertex is studied it is removed from
sv. Since individual trees have a finite number of vertices and cycles are not
allowed, algorithm buildsD terminates after traversing all of the concept ver-
tices. O

Theorem 9.2 (Correctness) Algorithm buildSD is correct regarding the specifi-
cation of function buildSD (c.f. Subsection §8.5.3 for its definition).

Proof The proof consists of two parts: first, we have to show that collapsable
vertices in the individual tree taken as input are collapsed in the resulting
semantic description (i); and that collapsable paths in the individual tree are
collapsed in the semantic description (ii).

9.3. Calculating locations 107

i. The algorithm uses the partitionChildren function to partition the children
of the vertex being studied into sequences of collapsable vertices. For
each sequence, only one vertex is recorded in the set of vertices to be
studied. The subtrees represented by the rest of vertices in the same
partition are pruned. In other words, collapsabe vertices are collapsed.
Because, all of the concept vertices in the output labelled tree are studied,
the semantic description has not any collapsable vertices.

ii. It follows from Lemma §8.1 and (i).

This concludes the proof. 0

9.2.3 Complexity

Algorithm buildspD visits all of the vertices in the individual tree, and
for each concept vertex, it partitions children concept vertices into collapsabe
vertices. Then, the asymptotic complexity is O(n - b), where n and b are the
total number of vertices and the breadth of the individual tree, respectively.

Note that, n is always greater than b, since b € 1..n — 1. For a tree with
b =1 (each vertex in tree has one child at most) the complexity of algorithm is
approximated by O(n); if b = n — 1 (only the root vertex has children, that is,
all of the properties relate a concept assertion with literals) the complexity is
approximated by O(n?).

9.3 Calculating locations

The algorithm takes an Abox, a hierarchical slot, and a global semantic de-
scription as input and outputs the location information. The Abox represents
the information in the hierarchical slot, and the global semantic description
comprises all of the semantic information needed for the translation of all of
the individuals in a web site. The location information that it outputs relates
the information extracted with a global semantic description. As was the case
for the bui1dsD algorithm, this algorithm requires the user tu supply an Abox
and a hierarchical slot that fulfills the following requirements:

Requirement 1. All of the properties and concept names that are needed to
render the information on web pages to instances appear in the Abox.

108 Chapter 9. A materialisation of the semantic translation problem

ﬁStructuredlnformation
<{*Taco}, \
HO G <{“Paradise”} HO ° {"FireMeal’},

{“Monday”,
“Sunday”}> {"Monday’}>

<{"234"}, {“Taylor"},

{“Pittsburgh”}> H1

<{"1507}, w4 wqoom fu "
) o <2137, <{*122"}, {“West},
ramoourgh s () g o (ol

\ H2 <{"23148007> H2 <{"23248007}> H2 <{“2344800"}j

Figure 9.3: StructuredInformation (repetition of Figure §7.2(b)).

Requirement 2. Each optional or multiple cardinality property appears only
once.

Requirement 3. There are not any empty attribute in the hierarchical slot, and
all of the attributes are distinct.

Previous requirements avoid ambiguity in obtaining the location informa-
tion. Note that the first two requirements are equivalent to stating that labelled
tree of the individual tree must be the same as the labelled tree of the global
semantic description.

Example 9.2 The individual tree in Figure §9.1(a) does not fulfill the first and the
second requirements. Restaurant RID; has more than one address, address AID,
has more than one phone, and address AIDy has not a phone number. Then, this
individual tree and the hierarchical slot from which this individual tree is expected are
not valid for building the location information. Similarly, the second hierarchical slot
in he structured information in Figure §9.3 does not fulfill the third requirement. It
contains empty attributes. Then, the hierarchical slot and the individual tree obtained,
are not valid for building the location information.

9.3.1 Algorithm

The algorithm buildLoc builds the location information as follows: it tra-
verses the labelled tree of the semantic description by processing filler vertices.

9.3. Calculating locations 109

Restaurant

<{“Taco},
HO {“Monday”,
“Sunday”}> 6&9@

N o
N %SS
<1507, é n Address
H1 {“Connecticut’},
{“Harrisburgh”}> {“Taco} ~ {‘Monday” L,
“ S O 2 S,
‘Sunday”} XN § 2 400
o ° (2314800 150"} {‘Connecticut} &
Hierarchcial g

5
€
Individual 2
slot tree ‘
Restaurant 3 \ A ° @

{“Harrisburgh”} {*2314800"}

&

%,
s, 4
0}9% ﬁ
Global
R semantic) Locatio_n
Address description information
6%

Clogg

o Qq} 5 Vertex in global SD | Hierarchical level | Position
& & o
S Z %, uz HO 1
Ug HO 2
. R Us H1 2
u; |Cit
= Ug H1 3
aé 8 u H2 1
10
I

Figure 9.4: Example of how buildLoc works.

The processing consist of looking for the vertex mirrored in the individual tree
(it is unique by the previous requirements), and looking for its attributes in the
corresponding hierarchical slot. The algorithm terminates when the labelled
tree is traversed completely.

Example 9.3 Figure §9.4 illustrates the location information obtained for a global
semantic description, an individual tree, and a hierarchical slot. For instance, the
hierarchical level and position for the semantic description vertex u, is obtained by
looking for attribute {“Iaco”} in the hierarchical slot.

Configurations: The configurations we need are five-tuples defined as fol-
lows:

Configg; == IndividualTree x HierarchicalSlot x SemanticDescription x
Location x F Vertex

110

Chapter 9. A materialisation of the semantic translation problem

where the first and second elements refer to an individual tree and a hierar-
chical slot that fulfills the previous restrictions; the third element is the global
semantic description, the fourth element is the location structure that we are
looking for; the last element records the name of the vertices to be studied.

Predicates and functions: We need a couple of auxiliary functions to define
this algorithm, namely:

i

ii.

Function sameVertex looks for a vertex in the individual tree that is the
mirror of a semantic description vertex. The mirrored vertex is obtained
by determining the unique path in the semantic description to which the
path containing the vertex of the individual tree is equivalent.

‘sameVertex : Vertex x LabeledTree x LabeledTree — Vertex

Y 1,02 : Vertex; It1,1t, : LabeledTree ’ vy € Ity e sameVertex(vq,1tq,1lt;) = v &
Ipy : paths(lty.t); pa : paths(lto.t); i: N |
(p1,1t1) ~ (p2, 1t2) N\ pa(i) = v1 @ pali) =02

Function findAttribute looks for an attribute into a hierarchical slot. It
returns the position the attribute occupies into the vertexAttributes and
the hierarchical level in which it is defined.

findAttribute : HierarchicalSlot x Attribute - N x Label

¥ hs : HierarchicalSlot; a : Attribute; n: N; [: Label o
findAttribute(hs,a) = (n,]) &
3, v : hs.t.vertices; sa : seq Attribute; a : Attribute e
hs.vertexAttributes(v) = sa /\ sa(n) = a /\ hs.vertexHLevel(v) =

Rules: The algorithm is defined by the following rules:

i

If the vertex v being visited is a filler, we also need to update sv (set of
vertices to be studied) by removing .

9.3. Calculating locations 111

. . . SU # &
(it, hs,sd, loc,sv) —p; (it, hs,sd, loc’,sv') sd It vertexType(v) — FILLER
v == member(sv)

a == it.vertexAttribute(sameVertex(v, sd.lt, it.It))

(pos, hlevel) == findAttribute(hs, a)

where loc" == (vertexPosition ~ loc.vertexPosition U {v s hlevel},
vertexLevel ~ loc.vertexLevel U {v — hlevel} |)
st/ == sv \ {v}

ii. If v is not a filler, then we update sv by removing v and adding its chil-
dren.

) . , SU # I
(it, hs,sd, loc,sv) —pg; (it,hs,sd, loc,sv") sd. It vertexType(v) # FILLER
v == member(sv)

where { 50/ == (s0\ [0}) U children(sd.It.t, 0)

Algorithm: The algorithm is specified as the application of the previous rule
as many times as necessary to reach the final configuration (it, ks, sd, loc, ())
from the initial configuration (it, ks, sd, | vertexPosition ~» &, vertexLevel ~» &
), (root(sd.lt.t))). It is formalised as follows:

buildLoc : IndividualTree x HierarchicalSlot x SemanticDescription - Location

Y it : IndividualTree; hs : HierarchicalSlot; sd : SemanticDescription; loc : Location e
buildPos(it, hs,sd) = loc &
(it, hs, sd, | vertexPosition ~~ &, vertexLevel ~ & |, (root(sd.lt.t))) %!BL
(it, hs,sd, loc, ()

9.3.2 Correctness
Theorem 9.3 (Termination) Algorithm buildLoc terminates.

Proof The algorithm traverses all of the vertices of the labelled tree in a se-
mantic description. Once a vertex is processed, it is removed from the record
of vertices to be studied (sv). Concept vertices add their children to sv. Since
individual trees have a finite number of vertices, and cycles are not allowed,
the algorithm buildLoc terminates. O

112 Chapter 9. A materialisation of the semantic translation problem

Theorem 9.4 (Correctness) Algorithm buildLoc is correct regarding the specifi-
cation of buidLoc (c.f. Subsection §8.6.2 for its definition).

Proof It is immediate from the assumptions made at the beginning of this
section. For each influence area in a semantic description, there exist only one
mirrored influence area in the individual tree; furthermore, all of the attributes
at the same hierarchical slot are distinct, which makes it possible to unambigu-
ously compute the positions and hierarchical levels for all of the filler vertices
in the labelled tree of the semantic description. 0

9.3.3 Complexity

Algorithm buildLoc visits all of the vertices in the semantic description,
and for each filler vertex, it looks for its attribute in the hierarchical slot; the
location information is associated with the mirrored vertex in the semantic
description. Therefore, the complexity of buildsD is O(n - m - d) in the worst
case, where 7 is the number of vertices in the individual tree, m is the number
of vertices in the hierarchical slot, and d is the depth of the semantic descrip-
tion labelled tree.

9.4 Semantic translator

The algorithm semanticTranslator takes an StructuredInformation as
input and it uses a global semantic description and the location information, to
output an Abox that represents this information semantically. The algorithm
is presented in terms of translating a hierarchical slot, then, it is iteratively
applied to all of the hierarchical slots in a StructuredInformation.

9.4.1 Algorithm

It is implemented as a recursive algorithm based on the idea that each ver-
tex in a hierarchical slot is associated to a mirrored influence area, and that
each mirrored influence area can be represented as an individual tree. Re-
cursion is applied over hierarchical slots. The stopping condition is that the
hierarchical slot vertex being studied has not any children, in which case, the
individual tree corresponding to its associated mirrored influence area is re-
turned. The recursive call happens if the hierarchical slot vertex being studied

9.4. Semantic translator 113

HO <{“Paradise’}, {}>

Address~
AD;, /

{213,
Hi @ {<“Market”), {>

i
- . =)
Hierarchcial Individual /7 !
slot tree /// ll
// //
{ /
————— & Taylor} {2347}

/

- /
~ ’
s ~ 4

<
, Restaurant

’ \ semanticTranslator
7
Global
semantic Location
description information

Vertex in global SD | Hierarchical level | Position
Uz HO 1
Us HO 2
Us H1 2
Us H1 1
Ug H1 3
Uig H2 1

Figure 9.5: Example of how sematicTranslator works.

has children, in which case, the individual tree corresponding to the mirrored
influence area of the parent vertex is attached to the individual trees obtained
recursively for its children.

Example 9.4 Figure §9.5 illustrates the individual tree obtained for a given global
semantic description, a location information, and a hierarchical slot. Note that the
individual tree has two mirrored influence areas that are obtained by cloning the in-
fluence areas represented by vertex uy and u4 in the semantic description; furthermore,
not all of the vertices and edges in one influence need to be cloned, e.g., vertex us is
not cloned because there is not information about the days the corresponding restau-
rant closes; finally, there are not any mirrored influence areas for the influence area
represented by ug because the hierarchical slot does not contain any information about
phones.

114 Chapter 9. A materialisation of the semantic translation problem

Configurations: Three types of configurations are needed to define the se-
mantic translation algorithm. Their meaning is shown later.

i. Configsy, == SemanticDescription x HierarchicalSlot x Location x Vertex
ii. Configsy, == IndividualTree

iii. Configsr, == SemanticDescription x HierarchicalSlot x Location X F Vertex x
F IndividualTree x seq Label

Predicates and functions:

i. Function clonelnfluenceArea takes a semantic description, a hierarchical
slot, a location information, and a vertex from the previous hierarchical
slot as input and outputs an individual tree. It obtains the individual
tree by cloning a set of nodes of the labelled tree in the semantic de-
scription and by computing the vertexIndividualName and vertexAttribute
functions for cloned vertices. Vertices to be cloned are returned by func-
tion verticesToClone. vertexIndividualName is obtained by the function
getldentifier. vertexAttribute is obtained from the location information and
the hierarchical slot. These functions are specified as follows:

clonelnfluenceArea : SemanticDescription x HierarchicalSlot x Location x
Vertex — IndividualTree

Vsd: SemanticDescription; hs : HierarchicalSlot; loc : Location; w : Vertex;
it : IndividualTree o clonelnfluenceArea(sd, hs,loc,w) = it &
3f : verticesToClone(sd, hs, loc, hs.vertexHLevel (w), w) s it.It.t.vertices o
Y (uy,uz) : sd.lt.t.edges | uy € domf/\ uy € domf e
(f(ur),f(uz)) € it.lt.t.edges /\
sd.It.edgeType(uy,uz) = it.It.edgeType(f (u1),f(u2)) A
Vu:domf e
sd.It vertexType(u) = it.It.vertexType(f (u)) A
(sd.It.vertexType(u) = FILLER /\
it vertexAttribute(f (u)) =
hs.vertexAttributes(w)(loc.vertexPosition(u)) V
sd.It.vertexType(u) # FILLER /\
it vertexIndividualName(f (u)) = getIdentifier(it,f(u)))

Function verticesToClone outputs the set of vertices in a semantic descrip-
tion that belong to the influence area associated to a hierarchical slot

9.4. Semantic translator 115

vertex, so that they are filler vertices to which the location information
associates a non-empty attribute or are concept vertices that belong to a
path that ends in a vertex that has a reference to a non-empty attribute
as location information. It is specified as follows:

verticesToClone : SemanticDescription x HierarchicalSlot x Location x Label x
Vertex — IF Vertex

Vsd: SemanticDescription; hs : HierarchicalSlot; loc : Location; Ib : Label;
w : Vertex e verticesToClone(sd, Ib, w) =
{v : influenceAreaLabel(sd, loc, Ib) ’ sd.lt.vertexType(v) = FILLER VAN
hs.vertexAttributes(w)(l.vertexPosition(v)) # @} U
{v : influenceAreaLabel(sd, loc, Ib) ’ sd.It.vertexType(v) # FILLER /A
(3p : paths(sd.lt.t); vy : Vertex | vy = p(#p) N\ v € ran(p) o
hs.vertexAttributes(w)(loc.vertexPosition(vy)) # &)}

Function influenceAreaLabel outputs the vertices in a semantic descrip-
tions that belong to the influence area associated to a given label.

influenceAreaLabel : SemanticDescription x Location x Label — F Vertex

Vsd: SemanticDescription; loc : Location; Ib : Label; su : F Vertex e
influenceAreaLabel (sd, loc.Ib) = su &
influenceArea(sd, su) AN
Ju:su ‘ sd.It.vertexType(u) = FILLER e loc.vertexLevel(u) = Ib

Function getldentifier uses a hashing algorithm to provide a unique iden-
tifier name for a concept vertex. The hashing algorithm takes the at-
tributes of filler vertices in individual tree that are reachable from the
concept vertex as input. Note that the hashing definition is just a seman-
tic characterisation, and that it is not intended to be executable since we
think that this topic is well-covered in the literature. It is specified as
follows:

getldentifier : IndividualTree x Vertex — IndividualName

Vit : IndividualTree; v : Vertex | v € it.It.t.vertices o getldentifier(it,v) =
hashing((J{p : paths(it.lt.t) ’ v € ranp e it.vertexAttribute(p(#p))})

hashing : X — IndividualTree

Vx,y: X | x #y e hashing(x) # hashing(y)

116

Chapter 9. A materialisation of the semantic translation problem

ii. Function attach takes a semantic description, a location information, an

individual tree, a label, a sequence of individual trees, and a sequence of
labels as input, and it outputs a new individual tree. The individual tree
represents a mirrored influence area (of the influence area identified by
the label) obtained from a vertex in the hierarchical slot; the sequence of
individual trees represent the mirrored influence areas (of the influence
areas identified by the sequence of labels) of the children of the previous
vertex. Attaching is done by adding new edges that connect the root
vertex of the individual tree with the root vertices of all of the individual
trees in the sequence. The property types of the new edges are returned
by function propertyType. Function attach is defined as follows:

attach : semanticDescription x Location x IndividualTree x Label x
seq IndividualTree x seq Label — IndividualTree

Vsd: semanticDescription; loc : Location; it,it, : IndividualTree; Ib : Label;
sit : seq IndividualTree; slb : seq Label e attach(sd, it, b, sit,slb) = ity &
ity.It.t.vertices = it.It.t.vertices U | J{ita : ransit e ita.lt.t.vertices}
ity.It.t.edges = it.It.t.edges U | J{ita : ransit e ita.lt.t.edges} U
{ita : ransit e (root(it.lt.t), root(ita.lt.t))}
ity It.vertexType = it.It.vertexType U | J{ita : ran sit e ita.lt.vertexType}
ity.It.edgeType = it.It.edgeType U | J{ita : ransit e ita.lt.edgeType}U
{i:1..#sit e (root(it.lt.t), root(ita.lt.t)) — propertyType(sd, loc,1b,slb(i))}
it It vertexIndividual Name = it.It .vertexIndividualName U
(U{ita : ran it e ita.lt.vertexIndividualName}
ity It.vertexAttribute = it It vertexAttribute(v) U
{ita : ran sit e ita.lt.vertexAttribute}

Function propertyType takes a semantic description and two labels as in-
put, and outputs the type of property in the semantic description that
connects the influence areas identified by these labels. The propertyType
function is specified as follows:

propertyType : SemanticDescription x Location x Label x Label — PropertyName

Vsd: SemanticDescription; loc : Location; Iby,1by : Label; uy,u; : Vertex |
u1 = subtreeRoot (influenceAreaLabel(sd, loc,1b1)) A
uy = subtreeRoot (influenceAreaLabel(sd, loc,1by)) e
propertyType(sd, by, 1by) = sd.lt.edgeType(u1, us)

Rules: The semanticTranslator algorithm is defined by the following
rules, which are mutually recursive:

9.4. Semantic translator 117

i. For a vertex w with children in the hierarchical slot, we obtain the in-
dividual tree that represents its mirrored influence area by cloning the
semantic description influence area associated to the hierarchical level
to which w belongs (clonelnfluenceArea); furthermore, it is attached to the
individuals trees obtained for its children (attach). The individual trees
(sit) for its children and their labels (slb) are obtained in the antecedent
of the rule, c.f. the next rule for an explanation.

(sd, hs, loc,sw, (), ()) %!ST] (sd, hs, loc, @, sit, slb)

SWw#£ &
(sd, hs,loc,w) —gr, it [7 }
sw == children(hs, w)
itc == clonelnfluenceArea(sd, hs, loc, w)

where Ib == hs.vertexHLevel (w)

it == attach(sd, loc, itc, Ib, sit, slb)

ii. For each children of a vertex in the hierarchical slot, the individual tree
that represents a mirrored influence area is recursively computed. The
individual trees are recorded in a sequence (sit), as well as the labels (s/b)
associated to them all.

(sd, hs, loc,w) —gr, it
(sd, hs, loc, sw, sit, slb) —gr, (sd, hs, loc, sw', sit’, slb')

[sw#0]

sit! ==sit ™ (it)

slb’ ==slb ™ (hs.vertexHLevel (w))
w == member(sw)

sw' == sw \ {w}

where

iii. If w has not any children, then the individual tree is obtained by cloning
the influence area of the semantic description that is associated to the
hierarchical level to which w belongs.

(sd, hs,loc,w) —gr, it [sw=2a |

sw == children(hs, w)
it == clonelnfluenceArea(sd, HS, loc, w)

where {

Algorithm: The algorithm is specified as the process of applying the rule
—sr, for each HierarchicalSlot in an StructuredInformation. The initial configu-
ration is defined as (sd, s, loc, root(hs.t)). The algorithm is specified as follows:

118 Chapter 9. A materialisation of the semantic translation problem

semanticTranslator : StructuredInformation x SemanticDescription x
Location — Abox

V' si : StructuredInformation; sd : SemanticDescription; loc : Location e
semanticTranslator(si,sd,loc) =
(ks = si; it : IndividualTree ’ (sd, hs, loc, root(hs.t)) —gr, it ® toAbox(it)}

9.4.2 Correctness

Theorem 9.5 (Termination) Algorithm semanticTranslator terminates.

Proof The algorithm traverses a hierarchical slot. It begins with the root vertex
and children are studied recursively; every time the algorithm is required for
a vertex without children, recursion ends. Since hierarchical slots have a finite
number of vertices, and cycles are not allowed, the algorithm semantic-
Translator terminates. O

Theorem 9.6 (Correctness) The semanticTranslator algorithm is correct re-
garding the specification of the semanticTranslator function (c.f. Section §8.7 for its
definition).

Proof The proof follows from how the algorithm has been constructed. Ac-
cording to predicate translation, each vertex in a hierarchical slot is associated
to a mirrored influence area. Filler vertices in an individual tree take their
attributes from the location information provided by its mirrored vertex in
the corresponding semantic description. Furthermore, edges in a hierarchical
slot are mapped onto those edges of the individual tree that connect vertices
defining mirrored influence areas. O

9.4.3 Complexity

For each vertex with children in a hierarchical slot, the algorithm computes
its associated influence area, whose upper bound should be a constant time
denoted as tc, and attaches the mirrored influence area of the parent vertex to
the individual trees obtained for its children recursively, whose upper bound
should be a constant time denoted as ta. If a slot vertex has not any children,
the individual tree corresponding to the mirrored influence area is returned

9.5. Summary 119

(tc). In the worst case, the hierarchical slot tree is a balanced k-ary tree, i.e.,
the same number of recursive calls is made from each vertex. The temporal
function for complexity of semanticTranslator algorithm is defined re-
cursively as:

{ k-T(%)+tc+ta if m>1

tc if m=1

Where m is the number of vertices of a hierarchical slot, and k is the arity of
the corresponding tree.

To solve this equation, we calculate the time contribution of vertices at
the same depth in hierarchical slot. At depth i, the number of vertices in a
hierarchical slot is k. The time contribution of each vertex is % + tc + ta; then,
the total time contribution of vertices at depth i is (7 + tc + ta) - k'. The depth
of the tree is 1g, m, so if ¢ = tc + ta, then:

lg, m lg, m lg, m klgk mil 1

T(m):Z(m—i—c-ki):Zm%—c-Zki:m-lgkm—i—c-(?)
i=0 i=0

i=0

Therefore, the complexity of semanticTranslator algorithm is approx-
imated by O(m - 1g, m + k&™) = O(m - lg, m 4+ m) = O(m - lgm) in the worst
case.

9.5 Summary

In this chapter, we have presented a materialisation for semantic trans-
lation. We have devised three algorithms called buildsSD, buildLoc, and
semanticTranslation. The correctness of these algorithms has been as-
serted with respect to the specification in the previous chapter, which proves
that our approach for semantic translation can be implemented. Furthermore,
we have shown that they are quite efficient in practice.

120 Chapter 9. A materialisation of the semantic translation problem

Chapter 10

A proof-of-concept implementation

If it’s your idea, you get to implement it.

Leland ‘E. Modesitt, Jr., 1943—
Science fiction and fantasy writer

n this chapter, we present a realisation of the WebMeaning framework. It is or-

ganised as follows: in Section §10.1, we introduce the main ideas; Section §10.2
presents the WebMeaning architecture; Section §10.3 briefly describes its realisation;
finally, Section §10.4 summarises the main ideas.

122 Chapter 10. A proof-of-concept implementation

10.1 Introduction

The proof-of-concept implementation of the WebMeaning framework pro-
vides support for software engineers by defining a comprehensive architec-
ture. It maps the core elements identified in Chapter §7 onto software elements
that cooperatively implement the functionality defined in the framework.

The design criterion for implementing the WebMeaning framework was
the principle of modular composability, that is, the development of syntac-
tic wrappers, syntactic verifiers, semantic translators, and semantic verifiers
in such a way that they may be freely integrated as a whole to produce se-
mantic translators. Thus, the implementation allows to substitute them very
easily, which reduces the impact of changes, improves reusability, and leads
to a better return on the investment. The criterion was achieved by using a
Service-Oriented Architecture (SOA) in which each part of the system was
implemented using web services.

We describe the implementation by means of UML 2.0 since this notation
has proved to be valuable in representing models for software development
[101]. Our main goal is to provide an understanding, but we do not present
many details since they fall outside the scope of this dissertation. The full im-
plementation of WebMeaning is available at http://www.tdg-seville.
info/tools/WebMeaning.

10.2 The architecture

In Chapter §7, we divide the functionality of a knowledge extractor into
several chunks. The WebMeaning architecture maps them onto web services.
Figure §10.1(a) illustrates this idea. The semantic wrapper is mapped onto a
composite service that acts as a fagade for the rest of elements, which are im-
plemented as individual web services. The semantic wrapper uses them to
extract syntactic information (SyntacticWrapper), to verify the extracted syn-
tactic information (SyntacticVerifier), to translate the information into knowl-
edge (SemanticTranslator), and to verify the knowledge (SemanticVerification).
In addition, Figure §10.1(b) illustrates an activity diagram that explains the
interaction between these elements.

Separation of issues is enforced by requiring these web services to inter-
act only via a defined set of public facilities (their interfaces). A semantic
wrapper requires ISyntacticWrapper, ISyntacticVerifier, ISemanticTranslator, and
[SemanticVerifier interfaces to orchestrate the elements implementing them. A

10.2. The architecture

123

ISemanticWrapper

Client E

<<Agent>>

ISyntacticWrappe

ﬁ) ISyntacticVerifier

4C07

2]

SemanticWrapper
<<WebService>>

T

ISemanticVerifier

—o |
ey

ISemanticTranslator

SyntacticWrapper

<<WebService>>

2]

SyntacticVerifier
<<WebService>>

2]

SemanticTranslato|
<<WebService>>

2]

r

SemanticVerifier
<<WebService>>

2]

(a) WebMeaning elements as web services

Syntactic
verifier

Syntactic
wrapper

Semantic
wrapper

Semantic
verifier

Semantic
translator

information

Extract
information

Verify

Receive
web page

[Invalid] J& [Valid]

Syntactic
error

Translate into
knowledge

Verify
knowledge

[Invalid]

Semantic
error

[Valid]

(b) Activities in knowledge extraction

Figure 10.1: The WebMeaning architecture.

124 Chapter 10. A proof-of-concept implementation

= .
) <<interface>>
= N ISemanticWrapper
3 <<interface>> <<interface>>
2 ISyntacticWrapper y .
3 Y PP extract ISemanticVerifier
g extract .
3 verify
° !
5 i | <<Datatype>>
= | ! 1 Abox
Nl i | !
SyntacticWrapper (<..___ : L
________ SemanticWrapper |-—-——"">] SemanticVerifier <<Datatype>>
WebPage
extract .
extract verify
extractSyntW Datat
. verifySyntV) <<baiatype>>
Is<<{ntettfa\</:e>_f>_ transiateST <<interface>> Structuredinformation
ntacticVerifier i
Y verifySemV ISemanticTranslator
verify ,,/’ \‘\\ translate
SyntacticVerifier ! N SemanticTranslator
verify translate
c
n
o
[+]
§ RestaurantSyntwW RestaurantSemW RestaurantSemV
8
»
RestaurantSyntV RestaurantST

Figure 10.2: A realisation of WebMeaning.

semantic wrapper provides the interface ISemanticWrapper, which is the only
means for a software agent to extract knowledge from a web page.

10.3 Realisation

The class diagram in Figure §10.2 illustrates the logic view of the realisa-
tion of the WebMeaning architecture. It is divided into two parts: the former
corresponds to the WebMeaning core classes and interfaces, whereas the lat-
ter sketches user classes that extend the framework. In addition, Figure §10.3
illustrates the sequence diagrams for three distinct scenarios: the first repre-
sents a scenario in which the knowledge is correctly extracted; the second rep-
resents a syntactic fail, in which case neither the semantic translator nor the

10.4. Summary 125

semantic verifier are invoked by the semantic wrapper; the last corresponds
to a semantic fail.

Web services are specified as core abstract classes that implement the inter-
faces they provide. Abstract methods extractSyntW, verifySyntW, translateST,
verifySemV of abstract class SemanticWrapper, encapsulate the invocation of
extract in a SyntacticWrapper, verify in a SyntacticVerifier, translate in a Seman-
ticTranslator, and verify in a SemanticVerifier, respectively. The method extract
of abstract class SemanticWrapper is a template method [49].

Users are able to extend the WebMeaning framework by specialising ab-
stract classes. The extension is controlled by forcing them to implement the
interfaces associated to the abstract classes. Reusing is enforced by the whole-
part relation of web services as containers of the required functionality for
extracting knowledge; for instance, a user can define two semantic wrappers
to extract information about the some concern from two different web sites,
and they might orchestrate two different syntactic wrappers, but the same
syntactic verifier, semantic translator, and semantic verifier.

10.4 Summary

In this chapter, we have sketched a proof-of-concept implementation of
WebMeaning. Given the definition of WebMeaning framework in Chapter §7,
we devised a comprehensive reference architecture based on web services.

126 Chapter 10. A proof-of-concept implementation

<<Agent>> <<WebService>> <<WebService>> <<WebService>> <<WebService>> <<WebService>>
client SemanticWrapper SyntacticWrapper SyntacticVerifier SemanticTranslator SemanticVerifier
T T T
L } :
extract(WebPage) | 1
1 1
I

T T

| |

I I

| |
extract(WebPage) } }
|

Structuredinfomation !
|
|
|

verify(Structuredinfomation)

T
ox I

translate(Structuredinfomation)

Abox

I
I

verify(Abox)

| |
|

I

|

|

|

|

|

|

i
|
I
| oK |]
I
Abox, OK :
i | |
| | 1
(a) Knowledge correctly extracted
<<Agent>> <<WebService>> <<WebService>> <<WebService>> <<WebService>> <<WebService>>
client SemanticWrapper SyntacticWrapper SyntacticVerifier SemanticTranslator SemanticVerifier
‘ |
extract(WebPage) }

T
|
|
|
extract(WebPage) }
Structuredinfomation

verify(Structuredinfomation)

NULLAbox, SYNTFAIL

(b) Syntatic fail

<<Agent>> <<WebService>> <<WebService>> <<WebService>> <<WebService>> <<WebService>>
client SemanticWrapper SyntacticWrapper SyntacticVerifier SemanticTranslator SemanticVerifier
T
extract(WebPage)

T
|
|
i
extract(WebPage) }

;
|
|
|
|
|
|
|

Structuredinfomation |

|

|
|

verify(Structuredinfomation)

;
oK [
; ‘

translate(Structuredinfomation)

I
Abox I ‘ ‘

verifY(Abox)

FAIL ‘ ‘

NULLAbox, SEMFAIL

(c) Semantic fail

Figure 10.3: Three distinct scenarios in WebMeaning.

Part IV

Final remarks

Chapter 11

Conclusions and future work

When people agree, it is only in their
conclusions; their reasons are always different.

Jorge AN de Santayana, 1863—1952
Spanish philosopher

The incredible successfulness of the Internet world has paved the way for
technologies whose goal is to enhance the way humans and computers inter-
act on the web. Unfortunately, the information a human user can easy inter-
pret is usually difficult to be extracted and interpreted by a software agent.
This is the reason why such enhancements are usually viewed as problems
from an agent programmer’s point of view. The semantic web shall help ex-
tract information with well-defined semantics, regardless of the way it is ren-
dered, but it does not seem it is going to be adopted in the immediate future,
which argues for another solution to the problem in the meanwhile.

The goal of this dissertation was to support the idea that information re-
siding on web pages is not understood by software agents at a sensible cost.
In the body of this dissertation, we presented strong motivation for this idea,
and described the problems that appear when an agent is willing to retrieve
the knowledge on web. These problem were due to the fact that the current
web is mostly user-oriented, changing, huge and distributed (c.f. Chapter §6
for the description of these problems and the proof that none of the exist-
ing proposals succeeded in addressing them at a time). WebMeaning is our
approach to extract semantically-meaningful information from today’s non-
semantic web. Its main advantages are that it associates semantics with the
information extracted, which improves agent interoperability (c.f. Chapter §8

130 Chapter 11. Conclusions and future work

for our proposal for semantic translation); it can also deal with changes to
the structure of a web page, which improves adaptability (c.f. Chapter §7 for
how WebMeaning embraces web changes by using syntactic verifiers), and it
achieves a complete separation of issues in the task of knowledge extraction,
automating the development of distributed knowledge extractors (c.f. Chap-
ters §9 and §10 for the automatic algorithms and the services-based architec-
ture of WebMeaning, respectively).

Anyhow, the results in this dissertation cannot be seen as the concluding
end of a path, but as the motivation for further research on this topic. Amongst
the many issues that remain open or can be improved, we think that the most
exciting is to extend the framework so as to have access to heterogeneous in-
formation sources, e.g., federated databases or knowledge bases. Accessing
to database implies translating the relational model into an ontology, but in a
federated environment there can be many ontologies for the same domain. In
order to achieve semantic interoperability, these different ontologies must be
able to interoperate or integrate with each other. Having access to knowledge
bases implies defining translation schemes between ontologies, and the same
problem appears, i.e., semantic interoperability.

Part'V
Appendices

Appendix A

Mathematical notes

A.1 Notation

The Z formal specification language is based on set theory and first-order
predicate calculus [1]. It extends the use of these languages by allowing an
additional mathematical type known as the schema type. Z schemas have two
parts: the upper declarative part, which declares variables and their types,
and the lower predicate part, which relates and constrains those variables. The
type of any schema can be considered as the Cartesian product of its variables,
without any notion of order, but constrained by the predicates. Modularity is
facilitated in Z by allowing schemas to be included within other schemas. We
can select a variable of an schema instance by writing schemalnstance.var.

To introduce a type in which we wish to abstract away from the actual
elements of the type, we use the notion of a given set. We write [Vertex] to
represent the set of all vertices. If we wish to state that a variable ranges over
some finite set of values or an ordered pair of values we write x : F Vertex and
x : Vertex x Vertex, respectively.

A summary of the notation to be used is given in Table SA.1. For a more
complete treatment of the Z language, the reader is referred to one of the nu-
merous texts, c.f. Refs. [35, 70, 103]

A.2 Plotkin’s method

We use the popular Plotkin’s method to define our algorithms [102] since
it is simple, yet powerful. It relies on inference rules of the following forms:

134 Appendix A. Mathematical notes

| Notation Description |
Definitions and declarations
a:A Declarations
A== Abbreviated definition
Logic
p/\gq Logical conjunction
pVyg Logical disjunction
VXep Universal quantification
J,Xep,IX ep (Unique) existencial quantification
Sets
x €A Set membership
%) Empty set
ACB Set inclusion
xy,...} Set of elements
(x,y) Ordered pair
A xB Cartesian product
FA Finite set
ANB Set intersection
AUB Set union
UA Generalised or distributive union
#A Size of a finite set
Sequences
(x,y,...) Sequence of elements
() Empty sequence
tail s Tail of a sequence
head s Head of a sequence
st Sequence concatenation
{a: A|P(a)ef(a)} Setcomprehension
Relations and functions
domR Domain of a relation
ran R Range of a relation
A+ B Partial function
A—B Total function
A—B Total bijection
domR Domain of a relation
N Normalisation of a relation

Table A.1: Summary of the notation used in this dissertation.

A.2. Plotkin’s method 135

Antecedent Applicability
conditions

iti Consequent [Applicability]
Consequent conditions

where { Definitions where { Definitions

To define an algorithm using this method, it is necessary to identify the
data on which it works and model it as a tuple that is usually referred to as
the configuration of the algorithm.

For instance, to model a simple producer/consumer system, we need con-
figurations of the form (p, c, T), where p denotes the state of the producer, c the
state of the consumer, and 7 is a fixed-sized queue that helps store the items
that are ready to be consumed. Obviously, we also need a couple of rules de-
noted as —prop and —coys to describe how the producer and the consumer
change their state, respectively. These rules may be left unspecified since the
abstraction level at which we are describing the system does not require in-
depth knowledge of their semantics. Using this information, the system can
be described by means of the following rules:

The production rule. It controls how new items are stored in the queue as
long if there is room for them. (We assume that MAX denotes the maxi-
mum number of items T can store.)

P —prop P’ [| T]< MAX]
(P)C)T) HPC (P,»C,)T,)
¢ ==c
where { , .
1! == enqueue(T, 1)

p Sprop P’ means that the producer works locally to produce an item
denoted as 7, and this makes it to transit from state p to state p’. Note that
the rule can be applied as long as | T |< MAX; otherwise, the producer
has to wait until the consumer removes an item from the queue.

The consumption rule. It controls how items are removed from the queue
and consumed.

¢ ~cons ¢’ |t > 0/\i= Head(t) }
(p,c,T) —=pc (p',c’, ')

p'==p
where { T == dequeue(’t)

136 Appendix A. Mathematical notes

The burglar rule. It models a burglar who steals an item from the queue. This
rule has not an antecedent.

(p,c,T) —BURGLAR (P»C)T/) [T[>0]

where { v’ == dequeue(T)

A.3 The Tree data type

The Tree data type describes a tree as a set of vertices and a set of edges. The
assertions in the predicate part of the schema constrain that there must not be
any cycles (there is no path that includes at least one edge that can return to
the starting vertex), and that each must be in a path to the root.

[Vertex]
Edge == Vertex x Vertex

_Tree
vertices : F Vertex
edges : F Edge

Y(v1,02) : edges e vy € vertices /\ vy € vertices
\/ p : paths((vertices ~ vertices, edges ~ edges)); i,j: N |i,j:1.. (#p)/Ni#]e
p(i) # p(j)

Vv : vertices @ Ip : paths((vertices ~ vertices, edges ~ edges) v € ranp

Next, we define a predicate and some functions on this data type that are
commonly used in this dissertation:

i. Predicate isLeaf holds if a vertex in a given tree is a leaf.

‘isLeaf : Tree x Vertex

‘\V/t : Tree; v : t.vertices o isLeaf (t,v) & foy : t.vertices o (v,vy) € t.edges

ii. Function root returns the root of a tree.

‘root : Tree — Vertex

‘Vt : Tree; v : Vertex e root(t) = v & Poy e (vy,v) € tedges

A.3. The Tree data type 137

iii. Function children returns the children (set of vertices) in a tree for a given
tree and vertex.

‘children : Tree x Vertex + I Vertex

‘Vt : Tree; v : t.vertices e children(t,v) = {v, : Vertex | (v,vy) € t.edges e vy}

iv. Function paths returns all of the paths in a tree.

‘paths : Tree — IF seq Vertex

V't:Tree o paths(t) =
{p : seq Vertex | p(1) = root(t) /\ isLeaf (t, p(#p)) /\
(Vi:1..#p—1e(pli),pli+1)) € tedges) e p}

v. Function subtreeRoot outputs the root of a subtree. Subtree is represented
as a set of vertices.

‘subtreeRoot : Tree x F Vertex — Vertex

V't : Tree; sv: F Vertex; v : Vertex e subtreeRoot(t,sv) = v &
Yo, :s0\{v) e dp :paths(t); i,j: N ep(i) = v/\p(j) = vx/\j>z'

138 Appendix A. Mathematical notes

Appendix B

Equivalence between Aboxes and
IndividualTrees

Before proving the equivalence between Aboxes and IndividualTrees we in-
troduce a couple of helpful functions that allow to differentiate between the
property assertions that establish relationships amongst concept instances and
those that give values to attributes associated with concepts, namely: function
getRelations takes an Abox as input and outputs the property assertions with
individual names as fillers (tuples in propertyAssertions with an element from
IndividualName at the third position); on the contrary, function getAttributes
outputs property assertions with literals as fillers (tuples in propertyAssertions
with a literal at the third position). They are specified as follows:

‘ getRelations : Abox — F(PropertyName x IndividualName x IndividualName)

YV a: Abox e getRelations(a) =
{x:a.pn; y,z : a.IndividualNames | (x,y,z) € a.propertyAssertions e (x,y,z)}

‘ getAttributes : Abox — F(PropertyName x IndividualName x Literal)

Va: Abox e getAttributes(a) =
{x :a.pn; y : a.IndividualNames; | : Literal | (x,y,1) € a.propertyAssertions e (x,y,1)}

Note that, if a is an Abox, then getRelations(a) and getAttributes(a) define a
partition of a.propertyAssertions.

140 Appendix B. Equivalence between Aboxes and IndividualTrees

Example B.1 The outputs of getRelations and getAttributes for the Abox in Example
§7.2, page 69 are as follows:

getRelations(a) = {(hasAddress, RID1, AIDy), (inCity, AIDy, CIDy),
(hasAddress, RID1, AID;), (inCity, AID,, CID;), (hasPhone, AID;, PIDy),
(hasPhone, AID,, PID>)}

getAttributes(a) = {(name, RIDy, “Taco”), (closed, RIDy, “Monday”),
(closed, RIDy, “Sunday”), (street, AIDy, “Taylor”), (number, AIDy, “234"),
(name, CIDq, “Pittsburgh”), (street, AID,, “Connecticut”), (number, AID;, “150”),
(name, CID,, “Harrisburgh”), (number, PID+, “2314800”), (number, PID, “2324800")}

B.1 Building an IndividualTree from an Abox

Theorem B.1 Given an Abox with assertions about only one individual, there exists
a unique IndividualTree that represents this individual.

Proof To proof this theorem, we use a constructive approach that consists of
the specification of an abstract algorithm that takes an Abox as input and out-
puts an IndividualTree. The algorithm is as follows:

i. For each concept assertion in the Abox, there is one concept vertex in the
tree:

Y(c,id) : a.conceptAssertions e
Jyv: Vertex o
v € it.It.t.vertices /\
it.It.vertexType(v) = ¢ /\
it.vertexIndividualName(v) = id

ii. For each property assertion (p,id;,id,) in getRelations(a), there is one
edge in the tree that connects the vertices obtained in step (i) for indi-
vidual names id; and id>:

V(p,id1,id2) : getRelations(a) e
3, 01,02 : Vertex o
(v1,0v2) € it.lt.t.edges A
it.It edgeType(vy,v2) = p /\
it.vertexIndividualName(vq) = idq /\
it.vertexIndividualName(v;) = id,

B.1. Building an IndividualTree from an Abox 141

iii. For each set of properties with both the same property and individual
names in getAttributes(a), there is one edge in the tree that relates the
vertex obtained in step (i) for individual name id with a new filler vertex:

Y p : PropertyName; id : IndividualName; att : Attribute |
att ={(p,id,) : getAttributes(a) e I\ att £ e
3, 01,0, : Vertex o
(v7,02) € it.lt.t.edges/\
it.It.edgeType(vy,v2) = p /\
it.vertexIndividualName(vq) = id /\
it.It vertexType(vy) = FILLER /\
it.vertexAttribute(v,) = att

Function tolndividualTree returns the IndividualTree corresponding to Abox
as shown previously. It is specified as follows:

tolndividualTree : Abox — IndividualTree

Y a: Abox; it : IndividualTree o tolndividualTree(a) = it &
Y(c,id) : a.conceptAssertions e [i]
d,0: Vertex o
v € it.It.t.vertices /\
it.It.vertexType(v) = ¢ /\
it.vertexIndividualName(v) = id /\
V(p,idl,idz) : getRelations(a) e [ii]
3, 07,02 : Vertex o
(v1,v2) € it.lt.t.edges AN
it.It.edgeType(vy,v2) = p /\
it vertexIndividualName(vq) = idq /\
it.vertexIndividualName(v,) = id, /\
Y p : PropertyName; id : IndividualName; att : Attribute | [iii]
att ={(p,id, 1) : getAttributes(a) e L/\att + & e
3, 01,02 : Vertex o
(v1,0v2) € it.lt.edges /\
it It edgeType(vy,v2) = p /\
it.vertexIndividualName(v;) = id /\
it.It.vertexType(vy) = FILLER /\
it.vertexAttribute(v,) = att /\
(#it.It.t.Edges = #getRelations(a) + #{(p, id,) : getAttributes(a) o (p,id)}) A [iv]
(#it.It.t.Vertices = #a.concept Assertions + #{(p, id,) : getAttributes(a) o (p,id)}

142 Appendix B. Equivalence between Aboxes and IndividualTrees

Note that two new constraints are added at the end: the former states that
the number of edges in the resulting tree is equal to the sum of the number
of assertions obtained in steps (ii) and (iii); the latter states that the number of
vertices in the tree equals the sum of concept assertions in the Abox and filler
vertices obtained in step (iii). These constraints ensure that the IndividualTree
obtained is unique (there does not exist another IndividualTree to represent this
Abox). O

B.2 Building an IndividualTree from an Abox

Theorem B.2 Given an IndividualTree there exists a unique Abox with assertions
about only the individual represented in the IndividualTree.

Proof Let it be an IndividualTree, then the corresponding Abox is built as fol-
lows:

i. For each concept vertex in it, there is one concept assertion in a.

Y v :it.lt.t.vertices o
3,(c,id) : a.conceptAssertions e
¢ = it.It.vertexType(v) /\
id = it.vertexIndividualName(v)

ii. For each edge (v1,v,) in which v, is not a filler vertex, there is one prop-
erty assertion in a between two concepts (the ones obtained in step (i) for
vertices v; and v,).

Y(v1,03) : it.It.t.edges | it.It.vertexType(v,) # FILLER o
3,(p,id1,id3) : a.propertyAssertions e
p = it.lt.edgeType(vy,v2) /\
idq = it.vertexIndividualName(v1) /\
id, = it.vertexIndividualName(v5)

iii. For each edge (v1,v,) in which v, is a filler vertex, the number of prop-
erty assertions in a equals the number of literals in the attribute associ-
ated to v,. These properties relate the same concept (the one obtained for
v in step (i)) with the different literals in the corresponding attribute.

B.2. Building an IndividualTree from an Abox 143

Y(v1,02) s it.It.t.edges | it It vertexType(v,) = FILLER
A(p,id, 1) : a.propertyAssertions e
p = it.lt.edgeType(vy,v2) /\
id = it .vertexIndividualName(vy) /\
[€ it.vertexAttribute(vs)

Function toAbox returns the Abox for an IndividualTree as showed previ-
ously. It is specified as follows:

toAbox : IndividualTree — Abox

Vit : IndividualTree; a : Abox e toAbox(it) = a &
Vv :it.lt.t.Vertices o [i]
3,(c,id) : a.ConceptAssertions e
¢ = it.It.vertexType(v) /\
id = it.vertexIndividualName(v) /\
Y(v1,03) : it.It.t.edges | it.It.vertexType(v;) # FILLER e [ii]
3,(p,idq,id3) : a.propertyAssertions e
p = it.It.edgeType(vy,v2) /\
idy = it.vertexIndividualName(v1) /\
id, = it vertexIndividualName(v,) /\
Y(v1,03) : it.It.t.edges | it.It.vertexType(vz) = FILLER o [iii]
d(p,id, 1) : a.propertyAssertions e
p = it.It.edgeType(vy,v2) /\
id = it.vertexIndividualName(v7) /\
| € it.vertexAttribute(vs) /\
(#it It .edges = #getRelations(a) + #{(p,id,) : getAttributes(a) o (p,id)}) A [iv]
(#it.It.vertices = #a.ConceptAssertions + #{(p,id,) : getAttributes(a) o (p,id)}

Again, two new constraints (iv) are added to ensure that the IndividualTree
built is unique. 0

144 Appendix B. Equivalence between Aboxes and IndividualTrees

Appendix C

Acronyms

BPEL4WS. Business Process Execution Language for Web Services.

CREAM. CREAtion of Metadata.

DAML. DARPA agent markup language.
DAML+OIL. DARPA Agent Markup Language plus OIL.
DARPA. Defense Advanced Research Projects Agency.

DTD. Document Type Definition.

HTML. Hypertext Markup Language.
HTTP. Hypertext Transfer Protocol.

INTHELEX. INcremental THEory Learner from EXamples.

KIF. Knowledge Interchange Format.

OIL. Ontology Interchange Language.
OML. Ontology Markup Language.
OWL. Web Ontology Language.

146 Appendix C. Acronyms

RACER. Renamed ABox and Concept Expression Reasoner.
RAPIER. Robust Automated Production of Information Extraction Rules.
RDE. Resource Description Framework.

RDEF-S. Resource Description Framework Schema.

SHOE. Simple HTML Ontology Extensions.
SOAP. Simple Object Access Protocol.

SPEM. Software Process Engineering Metamodel.
SQL. Structured Query Language.

SRV. Sequence Rules with Validation.

SWWS. Semantic Web Enabled Web Services.

UDDI. Universal Description, Discovery and Integration.
UML. Unified Modelling Language.

URI. The Uniform Resource Identifier.

W3C. World Wide Web Consortium.
WebOntEx. Web Ontology Extraction.
WIEN. Wrapper Induction ENvironment.
WSDL. Web Service Definition Language.

XML. Extensible Markup Language.
XOL. Ontology Exchange Language.

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

ISO/IEC 13568:2002. Z formal specification notation: syntax, type sys-
tem and semantics, 2002. International Standard.

H. Alani, S. Kim, D.E. Millard, M.]. Weal, W. Hall, PH. Lewis, and N.R.
Shadbolt. Automatic ontology-based knowledge extraction from web
documents. IEEE Intelligent Systems, 18(1):14-21, 2003.

A. Aldea, R. Bafiares-Alcédntara, J. Bocio, J. Gramajo, D. Isern, A. Kokos-
sis, L. Jiménez, A. Moreno, and D. Riafio. An ontology-based knowledge
management platform. In Proceedings of Workshop on Information Integra-
tion on the Web (IIWEB’03) at I]CAI'03, pages 177-182, 2003.

A. Ankolekar, M. Burstein, J.R. Hobbs, O. Lassila, D. Martin, D. McDer-
mott, S.A. Mcllraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
DAML-S: web service description for the semantic web. In Proceedings
of the International Semantic Web Conference (ISWC'02), pages 348-363.
Springer, 2002.

N. Apte and T. Mehta. UDDI: building registry-based web services solutions.
Prentice Hall, 2002.

J.L. Arjona and R. Corchuelo. Extraccién de informacién en una
plataforma multiagente. In Actas de la reunién de trabajo ZOCO, pages
83-98, 2001.

J.L. Arjona and R. Corchuelo. Coping with web knowledge. In Proceed-
ings of the 1st International Atlantic Web Intelligence Conference (AWIC'03),
pages 165-178. Springer, 2003.

J.L. Arjona, R. Corchuelo, and M. Toro. Automatic extraction of
semantically-meaningful information from the web. In Proceedings of
the 2nd International Conference on Adaptive Hypermedia and Adaptive Web-
Based Systems (AH'02), pages 24-35. Springer, 2002.

148

[9]

[10]

[11]

[12]

[13]

[17]

[18]

[19]

[20]

Bibliography

J.L. Arjona, R. Corchuelo, and M. Toro. A practical agent-based method
to extract semantic information from the web. In Proceedings of the
14th International Conference on Advanced Information Systems Engineering
(CAiISE’02), pages 697-700. Springer, 2002.

J.L. Arjona, R. Corchuelo, and M. Toro. Knowledge channels. bringing
the knowledge on the web to software agents. In Proceedings of the short
papers of the 15th Conference on Advanced Information Systems Engineering
(CAiSE’03), pages 161-164. Technical University of Aachen, 2003.

J.L. Arjona, R. Corchuelo, and M. Toro. @A knowledge extraction
process specification for today’s non-semantic web. In Proceedings of
the IEEE/WIC International Conference on Web Intelligence (WI'03), pages
61-67. IEEE Computer Society, 2003.

AY. and D.S. Weld. Intelligent internet systems. Artificial Intelligence,
118(12):1-14, 2000.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider. The description logic handbook: theory, implementation and ap-
plications. Cambridge University Press, 2003.

T. Berners-Lee. WWW: past, present, and future. Computer, 29(10):69-77,
1996.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, 284(5):34—43, 2001.

P. Bloodsworth, S. Greenwood, and J. Nealon. A generic model for dis-
tributed real-time scheduling based on dynamic heterogeneous data. In
Proceedings of the 6th Pacific Rim International Workshop on Multi-Agents
(PRIMA’01), pages 110-121. Springer, 2003.

W.N. Borst. Construction of Engineering Ontologies. PhD thesis, Univer-
sity of Twente, 1997.

R.J. Brachman. On the epistemological status of semantic networks. In
N.V. Findler, editor, Associative Networks: Representation and Use of Knowl-
edge by Computers, pages 3-50. Academic Press, 1979.

B.E. Brewington and G. Cybenko. Keeping up with the changing web.
Computer, 33(5):52-58, 2000.

D. Brickley and R.V. Guha. Resource description framework schema
specification 1.0. Technical report, W3C, 2000.

Bibliography 149

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

C. Bussler, A. Maedche, and D. Fensel. A conceptual architecture for seman-
tic web enabled web services. ACM Special Interest Group on Management
of Data, 2002.

M.E. Califf and R.]. Mooney. Relational learning of pattern-match rules
for information extraction. In Working Notes of AAAI Spring Symposium
on Applying Machine Learning to Discourse Processing, pages 6-11. AAAI
Press, 1998.

C.-K. Chang. Bidding against competitors. IEEE Transactions on Software
Engineering, 16(1):100-104, 1990.

S. Chawathe, H. Garcfa-Molina, J. Hammer, K. Ireland, Y. Papakon-
stantinou, J.D. Ullman, and J. Widom. The TSIMMIS project: integration
of heterogeneous information sources. In Proceedings of the 16th Meeting
of the Information Processing Society of Japan (IPS]'94), pages 7-18, 1994.

K. Ciesielski. Set theory for the working mathematician. Cambridge Uni-
versity Press, 1997.

G. Cong, L. Yi, B. Liu, and K. Wang. Discovering frequent substructures
from hierarchical semi-structured data. In Proceedings of the 2nd SIAM
International Conference on Data Mining (SDM’02), 2002.

O. Corcho and A. Gémez-Pérez. Evaluating knowledge representation
and reasoning capabilities of ontology specification languages. In Pro-
ceedings of the ECAI’00 Workshop on Applications of Ontologies and Problem
Solving Methods, pages 1-9, 2000.

O. Corcho and A. Gémez-Pérez. A road map on ontology specification
languages. In Proceedings of the ECAI'00 Workshop on Applications of On-
tologies and Problem Solving Methods, 2000.

R. Corchuelo, J.S. Aguilar, and J.L. Arjona. A framework for extracting
information with semantics from the web. an application to knowledge
discovery for web agents. The International Journal of Computers, Systems
and Signals, 3(2):12-28, 2002.

R. Corchuelo and J.L. Arjona. Automatic extraction of semantically-
meaningful information from the web. UPGRADE: The European Online
Magazine for the Information Technology Professional), 3(3):44-51, 2002.

M. Craven, D. DiPasquo, D. Freitag, A.K. McCallum, T.M. Mitchell,
K. Nigam, and Sean Slattery. Learning to construct knowledge bases
from the world wide web. Artificial Intelligence, 118(1/2):69-113, 2000.

150

[32]

[33]

[38]

[39]

[40]

[41]

[42]

Bibliography

R. Dale, H. Moisl, and H. Somers. A handbook of natural language process-
ing: techniques and applications for the processing of language as text. Marcel
Dekker, 2000.

H. Davulcu, S. Vadrevu, S. Nagarajan, and 1.V. Ramakrishnan. On-
toMiner: bootstrapping and populating ontologies from domain-
specific web sites. IEEE Intelligent Systems, 18(1):24-33, 2003.

M. Dean and G. Schreiber. OWL web ontology language reference, 2004.
A. Diller. Z: an introduction to formal methods. John Wiley & Sons, 1994.

L. Eikvil. Information extraction from world wide web - a survey. Tech-
nical Report 945, Norwegian Computing Center, 1999.

E. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy theory
revision: induction and abduction in INTHELEX. Machine Learning, 38
(1-2):133-156, 2000.

A. Farquhar, R. Fikes, and]. Rice. The Ontolingua server: a tool for
collaborative ontology construction. International Journal of Human Com-
puter Studies, 46(6):707-727,1997.

D. Faure and C. Nédellec. A corpus-based conceptual clustering method
for verb frames and ontology acquisition. In Proceedings of the LREC
workshop on Adapting Lexical and Corpus Resources to Sublanguages and Ap-
plications, pages 5-12, 1998.

D. Fensel, 1. Horrocks, F. Van Harmelen, S. Decker, M. Erdmann, and
M. Klein. OIL in a nutshell. In Proceedings of the 12th European Work-
shop on Knowledge Acquisition, Modelling and Management (EKAW’00).
Springer, 2000.

D. Fensel, I. Horrocks, F. van Harmelen, D. L. McGuinness, and P. F.
Patel-Schneider. OIL: an ontology infrastructure for the semantic web.
IEEE Intelligent Systems, 16(2):293-310, 2001.

D. Fensel, F. van Harmelen, M. Klein, and H. Akkermans. OnToKnowl-
edge: ontology-based tools for knowledge management. In Proceed-
ings of the eBusiness and eWork 2000 Conference (EMMSEC’00), pages 1-7,
2000.

R. Fikes and D. McGuinness. An axiomatic semantics for RDF, RDEF-S,
and DAML+OIL. Technical report, W3C, 2001.

D. Florescu, A.Y. Levy, and A. Mendelzon. Database techniques for the
world wide web: a survery. ACM SIGMOD Record, 27(3):59-74, 1998.

Bibliography 151

[45]

[46]

[47]

[48]

[52]

[53]

[54]

[55]

[56]

UCLA Center for Communication Policy. The UCLA internet report.
Surveying the digital future: year three. Technical report, 2003.

L. Francisco-Revilla, F. Shipman, R. Furuta, U. Karadkar, and A. Arora.
Managing change on the web. In Proceedings of the 1st ACM/IEEE-CS
Joint Conference on Digital Libraries (JCDL'01), pages 67-76. IEEE Press,
2001.

D. Freitag. Information extraction from HTML: application of a gen-
eral machine learning approach. In Proceedings of the 15th Conference on
Artificial Intelligence (AAAI'98) and of the 10th Conference on Innovative Ap-
plications of Artificial Intelligence (IAAI'98), pages 517-523. American As-
sociation for Artificial Intelligence, 1998.

L.M. Fuld. The new competitor intelligence: the complete resource for find-
ing, analyzing, and using information about Your competitors. John Wiley &
Sons, 1994.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley, 1995.

M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. DTD
inference from XML documents: the XTRACT approach. IEEE Data En-
gineering Bulletin, 26(3):18-24, 2003.

A. Gilbert, M. Gordon, M. Paprzycki, and J. Wright. The world of
travel: A comparative analysis of classification methods. Technical re-
port, 2003.

M.L. Ginsberg. Knowledge interchange format: the KIF of death. Artifi-
cial Intelligence, 12(3):57-63, 1991.

A. Gémez-Pérez and O. Corcho. Ontology specification languages for
the semantic web. IEEE Intelligent Systems, 17(1):54-60, 2002.

T.R. Gruber. Towards principles for the design of ontologies used for
knowledge sharing. International Journal of Human Computer Studies, 43
(5/6):907-928, 1993.

T.R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199-220, 1993.

N. Guarino. Understanding, building and using ontologies. International
Journal of Human-Computer Studies, 46(2/3):293-310, 1997.

152

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Bibliography

H. Han and R. Elmasri. Ontology extraction and conceptual modelling
for web information. In Information Modelling for Internet Applications,
pages 174-188. Idea Group Publishing, 2003.

S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM - Semi-automatic
CREAtion of Metadata. In Proceedings of the 13th International Conference
on Knowledge Engineering and Knowledge Management (CIKM'02), pages
358-372. Springer, 2002.

S. Handschuh, S. Staab, and A. Maedche. CREAM: creating relational
metadata with a component-based, ontology-driven annotation frame-

work. In Proceedings of the First International Conference on Knowledge Cap-
ture (K-CAP 2001), pages 76-83. ACM Press, 2001.

F. van Harmelen and D. Fensel. Practical knowledge representation for
the web. In Proceedings of the IJCAI Workshop on Intelligent Information
Integration, 1999.

J. Heflin. Towards the Semantic Web: Knowledge Representation in a Dy-
namic, Distributed Environment. PhD thesis, University of Maryland,
2001.

J. Heflin and]J. Hendler. Dynamic ontologies on the web. In Proceedings
of the 7th Conference on Artificial Intelligence (AAAI'00) and of the 12th Con-
ference on Innovative Applications of Artificial Intelligence (IAAI'00), pages
443-449. AAAI Press, 2000.

J. Hendler. Agents and the semantic web. IEEE Intelligent Systems, 16(2):
30-37, 2001.

I. Horrocks. DAML+OIL: a reason-able web ontology language. In Pro-
ceedings of the CAISE 2002 workshop on Web Services, E-Business, and the
Semantic Web (WES’02), page 174. Springer, 2002.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expres-
sive description logics. Logic Journal of the IGPL, 8(3):239-264, 2000.

C.-N. Hsu. Initial results on wrapping semistructured web pages with
finite-state transducers and contextual rules. In Proceedings of the AAAI
Workshop on Al and Information Integration, pages 66-73, 1998.

C.-N. Hsu and M.-T. Dung. Generating finite-state transducers for semi-
structured data extraction from the web. Information Systems, 23(8):521—
538, 1998.

Bibliography 153

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

G. Huck, P. Fankhauser, K. Aberer, and E.]. Neuhold. Jedi: extracting
and synthesizing information from the web. In Proceedings of the 3rd In-

ternational Conference on Cooperative Information Systems (IFCIS’98), pages
32-43, 1998.

D.E. Hussey, P.V. Jenster, and P. Jenster. Competitor intelligence: turning
analysis into success. John Wiley & Sons, 1999.

J. Jacky. The way of Z: practical programming with formal methods. Cam-
bridge University Press, 1996.

M. Jaeger. A logic for default reasoning about probabilities. In Proceed-
ings of the 10th Conference on Uncertainty in Artificial Intelligence (UAI'94),
pages 352-359. Morgan Kaufmann Publishers, 1994.

C.F. Kalmbach and D.M. Palmer. eCommerce and alliances: how eCommerce
is affecting alliances in value chain businesses. Accenture LLP, 2002.

P.D. Karp, V.K. Chaudhri, and J. Thomere. XOL: an XML-based ontology
exchange language. http://www.ai.sri.com/~pkarp/xol, 1999.

B. Katz and J.J. Lin. START and beyond. In Proceedings of 6th World
Multiconference on Systemics, Cybernetics, and Informatics (SCI'02), 2002.

R.E. Kent. Conceptual knowledge markup language: the central core. In
Proceedings of the 12th Workshop on Knowledge Acquisition, Modelling and
Management, 1999.

M. Kifer, G. Lausen, and]. Wu. Logical foundations of object-oriented
and frame-based languages. Journal of the ACM, 42(4):741-843, 1995.

N. Kushmerick. Wrapper verification. World Wide Web Journal, 3(2):79—
94, 2000.

N. Kushmerick, D.S. Weld, and R.B. Doorenbos. Wrapper induction for
information extraction. In Proceedings of the International Joint Conference
on Artificial Intelligence (I[CAI'97), pages 729-737,1997.

D. Lehmann. Nonmonotonic logics and semantics. Journal of Logic and
Computation, 11(2):229-256, 2001.

K. Lerman, S.N. Minton, and C.A. Knoblock. Wrapper maintenance: a
machine learning approach. Journal of Artificial Intelligence Research, 18
(2003):149-181, 2003.

AY. Levy and M.-C. Rousset. Combining horn rules and description
logics in CARIN. Artificial Intelligence, 104(1-2):165-209, 1998.

154

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]
[93]

Bibliography

L. Lim, M. Wang, S. Padmanabhan, J.S. Vitter, and R. Agarwal. Char-
acterizing web document change. In Proceedings of the 2nd Conference on
Web-Age Information Management (WAIM'01), pages 133-144. Springer,
2001.

M. Luck and M. d’Inverno. Autonomy: A nice idea in theory. In Pro-
ceedings of the 7th International Workshop on Agent Theories, Architectures
and Languages (ATAL'01), pages 351-354. Springer, 2001.

S. Luke, L. Spector, D. Rager, and]J. Hendler. Ontology-based web
agents. In Proceedings of the 1st International Conference on Autonomous
Agents (Agents’97), pages 59-68. ACM Press, 1997.

R.M. MacGregor. Inside the LOOM description classifier. SIGART
Buletin, 2(3):88-92, 1991.

A. Maedche and S. Staab. Semi-automatic engineering of ontologies
from text. In Proceedings of the 12th International Conference on Software
and Knowledge Engineering (KSI'00), 2000.

D. Martin, M. Paolucci, S. Mcllraith, M. Burstein, D. McDermott,
D. McGuinness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srini-
vasan, and K. Sycara. Bringing semantics to web services: the OWL-
S approach. In Proceedings of the First International Workshop on Seman-
tic Web Services and Web Process Composition (SWSWPC'04), pages 1-12,
2004.

J. McCarthy. Circumscription: a form of nonmonotonic reasoning. Arti-
ficial Intelligence, 13:27-39, 1980.

D.L. McGuinness, R. Fikes, J. Hendler, and L.A. Stein. DAML+OIL: an
ontology language for the semantic web. IEEE Intelligent Systems, 17(1):
72-80, 2002.

D.L. McGuinness, R. Fikes, L.A. Stein, and J.A. Hendler. DAML-ONT:
an ontology language for the semantic web. In Spinning the Semantic
Web: Bringing the World Wide Web to Its Full Potential, pages 65-93. MIT
Press, 2003.

G. Mecca, P. Merialdo, and P. Atzeni. ARANEUS in the era of XML.
IEEE Data Engineering Bulletin, 22(3):19-26, 1999.

M. Minsky. A framework for representing knowledge. McGraw-Hill, 1975.

E. Motta. Reusable components for knowledge modelling: case studies in para-
metric design problem solving. 10S Press, 1999.

Bibliography 155

[94] I Muslea, S. Minton, and C.A. Knoblock. Hierarchical wrapper induc-
tion for semistructured information sources. Autonomous Agents and
Multi-Agent Systems, 4(1-2):93-114, 2001.

[95] A.Nauli. Using Software Agents to Index Data for an E-Travel System. PhD
thesis, Oklahoma State University, 2003.

[96] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting schema from
semistructured data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD’98), pages 295-306. ACM
Press, 1998.

[97] E. Newcomer. Understanding web services: XML, WSDL, SOAP, and
UDDI. Addison-Wesley, 2002.

[98] H.S. Nwana. Software agents: an overview. Knowledge Engineering Re-
view, 11(3):205-244, 1995.

[99] Y. Papakonstantinou and V. Vianu. DTD inference for views of XML
data. In Proceedings of the 19th ACM SIGMOD-SIGACT Symposium on
Principles of Database Systems, pages 35-46. ACM Press, 2000.

[100] M. Paprzycki and A. Abraham. Agent systems today; methodological
considerations. In Proceedings of the International Conference on Manage-
ment of e-Commerce and e-Government (ICMeCG 2003), pages 416—4212.
Jangxi Science and Technology Press, 2003.

[101] T. Pender. UML bible. Wiley Publishing, 2003.

[102] G.D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus Univer-
sity, 1981.

[103] B. Potter, J. Sinclair, and D. Till. Introduction to formal specification and Z.
Prentice Hall, 1996.

[104] J. Powell. Spinning the world wide web: an HTML primer. Database, 18
(1):54-59, 1995.

[105] T. Powell. HTML & XHTML: the complete reference. McGraw-Hill, 2003.
[106] S. Powers. Practical RDF. O’Reilly, 2003.

[107] ML.R. Quillian. Word concepts: a theory and simulation of some basic
semantic capabilities. Behavioral Science, 12(5):410-430, 1967.

[108] J. Reynolds and R. Mofazali. The complete e-commerce book: design, build
and maintain a successful web-based business. CMP Books, 2000.

156 Bibliography

[109] B. Richard and P. Tchounikine. Enhancing the adaptivity of an existing
website with an epiphyte recommender system. New Review of Hyper-
media and Multimedia, 10(1):31-52, 2004.

[110] K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma. Framework for
semantic web process composition. Technical report, LSDIS Lab, Com-
puter Science Dept., UGA, 2003.

[111] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics
to web services standards. In Proceedings of the 1st International Conference
on Web Services (ICWS’03), pages 395-401, 2003.

[112] J. Snell, D. Tidwell, and P. Kulchenko. Programming web services with
SOAP. O’Reilly & Associates, Inc., 2002.

[113] S. Soderland. Learning information extraction rules for semi-structured
and free text. Machine Learning, 34(1-3):233-272, 1999.

[114] J.E. Sowa. Conceptual structures: information processing in mind and ma-
chine. Addison-Wesley, 1984.

[115] E. Spertus. ParaSite: mining structural information on the web. In Se-
lected papers from the 6th International Conference on World Wide Web, pages
1205-1215. Elsevier Science Publishers, 1997.

[116] B. Starr, M.S. Ackerman, and M. Pazzani. Do-I-Care: tell me what’s
changed on the web. In Proceedings of the AAAI Spring Symposium on
Machine Learning in Information Access Technical Papers, 1996.

[117] R. Studer, V.R. Benjamins, and D. Fensel. Knowledge engineering: prin-
ciples and methods. Data Knowledge Engineering, 25(1-2):161-197, 1998.

[118] D. Tsichritzis. Electronic commerce. Centre Universitaire d’Informatique
(University of Geneva), 1998.

[119] M. Vargas-Vera, E. Motta, J]. Domingue, M. Lanzoni, A. Stutt, and
E. Ciravegna. MnM: ontology driven tool for semantic markup. In Pro-
ceedings of the ECAI 2002 Workshop on Semantic Authoring, Annotation &
Knowledge Markup (SAAKM’02), 2002.

[120] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and
J. Miller. METEOR-S WSDI: a scalable infrastructure of registries for se-
mantic publication and discovery of web services. Journal of Information
Technology and Management, 2004. to appear.

Bibliography 157

[121] Y. Wang and E. Shakshuki. A multi-agent system for semantic informa-
tion retrieval. In Proceedings of the 17th Conference of the Canadian Society
for Computational Studies of Intelligence (AI'04), pages 573-575. Springer,
2004.

[122] M.]J. Wooldridge and M.R. Jennings. Intelligent agents: theory and prac-
tice. Knowledge Engineering Review, 10(2):115-152, 1995.

[123] M.]. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of
the 8th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’02), pages 71-80. ACM Press, 2002.

[124] M.]. Zaki and C.C. Aggarwal. XRules: an effective structural classifier
for XML data. In Proceedings of the 9th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD’03), pages 316-325.
ACM Press, 2003.

158 Bibliography

Index

/~, 86
~, 85
Abox, 67

buildGlobalSD, 89
buildLocation, 95
buildSD, 88

changes on web, 35
behavioral, 35
content or semantic, 35
presentation, 35
structural, 35

children, 137

collapsable paths, 84

collapsable vertices, 84

collapsableVertices, 84

Edge, 136

FILLER, 79

formalisms, 17
conceptual graphs, 18
description logics, 18
first-order logic, 18
frame systems, 17
non-monotonic logics, 19
semantic networks, 17

HierarchicalSlot, 66

individual tree, 78
IndividualTree, 79
inductive wrappers, 30
RAPIER, 33
SoftMealy, 34
SRV, 34

STALKER, 34
WHISK, 34
WIEN, 34
influence area, 91
influenceArea, 91
information, 6
information agent, 5
instance extraction, 40, 42
Omnibase and START, 43
Squeal, 42
isLeaf, 136

knowledge, 6

knowledge base extraction, 40, 44

OntoMiner, 44
knowledge representation, 16
KnowledgeBase, 70

LabelledTree, 78
Location, 93

mergeSDs, 89
mirroredInfluenceArea, 92
mirrorInSD, 92
multi-slot, 30

ontological web languages, 22
DAML+OIL, 25
OWL, 25
RDF and RDF-S, 24
SHOE, 25
ontology, 5
ontology extraction, 40
ontology learning, 40
ASIUM, 42
INTHELEX, 42

160

Text-To-Onto, 40
WebOntEx, 40
ontology population, 43
ArtEquAKT, 43
WEB—KB, 43

Path, 85
PathPattern, 85
paths, 137
pattern, 85

repeated, 80
root, 136

schema learning, 42
SemanticTranslator, 72
SemanticVerifier, 73
SemanticWrapper, 73
semantic annotation, 43
CREAM, 43
MnM, 44
semantic descriptions, 79
building, 84
cardinality constraints, 81
semantics, 81
semantic translator, 72
semantic verifier, 73
semantic web services, 50
METEOR-S, 51
OWL-S/DAML-S, 51
SWWS, 51
semantic wrapper, 73
SemanticDescription, 80
semanticTranslator, 98
single-slot, 30
software agent, 4
StructuredInformation, 66
subtreeRoot, 137
SyntacticVerifier, 72
syntactic verifier, 72
syntactic wrapper, 70

Tbox, 70

traditional languages, 19
CARIN, 19
Frame logic, 20
LOOM, 20

OCML, 20
Ontolingua, 20
translation, 95
Tree, 136

Vertex, 136
vertexAttribute, 79
vertexIndividualName, 79
vertexLevel, 93
vertexPosition, 93

web page, 66
semi-structured, 31
structured, 31
unstructured, 31

web services, 48
BPEL4WS, 50
network layer, 49
SOAP, 49
UDDI, 50
WSDL, 49

WebPage, 66

wrappers, 30

wrappers maintenance, 30, 35
DataProG, 36
RAPTURE, 36
reconstruction, 35
verification, 35

Index

