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Cirel’son inequality states that the absolute value of the combination of quantum correlations appearing
in the Clauser-Horne-Shimony-Holt (CHSH) inequality is bound by 2

p
2. It is shown that the correlations

of two qubits belonging to a three-qubit system can violate the CHSH inequality beyond 2
p

2. Such a
violation is not in conflict with Cirel’son’s inequality because it is based on postselected systems. The
maximum allowed violation of the CHSH inequality, 4, can be achieved using a Greenberger-Horne-
Zeilinger state.
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Bell’s theorem [1] has been described as “the most pro-
found discovery of science” [2]. It states that, according to
quantum mechanics, the value of a certain combination of
correlations for experiments on two distant systems can be
higher than the highest value allowed by any local-realistic
theory of the type proposed by Einstein, Podolsky, and
Rosen [3], in which local properties of a system determine
the result of any experiment on that system. The most
commonly discussed Bell inequality, the Clauser-Horne-
Shimony-Holt (CHSH) inequality [4], states that in any
local-realistic theory the absolute value of a combination
of four correlations is bound by 2. Cirel’son’s inequal-
ity [5] shows that the combination of quantum correla-
tions appearing in the CHSH inequality is bound by 2

p
2

(Cirel’son’s bound). It is widely believed that “[q]uantum
theory does not allow any stronger violation of the CHSH
inequality than the one already achieved in Aspect’s ex-
periment [6] [2

p
2]” [7]. However, it has been shown that

exceeding Cirel’son’s bound is not forbidden by relativis-
tic causality [8]. Therefore, an intriguing question is why
the CHSH inequality is not violated more. Here it is shown
that, for three-qubit systems (that is, systems composed by
three two-level quantum particles), the correlation func-
tions of two suitably postselected qubits violate the CHSH
inequality beyond Cirel’son’s bound and that this violation
can even reach 4, the maximum value allowed by the defi-
nition of correlation.

To introduce the CHSH inequality, let us consider sys-
tems with two distant particles i and j. Let A and a (B and
b) be physical observables taking values 21 or 1 refer-
ring to local experiments on particle i � j�. The correlation
C�A, B� of A and B is defined as

C�A, B� � PAB�1, 1� 2 PAB�1, 21� 2 PAB�21, 1�
1 PAB�21, 21� , (1)

where PAB�1, 21� denotes the joint probability of obtain-
ing A � 1 and B � 21 when A and B are measured. In
any local-realistic theory, that is, in any theory in which
local variables of particle i � j� determine the results of lo-
cal experiments on particle i � j�, the absolute value of a
particular combination of correlations is bound by 2:
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jC�A, B� 2 mC�A, b� 2 nC�a,B� 2 mnC�a, b�j # 2 ,
(2)

where m and n can be either 21 or 1. The CHSH in-
equality (2) holds for any local-realistic theory, whatever
the values of m and n are, in the allowed set, �21, 1�.

The bound 2 in inequality (2) can easily be derived as
follows: In a local-realistic theory, for any individual
system, the observables A, a, B, and b have predefined
values yA, ya, yB, and yb , either 21 or 1. Therefore,
for an individual system the combination of correlations
appearing in (2) can be calculated as

yB�yA 2 nya� 2 myb�yA 1 nya� , (3)

which is either 22 or 2, because one of the expressions
between parentheses is necessarily zero and the other is
either 22 or 2. Therefore, the absolute value of the corre-
sponding averages is bound by 2, q.e.d.

For a two-particle system in a quantum pure state de-
scribed by a vector jc�, the quantum correlation of A and
B is defined as

CQ�A, B� � �cjÂB̂jc� , (4)

where Â and B̂ are the self-adjoint operators which repre-
sent observables A and B. For certain choices of Â, â, B̂, b̂,
and jc�, quantum correlations violate the CHSH inequal-
ity [4]. Therefore, no local-realistic theory can reproduce
the predictions of quantum mechanics [1].

Later on, Cirel’son [5] demonstrated that for a two-
particle system the absolute value of the combination of
quantum correlations equivalent to those appearing in the
CHSH inequality (2) is bound by 2

p
2,

jCQ�A, B� 2 mCQ�A, b� 2

nCQ�a, B� 2 mnCQ�a, b�j # 2
p

2 . (5)

Cirel’son’s bound can easily be derived as follows [9]:
Consider the operator with the same structure as the com-
bination which appears in inequality (5),

Ĉ � ÂB̂ 2 mÂb̂ 2 nâB̂ 2 mnâb̂ . (6)

If Â2 � â2 � B̂2 � b̂2 � I, where I is the identity
operator,
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Ĉ2 � 4I 2 mn�Â, â	 �B̂, b̂	 . (7)

Since for all F̂ and Ĝ bounded operators,

k�F̂, Ĝ	k # kF̂Ĝk 1 kĜF̂k # 2kF̂k kĜk , (8)

then kĈ2k # 8, or kĈk # 2
p

2, q.e.d.
Different derivations of this bound can be found in

[10,11]. Violations of the CHSH inequality (2) by 2
p

2
can be obtained with pure [4] or mixed states [10].

Popescu and Rohrlich [8] raised the question whether
relativistic causality could restrict the violation of the
CHSH inequality to 2

p
2 instead of 4, which would be

the maximum bound allowed if the four correlations in the
CHSH inequality (2) were independent. They prove this
conjecture false [8] by defining a contrived correlation
function which satisfies relativistic causality while still
violating the CHSH inequality by the maximum value 4.

Here I shall show that violations of the CHSH inequal-
ity beyond the 2

p
2 bound can be naturally obtained us-

ing only the predictions of quantum mechanics. This does
not entail a violation of Cirel’son’s inequality but a vio-
lation of the CHSH inequality beyond Cirel’son’s bound.
To understand the difference, let us consider three identi-
cal brothers. Every morning each of them takes a bus in
London. One goes to Aylesbury, one to Brighton, and the
third to Cambridge. Two of them wear white coats and
the other wears a black one. We are interested in the cor-
relations between the experiments on two of them. Then,
the first step is to define which two. One possibility is to
choose those brothers arriving in Aylesbury and Brighton.
Another possibility is to choose those wearing white coats,
regardless of their destination. Both possibilities are legiti-
mate in a theory in which both procedures used for select-
ing pairs are related to predefined properties. According
to Einstein, Podolsky, and Rosen [3], a local system is
assumed to have a predefined property if we can predict
with certainty the value of that property from the results
of experiments on distant systems. Therefore, for a local-
realistic theory, both procedures described above for se-
lecting pairs would be legitimate. If we are interested in
the correlations between the experiments on the two broth-
ers with white coats, we can see whether the coat of the
brother arriving in Cambridge is black. If this is the case,
we can legitimately conclude that the other two brothers
wear white coats. However, in quantum mechanics it is
not meaningful to assume that some physical observables
have predefined values before the measurements are made.
Therefore, such an inference is not permitted.

The key for the understanding of our approach is to
realize that, in searching for violations of the CHSH in-
equality (which is derived assuming local realism, without
any mention of quantum mechanics), one is not limited
to studying only the correlations of systems prepared in a
quantum state, as in Cirel’son’s inequality, but rather that
one can use the correlations predicted by quantum mechan-
ics for different subsets of systems previously prepared in a
060403-2
quantum state. Therefore, one can use a procedure like the
one described above for selecting pairs. However, one can-
not do this if we are interested in violations of Cirelson’s
inequality, which is valid for systems prepared in a quan-
tum state (without any further postselection).

The important point for physics is not whether a quan-
tum state violates the CHSH inequality but rather whether
the predictions of quantum mechanics violate the CHSH
inequality and the extent of this violation. We will show
that the correlations of a postselected subsystem of a three-
qubit system prepared in a Greenberger-Horne-Zeilinger
(GHZ) state [12–14] as described by quantum mechanics
allow the maximum violation.

Let us consider systems of three distant qubits prepared
in the GHZ state:

jC� �
1
p

2
�j 1 1 1� 1 j 2 2 2�� , (9)

where 1 and 2 denote, respectively, spin-up and spin-
down in the y direction. For each three-qubit system pre-
pared in the state (9), let us denote as qubits i and j those
giving the result 21 when measuring the spin in the z di-
rection on all three qubits; the third qubit will be denoted
as k. If all three qubits give the result 1, qubits i and j
could be any pair of them. Since no other combination of
results is allowed for state (9), qubits i and j are well de-
fined for every three-qubit system. Generally, qubits i and
j will be in a different location for each three-qubit sys-
tem. For instance, if we denote the three possible locations
as 1, 2, and 3, in the first three-qubit system, qubits i and
j could be in locations 1 and 2; in the second three-qubit
system, they could be in locations 1 and 3, etc. However,
we can force qubits i and j to be those in 1 and 2, just by
measuring the spin in the z direction on the qubit in 3 and
then selecting only those events in which the result of this
measurement is 1.

We are interested in the correlations between two ob-
servables A and a of qubit i and two observables B and
b of qubit j. In particular, let us choose A � Zi , a � Xi ,
B � Zj, and b � Xj, where Zq and Xq are the spin of
qubit q along the z and x directions, respectively. The
particular CHSH inequality (2) we are interested in is the
one in which m � n � xk, where xk is one of the pos-
sible results, 21 or 1 (although we do not know which
one), of measuring Xk . With this choice we obtain the
CHSH inequality:

jC�Zi, Zj� 2 xkC�Zi, Xj� 2

xkC�Xi , Zj� 2 C�Xi , Xj�j # 2 , (10)

which holds for any local-realistic theory, regardless of
the particular value, either 21 or 1, of xk. Now let us
use quantum mechanics to calculate the four correlations
appearing in (10). By the definition of qubits i and j, and
taking into account that state (9) is an eigenstate of the
self-adjoint operator ẐiẐjẐk with eigenvalue 1, we obtain

C�Zi , Zj� � 1 , (11)
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since the only possible results are Zi � Zj � 1 and Zi �
Zj � 21. By taking into account that state (9) is an eigen-
state of ẐiX̂j X̂k with eigenvalue 21, we obtain

C�Zi , Xj� � 2xk , (12)

since the only possible results are Zi � 1, Xj � 2xk and
Zi � 21, Xj � xk. By taking into account that state (9)
is an eigenstate of X̂i ẐjX̂k with eigenvalue 21, we obtain

C�Xi, Zj� � 2xk , (13)

since the only possible results are Xi � xk, Zj � 21 and
Xi � 2xk, Zj � 1. Finally, by the definition of qubit k
as the one in which zk � 1, and taking into account that
state (9) is an eigenstate of X̂iX̂jẐk with eigenvalue 21,
we obtain

C�Xi , Xj� � 21 , (14)

since the only possible results are Xi � 2Xj � 1 and
Xi � 2Xj � 21. Therefore, the left-hand side of in-
equality (10) is 4, which is the maximum value allowed by
the definition of correlation. Other choices of three-qubit
entangled quantum states and observables lead to viola-
tions of the CHSH inequality in the 2

p
2 to 4 range.

This result opens the possibility of using sources of
quantum entangled states of three or more particles [15]
to experimentally test [16] local realism using not only
proofs of Bell’s theorem without inequalities [12–14] or
Bell inequalities involving correlations between three or
more particles [17,18], but also the CHSH inequality (10).

However, it must be stressed that, since the correlations
(12) and (13) between qubits i and j depend on qubit k, the
experimental test cannot be simply a test on, for instance,
those pairs arriving in locations 1 and 2 when a particular
measurement on the qubit arriving in 3 gives a particular
result, but, as we shall see below, it requires treating all
three qubits in a completely symmetrical way.

On the other hand, in real experiments using three
qubits, the experimental data consist of the number of
coincidences (that is, of simultaneous detections by three
detectors) NABC�a, b, c� for various observables A, B, and
C. This number is proportional to the corresponding joint
probability, PABC�a, b, c�.

Therefore, in order to make inequality (10) useful for
real experiments, we must first translate it into the language
of joint probabilities and then we must show how the joint
probabilities of qubits i and j are related to the probabili-
ties of coincidences of qubits arriving in 1, 2, and 3.

For the first step, it is useful to note that, by assuming
physical locality (that is, that the expected value of any lo-
cal observable cannot be affected by anything done to a dis-
tant particle), the CHSH inequality (10) can be transformed
into a more convenient experimental inequality [19,20]:

21 # PZiZj �21, 21� 2 PZiXj �21, 2xk�
2 PXiZj �2xk, 21� 2 PXiXj �xk , xk� # 0 . (15)
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The bounds l of inequalities (2) and (10) are transformed
into the bounds �l 2 2��4 of inequality (15). Therefore,
the local-realistic bound in (15) is 0, Cirel’son’s bound is
�
p

2 2 1��2, and the maximum value is 1�2. For qubits i
and j of a system in the state (9),

PZiZj �21, 21� � 3�4 , (16)

since, in the state (9), the four possible results satisfying
zizjzk � 1 (where zi denotes the result of measuring Zi ,
etc.) have probability 1�4 and in three of them 21 appears
twice;

PZiXj
�21, 2xk� � 0 , (17)

since, in the state (9), zixjxk � 21;

PXiZj
�2xk , 21� � 0 , (18)

since, in the state (9), xizjxk � 21;

PXiXj �xk, xk� � 1�4 , (19)

since, in the state (9), both results xi � xj � xk � 1 and
xi � xj � xk � 21 have probability 1�8. Therefore, as
expected, the maximum allowed violation of inequality
(15) occurs for the same choices in which the maximum
violation of the CHSH inequality (10) does.

The second step consists of showing how the four joint
probabilities (16)–(19) are related to the probabilities of
coincidences in an experiment with three spatial locations,
1, 2, and 3. As can easily be seen,

PZiZj �21, 21� � PZ1Z2Z3 �1, 21, 21� 1 PZ1Z2Z3�21, 1, 21�
1 PZ1Z2Z3 �21, 21, 1�
1 PZ1Z2Z3 �21, 21, 21� , (20)

where, in the state (9), the first three probabilities in
the right-hand side of (20) are expected to be 1�4 and
the fourth is expected to be zero. On the other hand,
PZiXj �21, 2xk � and PXiZj �2xk , 21� are both less than or
equal to

PZ1X2X3 �21, 1, 21� 1 PZ1X2X3 �21, 21, 1�
1 PX1Z2X3 �1, 21, 21� 1 PX1Z2X3 �21, 21, 1�
1 PX1X2Z3 �1, 21, 21� 1 PX1X2Z3 �21, 1, 21� , (21)

where, in the state (9), the six probabilities in (21) are
expected to be zero. Finally,

PXiXj �xk , xk� � PX1X2X3�1, 1, 1� 1 PX1X2X3 �21, 21, 21� ,
(22)

where, in the state (9), the two probabilities in the right-
hand side of (22) are expected to be 1�8.

The experimental data of previous tests using three-
photon systems prepared in a GHZ state [16] or possible
new experiments over large distances with spacelike
separated randomly switched measurements [21] or with
three-ion systems and almost-perfect detectors [22] could
experimentally confirm this violation of local realism
predicted by quantum mechanics.
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