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Abstract 

 

A practice in wine vinegar production is the addition of grape-must caramel to correct and 

unify the final colour of different batches. Although current legislation allows it, the effect in 

vinegars’ quality has not been studied yet and it can become a fraud when it is used to 

simulate the effect of a longer ageing. Therefore, the aim of this work was to assess 

multidimensional fluorescence as a cost-effective and fast technique for detecting and 

quantifying grape-must caramel in vinegars. Different amounts of grape-must caramel and 

multivariate data analysis, as Parallel Factor Analysis (PARAFAC), N-way partial least 

squares and partial least squares discrimination and regression (NPLS-DA, PLS-DA and 

NPLS) were studied. Triangle sensory test was also performed. Results demonstrated the 

ability of this methodology in the detection and quantification of grape-must caramel (low 

prediction errors, RMSEP0.24) and the effects that grape-must caramel has upon a PDO 

vinegar’s final quality. 

Keywords: Wine vinegars, Protected Designation of Origin, Grape-must caramel, 

Fluorescence, Calibration, Classification. 

mailto:rcallejon@us.es


2  

1 1. INTRODUCTION 

 

2 Wine vinegar is the most commonly-used vinegar in both Mediterranean countries and 
 

3 Central Europe. Andalusia is a southern Spanish region traditionally associated with wine 
 

4 growing where three high-quality wine vinegars have been protected under a legal 
 

5 framework called Protected Designation of Origin (PDO): Vinagre de Jerez, Vinagre de 
 

6 Montilla-Moriles, and Vinagre de Condado de Huelva PDOs (Council Regulation (EC) No 
 

7 510/2006). These high-quality PDO wine vinegars are made from the corresponding 
 

8 protected wines, endowing each vinegar with singular and specific characteristics. All of 
 

9 the PDO regulations require an ageing period in wooden butts and during this ageing 
 

10 period an important number of physicochemical changes take place. These changes are 
 

11 what give the vinegars their unique organoleptic properties and sensory quality (Morales, 
 

12 Tesfaye, García-Parrilla, Casas, & Troncoso, 2002). Vinagre de Jerez and Vinagre de 
 

13 Montilla-Moriles PDOs have established the same categories regarding sweetness, time 
 

14 and method of ageing (the criaderas and solera and añada system): Pedro Ximenez 
 

15 category (sweet category), Crianza (aged in wood for at least 6 months), Reserva (with a 
 

16 minimum ageing time of 2 years.) and Gran Reserva (aged for 10 or more years). During 
 

17 ageing, the flavours of the barrel are absorbed by the vinegar and therefore, their quality 
 

18 increases. This fact raises the final market price, thus making them more vulnerable to 
 

19 frauds (Callejón et al., 2012). This means that PDO wine vinegar quality assurance and 
 

20 authentication are highly important issues. 
 

21 Authenticating and characterising PDO-labelled vinegars with the aim of assuring their 
 

22 quality, is important for protecting the consumer against being sold an inferior quality or 
 

23 counterfeit product (Danezis, Tsagkaris, Camin, Brusic, & Georgiou, 2016; Karoui & De 
 

24 Baerdemaeker, 2007). The unfair activities related to high-quality wine vinegars that bear a 
 

25 PDO label range from incorrect labelling to production outside PDO regulations or even to 
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26 adding substances prohibited by the regulations. One of the substances added to the 
 

27 vinegars is grape-must caramel. 
 

28 Grape-must caramel, also called ‘grape syrup’, is a sweetening and colouring agent 
 

29 obtained after boiling the grape must which is very rich in sugars and is brown in colour 
 

30 (Ortega-Heras & González-Sanjosé, 2009). It is commonly added to some Spanish wines 
 

31 in order to obtain special sweet wines. The addition of grape-must caramel to Spanish 
 

32 PDO wine vinegars is an allowed practice performed to unify the final colour of vinegars of 
 

33 different batches. The amounts required for this purpose are low and they should not affect 
 

34 the organoleptic characteristics of the final products. However, due to the fact that a 
 

35 maximum limit of addition has not yet been established, this could lead to some 
 

36 adulterations with the aim of modifying some of the characteristics of the final wine 
 

37 vinegar. 
 

38 During ageing the colour of wine vinegar changes from amber to mahogany. The content 
 

39 and concentration of polyphenols, tannins and anthocyanins as well as an oxidation 
 

40 process are the main factors involved in the vinegar’s darkening. Many of these 
 

41 compounds are also present in grape-must caramel, making determination of the 
 

42 presence of grape-must caramel in vinegars a difficult issue. In this context, the addition of 
 

43 grape-must caramel to the final wine vinegars could be used to simulate the effect of a 
 

44 greater wood ageing in wine vinegars. It has been demonstrated that the addition of 
 

45 grape-must caramel to a wine vinegar produces significant changes in its composition and 
 

46 final characteristics with a large increase in both brown tonalities and sweetness (Ortega- 
 

47 Heras & González-Sanjosé, 2009). Thus, the addition of grape-must caramel to a vinegar 
 

48 could change its organoleptic characteristics, the final product being different from the raw 
 

49 one. All of these facts illustrate the need for an analytical tool to determine and monitor the 
 

50 addition of grape-must caramel to PDO-protected wine vinegars. 
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51 In recent years, interest has been growing in developing rapid, inexpensive, non- 
 

52 destructive and direct methodologies based on non-targeted techniques for food 
 

53 characterisation. In this context, today excitation-emission fluorescence spectroscopy has 
 

54 an important role. Among the advantages of fluorescence spectroscopy is the enhanced 
 

55 selectivity when compared to other spectroscopic techniques; its high sensitivity to a wide 
 

56 range of potential analytes and an easy – or even unnecessary – sample pre-treatment 
 

57 (Sayago, García-Gonzalez, Morales, & Aparicio, 2007). Fluorescence spectroscopy has 
 

58 been applied as a competitive, high sensitivity, fast and non-destructive technique in food 
 

59 analysis (Karoui & Blecker, 2011). In a previous study (Ríos-Reina et al., 2017) this 
 

60 methodology demonstrated its usefulness for characterising and classifying PDO wine 
 

61 vinegars 
 

62 Measuring the emission spectra at different excitation wavelengths results in a three- 
 

63 dimensional Excitation-Emission Matrix (EEM) array, which contains information unique to 
 

64 each measured sample. Nowadays, the instrumental improvements and the availability of 
 

65 software specially designed to extract information contained in spectra has enabled the 
 

66 use of EEM in combination with chemometric methods in order to characterize and detect 
 

67 adulteration in different matrices, such as different food products and beverages 
 

68 (Azcarate, Teglia, Karp, Camiña, & Goicoechea, 2017; Casale et al., 2018; 
 

69 Elcoroaristizabal et al., 2016; Öztürk, Ankan, & Özdemir, 2010; Sayago et al., 2007), as 
 

70 well as in many other matrices (Heidari, Hemmateenejad, Yousefinejad, & Moosavi- 
 

71 Movahedi, 2018; L. Zhu et al., 2016). The analytical information contained in fluorescence 
 

72 spectra can be extracted in order better to interpret it using various multivariate analysis 
 

73 techniques that relate several analytical variables to the analytes’ properties. One 
 

74 appropriate multiway method for extracting and interpreting the maximum information 
 

75 possible from this matrix is PARAllel FACtor Analysis (PARAFAC). It has been applied in 
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76 order to break fluorescence EEMs down into different independent groups of fluorophores, 
 

77 as well as their relative concentration (scores) in each sample (Bro, 1997). The information 
 

78 provided by the resolved fluorophores has been successfully applied in food quality control 
 

79 since it can reveal clearer insights into the relationships between the intrinsic food 
 

80 properties and the quality of the product. Moreover, the extracted fluorophores could be 
 

81 used for a classification approach by discriminant analytical methods such as partial least 
 

82 squares-discriminant analysis (PLS-DA). In addition, the EEM array could also be studied 
 

83 directly with the use of multivariate calibration methods such as N-way partial least 
 

84 squares (N-PLS) that have also made it possible to relate instrument responses that 
 

85 consist of several variables to a chemical or physical property of a sample, as well as with 
 

86 multiway discrimination analysis such as NPLS-DA. 
 

87 The aim of this study was to assess the potential of excitation-emission fluorescence 
 

88 spectroscopy combined with three-way methods of analysis (PARAFAC and multiway N- 
 

89 PLS regression) and discriminant analysis (PLS-DA and NPLS-DA) to detect and classify 
 

90 the different additions of grape-must caramel in PDO wine vinegars. It is the first time that 
 

91 a methodology for the determination of gape-must caramel has been established. Different 
 

92 amounts of grape-must caramel were added to PDO wine vinegars that were grape-must 
 

93 caramel free in their raw composition. In addition, commercial PDO wine vinegars (that 
 

94 actually could have some added grape-must caramel) were also analysed to test the 
 

95 models and to determine their amount of caramel. For this purpose, Parallel Factor 
 

96 analysis (PARAFAC) was applied for pre-processing the three-dimensional arrays in order 
 

97 to study the potential fluorophores related to this addition. Multivariate data analysis (PCA, 
 

98 PLS-DA) was then performed in order to differentiate and classify samples that had or did 
 

99 not have grape-must caramel in different concentrations. Consequently, the discrimination 
 

100 results were compared to those obtained by a multiway partial least-squares discrimination 
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101 analysis (NPLS-DA). Finally, regression models were developed in order to attempt to 
 

102 predict and quantify the level of grape-must addition by relating the PARAFAC 
 

103 components to the chromatographic compounds detected, or by using the EEM array by 
 

104 N-PLS regression method. Additionally, a sensory test was developed to evaluate the 
 

105 influence of added grape-must caramel on the organoleptic properties of the PDO wine 
 

106 vinegars and to propose a possible addition limit that does not affect or modify their unique 
 

107 final organoleptic properties. 
 

108 2. MATERIALS AND METHODS 
 

109 2.1. Samples 

 

110 Wine vinegar samples from two Spanish PDOs (Vinagre de Jerez and Vinagre de 
 

111 Montilla-Moriles) were analysed in this study: 16 commercial wine vinegars from the 
 

112 Crianza category (CR), aged for 6 months to 2 years (10 from Vinagre de Jerez PDO and 
 

113 6 from Vinagre de Montilla-Moriles PDO) and 18 commercial wine vinegars from the 
 

114 Reserva category (RE), aged from 2 to 10 years (13 from Vinagre de Jerez PDO and 5 
 

115 from Vinagre de Montilla-Moriles PDO). These samples were collected working in 
 

116 compliance with the Regulatory Councils and were grouped in this study as the 
 

117 Unmodified group. Finally, 2 caramel-free samples of both Crianza and Reserva (one from 
 

118 each PDO) were collected from the wineries and included in the study as Control samples. 
 

119 More information and codification of samples is shown in Table 1. 

 

120 2.2. Reagents and Chemicals 

 

121 The grape-must caramel (also named colourant caramel MO-7) used was supplied by 
 

122 SECNA S.A. (Valencia, Spain), with identification number CEE: E - 150 d. Water was 
 

123 obtained from Milli-Q purification system (Millipore, USA). Analytical-quality acetic acid 
 

124 and methanol were supplied by Merck (Darmstadt, Germany). 5-Hydroxymethylfurfural (5- 
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125 HMF) according to the standard OIV (2009) method was purchased from Sigma–Aldrich 
 

126 (Madrid, Spain). 

 

127 2.3. Grape-must caramel addition 

 

128 First, thirteen different amounts of a dilution of grape-must caramel (10/100 v/v) were 
 

129 added to 10 mL of vinegar: 5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, and 250 µL. 
 

130 The amounts added were selected by examining the total range of colours of the 
 

131 commercial wine vinegars. These samples were grouped into a class called Modified. The 
 

132 vinegars selected as a matrix of these different additions were the Crianza and Reserva 
 

133 vinegars without caramel in their composition collected directly from the winery and 
 

134 belonging to both PDOs were designated as the Control samples. In table 1, therefore, 
 

135 these samples appear in the Modified-control matrix group. Moreover, among these 
 

136 samples made, five, with intermediate concentrations of grape-must caramel (20, 40, 75, 
 

137 125, 175 µL), were used as the test set for assessing the robustness of the regression 
 

138 models. These additions are expressed in Table 1 as % v/v. 

 

139 In addition, and in order to include more samples in the models, the same procedure was 
 

140 performed using a commercial Crianza-category wine vinegar from each PDO (also 
 

141 grouped as Modified samples) by making 8 points of the above mentioned (group of 
 

142 samples named in the study as Modified-Commercial matrix). Two replicates per level 
 

143 were performed. A total of six curves were obtained by varying the matrix where the 
 

144 grape-must caramel was added: 4 Crianza (two control and two commercial matrices) and 
 

145 2 Reserva wine vinegars (control matrices). This information is more easily shown 
 

146 schematically in Table 1. 
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147 Finally, the same calibration levels were performed in a hydroacetic matrix at 6% in order 
 

148 to study the pure grape-must caramel. A schema and some photos of these curves are 
 

149 shown in Supplementary Fig 1. 

 

150 2.4. Fluorescence analysis 

 

151 Fluorescence measurements were recorded using a Varian Cary-Eclipse fluorescence 
 

152 spectrophotometer (Varian Iberica, Madrid, Spain), equipped with two Czerny-Turner 
 

153 monochromators, and a Xenon discharge lamp pulsed at 80 Hz with a half peak height of 
 

154 2 ms (peak power equivalent to 75 kW). A high-performance R298 photomultiplier tube 
 

155 detector was used for collecting the fluorescence spectra. Wine vinegar samples were 
 

156 analysed directly without sample pre-treatment by pipetting them into 3.5 mL quartz 
 

157 cuvettes before measurement. 1-cm path length standard quartz cells (Hellma Analytics, 
 

158 Müllheim, Germany) were used to perform the measurements in a Peltier thermostatic 
 

159 cuvette holder (25.00 ± 0.05 °C). The spectrometer was interfaced to a computer with 
 

160 Cary-Eclipse software for spectral acquisition and exportation. 

 

161 The fluorescence Excitation-Emission Matrices (EEMs) were obtained by varying the 
 

162 excitation wavelength (ʎex) ranging between 250 and 650 nm (every 5 nm), and recording 
 

163 the emission spectra (ʎem) from 300 to 700 nm (every 4 nm). For these measurements, 
 

164 excitation and emission slits were both set at 5 nm, and the scan rate was fixed to 1200 
 

165 nm min-1. The system was wavelength-calibrated every day by means of the water Raman 

166 peak to account for a possible instrument wavelength drift. EEMs were recorded in 
 

167 triplicate for each wine vinegar type and each level of the calibration and pre-processed in 
 

168 order to avoid noisy and non-informative areas by selecting shorter spectral ranges (ʎex 
 

169 from 300 to 650 nm, and ʎem from 300 to 700 nm). 

 

170 2.5. High-performance liquid chromatography (HPLC) analysis 
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171 HPLC analysis was performed using a LaChrom® WWR-Hitachi (Barcelona, Spain) liquid 
 

172 chromatograph with a quaternary L-7100 pump connected to an L-7455 diode array 
 

173 detector (DAD). The column was a Luna C18, 5 µm, 250 x 4.6 mm and a guard precolumn 
 

174 of 4.0 x 3.0mm from Analytical Phenomenex (Torrance, CA, USA). Detection was 
 

175 performed at 280 nm. The injection of the samples (10) µL was performed using an L- 
 

176 2200 autosampler and the separation was obtained at a flow rate of 1.2 mL min-1 with an 

177 isocratic elution. The analysis takes less than five minutes. 

 

178 The mobile phase consisted of 80% water, 18% methanol and 2% acetic acid. Previously 
 

179 filtered through a 0.45 µm PTFE membrane filter (Merck, Darmstadt, Germany), the 
 

180 samples were analysed in duplicate. Quantification of 5-HMF was performed according to 
 

181 Elcoroaristizabal et al., 2016, by using an external calibration curve in the range between 5 
 

182 and 80 ppm. A calibration curve at 6 levels with two replicates per level was built using the 
 

183 least-squares method. The response of the 5-HMF standard was linear within the 
 

184 concentration range tested, with a determination coefficient of R2 = 0.997. Standard 

185 solutions were prepared using a hydro-acetic matrix (6% v/v). 

 

186 2.6. Sensory analysis 

 

187 An olfactory and taste analysis was carried out. The expert sensory panel comprised eight 
 

188 tasters (six females and two male), all belonging to our laboratory and with extensive 
 

189 experience in wine vinegar sensory analysis. For the olfactory test, fifteen millilitres of 
 

190 each sample were presented in coded opaque glasses to mask the colour while following 
 

191 the protocol for vinegars established by Tesfaye et al., 2010. For the gustative test, a drop 
 

192 of each sample was placed in a coffee spoon. 

 

193 Firstly, an ascending order test was performed to delimit the correct concentration range 
 

194 of grape-must caramel to study and to familiarize panellists with the odour of the samples. 
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195 Panellists were asked to indicate in which glass and spoon they perceived any change of 
 

196 odour or flavour. The starting point was the CR control without any caramel. Secondly, 
 

197 triangular tests (IS0 4120 - 1983) were performed to ascertain whether the panellists were 
 

198 capable of discriminating caramel-free samples from those vinegars with added grape- 
 

199 must caramel. Moreover, triangle tests were also performed to assess the capability of 
 

200 discriminating some Reserva commercial wine vinegars from the modified wine vinegars 
 

201 from each PDO. 

 

202 2.7. Software and data analysis 
 

203 2.7.1. Pre-processing of spectra and PARAFAC analysis 

 

204 EEMs data were pre-processed in order to correct Rayleigh and Raman scattering 
 

205 (Elcoroaristizabal, Bro, García, & Alonso, 2015) by removing and replacing the scattering 
 

206 areas with   interpolated   values   by   using   the   FLUCUT   function   included   in   the 
 

207 PLS_Toolbox. The   corrected EEM matrices underwent   PARAlell   FACtor   analysis 
 

208 (PARAFAC) (Bro, 1998) in order to extract the relevant information and to develop models 
 

209 for differentiating authentic samples from those with added grape-must caramel. This 
 

210 methodology is not described here due to having been described in a previous study 
 

211 (Ríos-Reina et al., 2017). The number of factors for each model was determined by using 
 

212 the CORe CONsistency DIAgnostic test (COR-CONDIA) (Bro & Kiers, 2003), the model 
 

213 percentage of explained variance and by visual inspection of the recovered spectral 
 

214 profiles and residuals. Non-negative constraints for all modes were applied. 

 

215 2.7.2. Exploratory and classification analysis 
 

216 2.7.2.1. PCA and PLS-DA on the PARAFAC factors 

 

217 In order to perform a first screening of samples and to reflect the sample distribution in 
 

218 latent space, principal component analysis (PCA) was applied to the scores of the 
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219 PARAFAC factors obtained. Moreover, classification accuracy was calculated by means of 
 

220 Partial Least Squares-Discriminant Analysis (PLS-DA). This algorithm was used to build 
 

221 classification models for discriminating the Unmodified (commercial) wine vinegar samples 
 

222 from the Modified samples, that is, those CR and RE with the addition of grape-must 
 

223 caramel and the control ones, in order to test the ability of the methodology to discriminate 
 

224 between the presence or absence of grape-must caramel at different levels. Furthermore, 
 

225 the data was autoscaled and samples were randomly divided into the training set 
 

226 (comprising 75% of samples) that was used for data modelling and internal validation by 
 

227 means of a venetian blinds cross-validation, and a test or prediction set used for 
 

228 evaluating the discriminative power of the models (external validation). 

 

229 2.7.2.2. N-PLS discriminant analysis (NPLS-DA) 

 

230 NPLS-DA was applied to the three-dimensional array, which was prior multiway centred, in 
 

231 order to compare the classification results of a multiway analysis to the previous one-way 
 

232 approach (i.e. PLS-DA classification by the use of the PARAFAC factors). NPLS-DA is an 
 

233 extension of PLS, used in the case of data in three-dimensional arrays. Thus, the NPLS- 
 

234 DA consists of applying the N-PLS algorithm to classification, predicting the membership 
 

235 of a sample to a qualitative group defined as a preliminary (Vigneau, Qannari, Jaillais, 
 

236 Mazerolles, & Bertrand, 2006). In essence, N-PLS for discriminant analysis is the same as 
 

237 for calibration purposes. Discrimination quality was obtained by comparing the predicted 
 

238 groups to the real groups and is shown as the percentage of correct classification. The 
 

239 data was again autoscaled and randomly divided again into two sample sets, as had been 
 

240 the case with the PLS-DA model: the training set (comprising 75% of the samples) that 
 

241 was used for calibration and internal validation of the models by means of a venetian 
 

242 blinds cross-validation, and a test set used for evaluating the discriminative power of the 
 

243 models employed as an external validation. 
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244 2.7.3. Correlation of wine vinegars EEM spectra with grape-must caramel 

 

245 Regression models based on PARAFAC and N-PLS algorithms were compared. On the 
 

246 one hand, the area of the compounds detected by HPLC as well as the % v/v of grape 
 

247 must-caramel were correlated to the extracted PARAFAC components. On the other hand, 
 

248 a multiway linear regression analysis, called N‐way partial least squares (N‐PLS), was built 
 

249 using the EEM data which was multiway centred in order to determine the presence of 
 

250 grape-must caramel in the commercial PDO wine vinegars by the fluorescence landscapes 
 

251 kept as three-way array. Regression models were evaluated using the figures of merit: 
 

252 Root Mean Square Error of calibration, cross-validation and prediction (RMSEC, RMSECV 
 

253 and RMSEP) as a term to indicate the prediction error of the model, and the coefficient of 
 

254 determination (R2). R2, generally  used for evaluating model quality, is the correlation 

255 coefficient between the predicted and actual/measured grape-must caramel. RMSEC is 
 

256 used to compare quality of the results provided in the calibrations and it is expressed as a 
 

257 percentage (in both calibration and prediction), taking into account the response range in 
 

258 its calculation (Sáiz-Abajo, González-Sáiz, & Pizarro, 2006). The data was multiway 
 

259 centred across the first mode (i.e. sample mode) and divided into two sets, train and test. 
 

260 Venetian blinds was applied by means of cross validation. 

 

261 2.7.4. Software 

 

262 EEM data   modelling   and   chemometric   analyses   were   performed   by   using   the 
 

263 PLS_Toolbox 7.9.5 (Eigenvector Research Inc., Wenatchee, WA) working under Matlab 
 

264 v.8.5.0 environment (The Mathworks Inc., Natick, MA). 

 

265 3. RESULTS AND DISCUSSION 
 

266 3.1. Visual assessment of fluorescence landscapes 
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267 Fig. 1 shows, in the left side (a), an example of the fluorescence landscapes in the form of 
 

268 contour plots (after removing and replacing the scattering areas) of different levels of the 
 

269 calibration curve made with the Crianza Control wine vinegars as matrix (those without 
 

270 caramel obtained from the wineries) from both PDOs, including also the Reserva Control 
 

271 wine vinegars on the far right of the figure (Fig. 1a). Moreover, the calibration curve 
 

272 produced with the hydroacetic matrix is also shown at the left bottom of the figure (Fig. 
 

273 1c). 

 

274 As can be observed, a visual assessment of the fluorescence landscapes indicated a 
 

275 similar profile for vinegars of both PDOs, with fluorophores overlapping in both excitation 
 

276 and emission dimensions, together with some differences due to the addition of grape- 
 

277 must caramel. Thus, the fluorescence profiles of the Crianza vinegars without grape-must 
 

278 caramel (first samples in the rows) showed a common maximum peak around 370/450 nm 
 

279 for both excitation/emission wavelengths (ʎex/ʎem), although in the Reserva control 
 

280 samples (last samples in the rows) the maximum peaks appeared at slightly higher 
 

281 wavelengths, around 370–470 nm of ʎex and 470–550 nm of ʎem. These features were 
 

282 similar to those observed in a previous work studying PDO wine vinegars (Ríos-Reina et 
 

283 al., 2017). 

 

284 Additionally, the visual assessment of the EEM landscapes with and without the addition 
 

285 of grape-must caramel allows an a priori confirmation of differences between samples by 
 

286 looking at the areas where the potential compounds appeared. Thus, for example, the 
 

287 peak at 370/450 nm  (ʎex/ʎem) tended to disappear as more grape-must caramel  was 
 

288 added, giving way to the appearance of a second peak around 550/570 nm of excitation 
 

289 and emission wavelength, respectively. It should be also noticed that, as the commercial 
 

290 samples are able to present some grape-must caramel, some of the analyzed in this study 
 

291 already showed this trend. Moreover, another important feature was that as more grape- 
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292 must caramel was added to the vinegar, EEM intensity decreased. This behaviour was 
 

293 also observed as being PDO-independent – even in the hydroacetic matrix analysed (Fig. 
 

294 1c). In fact, the hydroacetic samples with different amounts of grape-must caramel 
 

295 showed similar trends, also being similar to the vinegar samples due to the fact that it 
 

296 should be considered that grape-must caramel has many grape-derived compounds, such 
 

297 as wine vinegars. However, the excitation/emission wavelengths were not exactly the 
 

298 same, due to the relevant phenomena related to the nature of the food and its molecular 
 

299 environment, both of which influence the fluorescence signal. This is commonly called the 
 

300 matrix effect (Azcarate et al., 2017). All of these results partially demonstrated that 
 

301 excitation-emission fluorescence was able to detect those samples whose colour was 
 

302 modified by the addition of grape-must caramel. 

 

303 3.2. Decomposition of the spectral data in the potential fluorophores by using 
 

304 PARAFAC 

 

305 In order to observe and evaluate the pure spectra of fluorophores related to the addition of 
 

306 grape-must to wine vinegars, an adequate multiway method for pre-processing the three- 
 

307 dimensional array was carried out. Thus, the EEM landscapes of all of the samples under 
 

308 study (the Modified and the Unmodified samples of both categories and both PDOs) were 
 

309 decomposed into the main fluorescence contributions by using PARAFAC analysis. The 
 

310 best PARAFAC model built for each PDO was obtained with five factors, giving final 
 

311 reliable models that explain more than 99% of the variance and with a core consistency 
 

312 over zero. Fig. 1 also shows in the right side the PARAFAC loadings (excitation/emission 
 

313 profiles) of each main fluorophore obtained for both PDOs (Fig. 1b) and hydroacetic matrix 
 

314 with different amounts of grape-must caramel (Fig. 1d). A great similarity of the spectral 
 

315 profiles acquired for both PDOs (Vinagre de Jerez in discontinuous lines and Vinagre de 
 

316 Montilla-Moriles in continuous lines) could be observed. This fact suggests that these 
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317 fluorescence fingerprints could be useful for addressing the problem under study, as it 
 

318 shown to be PDO-independent. Similar results were obtained by Elcoroaristizabal et al., 
 

319 (2016) in the study of different types of Cava in which a great similarity of the spectral 
 

320 profiles was obtained independently of the Cava analysed. 

 

321 The fluorescent loading patterns of the modelled factors in the PDO samples can be 
 

322 matched to fluorophores described in the literature. The first factor (F1, blue in Fig. 1b) 
 

323 therefore, has a similar profile for the two PDOs under study with excitation and emission 
 

324 maxima centred around 380 nm and 450 nm, respectively. This factor also appeared in the 
 

325 previous study (Ríos-Reina et al., 2017) and was related to the cumarins, tannins, 
 

326 phenols, flavonols that are naturally present in wine. 

 

327 The second factor (F2, red in Fig. 1b) is a peak centred at 400-430nm of excitation and 
 

328 500-520 nm of emission. This fluorophore could be matched with Maillard compounds 
 

329 according to Zhu, Ji, Eum, & Zude (2009) and Ríos-Reina, et al. (2017), formed in 
 

330 vinegars during ageing (García Parrilla, Heredia, & Troncoso, 1999). According to the 
 

331 literature, within these compounds, 5-HMF is one that has been shown to have a high 
 

332 correlation to these wavelengths (Callejón et al., 2012). Grape-must caramel also has high 
 

333 amounts of this compound. In this regard, it is important to emphasize that each 
 

334 PARAFAC factor probably corresponds to a related fluorescent molecule group, and not 
 

335 necessarily to a single fluorescent molecule and for that reason, this factor could be 
 

336 matched with different compounds, although from a similar family. 

 

337 The third factor (F3, yellow in Fig. 1b) shows an excitation maximum around 470 and the 
 

338 emission one at 550 nm for both PDOs although for Vinagre de Jerez this factor shows a 
 

339 shoulder at 350 nm of excitation that could be due to differences in the composition 
 

340 between the two PDOs. According to the literature (Airado-Rodríguez, Durán-Merás, 
 

341 Galeano-Díaz, & Wold, 2011) and our previous knowledge (Ríos-Reina et al., 2017), the 
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342 common parts of this factor appeared to be related to vitamin B2 and its principal forms 
 

343 such as Riboflavin, Flavin mononucleotide (FMN), and Flavin adenine dinucleotide (FAD) 

 

344 The fourth factor (F4, purple in Fig. 1b) has excitation and emission maxima between 320- 
 

345 340nm and 400-420 nm, respectively. In this case, the Vinagre de Montilla-Moriles factor 
 

346 shows a small shoulder at 450 nm of emission, different to the other PDO. According to 
 

347 the results presented in the literature, excitation/emission wavelengths around 330/420 nm 
 

348 have been related to phenolic acids and phenolic aldehydes, as well as oxidation and 
 

349 Maillard reaction products (present due to browning processes and oxidative mechanisms 
 

350 taking place during ageing and storage) (Airado-Rodríguez et al., 2011; Azcarate et al., 
 

351 2015; Callejón   et   al.,   2012;   Dufour,   Letort,   Laguet,   Lebecque,   &   Serra,   2006; 
 

352 Elcoroaristizabal et al., 2016; Sádecká & Tóthová, 2007). 

 

353 Finally, the fifth factor (F5, green in Fig. 1b) shows a peak centred at 550 nm of excitation, 
 

354 with a shoulder at 400 nm in both PDOs, and an emission maximum around 600-630 nm. 
 

355 This has not previously been associated to any fluorophore. However, this factor was 
 

356 similar to the one obtained in the previous work (Ríos-Reina et al., 2017), which showed a 
 

357 relationship to Pedro Ximenez wine vinegars. Consequently, higher mean values of this 
 

358 factor were obtained for samples belonging to this category. The sweet category is 
 

359 produced by adding raisined Pedro Ximenez grape must or adding Pedro Ximenez wine to 
 

360 the vinegar. Therefore, the concentration of grape-must should be higher in these sweet 
 

361 vinegars than in the Crianza or Reserva ones. For this reason, the presence of this factor 
 

362 in our samples also appeared to be related to the addition of grape-must caramel, it being, 
 

363 therefore, a relevant factor to take into account in this study. 

 

364 As mentioned earlier, it is relevant to consider the phenomena related to the nature of the 
 

365 food that will influence the fluorescence signal. These phenomena are related to the 
 

366 inherent fluorophores’   concentration   and   their   environment.   Therefore,   a   specific 
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367 fluorophore studied in different foods can present different spectral signals (Azcarate et al., 
 

368 2017). In fact, adding grape-must caramel changes the environment of the natural wine 
 

369 vinegar fluorophores and so could have the ability to modify the signal, as can also be 
 

370 observed in the 5-factor PARAFAC model of the hydroacetic matrix with only grape-must 
 

371 caramel in its composition (Fig. 1d). Thus, the PARAFAC model built with the curve of 
 

372 grape-must caramel in a hydroacetic matrix (Fig. 1d), shows similar fluorophores as in the 
 

373 vinegar matrix, but some of them are displaced. In spite of this, the fifth factor (F5 in green, 
 

374 Figure 1.d) matched perfectly in terms of excitation/emission wavelengths with the fifth 
 

375 factor of the PARAFAC models developed with the PDO wine vinegars, which appeared to 
 

376 have a strong relationship with the presence of grape-must caramel. 

 

377 In fact, only the scores of the fifth PARAFAC factor (F5) extracted from the hydroacetic 
 

378 curve showed an increase in the case of added grape-must caramel, appearing to follow a 
 

379 logarithmic kinetic (Supplementary Fig. 3). Hence, the scores of the F5 described a 
 

380 logarithmic kinetics equation as follows: 

 

381 Y= mLn(Y0)+b; 

 

382 where Y is the score value of F5 (a.u.), m is the slope, Y0 is the initial value of F5 score 
 

383 (a.u.), and b the intercept. Thus, the logarithmic kinetic obtained with the fifth PARAFAC 
 

384 factor, which is shown in Supplementary Fig. 3), was Y=42.538Ln(Y0)+148.15. 

 

385 3.3. Exploratory analysis 

 

386 A principal component model was developed with all of the Modified and Unmodified 
 

387 samples for each PDO by using the extracted PARAFAC factors in order to explore the 
 

388 data and to detect grouping and outliers in each PDO. The scores and loadings plots are 
 

389 shown in Fig. 2. In general, a separation of both groups (modified and unmodified) could 
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390 be observed in the two PCA models for both PDOs, which means that the methodology 
 

391 appeared to be able to detect the addition of grape-must caramel. 

 

392 In the case of the Vinagre de Montilla-Moriles PCA model (Fig. 2a), the first component 
 

393 (PC1) is the main factor in the separation, explaining 69.30% of the original variance, 
 

394 showing a good separation of the groups, the modified samples being located on the 
 

395 negative side of PC1 and the unmodified on the positive side. However, it was also 
 

396 observed that three unmodified samples (i.e. commercial samples) were grouped closely 
 

397 to the modified ones, especially two RE samples located next to the samples containing 
 

398 the most added grape-must caramel. These results suggest that these two RE samples 
 

399 could have a higher amount of grape-must caramel in their composition than the other 
 

400 commercial samples, something that could change the raw organoleptic characteristics by 
 

401 binding the effect of some compounds related to ageing; or it could even be a case of 
 

402 unfair practice, these RE samples in fact being CR vinegars with added grape-must 
 

403 caramel in order for them to resemble the colour of an RE. 

 

404 With regard to the Modified samples, those with the lowest amounts of grape-must 
 

405 caramel (lower than 0.1% v/v) were located near to some commercial samples. Thus, a 
 

406 commercial Crianza sample was observed located very close to a Modified wine vinegar in 
 

407 the scores plot, this modified sample being a Crianza Control vinegar containing 0.05% 
 

408 grape-must caramel. These results showed that some commercial samples could have a 
 

409 very low amount of grape-must caramel in their final composition. In terms of the loadings 
 

410 plot, and due to its position on the plot, the fifth factor once again appeared to be the 
 

411 greatest factor regarding the presence of grape-must caramel, followed by F4. 

 

412 With regards to the PCA model of Vinagre de Jerez (Fig. 2b), the separation in this 
 

413 particular case appeared to be more related to PC3. Thus, observing the scores plot of 
 

414 PC1 vs PC3, modified samples were located on the negative side of PC3, although once 
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415 again, a few unmodified samples (some CR and RE commercial samples) were not 
 

416 properly separated from the modified ones in this model. As before, this placement could 
 

417 be explained by a greater amount of grape-must caramel in their composition than the rest 
 

418 of samples, thus affecting the composition by binding some relevant compounds. These 
 

419 wrongly-placed RE commercial samples therefore appeared to have more similarities 
 

420 according to their scores with the RE samples modified with 1-2.5% v/v of grape must 
 

421 caramel, as well as the fact that the aforementioned wrongly-placed CR commercial 
 

422 samples appeared to be more similar to the CR samples modified with 1.5-2% v/v of 
 

423 grape-must caramel. 

 

424 The separation of both groups of samples was again explained by the F5, as could be 
 

425 observed in the loadings plot. However, when observing the loadings plot, F4 and F1 also 
 

426 appeared to play an important role in this separation. This partially agrees with the results 
 

427 mentioned above (Section 3.1) in which F4 was related to Maillard reaction products that 
 

428 could be derived from the grape-must caramel. 

 

429 3.4. Classification analysis of modified (by adding grape-must caramel) and 
 

430 unmodified samples (commercial wine vinegars) 

 

431 Once the ability of the multidimensional fluorescence spectroscopy in distinguishing the 
 

432 presence of grape-must caramel at different levels was demonstrated, the next step was to 
 

433 gain an insight into this differentiation and to determine if the extracted PARAFAC 
 

434 fluorophores allows the classification of samples according to the modification of vinegars 
 

435 with grape-must caramel. To this end, PLSDA classification models were performed using 
 

436 the extracted PARAFAC factors. Moreover, in order to consider the contribution of multiple 
 

437 effects and not only the most relevant information (PARAFAC factors), NPLS-DA 
 

438 classification models were also performed, taking the multiway arrays (EEMs) into 
 

439 consideration. Both classification models were therefore studied and compared in the 
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440 following section. Prior to the classification analysis, the data set was randomly partitioned 
 

441 into two sets, train and test, and all of the datasets were mean-centred before developing 
 

442 the models. 

 

443 3.4.1. PLS-DA classification between modified and unmodified wine 
 

444 vinegars using the extracted PARAFAC factors. 

 

445 Two PLS-DA models were developed according to each PDO including samples from the 
 

446 two groups in the train and test sets. The Vinagre de Jerez PLS-DA model was obtained 
 

447 using 4 latent variables (LVs), which explained 99.75% of total variance, while the PLS-DA 
 

448 model of Vinagre de Montilla-Moriles was obtained using 3 LVs and explained 96.83% of 
 

449 total variance. Table 2 shows the PLS-DA classification results expressed as the 
 

450 percentage of correct classification and the number of samples misclassified for each 
 

451 class. Additionally, the statistical performance parameters of the classification models (i.e. 
 

452 sensitivity, specificity and classification error of calibration (CAL), cross-validation (CV) and 
 

453 prediction (PRED)) are shown in Supplementary Table 1. Correct classification rates of 
 

454 100% were obtained for both Modified and Unmodified groups in the training set for each 
 

455 PDO. In this way it was observed that the models were able to classify the unmodified 
 

456 samples, where both CR and RE commercial samples are grouped, from those modified 
 

457 with the addition of grape-must caramel. To test the models, those commercial samples 
 

458 that were not well-located on the previous exploratory models were purposely included in 
 

459 the prediction sets, together with other unmodified and modified samples in order not to 
 

460 disturb the model’s calibration. The classification results enabled the results observed by 
 

461 the previous PCA models to be confirmed, since the seven misclassified samples were 
 

462 those that behaved differently to the rest of commercial PDO wine vinegars. 

 

463 Moreover, the classification results showed that a 100% correct classification was 
 

464 achieved for all of the modified samples for the prediction set, confirming the good 
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465 predictive ability of the classification models developed and, hence, multidimensional 
 

466 fluorescence spectroscopy’s ability to detect the addition of grape-must caramel to wine 
 

467 vinegars. 

 

468 Furthermore, the possibility of taking both PDOs into account together was tested. Table 2 
 

469 shows that the PLS-DA model obtained with 5 latent variables and 99.64% of total 
 

470 variance explained, again classified the same seven unmodified samples as modified wine 
 

471 vinegars. However, in spite of the fluorescent components appearing to be very similar in 
 

472 both PDOs, when a classification is performed by including both PDOs together, the 
 

473 percentage of correct sample classification was lower than in the separated models. 

 

474 3.4.2. NPLS-DA classification   between   modified   and   unmodified   wine 
 

475 vinegars using the three-dimensional arrays EEM. 

 

476 Once again it should be emphasised that each factor probably does not necessarily 
 

477 correspond to a single fluorescent molecule (Elcoroaristizabal et al., 2016). It is, therefore, 
 

478 possible that different factors need to contribute in order to explain a group of compounds. 
 

479 For this reason, a multiway classification approach was studied. In this case the three- 
 

480 dimensional arrays (EEMs) were used, NPLS-DA was performed and their results were 
 

481 compared to   those   obtained   by   PLS-DA   with   the   PARAFAC   factors.   NPLS-DA 
 

482 classification results are also shown in Table 2. In addition, the statistical performance 
 

483 parameters of the NPLS-DA classification models are shown in Supplementary Table 1. It 
 

484 can be seen that a highly discriminant NPLS-DA model was obtained by using three PLS 
 

485 factors for both Vinagre de Jerez and Vinagre de Montilla-Moriles models. Here, and 
 

486 similar to the previous PLS-DA results, six commercial samples (three of Vinagre de Jerez 
 

487 and three of Vinagre de Montilla-Moriles) were classified as being modified with grape- 
 

488 must caramel. Moreover, the number of   latent variables needed to explain the 
 

489 classification, the percentage of total variance explained and the samples misclassified 
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490 (Table 2), as well as sensitivity and specificity (Supplementary Table 1), were almost the 
 

491 same for the previously-discussed PLS-DA and the NPLS-DA models. As a result, both 
 

492 approaches could be good options to consider. This could demonstrate that the 
 

493 fluorophores extracted by PARAFAC were sufficient to explain the grape-must caramel 
 

494 effect. However, although the multiway classification approach is faster and easier to 
 

495 develop than undertaking PARAFAC and a PLS-DA, it provides less information with 
 

496 respect to the fluorophores involved. 

 

497 With regard to the model considering both PDOs together and obtained by 3 LVs, better 
 

498 classification rates could be observed (higher percentage of correct classification and less 
 

499 latent variables needed) for NPLS-DA than for the model obtained by PLS-DA and 
 

500 PARAFAC factors, although, once again, the same seven commercial samples were 
 

501 misclassified. This could be explained by the fact that in the multiway  discrimination 
 

502 methodology the whole fluorescence matrix is considered. This enables all of the 
 

503 fluorophores related to caramel and to the effect of its environment to be modulated, as 
 

504 well as being able to modulate the interferences. 

 

505 3.5. Correlation between the additions of grape-must caramel and EEMs. 
 

506 3.5.1 Univariate calibration - HPLC analysis 

 

507 After confirming  the changes in vinegar components observed in  the EEMs with the 
 

508 addition of grape-must caramel, and in order to ascertain the specific compound 
 

509 concentrations which increase or change with such an addition, a chromatographic 
 

510 analysis was performed including the modified and unmodified samples, as well as the 
 

511 hydroacetic solution (Fig. 3). In all of these analyses, three compounds were principally 
 

512 observed to increase when grape-must caramel was added with the following elution order 
 

513 (Fig. 3a): 2.3, 2.7 and 4.2 min of retention time. The first two compounds were 
 

514 unidentified, whereas the last was identified by its corresponding standard as 5- 
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515 hydroxymethylfurfural (5-HMF). The 5-HMF and the compound termed as unknown 2, 
 

516 (retention time at 2.7 min), presented in all of the samples, while unknown 1 (retention 
 

517 time at 2.3 min) did not present in the wine vinegar matrices which had no grape-must 
 

518 caramel in their raw composition (Control samples). 

 

519 Some studies in the literature show that grape-must caramel has a high amount of 
 

520 furfural-related compounds, including which 5-HMF (Ortega-Heras & González-Sanjosé, 
 

521 2009). 5-HMF is a furanic compound formed during Maillard reactions or by direct 
 

522 dehydration of sugars under acidic conditions (caramelisation) during thermal treatments 
 

523 applied to foods(Capuano & Fogliano, 2011). Hence, its concentration should be high in 
 

524 grape-must caramel. However, as can be observed in the calibration curves of the areas 
 

525 of the three compounds and in the % of grape-must caramel (Fig. 3b), the compound that 
 

526 presented the highest slope was the one named unknown2, and not, as expected, 5-HMF. 
 

527 This could be explained by the fact that other compounds have been also determined in 
 

528 the grape-must caramel and cooked musts, such as melanoidins, caramels (formed by 
 

529 non-enzymatic browning reactions) and other furfurals (Ortega-Heras & González- 
 

530 Sanjosé, 2009; Palacios, Valcarcel, Caro, & Perez, 2002), that could be related to the 
 

531 unknown peaks detected. However, the structure of melanoidins is poorly defined and is 
 

532 not isolated and characterised, making it difficult to identify them. 

 

533 Regarding the   commercial   wine   vinegars   under   study,   especially   those   samples 
 

534 misclassified as Modified samples which were expected to have a greater amount of 
 

535 grape-must caramel in their composition, the chromatographic results agreed with the 
 

536 fluorescence patterns. Hence, these samples showed higher areas of the two unknown 
 

537 compounds and 5-HMF (i.e. three times more) than the rest of CR and RE commercial 
 

538 wine vinegars. 

 

539 3.5.2 Multiway calibration 
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540 In spite of the promising results shown in the previous section, as grape-must caramel is a 
 

541 mixture of compounds and wine vinegar is another complex matrix of compounds, when a 
 

542 univariate calibration was developed with PARAFAC components extracted from the wine 
 

543 vinegar matrix, and not with the hydroacetic matrix, in this case satisfactory results were 
 

544 not achieved. This could be explained by the fact that in order to make correct predictions 
 

545 with the univariate model, the signal of the test samples can only vary due to the analyte, 
 

546 so the contribution of the other species must be the same as what has been modelled. If 
 

547 the contribution of these other species varies (because their concentration varies) or if 
 

548 there is some new interfering signal, the prediction will be biased. The advantage of a 
 

549 multiway calibration over the calibration line is that it allows selective information to be 
 

550 obtained from   non-selective   instrumental   responses   (that   is,   in   the   presence of 
 

551 interferences), thus enabling the determination of the concentration of various components 
 

552 in complex samples (Olivieri, 2014) to be determined. By using multiway calibration, it has 
 

553 been demonstrated that considerably more complex analytical problems can be solved 
 

554 and predictions are possible – even in the presence of unexpected spectral interferences, 
 

555 i.e., sample constituents not considered in the calibration phase (Arancibia, Damiani, 
 

556 Escandar, Ibañez, & Olivieri, 2012; Bro, 1998; Christensen, Becker, & Frederiksen, 2005; 
 

557 Olivieri, 2014; Olivieri & Escandar, 2014). 

 

558 For this reason, a multiway calibration method such as N-PLS that considers the entire 
 

559 EEM matrix was studied (Fig. 4). The N-PLS calibration model was built using the EEM 
 

560 data from all of the modified and unmodified wine vinegars in an attempt to identify a 
 

561 possible correlation of the matrices with the quantity of added grape-must caramel. This 
 

562 algorithm has the advantage of being a simultaneous model, that is, all of the components 
 

563 are extracted at the same time. Again, two strategies were developed: building a model 
 

564 with both PDOs together, and analysing each PDO separately. The NPLS accuracy for 
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565 each model is shown in Fig. 4. As indicated by the high correlation coefficient (R2>0.921) 

566 and low RMSEC, the results of the three models were good. Moreover, the good 
 

567 regression results obtained by the multiway calibration agree with those obtained by other 
 

568 authors, due to the N-PLS algorithm having been demonstrated to be superior to unfolding 
 

569 methods, primarily owing to a stabilisation of   the decomposition that   has been 
 

570 demonstrated potentially to give better predictions (Bro, 1996). Moreover, another 
 

571 advantage is that the algorithm is fast compared with the PARAFAC approach because it 
 

572 consists of solving eigenvalue problems. 

 

573 For regression model robustness, five of the modified samples prepared for each PDO 
 

574 (with intermediate concentrations of 0.20, 0.40, 0.75, 1.25 and 1.75 % of grape must 
 

575 caramel) were used as validation sets (included randomly in train and test) in order to test 
 

576 the models using known amounts of grape-must caramel. The overall prediction model 
 

577 accuracy obtained by the three NPLS models was very good with respect to the % of 
 

578 grape-must caramel predicted for these 5 samples, demonstrating the efficacy of the 
 

579 NPLS method. The results obtained, expressed as % of grape-must caramel, with the 
 

580 predicted values in brackets, as follows: 0.2(0.29), 0.4(0.47), 0.75(0.93), 1.25(1.39), and 
 

581 1.75(1.85) by the global model (being these values an average of the results for both 

 

582 PDOs); 0.2(0.16), 0.4(0.58), 1.25(1.39), 1.75(1.74) for the Jerez model; and 0.2(0.18), 
 

583 0.4(0.50), 0.75(0.99), 1.25(1.43) for the  Montilla-Moriles model. The  prediction  results 
 

584 obtained for the test set are shown in Supplementary Table 2. Therefore, regarding the 
 

585 comparison between the measured and the predicted values obtained for these 5 
 

586 samples, better results were obtained by the global NPLS model (with samples from both 
 

587 PDOs) than by the individual NPLS model of each PDO. This might be explained by the 
 

588 fact that this first model has a higher amount of samples with the same concentrations 
 

589 than the individual models. 
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590 In terms of the real wine vinegars, the calibration results for the RE commercial samples of 
 

591 both PDOs that had been shown as possibly containing more grape-must caramel or even 
 

592 as being less aged vinegars, again agreed with the exploratory and classification analyses 
 

593 performed in a previous section of this work. Thus, according to the predicted results 
 

594 (Supplementary Table 2), the RE samples misclassified of Vinagre de Jerez PDO 
 

595 presented amounts of grape-must caramel around 2.0%, agreeing with the predicted 
 

596 values of modified samples with the addition of 2.0% of grape-must caramel, whereas the 
 

597 rest of commercial samples had an amount of grape-must caramel lower than 1.5% and 
 

598 even 0.0%. Regarding the RE samples of Vinagre de Montilla-Moriles PDO that were 
 

599 classified as Modified, the predicted amount of grape-must caramel was higher than 1.0%, 

600     while the rest of the commercial samples presented a predicted value of lower than 0.5%. 601   

These values agreed totally with the observed trend of these samples in the previous PCA 602      

models. These samples were also those that showed the highest chromatographic areas 603 for 

the three selected peaks. 

604   Furthermore, in CR commercial samples that also showed a high similarity to the Modified 605     

samples with a lower amount of caramel (<0.05%), the percentages of grape-must 606      

caramel obtained by the regression models were even negative, being in agreement with 607 this 

assumption (Supplementary Table 2). 

608     All of these results confirm the ability of this multiway calibration to determine the amount 609     

of grape-must caramel in PDO wine vinegars and its ability to detect samples with an 610    

excessively high concentration. An excessive addition of grape-must caramel to a vinegar 611 could 

affect its quality due to sensory changes. In fact, ranking and triangle tests, both 612    gustatory 

and olfactory, were undertaken in order to assess the hypothesis of the sensory 613 effect that 

adding grape-must caramel could have and in order to know the specific level of 614 grape-must 

caramel that modified the sensory characteristics. Thus, the results obtained 
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615 by these tests showed that, in general, 0.3% was the minimum level of concentration of 616    

grape-must caramel at which all of the tasters perceived sensory differences in the 617     

samples. However, in Vinagre de Jerez, grape-must caramel at a concentration of 0.05% 618 was 

also perceived by many testers as being different to the raw matrix. These results 619 reaffirm 

the relevance of the present study on the importance of quantifying the grape- 620 must caramel 

added to wine vinegars, due to the fact that changes in the organoleptic 621 characteristics of 

wine vinegars were detected very low concentrations. 

622 4 CONCLUSIONS 

 

623 Multidimensional fluorescence coupled with a suitable chemometric method has shown 624 

itself to be a valuable tool for detecting and, for the first time, quantifying the addition of 625 

grape-must caramel to wine vinegars without sample treatment. Thus, the methodology 626   

proposed provided results that were in agreement with those obtained by the conventional 627 

HPLC analytical method. This, therefore, demonstrated the validity of the procedure for 628 

determining the amount of grape-must caramel in wine vinegars. 

629 This study has also shown that the multiway regression and classification approaches 630   

using NPLS and NPLS-DA, respectively, provide even better results more easily and more 631 

quickly than the common procedure of EEM matrices by developing PARAFAC models 632 

before the classification and regression models. PARAFAC has the advantage of providing 633    

more information about the fluorescent compounds presented in the matrices, yet it 634 

involves a more complex chemometric approach. 

635 The addition of grape-must caramel is a common practice in the vinegar industry. It has 636 

not been studied previously because it was thought that it had no influence on the final 637 

vinegars. However, sensory changes in vinegars caused by adding grape-must caramel 638 were 

also  studied. The results  show that low concentrations produce changes  in the 
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639 organoleptic characteristics   of   PDO   wine   vinegars,   reaffirming   the   relevance   of 
 

640 determining the addition of grape-must caramel. 

 

641     This study opens up a new means of detecting and monitoring the addition of grape-must 642    

caramel to wine vinegar, thus preventing unfair competition between wineries and brands, 643   as 

well as preventing potential adulterations related to the addition of grape-must caramel. 644 

Therefore, now that the important effects that adding grape-must caramel has upon a PDO 645   

vinegar’s final quality have been demonstrated, further studies are needed in order to gain 646      

greater knowledge of the subject with the aim of establishing a limit or creating a 647 

monitoring protocol regarding the addition of grape-must caramel to PDO vinegars. 
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FIGURE CAPTIONS 
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Fig.1. Fluorescence landscapes in the form of contour plots and PARAFAC loadings 

(excitation/emission profiles) of each main fluorophore of different sets of samples: 

Calibration curves made with the Crianza “Control” wine vinegars as matrix from both PDOs 

(a); All the samples from both PDOs (modified and Unmodified) (b); Grape-must caramel 

calibration curve made with the hydroacetic matrix ((c) and (d)). 

Fig.2. Score and loading plots of the principal components obtained by a PCA by using the 

extracted PARAFAC factors with all the Modified (MOD) and Unmodified (UNMOD) 

samples: for “Vinagre de Montilla-Moriles” PDO (a); for “Vinagre de Jerez” PDO (b). 

Fig.3. Chromatograms corresponding to different solutions of grape-must caramel in the 

hydroacetic matrix showing the elution of the selected peaks (a); linear regression curves 

of the three compounds selected (5-HMF and two unknowns) obtained by the different 

percentages of grape-must caramel in hydroacetic matrix (b). HGMC= Hydroacetic matrix 

with the addition of grape-must caramel. 

Fig.4. Figures of merit of the multiway calibration models developed with the grape-must 

calibration curves of both PDO considered together (a) and for each PDO individually ((b) 

and (c)). 

 
 
 

SUPPLEMENTARY MATERIAL 

 
Fig. 1. Schematic representation of the different samples and grape-must caramel curves 

included in the study. 

Fig. 2. Plot of the variance explained (%), core consistency (%), number of iterations 

and time to carried out each model, by extracting from 1 to 6 factors, used in the 

selection of the best number of factors for the Vinagre de Jerez and Vinagre de 
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Montilla-Moriles (modified and unmodified samples) PARAFAC models, and for the 

PARAFAC model made with the grape-must caramel calibration curve in hydroacetic 

matrix. 

Fig. 3. Evolution of the scores of PARAFAC factors extracted from the hydroacetic curve 

with the addition of grape-must caramel. 
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Table 1. Samples included in the study. 
 

 
 

Class 

 
 

Unmodified 

 

Modified 
(curves made by addition of grape-must 
caramel) 

 
 
 
 

TOTAL   

Control 
samples 
(without 
caramel) 

Commercial 
samples 
(possibility of 
having 
caramel) 

Control matrix 
(0.05, 0.10, 0.20, 0.30, 
0.40, 0.50, 0.75, 1.00, 
1.25, 1.50, 1.75, 2.00, 

2.50 % v/v) 

Commercial 
matrix 

(0.05, 0.10, 0.30, 
0.50, 1.00, 1.50, 
2.00, 2.50 % v/v) 

“Vinagre 
de 
Jerez” 

Crianza 
(JCR) 

1 (JCCR) 10 (JCR) 13 8 32 

Reserva 
(JRE) 

1 (JCRE) 13 (JRE) 13 - 27 

“Vinagre 
de 
Montilla- 
Moriles” 

Crianza 
(MCR) 

1 (MCCR) 6 (MCR) 13 8 28 

Reserva 
(MRE) 

1 (MCRE) 5 (MRE) 13 - 19 

6% Hydroacetic 
matrix (HA) 

- - 6 (0.10, 0.25, 0.50, 1.00, 1.50, 2.00%) 6 

Total 38 74 112 
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Table 2. PLS-DA and NPLS-DA classification results using the PARAFAC components 
and the EEMs, respectively. 

 

 

PDO 

 

LVs 
% TOTAL 

EXPLAINED 
VARIANCE 

 

Training 

% Correct 
Classification 

 

SAMPLES MISSCLASIFIED 

P N P N P N P N 

 
 
 

“Vinagre 
de 
Jerez” 

 
 
 
 

4 

 
 
 
 

3 

 
 
 
 

99.7 

 
 
 
 

99.7 

Modified 100 100 0 0 

Unmodified 100 100 0 0 

 
Prediction 

% Correct 
Classification 

SAMPLES MISSCLASIFIED 

P N P N 

Modified 100 100 0 0 

Unmodified 42.86 71.43 4 (2RE,2CR) 3 (2RE,1CR) 

 
 
 
 

“Vinagre 
de 
Montilla- 
Moriles” 

 
 
 
 
 

 
3 

 
 
 
 
 

 
3 

 
 
 
 
 

 
96.8 

 
 
 
 
 

 
96.8 

 
Training 

% Correct 
Classification 

SAMPLES MISSCLASIFIED 

P N P N 

Modified 100 100 0 0 

Unmodified 100 100 0 0 

 
Prediction 

% Correct 
Classification 

SAMPLES MISSCLASIFIED 

P N P N 

Modified 100 100 0 0 

Unmodified 25 40.00 3 (2RE,1CR) 3 (2RE,1CR) 

 
 
 
 
 

Both 
PDOs 

together 

 
 
 
 
 

 
5 

 
 
 
 
 

 
3 

 
 
 
 
 
 

99.6 

 
 
 
 
 
 

99.1 

 
Training 

% Correct 
Classification SAMPLES MISSCLASIFIED 

P N P N 

Modified 90.70 89.47 4 (M<0.75%) 4 (M<0.75%) 

Unmodified 86.36 90.90 
3 

(2JRE,1JCR) 
2 

(1JRE,1JCR) 

 
Prediction 

% Correct 
Classification 

SAMPLES MISSCLASIFIED 

P N P N 

Modified 100 100 0 0 

Unmodified 36.36 58.33 7 (4J, 3M) 5 (3J,2M) 

*Note: P= PLS-DA model; N= NPLS-DA model. LVs= Latent variables. 
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