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ABSTRACT: In classical physics, properties of objects exist independently of the context, i.e., whether and how measurements
are performed. Quantum physics showed this assumption to be wrong, and that Nature is indeed “contextual”. Contextuality has
been observed in the simplest physical systems, such as single particles, and plays fundamental roles in quantum computation
advantage. Here, we demonstrate for the first time quantum contextuality in an integrated photonic chip. The chip implements
different combinations of measurements on a single photon delocalized on four distinct spatial modes, showing violations of a
Clauser−Horne−Shimony−Holt (CHSH)-like noncontextuality inequality. This paves the way to compact and portable devices
for contextuality-based quantum-powered protocols.
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The assumption of noncontextuality, i.e., that measure-
ments reveal properties that exist independently of

whether and how measurements are carried out, lies at the
heart of classical physics. The failure of this assumption in
quantum theory1,2 is dubbed “contextuality” and is a leading
candidate for a notion of nonclassicality with broad scope. In
fact, unlike Bell nonlocality,3 contextuality applies not only to
space-like separated composite systems but even to single
particles. In addition, unlike macrorealism,4 the set of
noncontextual correlations has a precise mathematical
definition.5 The experimental observation of contextuality can
be achieved by testing correlation inequalities,6,7 which hold
true whenever a noncontextual model exists and whose
violation certifies that no noncontextual model is possible. A
well-established approach to test quantum contextuality is
based on sequential measurements operated on a single
quantum system.8−13 This kind of test generally assumes that
measurements are sharp14 (i.e., repeatable and minimally

disturbing15) and that events (an event is a measurement and
its outcome) have the same probability distributions in all
preparation procedures,16 even if it is possible to relax these
idealizations by adopting an extended definition of non-
contextuality.17 This will be the approach followed in this work.
Many single-system quantum-contextuality-based schemes

for cryptography7,18,19 and randomness generation20,21 have
been proposed in recent years, and the mainstream interest in
contextuality has skyrocketed after the proofs22,23 that it
constitutes the essential resource behind the power of certain
quantum computers. Quantum optics is indeed a promising
approach for the realization of actual quantum computing
devices.24 In particular, in the attempt to move toward scalable
implementations of quantum computation and communication,
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a great deal of attention has been devoted to the development
of integrated quantum photonics25−31 in the past decade. In
fact, the need for high-fidelity operations and increasing
circuital complexity,27,28 with a larger number of qubits,
makes the use of integrated platforms an unavoidable choice
in the long term. It is therefore of prime importance to
investigate whether quantum contextuality can be produced in
compact and integrable devices and specifically in quantum
photonic chips.
Here we perform the first on-chip test of quantum

contextuality. We work with a very essential physical system,
in which a single degree of freedom of a single photon, i.e., its
discretized spatial position on four modes, is used to encode
two qubits. Reconfigurable photonic circuits, realized by
femtosecond laser waveguide writing, are employed both to
prepare delocalized photon states across the four modes and to
implement different unitary operations, in order to achieve
different projective measurements with the aid of single-photon
detectors.

■ RESULTS AND DISCUSSION
To get an intuitive grasp on our experiment and on its
implications, we shall first consider the mechanical toy model
shown in Figure 1. This consists in a set of identical balls and a
modified Galton board, composed of different sections, where
the balls can be shuffled across four possible channels (A1, A2,
B1, B2). The first section is a box with one input connected to
four outputs; when we throw a ball in it, it comes out at one of
the four outputs, according to a certain probability distribution,
which is a function of the physical characteristics of the ball and

of the box. We may look at this first box as a device that
prepares the ball in a certain state. A second section of the
apparatus is composed of two sliding parts that can be
configured to perform different operations. Each of the sliding
parts may just let the ball fall in the same channel as it enters
(the Z operations) or introduce a 50% probability for a channel
change (the X operations). M12 acts only on the digit, while
NAB acts only on the letter (M and N being either Z or X).
Overall, there are four possible configurations for this second
section. Balls are eventually collected at the output. We could
consider the sliding sections, together with the collection stage,
as an apparatus that allows performing different measurements
on the prepared state, which yield as outcome two independent
bits, a letter (A, B) and a digit (1, 2). Finally, we can
conventionally assign a number (+1 or −1) to the outcomes of
the two measurements, defined by the position of the two
sliding parts as shown in Figure 1.
In this classical system, the position of the ball, although only

probabilistically predictable, is always defined in every moment
of its evolution. The following Clauser−Horne−Shimony−
Holt (CHSH)-like noncontextuality inequality is therefore
satisfied:11

= ⟨ ⟩ + ⟨ ⟩ + ⟨ ⟩ − ⟨ ⟩ ≤S X X X Z Z X Z Z 212 AB 12 AB 12 AB 12 AB
(1)

where ⟨M12NAB⟩ is the average value of the product of the
measurement outcomes of M12 and NAB on a large number of
events identically prepared. This inequality holds irrespectively
of the specific features of the Z and X transformations, with the
only condition that the operations implemented by the two
moving parts are independent. This is intrinsically achieved
since M12 and NAB act on different bits.
The exact quantum analogue of the above classical mechanics

experiment is performed by using photons instead of balls and
integrated optical circuits instead of the wooden Galton board
(Figure 2). Photons at 785 nm are provided by a heralded
single-photon source, based on type-II spontaneous parametric
down-conversion, which consists of a pulsed pump impinging
on a beta barium borate (BBO) crystal. For each generated pair,
one of the two photons acts as a trigger, while the second one is
injected in a system of two cascaded integrated photonic chips,
and the output is sent to single-photon detectors. Waveguides
are inscribed in a borosilicate glass substrate using the
femtosecond laser writing technology29−31 (more details
about the fabrication of the integrated devices are given in
the Methods section). The first chip serves as the state
preparation section. The second chip, together with the
detectors at the output, allows us to perform several different
measurements on the state. While in our mechanical example
the four different possible measurements could be implemented
by adjusting two moving parts (each with two allowed
positions), here, for simplicity, we have fabricated four different
photonic circuits, one next to the other, each implementing a
different configuration. Relative translation of the second chip
with respect to the first one allows selecting the desired
measurement.
Quantum theory provides a clear description of our photonic

experiment in terms of qubits and observables. In particular, the
first chip prepares single photons in a superposition state of
four spatial modes, which encodes two qubits. The first qubit
identifies which half of the chip is occupied (|0⟩ = left and |1⟩ =
right, as the letter in the classical example), and the second
gives the parity of the occupied mode (|0⟩ = odd and |1⟩ =

Figure 1. A mechanical example: identical balls enter a modified
Galton board, composed of several sections. The first section
distributes the balls in the four channels according to a certain
probability distribution. That is, it prepares the balls in a certain state.
The second section is reconfigurable and implements two trans-
formations: M12 chosen between Z12 and X12, and NAB chosen between
ZAB and XAB, depending on how the sliding parts are placed. Each of
these transformations, together with the detection at the bottom,
constitutes a measurement on the distribution prepared at the first
stage, whose outcome is given by the final position of the ball as
indicated in the figure. Note that the measurements corresponding to
M12 and NAB are always independent in the sense that the probabilities
P(NAB = −1) and P(NAB = +1) are independent of M12, and the
probabilities P(M12 = −1) and P(M12 = +1) are independent of NAB.
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even, as the digit in the classical example). The four states
(|00⟩, |01⟩, |10⟩, and |11⟩) correspond to the states with the
photon in a well-defined spatial mode. The preparation chip
includes three cascaded directional couplers properly designed
to produce photons in the state:

ψ| ⟩ = | ⟩ + + | ⟩ + | ⟩ − | ⟩
+

φ φ00 e (1 2 )( 01 e 10 ) 11

2 2 2

i i

(2)

where the term φ can be varied by a thermo-optic phase shifter,
marked as R1 in Figure 2b. The above photon state is defined
in the circuit at the red dashed line reported in the same figure.
Three further thermo-optic shifters (R2, R3, and R4) enable a
fine-tuning of the optical path-lengths in the different output

branches to compensate for slight geometrical misalignments
when the two chips are coupled together.
The second chip, together with the fiber-coupled single-

photon detectors, allows us to perform the different measure-
ments required to evaluate the CHSH-like inequality 1. The Z
and X operations are implemented respectively with straight
waveguides, which let the photons proceed straight on the same
modes, and balanced directional couplers, which enable mode-
hopping of the photon between two modes with 50%
probability. In quantum theory, such transformations are
equivalent to basis rotation on the eigenbasis of the Pauli
operators σz and σx. The Z operation leaves a qubit unchanged,
so that measuring an output photon in the left or in the right
mode corresponds to measuring the states |0⟩ and |1⟩. The X

Figure 2. Experimental setup for the contextuality measurements. (a) The heralded single-photon source is based on second-harmonic generation by
a pulsed laser beam on a first nonlinear crystal (SHG), followed by spontaneous parametric down-conversion on a BBO crystal. The generated
photon pair is coupled to single mode fibers (SMF). The trigger photon is sent directly to a detector (T), while the signal photon is first passed
through a polarizing beam splitter (PBS) and then coupled into a polarization maintaining fiber (PMF), which injects it into the integrated photonic
circuits (IC). The four outputs are coupled to single-photon detectors (D1−D4) by an array of multimode fibers (MMF). Coincidence detection of
the two photons is performed by an electronic board. (b) Detailed schematic of the two cascaded photonic chips: the first one serves as state
preparation, while the second one implements different measurements on the single-photon state. Thermo-optic phase shifters (c) are deposited on
the first chip to sweep through several different states (R1) and to calibrate the phase terms at the interface (R2, R3, and R4). The photonic circuits
of the second chip exploit the three-dimensional capability of femtosecond laser waveguide writing (d), allowing the crossing of two waveguides
without intersecting each other.

Figure 3. Observed values of the quantity S, left term of inequality 1, as a function of the input state phase φ (in radians). Blue points are
experimental values. The dashed line corresponds to theoretical prediction of quantum mechanics in the case of ideal devices for state preparation
and measurements, while the continuous line shows the theoretical prediction taking into account the effective transmissivities of the beam splitters
in the implemented devices, as inferred from the characterization performed with classical light. The noncontexuality bound S = 2 is marked with the
horizontal red line.
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operation, which consists in the Hadamard gate, switches from
the σZ basis to the σX one and vice versa, allowing one to
measure in the {|−⟩, |+⟩} basis by detecting photons in the left
or right mode. By combining σX and σZ operators we can build
the four observables X12XAB = σX ⊗ σX, X12ZAB = σX ⊗ σZ,
Z12XAB = σZ ⊗ σX, and Z12ZAB = σZ ⊗ σZ, where σj ⊗ σi means
σi and σj acting on the first and the second qubit, respectively.
The generic term ⟨M12NAB⟩ in the inequality 1 (M and N being
either X or Z) is given by P1

MN − P2
MN − P3

MN + P4
MN, where Pi

MN

is the probability of finding a photon in mode i after operating
the transformation M on the first qubit and N on the second. It
should be noted that the quantum operations performed by the
second chip can be fully characterized using coherent light.
The actual experiment is performed by collecting coinci-

dence counts between the trigger detector and one of the
output detectors for several values of dissipated power in the
resistance R1 (i.e., for different phases φ of the input state (eq
2)) and for each of the four possible measurement
configurations. The experimental results are shown in Figure
3 (full circles): each point corresponds to a different
contextuality experiment performed with a different input
state. The dashed line in the graph represents the expectation
value of S according to quantum mechanics, in an experiment
performed with ideal devices. Consistently with the predictions
of quantum theory, a violation of the noncontextuality classical
bound S ≤ 2 is evident for the points around φ = 0 or φ = 2π. It
can be noted that the experimental points do not reach the
maximum value of S predicted by the theory. This feature can
be explained by the fabrication imperfections of our integrated
photonic components. A more realistic quantum mechanical
model that relies on measured beam splitter transmissivities
better fits the experimental points (continuous line in Figure
3). Residual disagreement between the experimental points and
the adapted model can be attributed to other sources of
imperfections, such as suboptimal phase tuning and alignment
between the two chips, which are difficult to estimate precisely.
Experimental imperfections in implementing the measure-

ments, however, not only modify the expected quantum
mechanical behavior but also extend the range of S values that
can be explained classically, thus raising the bound for quantum
contextuality. In particular, in our experiment the use of
different circuits to measure the same physical quantity in the
different terms of eq 1 may introduce nonideality in the
measurements (see Methods). A recent work by Kujala et al.17

proposes a modified inequality:

ε≤ +S 2 (3)

where ε ≥ 0 includes the effect of such nonideality in a worst-
case scenario. The approach of ref 17 is powerful because ε can
be evaluated directly from the same experimental data set used
to calculate S (see the Methods section for details). Thus, for
each experimental point it is possible to calculate a specific
bound, which, importantly, does not rely on supplementary
characterizations of the experimental apparatus or other
assumptions that may introduce further errors.
Figure 4 compares the measured values of S for the input

states with 0 ≤ φ < 0.6 (i.e., the ones close to the point of
maximal predicted violation) with the modified classical
bounds, indicated by the height of the blue columns. One
can observe how this correction can be quite relevant and
different for each point. Each point corresponds indeed to a
different and completely independent quantum contextuality
experiment, where small imperfections in the alignment

between the two chips and in tuning the phases at the interface
are found to influence critically the corrected bound. For
certain points (e.g., φ = 0.198 or φ = 0.353), even if S is
significantly larger than 2, and the results are consistent with
the quantum theory (see Figure 3), we cannot overcome this
corrected bound and thus rule out completely a classical
explanation. However, for the experiment performed with φ =
0.022, the measured value S = 2.69 ± 0.012 violates plainly the
corrected bound with a 99.5% confidence (calculated as in ref
17). The probability that all six experimental points shown in
Figure 4 are below the bounds, i.e., the probability that no
violation of classicality has been observed in any of those
experiments, is lower than 5 × 10−6 (excluding the point at φ =
0.022, the probability that no violation has been observed in the
other five points shown in Figure 4 is still below 0.02).
Therefore, even taking into account the experimental
imperfections, the results cannot be explained by a classical
noncontextual model.
It is interesting to compare the behavior of the mechanical

setup of Figure 1 to the results of our experiment in integrated
quantum photonics. In fact, in the first case the physical state of
the ball is described not only by its position but also by many
other quantities (its shape, its speed, its orientation, etc.), which
are a sort of hidden variables. Randomness there is due to
ignorance of these hidden variables. Within a classical
description, a perfect knowledge of all the parameters would
instead allow predicting exactly the output channel for each ball
we throw in, whatever measurement is performed. On the
contrary, in our photonic experiment, according to quantum
theory, the only available degree of freedom for the photons in
each point of their propagation inside the chips is their
position, namely, which optical mode they populate. However,
even if we knew precisely this information at the initial
condition, i.e., in which mode the photon is injected, quantum
theory would not predict exactly at which output mode the
photon will exit. In fact, the occupation of any mode by the
photon will remain undetermined up to the point at which it is
measured. This substantial difference from the classical
description is the main reason for the experimental violation
of the inequality 1 by a quantum system, thus forbidding the

Figure 4. Experimentally measured values for S (red circles) for the
input states close to φ = 0, compared to the corrected non-
contextuality bound (blue columns) as given by eq 3. The red
columns, where present, highlight the amount of contextuality that
cannot be explained classically. 1σ error bars are also shown, derived
assuming Poissionian statistics in the collected photon coincidences.
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existence of noncontextual hidden variables that would
determine a specific trajectory for each photon in the device.
In conclusion, we have shown the first contextuality test on

an integrated photonic chip, demonstrating the reliability and
versatility of current photonic integration techniques for testing
quantum properties and for producing compact and portable
devices capable of exploiting and certifying the enhanced
capabilities of quantum technologies. In perspective, this
technology could be used to implement sources of correlations
with computational power32 integrable within conventional
hardware.
We highlight that the intrinsic stability of integrated

waveguide circuits has allowed us to design and perform an
experiment involving only the spatial degree of freedom of a
single photon and in particular based only on interference
between different paths. Our experimental setup thus makes it
easy to visualize that contextuality is a fundamental property of
quantum systems and a direct consequence of wave function
interference.

■ METHODS

Derivation of the Inequality. The CHSH-like inequality 1
holds true on three fundamental assumptions:

• Realism: The outcomes of a measurement are determined
before the actual measurement.

• Noncontextuality: The outcome of a measurement does
not depend on which others compatible measurment(s)
are simultaneously performed.

• Compatibility: The four couples of observables

X X X Z

Z X Z Z

( , )( , )

( , )( , )

12 AB 12 AB

12 AB 12 AB

are compatible.

The notion of compatibility outside of the framework of
quantum mechanics needs clarification. Here we call two
measurements compatible when they can be measured
simultaneously without any disturbance.
If the above assumptions are satisfied, knowing that the

measurement outcomes of the observables can only take the
values ±1, it is easy to see that the left-hand side of eq 1 can
never exceed 2. Therefore, if a violation of the inequality is
experimentally observed, it follows that one of the above
assumptions is not satisfied. In particular our experiment aims
at disproving the combination of the first two, called
noncontextual realism, by ensuring that the third holds true.
This means that the measurement ofM12 (or NAB) made jointly
with ZAB (or Z12) should yield the same result as the one made
with XAB (or X12), for every input state.
Nonideality. The right-hand side of the CHSH-like

inequality 1 is derived under the assumption that each
measurement has identical probability distributions in the two
contexts. However, this does not hold in any real experiment,
either because of a contextually biased measurement design, as
is the case of our experiment, or because experimental
imperfections give rise to apparent signaling.
As explained in ref 17, it is possible to derive a different

bound for the inequality, whose violation certifies contextuality
even when these nonidealities are taken into account. Namely,
the new bound for eq 1 becomes

∑
ε

ε

≤ +

= |⟨ ⟩ − ⟨ ⟩|

S

M M

2

M

X Z

where we have introduced the notation MN to distinguish the
measurement M performed simultaneously with N, and the
sum is extended to the four measurements X12, XAB, Z12, and
ZAB. Note that the values of different ⟨MN⟩ can be retrieved
from the same set of experimental data used to evaluate eq 1.

Waveguide Fabrication. Waveguides were fabricated by
direct femtosecond laser writing using a Yb:KYW cavity-
dumped mode-locked oscillator (λ = 1030 nm). Ultrafast pulses
(300 fs pulse duration, 1 MHz repetition rate) were focused
using a 0.6 NA, 50× microscope objective into the transparent
volume of an alumino-borosilicate glass (Corning, EAGLE
2000), producing a local and permanent refractive index
increase. Translation of the sample with a constant tangential
velocity of 40 mm s−1 (Aerotech FiberGLIDE 3D air-bearing
stages) allows drawing the desired waveguiding paths. In the
state preparation chip, waveguides were inscribed at 25 μm
depth, with 220 nJ pulse energy. In the measurement chip,
waveguides were inscribed at 70 μm depth and 230 nJ pulse
energy. The size of the two chips is respectively 49 mm × 24
mm and 65 mm × 27 mm. The thermo-optic phase shifters are
fabricated by depositing a thin gold layer on the top surface of
the chip and by patterning the resistors by laser ablation, with
the same femtosecond laser source used for the waveguide
fabrication (according to the method described in ref 31). This
kind of device is able to control phase shifts without drifts and
within 0.01 rad standard deviation, on a time-scale of several
hours.31
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