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Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum
computation and communication. Serious steps have therefore been taken towards a formal framework for
contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete,
explicit form of free operations of contextuality—was still missing. Here we provide such a component by
introducing noncontextual wirings: a class of contextuality-free operations with a clear operational
interpretation and a friendly parametrization. We characterize them completely for general black-box
measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative
entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as
contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic
framework for contextuality and Bell nonlocality.
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Introduction.—Quantum contextuality refers to the
impossibility of explaining the statistical predictions of
quantum theory in terms of models where the measurement
outcomes reveal preexistent system properties that are
independent of the context, i.e., on which other compatible
measurements are jointly performed [1,2]. Contextuality
can be seen as a generalization of Bell nonlocality [3] to the
case where the spacelike separation restriction is removed,
so that single systems are included. It thus represents an
exotic, intrinsically quantum phenomenon with both fun-
damental and practical implications. Contextuality has
received lots of attention over the last decade. On one
hand, it has been experimentally studied in a variety of
physical setups [4–8]. On the other one, it is known to be a
resource in magic-state [9–12] and measurement-based
[13] quantum computing, for random number certification
[14], and for several other information-processing tasks in
the Bell scenario of spacelike separated measurements [15].
This has motivated considerable interest in resource

theories of both contextuality [16–18] and Bell nonlocality
[19–21]. Resource theories give powerful frameworks for
the formal treatment of a physical property as an opera-
tional resource, adequate for its characterization, quantifi-
cation, and manipulation [22,23]. Their central component
is a special class of transformations, called the free
operations, that fulfill the essential requirement of mapping

every free (i.e., resourceless) object of the theory into a free
object. Whereas resource-theoretic approaches for quantum
nonlocality are highly developed [19–21,24–28], the opera-
tional framework of contextuality as a resource is still less
developed. In Refs. [16,17], an abstract characterization of
the axiomatic structure of a resource theory of contextuality
was done. However, a concrete specification of the free
operations of contextuality was not given. Without an
explicit parametrization of a physically motivated class
of free operations, a resource theory significantly loses
applicability. For instance, in Refs. [16,17], an interesting
measure of contextuality, called the relative entropy of
contextuality, was proposed, but only partial monotonicity
under a rather restricted subset of contextuality free
operations was shown. Monotonicity (nonincrease under
the corresponding free operations) is the fundamental
requirement for a function to be a valid quantifier of a
resource.
Here, we fill this gap by introducing the class of

noncontextual wirings. These are the natural noncontex-
tuality preserving physical operations at hand in the device-
independent scenario of black-box measurement devices,
where one does not assume any a priori knowledge of the
state or the observables in question. We derive a friendly
analytical expression for generic noncontextual wirings
applicable to all nondisturbing boxes, so that both quantum
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and postquantum boxes are covered. In addition, the
framework is versatile in that it allows for transformations
between systems with different numbers of inputs and
outputs as well as different compatibility constraints.
Furthermore, we show that, for the case of Bell tests,
the wirings reduce to the canonical free operations of Bell
nonlocality [19–21]. Hence, the framework constitutes a
unified resource theory for both contextuality and Bell
nonlocality in their most general forms. As applications,
first we show that an important quantifier called relative
entropy of contextuality is monotonic under all noncon-
textual wirings, a problem left open in Refs. [16,17]. Then,
for the broad class of so-called cycle boxes, we show that
contextality bits exists in the strongest possible sense:
single boxes from which the entire nondisturbing set can be
freely obtained with noncontextual wirings.
Nondisturbing boxes.—We consider a measurement

device with N buttons (inputs) and M lights (outputs),
with N, M ∈ N. Not all buttons are compatible, i.e., can be
pressed jointly. Each subset of compatible buttons defines a
context [29–31]. Let X ¼ f1; 2;…; Ng represent the set of
buttons. The contexts can be encoded in an input compat-
ibility hypergraph IX ≔ fχj ⊆ Xgj¼1;…;jIX j, where each
hyperedge χj contains the buttons that can be jointly
pressed in context j, with jIX j the number of contexts
[30,31]. We say that j is a maximal context if, for all
1 ≤ j0 ≤ jIX j, χj ⊆ χj0 implies χj0 ¼ χj.
Similarly, not all lights can turn on jointly. Let A ¼

f1; 2;…;Mg be the set of lights. Then, each kth button has
a setAðkÞ ⊆ A of lights associated, one—and only one—of
which turns on upon pressing that button. The number of
lights on is thus always equal to the number of buttons
pressed. Hence, for the lights it is more convenient to work
with mutual exclusivity constraints. These can be encoded
in an output exclusivity hypergraph OA ≔ fAðkÞgk¼1;…;N ,
where AðkÞ encodes the exclusivity hyperedge of button
k ∈ X . We denote by AðχÞ ≔ ⋃k∈χA

ðkÞ the subset of lights
associated with all the buttons in χ ∈ IX . In turn, note that
different buttons may share associated lights. We refer to
X ðlÞ ≔ fk ∈ X∶l ∈ AðkÞg as the subset of buttons associ-
ated with light l ∈ A. We restrict throughout to the case
where only incompatible buttons can have common asso-
ciated lights. That is, for every l ∈ A, fk; k0g ⊆ X ðlÞ is
allowed only if fk; k0g ∩ χ ⊂ fk; k0g for all χ ∈ IX .
For any input hypergraph IX and output hypergraphOA,

we consider conditional probability distributions

PAjX ≔ fpAjXða; χÞga∈f0;1gM;χ∈IX
: ð1Þ

TheM-bit string a ≔ ða1; � � � aMÞ ∈ f0; 1gM represents the
state of all M lights: al ¼ 0 stands for “lth light off” and
al ¼ 1 for “lth light on”. Hence, pAjXða; χÞ is the prob-
ability of the lights being in state a upon pressing the
buttons in the subset χ, which is nonzero only if a assigns

the state “on” to one, and only one, of the lights associated
with each button in χ. That is, for each χ ∈ Iχ ,
pAjX ða; χÞ ≠ 0 only if kaðkÞkh ¼ 1, with aðkÞ ≔ ðalÞl∈AðkÞ

the substring of a of lights associated with button k and
kaðkÞkh the Hamming norm of (number of ones in) aðkÞ, for
all k ∈ χ. We refer to any such PAjX as a box behavior
relative to IX and OA. A specially relevant class is that of
nondisturbing behaviors: PAjX is nondisturbing if, for all χ,
χ0 ∈ IX with χ0 ⊂ χ,

X
al∶l∉Aðχ0Þ

pAjX ða; χÞ ¼ pAðχ0ÞjX 0 ðaðχ0Þ; χ0Þ; ð2Þ

with aðχ0Þ ≔ ðalÞl∈Aðχ0Þ the substring of a of lights associated
with the buttons in χ0 (instead of the entire context χ). The
nondisturbance condition demands that whenever two
contexts have buttons in common the marginal distribution
over the common buttons is independent of the context. It is
thus the analogue of the no-signaling condition in Bell
scenarios [15].
With this, we can at last provide a precise formal

definition of the general mathematical objects of the
resource theory. Namely, we call every set of input and
output hypergraphs IX andOA, respectively, together with
a nondisturbing behavior PAjX relative to them, a box,

B ≔ fIX ;OA;PAjXg: ð3Þ

We call the set of all such nondisturbing boxes ND.
In turn, the free objects of the theory, i.e., the resource-

less ones, are given by the class NC ⊂ ND of noncontex-
tual (NC) boxes, defined by NC box behaviors. A behavior
PAjX is NC if it admits a NC hidden-variable model, i.e., if,
for all χ ∈ IX and a ∈ f0; 1gM we have

pAjX ða; χÞ ¼
X
λ

pΛðλÞ
Y
l∈A

DlðaljχðlÞ; λÞ; ð4Þ

where Λ is the hidden variable, taking the value λ with
probability pΛðλÞ, χðlÞ ≔ χ ∩ X ðlÞ is the single-element
subset [32] of χ associated with light l, and
DlðaljχðlÞ; λÞ ≔ δ(al; flðχðlÞ; λÞ), where δ(al; flðχðlÞ; λÞ),
with δ the Kronecker delta, is the λth NC deterministic
response function for the lth light given the input χðlÞ. The
function fl encodes the deterministic assignment of χðlÞ
into al for the λth global deterministic strategy incorpo-
rating the constraints ofOA. That is, it is such that, for all λ,
flð∅; λÞ ¼ 0 (lth light is off if no associated button is
pressed, i.e., if χðlÞ ¼ ∅) and flðχðlÞ; λÞ × fl0 ðχðl0Þ; λÞ ¼ 0,
whenever fl; l0g ⊆ AðkÞ for any k ∈ X (no mutually exclu-
sive lights simultaneously on). Note that, since fl depends
only on χðlÞ (instead of the entire context χ), Dl can only
generate NC behaviors in Eq. (4). In fact, we show in
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Sec. IV of the Supplemental Material [33] that, when the
contexts are defined by spacelike separated buttons,
expression (4) reduces to the usual local hidden-variable
models of Bell nonlocality [15]. Any box outside NC is
called contextual. It is a well-known fact that measurements
on quantum states can yield contextual boxes.
Contextuality-free operations.—We consider composi-

tions of the initial box B with a preprocessing box

BPRE ≔ fIY ;OB;PBjYg ∈ NC; ð5Þ

and a ðb;ψÞ-dependent postprocessing box

BPOSTðb;ψÞ ≔ fIZ;OC;PCjZ;ψ ;bg ∈ NC; ð6Þ

for all b ∈ f0; 1gjBj and ψ ∈ IY , as shown in Fig. 1. Y and
B are, respectively, the sets of buttons and lights of BPRE,
and Z and C those of BPOSTðb;ψÞ. For the composition to
be possible, we demand that the set of allowed outputs of
BPRE is a subset of the allowed inputs of B, and the same for
B with BPOST. To this end, we need to introduce the output
compatibility hypergraph ŌA associated to OA, given by
all subsets α ⊂ A of output lights with at most one light per
exclusivity hyperedge inOA: ŌA ≔ fα⊂A∶jα ∩AðkÞj≤ 1;
k¼ 1;…;Ng, and similarly for ŌB. That is, ŌA and ŌB
give the compatible combinations of lights on, those not
violating any of the constraints inOA andOB, respectively.
Then, we demand that ŌB ⊆ IX and ŌA ⊆ IZ .
Moreover, we allow PCjZ;b;ψ to have only a restricted

dependence on ðb;ψÞ, in such a way that each output light
of the postprocessing box is causally influenced only by the
inputs and outputs of the preprocessing box that are

associated with it. That is, we demand that, for all
b ∈ f0; 1gjBj, c ∈ f0; 1gjCj, ψ ∈ IY , and ζ ∈ IZ ,

pCjZ;b;ψðc;ζÞ¼
X
ϕ

pΦðϕÞ
Y
n∈C

DnðcnjζðnÞ;χðbÞ½n� ;ψ ½n�;ϕÞ; ð7Þ

with DnðcnjζðnÞ; χðbÞ½n� ;ψ ½n�;ϕÞ defined analogously to

DlðaljχðlÞ; λÞ in Eq. (4). Similarly to χðlÞ there, ζðnÞ is
the single-element subset of ζ associated with light n ∈ C.

In turn, we now introduce the short-hand notations χðbÞ½n� and

ψ ½n� ≔ ψ ðχðbÞ½n� Þ
[34]. The subset χðbÞ½n� is composed of the

single button in χðζðnÞÞ directly wired to some light on in b,
whereas ψ ½n� is the single-button subset of ψ associated to

the light directly wired to the button of χðbÞ½n� . These subsets
are all well defined through the hypergraphs IX and OA,
independently of the specific behavior PAjX in question, as
shown in Sec. I of the Supplemental Material [33]. This is
crucial for the composition not to create contextuality.
With this, we are now in a good position to introduce the

free operations of contextuality.
Definition 1: Noncontextual wirings.—We define the

noncontextual wiring with respect to the pre- and post-
processing boxes described above, as the linear map WNC
that takes any initial box B ∈ ND, given by Eq. (3), into
a final box Bf ≔ WNCðBÞ with Nf ≔ jYj buttons and
Mf ≔ jCj lights, with

WNCðBÞ ≔ fIY ;OC;PCjYg; ð8Þ

where PCjY is the final behavior, given by

pCjYðc;ψÞ
¼

X
a∈f0;1gjAj
b∈f0;1gjBj

pCjZ;b;ψðc; ζðaÞÞpAjX ða; χðbÞÞpBjYðb;ψÞ; ð9Þ

for all c ∈ f0; 1gjCj and ψ ∈ IY . We denote the class of all
such wirings by NCW.
Self-consistency of the theory requires that NCW sat-

isfies the following property, proven in Sec. II of the
Supplemental Material [33].
Lemma 1: Nondisturbance preservation.—The class of

boxes ND is closed under all wirings in NCW.
In addition, to give valid free operations, NCW must

fulfill the following requirement, proven in Sec. III of the
Supplemental Material [33].
Theorem 1: Noncontextuality preservation.—The class

of boxes NC is closed under all wirings in NCW.
Intuitively, this is connected to the fact that the compo-

sition of any three independent noncontextual boxes yields
a final box that is also noncontextual (with three indepen-
dent noncontextual hidden variables). NCW is, however,

FIG. 1. A noncontextual wiring WNC with respect to pre- and
postprocessing boxes BPRE and BPOST, respectively, mapping an
initial box B into a final box WNCðBÞ. The buttons and lights of
WNCðBÞ are given by the buttons of BPRE and the lights of BPOST,
respectively. Only the lights (buttons) of B of the same color can
be on (pressed) at the same time. The behavior of BPOST is
causally influenced by BPRE, but in a restricted way such that the
statistics of each output light of BPOST depends only on the
buttons and lights of BPRE that are associated with it (see text). As
a result, if B is noncontextual so is WNCðBÞ.
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more powerful than such compositions because the pre- and
postprocessing boxes here are not independent. Still, the
restriction of Eq. (7) enables noncontextuality preservation
(see Sec. III of the Supplemental Material). Finally, in
Sec. IV of the Supplemental Material [33], we show that,
for spacelike separated measurements, NCW reduces
to local operations assisted by shared randomness, the
canonical free operations of Bell nonlocality [19–21].
Contextuality monotones.—In Ref. [16], a measure of

contextuality called the relative entropy of contextuality,
RC, was introduced. For an arbitrary box B ∈ ND,

RCðBÞ ≔ min
B�∈NC

SðBkB�Þ: ð10Þ

SðBkB�Þ is the relative entropy of B with respect to B� (see
Sec. IVof the Supplemental Material [33]), which measures
the distinguishability of B from B� in a broad class of
scenarios [21]. Hence, RCðBÞ quantifies the distinguish-
ability of B from its closest (with respect to S) non-
contextual box B�, providing a direct generalization to
contextuality of the statistical strength of Bell nonlocality
proofs [35].
The essential requirement for a function to be a valid

measure of a resource is that it is monotonic (i.e., non-
increasing) under the corresponding free operations. In
Ref. [16], the authors show, for quantum boxes, monoto-
nicity of RC under probabilistic mixtures of independent
channels on each quantum observable (each context). This
corresponds to a restricted subset of NCW [36]. Here, we
show monotonicity of RC under the whole class NCW and
for all boxes B ∈ ND.
Lemma 2: Monotonicity of RC.—Let B ∈ ND. Then,

RC½WNCðBÞ� ≤ RCðBÞ for all WNC ∈ NCW.
The proof (given in Sec. Vof the Supplemental Material

[33]) relies explicitly on the parametrization of NCW
in Eq. (9).
Interestingly, also, another measure of contextuality, the

contextual fraction CðBÞ [29,37], was recently shown to be
monotonic under some specific classes of contextuality-
free operations [18]. A straightforward calculation (see
Sec. VI of the Supplemental Material [33]) shows thatCðBÞ
is also monotonic under the NCW class.
Lemma 3: Monotonicity of C.—Let B ∈ ND. Then,

C½WNCðBÞ� ≤ CðBÞ for all WNC ∈ NCW.
Contextuality bits.—The operational framework devel-

oped allows us to study contextuality interconversions. A
natural question is whether there exists a box from which
all boxes, for fixed input and output hypergraphs, can be
obtained for free (i.e., through noncontextual wirings). This
is intimately connected to quantification: such a superior
box can be taken as a unit of contextuality, or contextuality
bit, yielding a natural and unambiguous (measure-inde-
pendent) definition of maximally contextual boxes.
Here we answer that question affirmatively for a broad
class given by the so-called N-cycle boxes (see Fig. 2). A
N-cycle box has as many maximal contexts as buttons (N),

each kth maximal context consists of two buttons (k and
kþ 1), each kth button belongs to two maximal contexts
(χk and χk−1) and has two associated output lights, the
(2k − 1)th and the ð2kÞth lights, so that M ¼ 2N. Modulo
N is implicitly assumed for the labels of buttons, contexts,
and lights. These boxes admit 2N−1 contextuality bits:
Lemma 4: Existence of contextuality bits.—For any

N ≥ 3, all N-cycle boxes in ND can be freely obtained

from an N-cycle box with behavior PðγÞ
AjX of components

pðγÞ
AjX ða; χÞ

≔
� 1

2
; if χ ¼ fk; kþ 1g and a2k−s ¼ a2ðkþ1Þ−sþγk ;

0; otherwise;

ð11Þ
for all s ∈ f0; 1g and k ∈ X , with γ ≔ ðγ1;…; γNÞ, such
that γk ¼ 0 or 1 and kγkh is an odd integer.
Equation (11) describes any of the 2N−1 contextual

N-cycle behaviors extremal in ND, derived (in a different
notation) and shown to be equivalent under noncontextual
relabelings of outputs in Ref. [41]. The proof of the lemma,
given in Sec. VII of the Supplemental Material [33],
consists then of showing that any convex mixing of such
relabelings is in NCW. For the particular case N ¼ 4 (the
CHSH scenario), the behaviors in Eq. (11) become equiv-
alent to the no-signaling extremal box of [42], known to
generate all no-signaling boxes under local wirings assisted
by shared randomness [19–21]. Lemma 5 thus generalizes
this fact to arbitrary N ≥ 3 and noncontextual wirings.
Finally, it is important to mention that, for even N, the
buttons can be split into two disjoint subsets of N=2
incompatible buttons each, and the lights can be reduced
from 2N to only 4 (one mutually exclusive pair per subset
of buttons), as in the chained inequalities [38]. This is an
alternative representation of the same physical box. Our
formalism is totally versatile in this sense, as it can directly
deal with any chosen representation of a box.
Final discussion.—Recent investigations suggest that

contextuality may be a key resource for quantum

FIG. 2. N-cycle graphs CN for N ¼ 3, 4, 5, and 6 buttons. A N-
cycle box is such that the union of all hyperedges in IX equals
CN and each input button has its own pair of output lights. For
even N, the class is also intimately connected to the well-known
chained inequalities of Bell nonlocality [38]. It includes the
Clauser-Horne-Shimony-Holt (CHSH) scenario [39], where the
inputs define the square C4, and the Klyachko-Can-Binicioǧlu-
Shumovsky one [40], where the inputs form the pentagon C5. For
any N ≥ 3, there exist contextuality bits, i.e., maximally con-
textual N-cycle boxes from which all other N-cycle boxes can be
obtained for free (see text).
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advantages in various information-processing tasks [9–14].
Here we take a step forward towards contextuality as an
operational resource by introducing and characterizing
noncontextual wirings. In contrast to more abstract
approaches [16,17], noncontextual wirings have a clear
operational interpretation and admit a friendly analytical
parametrization. This is useful to classify, quantify, and
manipulate contextuality as a formal resource. For instance,
the question of monotonicity of contextuality was until
recently unclear. While in Refs. [16–18] monotonocity of
the relative entropy of contextually and of the contextual
fraction is proven under some specific operations, here we
have settled the problem of monotonicity under all non-
contextual wirings for both contextually measures.
Furthermore, we have also shown that maximally con-
textual single boxes that serve as contextuality bits exist for
all cycle boxes, which encompass important Bell scenarios
[39,40] and play a crucial role in contextuality theory
[43–48]. This result can also be extended to boxes with
more outputs [24]. Interesting questions are, e.g., what the
simplest box admitting inequivalent (not freely intercon-
vertible) classes of contextuality is and what the simplest
one allowing for contextuality distillation. Finally, we have
shown that, for Bell scenarios, noncontextual wirings
reduce to the usual free operations of Bell nonlocality
[19–21], which is interesting in itself. Hence, our findings
yield a main missing ingredient for a complete, unified
resource theory of contextuality and Bell nonlocality.
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[27] B. Lang, T. Vértesi, and M. Navascués, Closed sets of
correlations: Answers from the zoo, J. Phys. A 47, 424029
(2014).

[28] R. Gallego and L. Aolita, Resource Theory of Steering,
Phys. Rev. X 5, 041008 (2015).

[29] S. Abramsky and A. Brandenburger, The sheaf-theoretic
structure of non-locality and contextuality, New J. Phys. 13,
113036 (2011).

[30] A. Cabello, S. Severini, and A. Winter, Graph-Theoretic
Approach to Quantum Correlations, Phys. Rev. Lett. 112,
040401 (2014).

[31] A. Acín, T. Fritz, A. Leverrier, and A. B. Sainz, A
combinatorial approach to nonlocality and contextuality,
Commun. Math. Phys. 334, 533 (2015).

[32] Since χ ∈ IX is a valid context, it has at most one button
associated to each light. Hence, jχðlÞj ¼ 1.

[33] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.120.130403 for techni-
cal details.

[34] Subindices in round brackets refer to association with lights
or buttons immediately below (children) and supraindices in
round brackets to association with buttons or lights immedi-
ately above (parents). In turn, subindices in square brackets
refer to association with lights or buttons at lower levels
(descendants) in the box composition of Fig. 1 and supra-
indices in square brackets to association with buttons or
lights at higher levels (ancestors).

[35] W. van Dam, R. D. Gill, and P. D. Grünwald, The statistical
strength of nonlocality proofs, IEEE Trans. Inf. Theory 51,
2812 (2005).

[36] In fact, in Ref. [16], restricted monotonicity of another
related quantity, the uniform relative entropy of contextual-
ity, was shown. However, one can show [21] that the
uniform variant is not monotonous under general
wirings in NCW, even for trivial (identity) postprocessing
boxes.

[37] E. Amselem, L. E. Danielsen, A. J. López-Tarrida, J. R.
Portillo, M. Bourennane, and A. Cabello, Experimental
Fully Contextual Correlations, Phys. Rev. Lett. 108, 200405
(2012).

[38] S. L. Braunstein and C. M. Caves, Wringing out better Bell
inequalities, Ann. Phys. (N.Y.) 202, 22 (1990).

[39] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Proposed Experiment to Test Local Hidden-Variable The-
ories, Phys. Rev. Lett. 23, 880 (1969).

[40] A. A. Klyachko, M. A. Can, S. Binicioğlu, and A. S.
Shumovsky, Simple Test for Hidden Variables in Spin-1
Systems, Phys. Rev. Lett. 101, 020403 (2008).

[41] M. Araújo, M. T. Quintino, C. Budroni, M. Terra Cunha,
and A. Cabello, All noncontextuality inequalities for the
n-cycle scenario, Phys. Rev. A 88, 022118 (2013).

[42] S. Popescu and D. Rohrlich, Quantum nonlocality as an
axiom, Found. Phys. 24, 379 (1994).

[43] Y.-C. Liang, R. W. Spekkens, and H. M. Wiseman,
Specker’s parable of the overprotective seer: A road to
contextuality, nonlocality and complementarity, Phys. Rep.
506, 1 (2011).

[44] A. Cabello, P. Badziąg, M. Terra Cunha, and M.
Bourennane, Simple Hardy-Like Proof of Quantum
Contextuality, Phys. Rev. Lett. 111, 180404 (2013).

[45] S. Mansfield, Ph.D. thesis, University of Oxford, Oxford,
England, 2013.

[46] B. Amaral, M. Terra Cunha, and A. Cabello, Exclusivity
principle forbids sets of correlations larger than the quantum
set, Phys. Rev. A 89, 030101(R) (2014).

[47] E. N. Dzhafarov, J. V. Kujala, and V. H. Cervantes,
Contextuality-by-Default: A Brief Overview of Ideas,
Concepts, and Terminology, International Symposium on
Quantum Interaction (Springer, New York, 2015).

[48] J. V. Kujala, E. N. Dzhafarov, and J.-Å. Larsson, Necessary
and Sufficient Conditions for an Extended Noncontextuality
in a Broad Class of Quantum Mechanical Systems, Phys.
Rev. Lett. 115, 150401 (2015).

PHYSICAL REVIEW LETTERS 120, 130403 (2018)

130403-6

https://doi.org/10.1103/PhysRevLett.115.070503
https://doi.org/10.1103/PhysRevLett.115.070503
https://doi.org/10.1103/PhysRevLett.115.199901
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1103/PhysRevA.71.022101
https://doi.org/10.1103/PhysRevA.80.062107
https://doi.org/10.1088/1751-8113/47/42/424029
https://doi.org/10.1088/1751-8113/47/42/424029
https://doi.org/10.1103/PhysRevX.5.041008
https://doi.org/10.1088/1367-2630/13/11/113036
https://doi.org/10.1088/1367-2630/13/11/113036
https://doi.org/10.1103/PhysRevLett.112.040401
https://doi.org/10.1103/PhysRevLett.112.040401
https://doi.org/10.1007/s00220-014-2260-1
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.130403
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.130403
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.130403
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.130403
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.130403
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.130403
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.130403
https://doi.org/10.1109/TIT.2005.851738
https://doi.org/10.1109/TIT.2005.851738
https://doi.org/10.1103/PhysRevLett.108.200405
https://doi.org/10.1103/PhysRevLett.108.200405
https://doi.org/10.1016/0003-4916(90)90339-P
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.101.020403
https://doi.org/10.1103/PhysRevA.88.022118
https://doi.org/10.1007/BF02058098
https://doi.org/10.1016/j.physrep.2011.05.001
https://doi.org/10.1016/j.physrep.2011.05.001
https://doi.org/10.1103/PhysRevLett.111.180404
https://doi.org/10.1103/PhysRevA.89.030101
https://doi.org/10.1103/PhysRevLett.115.150401
https://doi.org/10.1103/PhysRevLett.115.150401

