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It is a well-known fact that all the statistical predictions of quantum mechanics on the state of any physical
system represented by a two-dimensional Hilbert space can always be duplicated by a noncontextual hidden-
variables model. In this paper, | show that, in some cases, when we consider an additional independent
(unentangledtwo-dimensional system, the quantum description of the resulting composite system cannot be
reproduced using noncontextual hidden variables. In particular, a no-hidden-variables proof is presented for
two individual spins particles preselected in an uncorrelated s{éte® |B) and postselected in another
uncorrelated statf)®|B), |B) being the same state for the second particle in both preselection and postse-
lection.[S1050-294{@7)02006-4

PACS numbd(s): 03.65.Bz

Noncontextual hidden-variabléslCHV) models that are tion and of these three criteria to infer the values of some
capable of reproducing all statistical predictions of quantunproperties of the system is legitimate in the context of a
mechanics(QM) for physical systems described dwo-  NCHYV theory in which quantum observables are assumed to
dimensionaHilbert spaces do exi$il—5]. Examples of such have preexisting values revealed by the act of measurement
systems, also known as two-state systems or “qubfg];  (although of course not in QM itself
include a single spir-particle without translational motion, ~ The proof runs as follows. Consider the following experi-
the polarization of a photon, the relative phase and intensityn€nt: & single spis-particle is prepared at timg <t in the
of a single photon in two arms of an interferometer, or anState|A) (for instance, in the eigenstate of the spin compo-
arbitrary superposition of two atomic states. On the contraryn€nt in thez direction with eigenvaluet 1), and at timet,
for physical systems described by Hilbert spaces of dimen="t; & measurement is performed and the system is found in
sion greater than 2, a fundamental theorem proved by Gle different statga). At time t we have a quantum system
son [7], Bell [1], and Kochen and SpeckéB] excludes both preselected in the std#&) and pos'gselecteq in the state
NCHYV alternatives to QM. On the other hand, Bell's theo- |2) [9.]' Whatever|A) and_|a>, there ex_|st.s a t.”V'aI NCHV
rem[8] prohibits local hidden variableg particular type of description(compatible with QM for this |nd|\_/|dual prese-

. lected and postselected systéh2]. Now consider a second
NCHYV) for compositesystems of twdor more parts(usu-

i S : spin4 particle independently prepared at tirhe<t in the
ally two-state systemsinitially prepared in anentangled state|B); at time t,>t, a measurement confirms that the

_ _ cOM&econd particle is still in the stat8) (for simplicity’s sake
lated (unentangledtwo-dimensional subsystems, one mlghtWe suppose the free Hamiltoniantifio be zera. Now let us
think that NCHV _descriptions are possible. In this Ppaper, lsee the quantum description of the composite system. We
show that even in such a case, some quantum inferencefg| yse greek letters for the states of the composite system
cannot be duplicated using a NCHV theory. For this purposeang |atin letters for the states of each particle. At titge

| present a simple no-go proof for an individual system of <t the system is prepared in the uncorrelated quantum state
two spin4 particles preselected and postseledt@din un-

correlated states. The argument contains both measueed l)=|A)®|B), (1)
actua) and nonmeasured.e., hypothetical values of the
composite system. The former are the results of separatgnd at timet,>t, a measurement is performed and the sys-
measurements on each particle in the preselection or postst%-m is foundzin ',[he uncorrelated state

lection processes. The latter are hypothetical values of the

whole system that are assumed to be determiimea NCHV

theory in the time interval between the preselection and |42)=[a)®[B). 2)
postselection, invoking one of the following criteri@ they ) o

can be predicted with certainty after the preselectitm; Thereforg, at time we have an individual §ystem both pre-
they can beetrodicted[9,10] with certainty before the post- Selected in the statigl,) and postselected in the stdig,).
selection; or(c) they must verify thesum rule[11] for the |A) and|a) are two different spin states for the first particle
results of any measurement of an orthogonal resolution ond [B) is the same state for the second particle in both

the identity. The joint use of the preselection and postseled®reselection and postselection. In particular, for our argu-
ment we suppose

*Electronic address: adancab@eucmax.sim.ucm.es la)=1(|A)— V8|AL)), (3
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lat)y=3(V/8|A)+|AL)), (4)  any individual quantum system, we can measure them jointly
without mutual disturbance. In addition, they are mutually
where{|A),|A*)} and{|a),|a*)} are two orthonormal bases orthogonal projectors and provide a resolution of the identity
for the states of the first particle. With electi@®) the prob-
ability of postselectingi,) when preselectingy,) is PatPpit Py +Psi =1 (13

[( o] 1) [2= 2. (5) Therefore, in any joint measurement &,,Pg, P, ,
Ps. in any state the results must be one 1 and three zeros.
Consider the three physical quantities represented by th€his allows us to use a particular case of suen rule[11]: at
projection operatorsP ,=|a)(a|, Pg.=|B+)(B+|, and timet the values in a NCHV theory must satisfy

_=|B_YB_|, wh
Ps-=[B-)B-|, where V[P (D ]+v[Pg(t)]+v[P, ()] +v[Psi(D)]=1.
) =IAye[B), © 4

_1 I\ L Since in our preselected and postselected individual system
[B=)=2(|A)@|B7) £ v3|AT)©[B)). @ [P, ()]=v[Pg (1)]=0v[P,(t)]=0, we are forced to

The statey) is an eigenstate dP,, Ps., andP,_ with ~ conclude thatv[P,,(t)]=1. Similarly, since P,,Ps_,
eigenvalue zero; therefore, a measurement of any of thed®,- ,Ps- form another set of compatible observables and a
projectors will give with certainty the value zero. Since we resolution of the identity, a completely analogous reasoning
can predict with certainty the result of measuriy,, leads us to conclude tha{P;_(t)]=1. ButPs. andPs_
P+, andP4_ at timet, then, following[13], in a NCHV ~ are commutative and orthogonal projections representing
theory at timet there exist threeelements of realitf14] ~ compatible and mutually exclusive physical propositions, so
corresponding to the three physical quantifies, P4, , and ~ the results of any joint measurement ®f, andP;_ can
P,_ and having a value equal to the predicted measurememeverbothbe 1. So we have reached a contradiction betwee.n
result, zero in all three cases. We will designate these eld?M and NCHV for a system preselected and postselected in

ments of reality as uncorrelated states.
The reason why NCHV models compatible with QM are
v[P()]=v[Pg () ]=v[Ps_(t)]=0. (8) impossible for this composite systdaithough they exist for

each particlgis because the dimension of the whole quan-
Consider now the physical quantities represented by theym system is 4 and, therefore, the Gleason-Bell-Kochen-
projectorsP,. =[y )(y.|, P,-=|y_)(y-|, where Specker theorem applies. In particular, in our argument,
. NCHYV theory must assign definite values to some proposi-
B n _ n tions that cannot be measured lcal measurements on
|7’i>_ﬁ (\/§|A>®|B>+|A )8|B)*Vv3[A)e[B)) each particle but only by nonlocal measurements on both
(9) particles (in our example, these propositions aRg, ,
P,¢,Psi ,Pg_,P,_,Ps ). The particular election of
or, in the basig3) and (4), propositions involved in the argument has been made in or-
der to achieve the maximum probability) for the preselec-
ly.)=3[3v3|a")2|B)F(|]a)®|B)+ 8la")®|B*))]. tion and postselection process, preserving the relations of
(10 orthogonality among states and projectors necessary for the
proof.

The same structure of orthogonality relations is behind
Hardy’s proof of Bell's theoren{15] and also appears in
some recent proofs of the Gleason-Bell-Kochen-Specker
theoren{16,17. In Hardy's example, an individual system is
preselected in an entangled sthig), which is orthogonal to
three unentangled states

Since|y,) is an eigenstate d?,, andP.,_ with zero eigen-
values, then we can infdéretrodict[10]), with certainty, the
result of measurin®,, andP,_ at timet; therefore, fol-
lowing an extended definition for elements of reality pro-
posed by Vaidmarn10] (consisting of the change of “pre-
dict” to “infer” in Redhead’s sufficient condition for
elements of reality13]), at the timet, there exist two more

elements of reality corresponding to these physical quantities la)=]A)®|B), (15

and having a value equal to the inferred measurement result;

that is, |B:+)=]a)®[B"), (16)
v[P,.(t)]=v[P,_(t)]=0. (11 1B_)=|A%)®|b) (17)

Finally, consider the physical quantitieB;, =[5, (5.,

1 1
P, =|5. )5 |, where where{|A),|A")} and{|a),|]a")} are two orthonormal bases

for the states of the first particle angB),|B*)}, and

1 {|b), |b*)} are two orthonormal bases for the states of the

|6.)=—[V6|A)®|B") = (2|A)®|B)—Vv2|AL)®|B))]. second particle. The system is also postselected in the unen-
2v3 W tangled state

12

" |72)=|a)®]b), (18)
The propositions,,Ps, ,P,, ,Ps, form a set of compat-
ible observables for the composite system and, therefore, onhich is orthogonal to
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|v.)=lat)®|B"), (19 example all stategexcept the preselectedre unentangled,
so it also works as a no-local-hidden-variables proof.
|y_)y=|AT)®]|b"). (20 All along in this paper it has been assumed that every

projector on a Hilbert space represents a physical proposi-
tion; i.e., that there exists an experimental setup for measur-
ing it. Several results suggest that there is no problem in
designing such setups, since any discrete unitary operator
|3,>=|A>®|Bi>, 22) gdmits an experimeqtal realization in terms of optical de-
vices [18] or generalized Stern-Gerlach experimepi9)].
we have two orthogonal resolutions of the identity: Therefore, each of the quantum inferences used in the argu-
{P&,Ps+ P54 ,P5 ) and{P;,P;_,P;_ ,P5_}. Therefore ment (predictions, retrodictions, and the sum rule for an or-
we have the same relations of orthogonality as in the previthogonal resolution of the identitycan be experimentally
ous example. The connection between these and Hardytested(although not all of them on the same individual sys-
proof is explained if17]. For Hardy's example the maxi- tem).
mum probability for the preselection and postselection pro- In summary, a contradiction between QM and NCHV

Considering also the states

|6,)=|A%)®|B), (21)

cess ig15] models can be found, even for a system composed of two
1|8 uncorrelated parts, each of them described by two-
|<772|771>|2:( 5 ) ' (23) dimensional Hilbert spaces.
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