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No-hidden-variables proof for two spin-12 particles preselected and postselected
in unentangled states
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~Received 4 November 1996!

It is a well-known fact that all the statistical predictions of quantum mechanics on the state of any physical
system represented by a two-dimensional Hilbert space can always be duplicated by a noncontextual hidden-
variables model. In this paper, I show that, in some cases, when we consider an additional independent
~unentangled! two-dimensional system, the quantum description of the resulting composite system cannot be
reproduced using noncontextual hidden variables. In particular, a no-hidden-variables proof is presented for
two individual spin-12 particles preselected in an uncorrelated stateuA& ^ uB& and postselected in another
uncorrelated stateua& ^ uB&, uB& being the same state for the second particle in both preselection and postse-
lection. @S1050-2947~97!02006-4#

PACS number~s!: 03.65.Bz
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Noncontextual hidden-variables~NCHV! models that are
capable of reproducing all statistical predictions of quant
mechanics~QM! for physical systems described bytwo-
dimensionalHilbert spaces do exist@1–5#. Examples of such
systems, also known as two-state systems or ‘‘qubits’’@6#,
include a single spin-12 particle without translational motion
the polarization of a photon, the relative phase and inten
of a single photon in two arms of an interferometer, or
arbitrary superposition of two atomic states. On the contra
for physical systems described by Hilbert spaces of dim
sion greater than 2, a fundamental theorem proved by G
son @7#, Bell @1#, and Kochen and Specker@3# excludes
NCHV alternatives to QM. On the other hand, Bell’s the
rem @8# prohibits local hidden variables~a particular type of
NCHV! for compositesystems of two~or more! parts~usu-
ally two-state systems! initially prepared in anentangled
state. However, for systems composed of several unco
lated ~unentangled! two-dimensional subsystems, one mig
think that NCHV descriptions are possible. In this pape
show that even in such a case, some quantum infere
cannot be duplicated using a NCHV theory. For this purpo
I present a simple no-go proof for an individual system
two spin-12 particles preselected and postselected@9# in un-
correlated states. The argument contains both measured~i.e.,
actual! and nonmeasured~i.e., hypothetical! values of the
composite system. The former are the results of sepa
measurements on each particle in the preselection or po
lection processes. The latter are hypothetical values of
whole system that are assumed to be determined~in a NCHV
theory! in the time interval between the preselection a
postselection, invoking one of the following criteria:~a! they
can be predicted with certainty after the preselection;~b!
they can beretrodicted@9,10# with certainty before the post
selection; or~c! they must verify thesum rule@11# for the
results of any measurement of an orthogonal resolution
the identity. The joint use of the preselection and postse
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tion and of these three criteria to infer the values of so
properties of the system is legitimate in the context o
NCHV theory in which quantum observables are assume
have preexisting values revealed by the act of measurem
~although of course not in QM itself!.

The proof runs as follows. Consider the following expe
ment: a single spin-12 particle is prepared at timet1,t in the
stateuA& ~for instance, in the eigenstate of the spin comp
nent in thez direction with eigenvalue11!, and at timet2
.t, a measurement is performed and the system is foun
a different stateua&. At time t we have a quantum system
both preselected in the stateuA& and postselected in the sta
ua& @9#. WhateveruA& and ua&, there exists a trivial NCHV
description~compatible with QM! for this individual prese-
lected and postselected system@12#. Now consider a second
spin-12 particle independently prepared at timet1,t in the
state uB&; at time t2.t, a measurement confirms that th
second particle is still in the stateuB& ~for simplicity’s sake
we suppose the free Hamiltonian int to be zero!. Now let us
see the quantum description of the composite system.
shall use greek letters for the states of the composite sys
and latin letters for the states of each particle. At timet1
,t, the system is prepared in the uncorrelated quantum s

uc1&5uA& ^ uB&, ~1!

and at timet2.t, a measurement is performed and the s
tem is found in the uncorrelated state

uc2&5ua& ^ uB&. ~2!

Therefore, at timet we have an individual system both pre
selected in the stateuc1& and postselected in the stateuc2&.
uA& and ua& are two different spin states for the first partic
and uB& is the same state for the second particle in b
preselection and postselection. In particular, for our ar
ment we suppose

ua&5 1
3 ~ uA&2A8uA'&), ~3!
4109 © 1997 The American Physical Society
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ua'&5 1
3 ~A8uA&1uA'&), ~4!

where$uA&,uA'&% and$ua&,ua'&% are two orthonormal base
for the states of the first particle. With election~3! the prob-
ability of postselectinguc2& when preselectinguc1& is

z^c2uc1& z25 1
9 . ~5!

Consider the three physical quantities represented by
projection operatorsPa5ua&^au, Pb15ub1&^b1u, and
Pb25ub2&^b2u, where

ua&5uA'& ^ uB'&, ~6!

ub6&5 1
2 ~ uA& ^ uB'&6)uA'& ^ uB&). ~7!

The stateuc1& is an eigenstate ofPa , Pb1 , andPb2 with
eigenvalue zero; therefore, a measurement of any of th
projectors will give with certainty the value zero. Since w
can predict with certainty the result of measuringPa ,
Pb1 , andPb2 at time t, then, following@13#, in a NCHV
theory at timet there exist threeelements of reality@14#
corresponding to the three physical quantitiesPa , Pb1 , and
Pb2 and having a value equal to the predicted measurem
result, zero in all three cases. We will designate these
ments of reality as

v@Pa~ t !#5v@Pb1~ t !#5v@Pb2~ t !#50. ~8!

Consider now the physical quantities represented by
projectorsPg15ug1&^g1u, Pg25ug2&^g2u, where

ug6&5
1

2)
~A8uA& ^ uB&1uA'& ^ uB&7)uA& ^ uB'&)

~9!

or, in the basis~3! and ~4!,

ug6&5 1
6 @3)ua'& ^ uB&7~ ua& ^ uB'&1A8ua'& ^ uB'&)].

~10!

Sinceuc2& is an eigenstate ofPg1 andPg2 with zero eigen-
values, then we can infer~retrodict@10#!, with certainty, the
result of measuringPg1 andPg2 at time t; therefore, fol-
lowing an extended definition for elements of reality pr
posed by Vaidman@10# ~consisting of the change of ‘‘pre
dict’’ to ‘‘infer’’ in Redhead’s sufficient condition for
elements of reality@13#!, at the timet, there exist two more
elements of reality corresponding to these physical quant
and having a value equal to the inferred measurement re
that is,

v@Pg1~ t !#5v@Pg2~ t !#50. ~11!

Finally, consider the physical quantitiesPd15ud1&^d1u,
Pd25ud2&^d2u, where

ud6&5
1

2)
@A6uA& ^ uB'&6~2uA& ^ uB&2&uA'& ^ uB&)].

~12!

The propositionsPa ,Pb1 ,Pg1 ,Pd1 form a set of compat-
ible observables for the composite system and, therefore
he
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any individual quantum system, we can measure them joi
without mutual disturbance. In addition, they are mutua
orthogonal projectors and provide a resolution of the iden

Pa1Pb11Pg11Pd15I . ~13!

Therefore, in any joint measurement ofPa ,Pb1 ,Pg1 ,
Pd1 in any state, the results must be one 1 and three zer
This allows us to use a particular case of thesum rule@11#: at
time t the values in a NCHV theory must satisfy

v@Pa~ t !#1v@Pb1~ t !#1v@Pg1~ t !#1v@Pd1~ t !#51.
~14!

Since in our preselected and postselected individual sys
v@Pa(t)#5v@Pb1(t)#5v@Pg1(t)#50, we are forced to
conclude thatv@Pd1(t)#51. Similarly, since Pa ,Pb2 ,
Pg2 ,Pd2 form another set of compatible observables an
resolution of the identity, a completely analogous reason
leads us to conclude thatv@Pd2(t)#51. But Pd1 andPd2

are commutative and orthogonal projections represen
compatible and mutually exclusive physical propositions,
the results of any joint measurement ofPd1 and Pd2 can
neverbothbe 1. So we have reached a contradiction betw
QM and NCHV for a system preselected and postselecte
uncorrelated states.

The reason why NCHV models compatible with QM a
impossible for this composite system~although they exist for
each particle! is because the dimension of the whole qua
tum system is 4 and, therefore, the Gleason-Bell-Koch
Specker theorem applies. In particular, in our argume
NCHV theory must assign definite values to some propo
tions that cannot be measured bylocal measurements on
each particle but only by nonlocal measurements on b
particles ~in our example, these propositions arePb1 ,
Pg1 ,Pd1 ,Pb2 ,Pg2 ,Pd2!. The particular election of
propositions involved in the argument has been made in
der to achieve the maximum probability~5! for the preselec-
tion and postselection process, preserving the relation
orthogonality among states and projectors necessary for
proof.

The same structure of orthogonality relations is beh
Hardy’s proof of Bell’s theorem@15# and also appears in
some recent proofs of the Gleason-Bell-Kochen-Spec
theorem@16,17#. In Hardy’s example, an individual system
preselected in an entangled stateuh1&, which is orthogonal to
three unentangled states

uâ&5uA& ^ uB&, ~15!

ub̂1&5ua& ^ uB'&, ~16!

ub̂2&5uA'& ^ ub&, ~17!

where$uA&,uA'&% and$ua&,ua'&% are two orthonormal base
for the states of the first particle and$uB&,uB'&%, and
$ub&, ub'&% are two orthonormal bases for the states of
second particle. The system is also postselected in the u
tangled state

uh2&5ua& ^ ub&, ~18!

which is orthogonal to
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uĝ1&5ua'& ^ uB'&, ~19!

uĝ2&5uA'& ^ ub'&. ~20!

Considering also the states

ud̂1&5uA'& ^ uB&, ~21!

ud̂2&5uA& ^ uB'&, ~22!

we have two orthogonal resolutions of the identi
$Pâ ,Pb̂1 ,Pĝ1 ,Pd̂1% and $Pâ ,Pb̂2 ,Pĝ2 ,Pd̂2%. Therefore
we have the same relations of orthogonality as in the pr
ous example. The connection between these and Har
proof is explained in@17#. For Hardy’s example the maxi
mum probability for the preselection and postselection p
cess is@15#

u^h2uh1&u25SA521

2 D 5, ~23!

which is smaller than Eq.~5!. On the other hand, in Hardy’
ev

m

i-
’s

-

example all states~except the preselected! are unentangled
so it also works as a no-local-hidden-variables proof.

All along in this paper it has been assumed that ev
projector on a Hilbert space represents a physical prop
tion; i.e., that there exists an experimental setup for mea
ing it. Several results suggest that there is no problem
designing such setups, since any discrete unitary oper
admits an experimental realization in terms of optical d
vices @18# or generalized Stern-Gerlach experiments@19#.
Therefore, each of the quantum inferences used in the a
ment ~predictions, retrodictions, and the sum rule for an
thogonal resolution of the identity! can be experimentally
tested~although not all of them on the same individual sy
tem!.

In summary, a contradiction between QM and NCH
models can be found, even for a system composed of
uncorrelated parts, each of them described by tw
dimensional Hilbert spaces.

I would like to acknowledge Guillermo Garcı´a Alcaine
and Asher Peres for their many helpful comments.
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