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Great effort has been made in the investigation of contextual correlations between compatible observables due to their
both fundamental and practical importance. The graph-theoretic approach to correlate events has been proved to be
an effective method in the characterization of quantum contextuality, which implies that quantum violations of non-
contextual inequalities derived in the noncontextual hidden-variable models should be achievable. Finding experi-
mentally more friendly and theoretically more powerful noncontextual inequalities associated with specific graphs
is of particular interest. Here we consider Platonic graphs to vindicate the quantum maximum predicted by graph
theory and test the quantum violation against the mixedness of the state. Among these solids we refer particularly to
the icosahedron to build the experiment, as it gives rise to the largest quantum-classical difference. The contextual
correlations are demonstrated on quantum four-dimensional states encoded in the spatial modes of single photons
generated from a defect in a bulk silicon carbide. Our results shed new light on the conflict between quantum and
classical physics and may promote deep understanding of the connection between quantum theory, graph theory, and
operator theory. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

As basic mathematical objects, graphs have been studied
extensively, for they not only demonstrate purely scientific aes-
thetics but also have many important applications in all branches
of science. Very recently, Cabello et al. [1] have discovered that
there is a fundamental connection between graphs and the con-
textual correlations between the outcomes of compatible experi-
ments on quantum systems (i.e., contextuality [2,3]). For any
graph one can imagine, there exist a quantum system and a set
of projective measurements producing “events”—characterized by
the outcomes of a set of compatible projective measurements—
which are in one-to-one correspondence with the vertices of the
graph, such that whenever there is an edge between the vertices,
any pair of these events correspondingly are exclusive (i.e., cannot
happen at the same time, or can be distinguished by a projective
measurement) [4,5]. More precisely, the central idea of the graph-
theoretic approach to quantum correlations is that an arbitrary

N -vertex graph can always be associated with a noncontextuality
inequality (NC inequality):

S �
XN

i�1

hP̂ii ≤ α, (1)

where hP̂ii is the projective probability of the rank-one projector
P̂i corresponding to the ith vertex in the graph, and α is the inde-
pendence number of the graph [6]. All noncontextual hidden-
variable (NCHV) models satisfy Inequality (1), but quantum
mechanics (QM) can beat the classical bound α, thus revealing
the contextual correlations. As described in [7], the logical Bell
inequalities of Abramsky and Hardy (building on the framework
of Abramsky–Brandenburger [8]) can also be investigated in a
similar way.

In fact, the sum of the physically possible probabilities of these
events necessarily corresponds to a point of the Grötschel–
Lovász–Schrijver theta body of the graph, the latter being a set
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of purely combinatorial objects [9]. In particular, the maximum
value of the sum is exactly the Lovász number (usually denoted by
ϑ) of the graph, which was originally introduced as an easy-to-
approximate number between two hard-to-approximate numbers
in graph theory [10]. Such a correspondence between graphs and
quantum-correlation experiments is remarkable, as it (i) places
some bound on the quantum set [11], (ii) suggests that correla-
tions in nature are essentially bounded by a simple physical prin-
ciple (the exclusivity principle [12–14]) valid in all scenarios,
instead of the ones only applied within Bell’s scenario, and (iii) has
been a key to explore quantum supremacy in quantum compu-
tation [15–18]. The correspondence has thus far been proved
useful to write out interesting forms of contextual correlation
through a series of work [19–25].

In this work, we develop the exact forms of contextual rela-
tions from Platonic graphs. By strictly measuring the contextual
correlations between compatible observables on quantum four-
dimensional states encoded in the spatial modes of single photons
generated from a defect in a bulk silicon carbide, we experimen-
tally demonstrate the quantum contextuality of the icosahedron
graph, which gives rise to the largest quantum-classical difference.

2. THEORETICAL FRAMEWORK

We start with graphs associated with Platonic solids, or to shorten
it, Platonic graphs, i.e., the five graphs that have each of the
five Platonic solids as skeletons. The details can be found in
Sections 1 and 2 in Supplement 1. To have the Platonic graphs
tested in a quantum-correlation experiment with the satisfactory
compatibility requirements, we adopt the following alternative
NC inequality [26]:

S �
X

i∈V
Pjψi�Ai � 1� −

X

�Ai ,Aj�∈E
Pjψi�Ai � 1,Aj � 1�

≤
NCHV

α�G� ≤
QM

ϑ�G�, (2)

where V and E , respectively, denote the vertex and edge sets
of the graph G�V ,E�, Pjψi�Ai � 1� denotes the probability of
obtaining result 1 when the observable jAiihAij is measured
on the state jψi. Inequality (2) is deviated from Inequality (1)
by adding the second term, which contains the joint probabilities
Pjψi�Ai � 1,Aj � 1� (� Pjψi�Ai � 1�PjAii�Aj � 1�) that re-
present experimental imprecision when jAii and jAji are
measured successively. A remarkable point is that these two in-
equalities share the same classical bound and the same quantum
violation, but the latter is convenient for analyzing the compat-
ibility conditions. The introduction of the second term into
Inequality (2) is crucial and necessary: it is important to evaluate
the two-point probability Pjψi�Ai � 1,Aj � 1� in order to fulfill
the compatibility requirement in any contextuality test [26].

In this work, we choose to experimentally test contextual cor-
relations from the icosahedron graph as shown in Fig. 1. The rea-
sons are threefold. (i) Among the five Platonic graphs, the ratio
of the quantum violation (ϑ) to the classical bound (α) is maximal
for the icosahedron graph. The larger the ratio, the more friendly
the experimental observation. (ii) To our knowledge, the ratio
ϑ∕α of the icosahedron graph is maximal for all graphs that we
have known, at least for all regular polyhedrons in any dimension
(including all regular polygons in two dimensions). (iii) For the
icosahedron graph, almost all four-dimensional states (except the
maximally mixed state) violate the NC inequality, thus one can

reveal the contextuality for almost all four-dimensional states by
a single inequality. To a certain sense, such an experimental
revealing has merit over the state-independent contextuality
proof with 18 rays [27,28], because experimentally the former
requires fewer projective measurements but with larger quantum
violations.

Explicitly, we shall test the NC inequality corresponding to the
icosahedron graph as follows:

S�
X12

i�1

Pjψi�Ai � 1�−
X

�i, j�∈E
Pjψi�Ai � 1,Aj � 1� ≤

NCHV
3: (3)

Analytically, the quantum maximum can be proved equal to its cor-
responding Lovász number, with Smax

QM � ϑ� 3� ffiffiffi
5

p
− 1�≈ 3.708.

Moreover, it can be directly proved that all four-dimensional states
except the maximally mixed state violate the single inequality.
To have a simple proof, one can refer to the 4-vectors (i.e., the
Lovász optimum orthogonal realization) and the initial state listed
in Fig. 1(c). Ideally, the second summation terms in Inequality (3)
vanish, so it suffices to consider the quantity

P
12
i�1 jAiihAij, whose

eigenvalues are f3� ffiffiffi
5

p
− 1�, 5 − ffiffiffi

5
p g, with the first one being

the Lovász number and the last one threefold degenerate. With
the maximally mixed state 1∕4 as the least case, one can have
1
4 �3�

ffiffiffi
5

p
− 1� � 3 × �5 − ffiffiffi

5
p �� � 3. Hence, any other states will

violate the inequality.

(a)

(b)

(c)

(d)

Fig. 1. Icosahedron graph. (a) The icosahedron solid with 12 vertices.
(b) The 12 blue vertices depict the corresponding icosahedron graph.
Four red vertices are added for the need of experimental test for the
compatibility conditions. (c) The corresponding optimal quantum initial
state jψi and measurement settings jii. The set fj1i, j2i,…, j12ig forms
the Lovász optimum orthogonal realization. jii (unnormalized vector
for simplicity) denotes jAii. τ � ffiffiffi

ϕ
p

, ϕ � 1
2 �

ffiffiffi
5

p � 1�, τ 0 � 1∕τ,
ϕ 0 � 1∕ϕ, ω �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ffiffiffi

5
pp

, and
P

12
i�1 jhψ jAiij2 � 3� ffiffiffi

5
p

− 1� give
the quantum maximum that equals to the Lovász number. (d) The
independence number α and the Lovász number ϑ of the icosahedron.
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Because the quantum system we utilize in experiment is four
dimensional, we further extend the graph with extra projectors,
A13, A14, A15, and A16, to construct full sets of compatible
observables, such that every projector is measured as part of
a complete basis [26]. In summary, the sets of observables
are fA1,A9,A10,A13g, fA2,A7,A12,A14g, fA3,A4,A6,A15g, and
fA5,A8,A11,A16g. The method to obtain detailed forms of the
vectors can be found in Section 2 in Supplement 1. Each of
the measurements can then be performed in the same orthogonal
basis. The detection probability of each observable such asA1 can be
obtained as Pjψi�A1 � 1� � N jψi�A1�

N jψi�A1��N jψi�A9��N jψi�A10��N jψi�A13� ,

where N jψi�Ai� is the number of counts of obtaining result 1
when the observable jAiihAij is measured on the state jψi. Then,
by measuring the contextual correlations between compatible
observables on quantum four-dimensional states encoded in the
spatial modes of single photons generated from a defect in a bulk
silicon carbide, we observe the experimental proof-of-principle of
this result.

3. EXPERIMENTAL SETUP AND RESULTS

Figure 2 shows our experimental setup. The information is
encoded into the four spatial modes of a single photon. Single
photons are generated by exciting an intrinsic defect (carbon
antisite-vacancy pair) in a bulk high-purity semi-insulating 4H
silicon carbide (SiC) [29]. The carbon antisite-vacancy pair de-
fects in silicon carbides have been shown to be ultrabright, photo-
stable single-photon sources even at room temperature. To match
the operation wavelength of the half-wave plates in the contex-
tuality test setup, we used a bandpass filter with a central wave-
length of 720 nm and a width of 13 nm to filter the fluorescence
of the defects. The total photon count for each set of mea-
surement is about 40,000. The second-order photon correlation

function at zero delay without background correction is g2�0� �
0.268 (with the fitting to 0.04), which clearly shows the signature
of photon antibunching [the inset in Fig. 2(a)].

The single photon is then directed to the contextuality test
setup constructed by several half-wave plates (HWPs) and beam
displacers (BDs). A beam displacer is a birefringent crystal, in
which light beams with horizontal and vertical polarizations are
separated by a certain displacement. The polarization of the pho-
ton can be rotated using half-wave plates, and the relative ampli-
tudes of different spatial modes can be conveniently adjusted.

The polarization of the single photon initially in the spatial
modes i1 is first rotated by HWP1, which is horizontally sepa-
rated into i1 and i3 after the first beam displacer. The two
half-wave plates (HWP2 and HWP3) further rotate the polariza-
tions of the photon in the corresponding spatial modes, which
are vertically separated by the second beam displacer. The final
state we prepared can be the superposition of four spatial modes
i1, i2, i3, and i4. The amplitudes of the four spatial modes can be
changed by adjusting the angles of the HWP1, HWP2, and
HWP3. To prepare a diagonal mixed state, three glasses with
different lengths are inserted into paths ji1i, ji2i, and ji3i
(not shown in Fig. 2) to completely destroy the coherence be-
tween spatial modes. We build different kinds of measurement
settings. Three of them are shown in Fig. 2, i.e., the projection
to the superposition states of spatial modes of i1, i2, and i3
[1� 2� 3, Fig. 2(b)], the projection to i1, i2, and i4
[1� 2� 4, Fig. 2(c)] and to i1, i3, and i4 [1� 3� 4, Fig. 2(d)].
There, the quantum information encoded in spatial modes is
converted back into polarization-encoded quantum information.
The angle of HWP4 is set to be 45° such that the paths i1 and i3
(i2 and i4) are combined to one path after the third beam dis-
placer. The unwanted path in the corresponding measurement
is denoted by the dashed line. The relative amplitudes of the

Fig. 2. Experimental setup. (a) The individual system (single photon) is prepared by exciting an intrinsic defect, known as the carbon antisite-vacancy
pair in a bulk SiC sample. The insert shows the second-order photon correlation function of the emitting photons. g2�0� � 0.268 (with the fitting
to 0.04) clearly confirms the character of single-photon emission. The emitted single photon is filtered by a bandpass filter with a central wavelength
of 720 nm and a bandwidth of 13 nm, and is sent to the contextuality test setup. (b)–(d) show the contextuality test setup with the same initial state
preparation setup and different final measurement settings. The four-dimension states are encoded into the spatial modes of the single photon (i1, i2, i3,
and i4), which are prepared by passing the photon through the half-wave plate 1 (HWP1), and two beam displacers (BDs) with two more half-wave plates
(HWP2 and HWP3) in each of the spatial modes. To prepare a mixed state, three glasses with different lengths are inserted into paths ji1i, ji2i, and ji3i
(not shown in the figure) to completely destroy the coherence between different spatial modes. Three kinds of projective measurement settings with four
half-wave plates (HWP4, HWP5, HWP6, and HWP7) and two BDs are employed, i.e., (b) the projection to the superposition states with spatial modes
of 1, 2, and 3 (1� 2� 3), (c) the projection to the superposition states with spatial modes of 1, 2, and 4 (1� 2� 4) and (d) to the superposition states
of spatial modes with 1, 3, and 4 (1� 3� 4). The polarization is finally selected by a polarization beam splitter (PBS) and the photon is detected by a
single photon avalanche photodiode (SPAD).
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projected state can be adjusted by the last three half-wave plates,
i.e., HWP5, HWP6, and HWP7. The polarization of the photon
is finally rotated to be horizontal which is determined by a polari-
zation beam splitter (PBS), and the photon is detected by a single
photon avalanche photodiode (SPAD).

To test Inequality (3), we need to check the contextuality
between two successive measurements. As proposed in Ref. [26],
the statistics of the second measurements affected by the first
measurements can be calculated as

ε�_, 0j_,Aj� � jPjψi�Aj � 0� −
X1

k�0

Pjψi�Ai � k,Aj � 0�j,

ε�_, 1j_,Aj� � jPjψi�Aj � 1� −
X1

k�0

Pjψi�Ai � k,Aj � 1�j,

and similarly for ε�0, _jAi, _� and ε�1, _jAi, _�, which represent
the statistics of the first measurements affected by the second
measurements. We need to check that, within the experimental
precision, the influence of the first measurements on the second
ones is as negligible as the influence of the second measure-
ments on the first ones whenever ε�_, 0j_,Aj� ≈ ε�0, _jAi, _� and
ε�_, 1j_,Aj� ≈ ε�1, _jAi, _�. To obtain Pjψi�Ai � 0,Aj � 1�
(� Pjψi�Ai � 0�PjA⊥

i i�Aj � 1�), we need to prepare jA⊥
i i, which

represents the remained state after a projective measurement of
jAiihAij on the initial state jψi with the outcome 0. The process
is realized by the blocking method. We express the state jψi in a
complete orthogonal basis fAi,Ai 0 ,Ai 0 0 ,Ai 0 0 0 g. By blocking jAii,
the remaining state turns to be jA⊥

i i, which is further projected
to jAji with the outcome 1. The measurement setup is the same
as that of Fig. 2. We further clarify detailed methods to measure
the statistics between successive measurements in Section 3 in
Supplement 1.

In our experiment, the input state is prepared as

ρ � aji1ihi1j � bji2ihi2j � cji3ihi3j � d ji4ihi4j, (4)

with a, b, c, and d representing the corresponding amplitudes
in the components of ji1ihi1j, ji2ihi2j, ji3ihi3j, and ji4ihi4j,
respectively. fji1i, ji2i, ji3i, ji4ig forms an orthogonal basis for
the four-dimensional space, and a� b� c � d � 1. We denote
the state as Diag�a, b, c, d �.

To verify Inequality (3), we need to check the measurement
statistical effect for the state ρ. Because ρ is classically mixed
by four orthogonal bases, the corresponding probabilities of the
four bases can be experimentally measured by counting photons
in each path. We test the statistical effect when the four bases of
ji1i, ji2i, ji3i, and ji4i are used as the input states. The exper-
imental results of the measurement statistical effect are shown in
Section 4 in Supplement 1. For the four input states, one can
have ε�_, 0j_,Aj� ≈ ε�0, _jAi, _� and ε�_, 1j_,Aj� ≈ ε�1, _jAi, _�
within the experimental precision. Error bars are calculated from
the counting statistics.

Figure 3 further show the detailed probabilities for the
input state of ji1i. Red dots represent the detection probabilities
of the corresponding measurement settings of Pji1i�Ai � 1�
(i ∈ f1,12g) with the theoretical prediction of 0.309. To show
the experimental precision in preparing two orthogonal states,
the sum orthogonal probability of A1 is defined as P�A1⊥��
P�A1 � 1,A2� 1��P�A1 � 1,A7 � 1� � P�A1 � 1,A8 � 1� �
P�A1 � 1,A9� 1��P�A1 � 1,A10 � 1�. The other eleven prob-
abilities can be defined in the same way. In the experiment, the

implementation of the projective measurement and the joint
probability measurement correspond to detect the probabilities of
the photon in several bases with different prepared states. The
detailed method to calculate the probabilities can be found in
Section 4 in Supplement 1. Black squares in Fig. 3 show the cor-
responding experimental results with the solid line representing
the theoretical prediction of 0. As one has expected, for the pure
input state, the summation of the 12 probabilities P�Ai�s approx-
imately recover the Lovász number, thus coinciding with the
theoretical prediction. The fluctuation of the polarization of
background light in the imperfect single photon emission would
affect the measurement result, which is shown to be small in our
experiment.

Furthermore, we experimentally demonstrate that all four-
dimensional states except the maximally mixed state violate single
Inequality (3). To reach the purpose, we prepare four kinds of
initial states, which are ρ1 �Diag�x,y,0,0�, ρ2 �Diag�x,x,y,0�,

1 2 3 4 5 6 7 8 9 10 11 12
-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty

settings

Fig. 3. Probabilities for the input state ji1i. Red dots represent the
detection probabilities of the corresponding measurement settings of
Pji1i�Ai � 1� (i ∈ f1,12g) with the theoretical prediction of 0.309.
Black squares represent the probabilities of P�A1⊥� to P�A12⊥�, with
the solid line representing the theoretical prediction of 0, which indicates
the compatibility requirements are satisfied. The error bars deduced
from the Poisson photon distribution are smaller than the symbols
and cannot be seen clearly in the figure.

0.0 0.2 0.4 0.6 0.8 1.0
2.9
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S

linear entropy

Fig. 4. Experimental results for the contextuality test. Red dots,
black squares, blue upward triangles, and purple downward triangles
represent the experimental results with the initial input states of
ρ1 � Diag�x, y, 0,0�, ρ2 � Diag�x, x, y, 0�, ρ3 � Diag�x, x, x, y�, and
ρ4 � Diag�x, y, y, y� (x ≥ y), respectively. The dashed line, dotted line,
dashed–dotted line, and solid line represent the corresponding theoreti-
cal predictions (only for the maximally mixed state Diag�1,1,1,1�∕4 is
Inequality (3) not violated). Error bars are deduced from the Poisson
photon distribution.
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ρ3 � Diag�x, x, x, y�, and ρ4 � Diag�x, y, y, y�, here x and y re-
present the corresponding amplitudes and x ≥ y. Figure 4 indi-
cates that the experimental results coincide with our theoretical
predictions. The x axis represents the linear entropy of the states,
which is calculated as l � 4�1 − Tr�ρ2��∕3. In particular, for
the pure input state of ji1i (x � 1 and y � 0), the value of S we
obtained is S � 3.671� 0.026, which violated NCHV predic-
tion 3 by about 25 standard deviations.

4. DISCUSSION

It has been shown [23] that only about one-third of the quantum
states of a three-dimensional system can be revealed by the
simplest Klyachko–Can–Binicioğlu–Shumovsky inequality [30],
which contains merely five measurements. Such kind of contex-
tual correlation related to the simplest graph, pentagon, has been
experimentally demonstrated by encoding a qutrit state (three-
state system) into the path information of a trigger single photon
[31]. However, Inequality (3) can detect almost all quantum states
of a four-dimensional system. This fact reflects that different
graphs have different powers to demonstrate contextual correla-
tions. In our work, we have selected the icosahedron graph to test
contextuality. Our quantum-correlation experiment sheds new
light on the conflict between quantum and classical physics.
Our results open a way for exploring quantum properties with
graphs as a starting point and indicate that graph theory presents
more physics than precedented thoughts.
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