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Device-independent certification of two bits of randomness from one entangled bit and Gisin’s
elegant Bell inequality
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We prove that as conjectured by Acín et al. [Phys. Rev. A 93, 040102(R) (2016)], two bits of randomness can
be certified in a device-independent way from one bit of entanglement using the maximal quantum violation of
Gisin’s elegant Bell inequality. This suggests a surprising connection between maximal entanglement, complete
sets of mutually unbiased bases, and elements of symmetric informationally complete positive operator-valued
measures, on one side, and the optimal way of certifying maximal randomness, on the other.
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I. INTRODUCTION

Random numbers, i.e., numbers unpredictable to anyone,
play a crucial role in cryptography, algorithms, and simulation.
The possibility of certifying random numbers in a device-
independent (DI) way, i.e., without making any assumption
about the devices used to produce them and only assuming the
impossibility of superluminal communication [1–3], is a great
achievement of quantum information.

All methods for DI randomness certification [1–3] require
entangled pairs of systems and spacelike separated measure-
ments whose outcomes violate one or several Bell inequalities
[4] and, therefore, cannot be produced by any local realistic
mechanism. The fact that entanglement and Bell inequality
violation are the fundamental ingredients for DI randomness
certification immediately raises two questions: (i) How many
random bits can be certified from one ebit? (The ebit is the
unit of bipartite entanglement and is defined as the amount of
entanglement contained in a maximally entangled two-qubit
state [5].) (ii) Which is the simplest Bell inequality, i.e., the
one with the smallest number of settings, which allows for
the DI certification of the maximal number of random bits?
Question (i) has been answered recently. D’Ariano et al. [6]
have proven that the maximum number of bits that can be
certified in a DI way from one bit of entanglement using
projective nondemolition or general demolition measurements
is upper bounded by two, and Acín et al. [7] have proven
analytically that this maximum can be saturated using a pro-
tocol based on a simultaneous maximal quantum violation of
three Clauser-Horne-Shimony-Holt (CHSH) Bell inequalities
[8]. Question (ii) is still open. Intriguingly, Acín et al. [7]
have also conjectured on the basis of numerical evidence that
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observing the maximum quantum violation of a single Bell
inequality called “the elegant Bell inequality” (EBI) [9] is
sufficient for the DI certification of two random bits. The fact
that the EBI requires fewer settings than three CHSH Bell
inequalities makes this conjecture interesting and worth trying
to prove analytically. In this paper, we provide such a proof.

II. THE ELEGANT BELL INEQUALITY

The EBI is a bipartite Bell inequality introduced by Gisin
[9] in which one of the parties, Alice, chooses among three
dichotomic measurement settings, while the other party, Bob,
chooses among four dichotomic measurement settings. If the
possible outcomes are ±1 and Ek,l denotes the mean value
of the product of the outcomes of Alice’s kth and Bob’s lth
settings, the EBI reads

S ≡ E1,1 + E1,2 − E1,3 − E1,4 + E2,1 − E2,2

+ E2,3 − E2,4 + E3,1 − E3,2 − E3,3 + E3,4 � 6. (1)

Its maximum quantum violation is S = 4
√

3 [7].
Besides the practical aspect that the EBI requires fewer

settings than three CHSH Bell inequalities, there is also the
exciting possibility that the answer to question (ii) would be
the EBI. This would be remarkable. The adjective “elegant” in
the EBI comes from the observation that its maximal quantum
violation is achieved when Alice and Bob share an ebit, the
eigenstates of Alice’s three projective measurements form a
complete set of three mutually unbiased bases (MUBs), and
the eigenstates of Bob’s four projective measurement can be
divided into two sets, each of which defines a symmetric infor-
mationally complete positive operator-valued measure (SIC-
POVM). MUBs and SIC-POVMs are two geometric structures
of independent interest [10] and the fact that both might be
simultaneously necessary for the optimal DI certification of
maximal randomness from maximal entanglement would be
quite surprising.
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Acín et al. [7] have proposed a strategy for proving ana-
lytically that the EBI can be used for the DI certification of
two random bits from one ebit. The strategy relies on the as-
sumption that the maximal violation of the EBI is self-testing.
We have recently proven [11] that the maximal violation of the
EBI is not self-testing in the sense of Refs. [12,13]. However,
the conjecture still holds and we prove it through a different
strategy than the one proposed in Ref. [7].

III. SCENARIO

We are interested in the following scenario. Alice has
a source of systems and a measurement device with four
outcomes. She uses them to perform a four-outcome mea-
surement on each system produced by the source. The gen-
erated outcomes are apparently unpredictable, i.e., after many
measurements, Alice notices that the four outcomes appear
with the same frequency and follow no pattern. However, it
might be that the outcomes are not so unpredictable as it
seems and someone else might be able to guess the outcomes
of Alice’s measurements. That someone, whom we call the
adversary, or Eve, could also be the manufacturer of Alice’s
device. This means that the device is untrusted and that Alice
is therefore interested in a device-independent certification
of the randomness. Here we propose two tests that Alice
can perform to make sure that her device generates outputs
which are completely unpredictable for everyone. The tests,
if passed, certify that the local guessing probability of Eve
does not exceed the minimal value 1/4. If and only if this is
so, we say that Alice’s measurement produces two random
bits.

IV. TESTS

If we write A4 for Alice’s four-outcome POVM and model
Eve’s substantiated guesses as outcomes a of a local four-
outcome POVM F (if Eve measures a she guesses that Alice
measured a), the local guessing probability of Eve is

G = max
F

∑
a

P (a,a|A4,F ). (2)

The sum equals the probability that Eve makes a correct
guess given that Alice measures A4 and Eve measures F . We
maximize over all four-outcome POVMs that are local to Eve.
The tests then certify that G = 1/4.

The tests involve a third party, Alice’s trusted friend Bob,
who has access to a second system generated simultaneously
by Alice’s source. The scenario is sketched out in Fig. 1.

For the tests, Alice needs three and Bob needs four mea-
surement settings measuring local dichotomic observables.
We write A1,A2,A3 and B1,B2,B3,B4 for Alice’s and Bob’s
observables, respectively, and take their outcomes to be −1
and +1. We also write Ek,l for the expectation value of
the products of the outcomes of Alice’s kth and Bob’s lth
measurement and Ea|k,l for the expectation value of Bob’s lth
measurement which is conditioned on the outcome of Alice’s

FIG. 1. The source simultaneously emits two systems, one to
each side. Buttons represent possible measurements. Light bulbs
represent possible outcomes. Alice and Bob wants to certify in a
device-independent way that the two bits produced when Alice presses
her button 4 are actually random (i.e., unpredictable even for an
adversary who manufactured the devices).

kth measurement, i.e.,

Ek,l =
∑
a,b

ab P (a,b|Ak,Bl), (3a)

Ea|k,l =
∑

b

b P (a,b|Ak,Bl). (3b)

A test for the source. The first test is a Bell test. To
pass the test, Alice’s and Bob’s dichotomic measurements
should generate statistics indicating that the EBI is maximally
violated: S = 4

√
3.

A test for the measurement device. A necessary requirement
for G = 1/4 is that Alice’s device generates an apparently
random output, i.e., P (a|A4) = 1/4 for all outcomes a. We
define a family of four qubit operators Q = {Qa} by

Qa = γ 0
a 1 + γ 1

a Z + γ 2
a X + γ 3

a Y, (4)

where Z,X,Y are the Pauli operators and

γ 0
a = P (a|A4), (5a)

γ 1
a =

√
3

2
(Ea|4,1 + Ea|4,2), (5b)

γ 2
a =

√
3

2
(Ea|4,1 + Ea|4,3), (5c)

γ 3
a = −

√
3

2
(Ea|4,2 + Ea|4,3). (5d)

The second test is passed if P (a|A4) = 1/4 and Q is an
extremal four-outcome qubit POVM. Here Bob uses the same
three observables B1,B2,B3 used in the first test. Below we
describe how to determine that Q is an extremal POVM.

Since the tests only require an analysis of the measurement
statistics and assume nothing about either the devices used to
generate this statistics or the measurement device used by Eve,
they ensure that the randomness generated by Alice is genuine
and device-independent.

The simplest scenario that passes the two tests is the
following. Suppose that Alice and Bob share two qubits in
the singlet state,

|φ+〉 = 1√
2

(|00〉 + |11〉). (6)

If Alice measures three dichotomic observables which corre-
spond to the Pauli observables

A1 = Z, A2 = X, A3 = Y, (7)
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and Bob measures four observables which correspond to

B1 = 1√
3

(Z + X − Y ), B3 = 1√
3

(−Z + X + Y ), (8a)

B2 = 1√
3

(Z − X + Y ), B4 = 1√
3

(−Z − X − Y ), (8b)

then the EBI is maximally violated, which means the first test
is passed. Furthermore, if Alice measures the four-outcome
POVM A4 whose elements correspond to the four linearly
independent unit rank projectors

A1|4 = 1

4

[
1 − 1√

3
(Z + X + Y )

]
, (9a)

A2|4 = 1

4

[
1 − 1√

3
(Z − X − Y )

]
, (9b)

A3|4 = 1

4

[
1 + 1√

3
(Z − X + Y )

]
, (9c)

A4|4 = 1

4

[
1 + 1√

3
(Z + X − Y )

]
, (9d)

then Q defined by Eq. (4) equals A4, which is extremal
according to the discussion in Sec. VI. The requirement
P (a|A4) = 1/4 is also satisfied and, hence, the second test
is also fulfilled.

V. PROOF

We now prove that for any quantum state |ψ〉 generated
by Alice’s source and shared with Bob and Eve, and for
any A1,A2,A3,A4 local to Alice, B1,B2,B3,B4 local to Bob,
and F local to Eve, if the two tests have been passed, then∑

a P (a,a|A4,F ) = 1/4 and therefore G = 1/4.
In Ref. [11], we have shown that a maximal violation of the

EBI implies the existence of an isometry � = �A ⊗ �B ⊗ 1E ,

� : HA ⊗ HB ⊗ HE → (HA ⊗ H2) ⊗ (HB ⊗ H2) ⊗ HE

= (HA ⊗ HB ⊗ HE) ⊗ (H2 ⊗ H2),

(10)

such that �(|ψ〉) = |χ〉 ⊗ |φ+〉 for some |χ〉 in HA ⊗ HB ⊗
HE and such that

�(B1|ψ〉) = 1√
3
{|χ〉 ⊗ [1 ⊗ (Z + X)|φ+〉]

− J |χ〉 ⊗ (1 ⊗ Y |φ+〉)}, (11a)

�(B2|ψ〉) = 1√
3
{|χ〉 ⊗ [1 ⊗ (Z − X)|φ+〉]

+ J |χ〉 ⊗ (1 ⊗ Y |φ+〉)}, (11b)

�(B3|ψ〉) = 1√
3
{|χ〉 ⊗ [1 ⊗ (−Z + X)|φ+〉]

+ J |χ〉 ⊗ (1 ⊗ Y |φ+〉)}, (11c)

�(B4|ψ〉) = 1√
3
{|χ〉 ⊗ [1 ⊗ (−Z − X)|φ+〉]

− J |χ〉 ⊗ (1 ⊗ Y |φ+〉)}. (11d)

Here, HA, HB , and HE are the Hilbert spaces of Alice,
Bob, and Eve, H2 is a two-dimensional Hilbert space with
a computational basis {|0〉,|1〉}, the state |φ+〉 is the two-qubit
singlet state defined in Eq. (6), and J is an involution (i.e., J 2

is the identity) on the support of �B ⊗ 1E which commutes
with every operator local to Eve.

On the support of �A, each Aa|4, i.e., the element of A4

corresponding to outcome a, can be represented by an operator
Ra acting on HA ⊗ H2. If we expand Ra as

Ra = R0
a ⊗ 1 + R1

a ⊗ Z + R2
a ⊗ X + R3

a ⊗ Y, (12)

where each Rk
a is a Hermitian operator on HA, then

γ 0
a ≡ 〈ψ |Aa|4|ψ〉 = 〈χ |R0

a |χ〉, (13a)

γ 1
a ≡

√
3

2
〈ψ |Aa|4(B1 + B2)|ψ〉 = 〈χ |R1

a |χ〉, (13b)

γ 2
a ≡

√
3

2
〈ψ |Aa|4(B1 + B3)|ψ〉 = 〈χ |R2

a |χ〉, (13c)

γ 3
a ≡ −

√
3

2
〈ψ |Aa|4(B2 + B3)|ψ〉 = 〈χ |R3

aJ |χ〉. (13d)

The family of operators Q = {Qa} on H2 defined by

Qa = γ 0
a 1 + γ 1

a Z + γ 2
a X + γ 3

a Y (14)

forms an extremal four-outcome POVM by the second test.
The operator J is diagonalizable with eigenvalues −1

and +1. We write J± for the orthogonal projections onto
its ±1 eigenspaces. Also, inspired by Acín et al., we define
normalized states |ϕ±,a〉 by

|ϕ±,a〉 = J±Fa|χ〉/√q±,a. (15)

Then,

γ k
a =

∑
a′

〈χ |Fa′J+Rk
aJ+Fa′ |χ〉 + 〈χ |Fa′J−Rk

aJ−Fa′ |χ〉

=
∑
a′

q+,a′ 〈ϕ+,a′ |Rk
a |ϕ+,a′ 〉 + q−,a′ 〈ϕ−,a′ |Rk

a |ϕ−,a′ 〉

≡
∑
a′

q+,a′βk;+,a′
a + q−,a′βk;−,a′

a , (16)

for k = 0,1,2, and

γ 3
a =

∑
a′

〈χ |Fa′J+R3
aJ+Fa′ |χ〉 − 〈χ |Fa′J−R3

aJ−Fa′ |χ〉

=
∑
a′

q+,a′ 〈ϕ+,a′ |R3
a |ϕ+,a′ 〉 − q−,a′ 〈ϕ−,a′ |R3

a |ϕ−,a′ 〉

≡
∑
a′

q+,a′β3;+,a′
a − q−,a′β3;−,a′

a . (17)

Here we have, without loss of generality, assumed that F is
projective. Next, define four-outcome qubit POVMs R±,a′ =
{R±,a′

a } as

R+,a′
a = β0;+,a′

a 1 + β1;+,a′
a Z + β2;+,a′

a X + β3;+,a′
a Y, (18a)

R−,a′
a = β0;−,a′

a 1 + β1;−,a′
a Z + β2;−,a′

a X − β3;−,a′
a Y. (18b)

From Eqs. (16) and (17) follow that Qa = ∑
±,a′ q±,a′R±,a′

a ,
which is a convex decomposition of Q. Since Q is extremal,
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R±,a′
a = Qa and, hence, βk;±,a′

a = γ k
a for all a′. In particular,

β0;±,a
a = γ 0

a = 1/4 for all a. Now,

∑
a

P (a,a|A4,F ) =
∑

a

〈ψ |Aa|4Fa|ψ〉

=
∑

a

〈χ |R0
aFa|χ〉

=
∑

a

〈χ |FaJ+R0
aJ+Fa|χ〉

+ 〈χ |FaJ−R0
aJ−Fa|χ〉

=
∑

a

q+,aβ
0;+,a
a + q−,aβ

0;−,a
a

= 1/4. (19)

Since we have not assumed anything about Eve’s measurement,
this proves that G = 1/4.

VI. EXTREMAL QUBIT POVMs

POVMs of a fixed number of outcomes form a convex set. Its
extremal elements are those that cannot be written as nontrivial
convex combinations of other POVMs. D’Ariano et al. [6]
have classified all extremal POVMs with discrete output sets.
According to this classification, a four-outcome qubit POVM is
extremal if, and only if, it consists of four linearly independent
one-dimensional projectors. The elements of Q defined by
Eq. (4) are one-dimensional projectors provided that tr Qa > 0
and det Qa = 0. The former condition is satisfied if P (a|A4) >

0 and the latter condition is satisfied if

(Ea|4,1 + Ea|4,2)2 + (Ea|4,1 + Ea|4,3)2

+ (Ea|4,2 + Ea|4,3)2 = 4
3P (a|A4)2, (20)

for all a. Moreover, the projectors are linearly independent
provided the vectors [γ 0

a γ 1
a γ 2

a γ 3
a ]T are linearly independent,

where the γ k
a s are defined as in Eq. (5). Given that γ 0

a =
P (a|A4) = 1/4 for all a, this is equivalent to the condition

that the matrix of conditional expectation values,⎡
⎢⎣

E1|4,1 E1|4,2 E1|4,3

E2|4,1 E2|4,2 E2|4,3

E3|4,1 E3|4,2 E3|4,3

⎤
⎥⎦, (21)

has full rank.

VII. CONCLUSIONS

We have proven that as conjectured by Acín et al. in
Ref. [7], the maximal quantum violation of the elegant Bell
inequality can be used to certify, in a device-independent
way, two bits of randomness from one ebit. This demonstrates
how fundamental tools in quantum information, namely, an
ebit, a complete set of qubit MUBs, and the elements of
qubit SIC-POVMs, are connected to maximal randomness.
An open question is whether a certification similar to ours
would be possible with fewer measurement settings. If not,
this would sharpen the elegance of the protocol and strengthen
the surprising connection between complete sets of MUBs
and SIC-POVM elements, on one side, and optimal maximal
randomness from maximal entanglement, on the other.

Concerning the practical aspects of randomness generation,
it should be mentioned that violating different Bell inequalities
is not equally costly in terms of statistics [14,15]. Moreover, to
certify device-independent generation of more that one random
bit from an ebit, it is often better to use a three-outcome POVM
rather than a four-outcome POVM since the former is generally
more robust against imperfections in the experimental setup
[16].
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[11] O. Andersson, P. Badziaąg, I. Bengtsson, I. Dumitru, and A.
Cabello, Self-testing properties of Gisin’s elegant Bell inequal-
ity, Phys. Rev. A 96, 032119 (2017).

[12] M. McKague and M. Mosca, Generalized self-testing and
the security of the 6-state protocol, in Theory of Quantum
Computation, Communication, and Cryptography, edited by
W. van Dam, V. M. Kendon, and S. Severini, Lecture Notes
in Computer Science Vol. 6519 (Springer, Berlin, 2010),
p. 113.

[13] M. McKague, Quantum information processing with adver-
sarial devices, Ph.D. thesis, University of Waterloo, 2010;
arXiv:1006.2352.

[14] A. Peres, Bayesian analysis of Bell inequalities, Fortschr. Phys.
48, 531 (2000).

[15] R. D. Gill, Statistics, causality and Bell’s theorem, Statist. Sci.
29, 512 (2014).

[16] S. Gómez, A. Mattar, E. S. Gómez, D. Cavalcanti, O. Jiménez
Farías, A. Acín, and G. Lima, Experimental nonlocality-
based randomness generation with non-projective measure-
ments, arXiv:1711.10294.

012314-5

https://doi.org/10.1007/s10701-005-9008-x
https://doi.org/10.1007/s10701-005-9008-x
https://doi.org/10.1007/s10701-005-9008-x
https://doi.org/10.1007/s10701-005-9008-x
https://doi.org/10.1103/PhysRevA.96.032119
https://doi.org/10.1103/PhysRevA.96.032119
https://doi.org/10.1103/PhysRevA.96.032119
https://doi.org/10.1103/PhysRevA.96.032119
http://arxiv.org/abs/arXiv:1006.2352
https://doi.org/10.1002/(SICI)1521-3978(200005)48:5/7<531::AID-PROP531>3.0.CO;2-%23
https://doi.org/10.1002/(SICI)1521-3978(200005)48:5/7<531::AID-PROP531>3.0.CO;2-%23
https://doi.org/10.1002/(SICI)1521-3978(200005)48:5/7<531::AID-PROP531>3.0.CO;2-%23
https://doi.org/10.1002/(SICI)1521-3978(200005)48:5/7<531::AID-PROP531>3.0.CO;2-%23
https://doi.org/10.1214/14-STS490
https://doi.org/10.1214/14-STS490
https://doi.org/10.1214/14-STS490
https://doi.org/10.1214/14-STS490
http://arxiv.org/abs/arXiv:1711.10294



