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Characterizing unknown quantum states and measurements is a fundamental problem in quantum
information processing. In this Letter, we provide a novel scheme to self-test local quantum systems using
noncontextuality inequalities. Our work leverages the graph-theoretic framework for contextuality
introduced by Cabello, Severini, and Winter, combined with tools from mathematical optimization that
guarantee the unicity of optimal solutions. As an application, we show that the celebrated Klyachko-Can-
Binicioğlu-Shumovsky inequality and its generalization to contextuality scenarios with odd n-cycle
compatibility relations admit robust self-testing.
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Introduction.—The deployment and analysis of math-
ematical models have been crucial tools to advance our
scientific understanding of the physicalworld.Nevertheless,
complex mathematical models often admit a multitude of
possible solutions, a phenomenon that can lead to ambiguity
and erroneous predictions when the solution of the model is
used to study some real-life problem. Models with no
uniquely identifiable solutions manifest themselves across
most fields of science and mathematics, typical examples
being the nonuniqueness of solutions to partial differential
equations and the existence of multiple Nash equilibria in
noncooperative games. More pertinent to this work, the
uniqueness of the ground state of aHamiltonian is a problem
with important engineering applications. Indeed, quantum
annealing crucially relies on the uniqueness of the ground
state of the underlyingHamiltonian, which is used to encode
the solution of an optimization problem [1].
From a practical standpoint, the noisy nature of the

collected data governing the model selection process
suggests we should employ “robust” models, i.e., models
that have a unique solution that is moreover stable under
perturbations of the input data. Notwithstanding the
ubiquitousness and importance of problems related to
the unicity and robustness of the solutions of a given
model, there is no general framework allowing us to
address these questions in a unified manner.
One of the most extensively used modeling tools in

science and engineering is mathematical optimization. In
this setting, the model is specified by a family of decision
variables that satisfy certain feasibility constraints. The
goal is then to find the value of the decision variables
that maximizes an appropriate measure of performance.

Undoubtedly, one of the most important optimization
models is linear programming (LP), where the decision
variables are scalar variables subject to affine constraints.
An equally important optimization model is semidefinite
programming (SDP), constituting a wide generalization of
linear programming with extensive modeling power and
efficient algorithms for solving them. Unlike linear pro-
grams, the decision variables in a SDP are vectors, and the
constraints are defined in terms of the inner products of the
vectors. SDPs have many important applications in physics,
e.g., in quantum foundations (Bell nonlocality, contextual-
ity, steering) [2–4], quantum information theory (entangle-
ment witnesses, tomography, quantum state discrimination)
[5–7], quantum cryptography [8], and quantum complexity
[9], just to mention a few. Most importantly, the aspect
of SDPs that is crucial to this work is that, like LPs, they
offer a general framework for studying uniqueness and
robustness of model solutions.
In this Letter, we employ the paradigm of identifiable

robust models to characterize untrusted devices via con-
textuality. Contextuality refers to the impossibility of
reproducing a set of probability distributions, each of them
for a context (defined as a set of compatible and mutually
nondisturbing observables) that share some marginal prob-
abilities with a joint probability distribution in a single
probability space. Quantum theory is an example of a
contextual theory [10]. In this work we appropriately
extend the paradigm of Bell self-testing to the framework
of contextuality. In terms of techniques, our work leverages
the well-known link between contextuality and semidefin-
ite programming identified in the seminal work by
Cabello, Severini, and Winter [3], combined with some
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lesser-known results concerning the unicity and robustness
of optimal solutions to semidefinite programs. Roughly
speaking, we show that the nearness-of-optimality of the
CSW semidefinite program bounds the distance in the
SDP-solution space, which in turn translates into a bound
on the distance from the ideal quantum realization. We
believe that the tools employed in this Letter will have
value outside of the domain of contextuality, e.g., see
Ref. [11] for a recent application in Bell nonlocality. Our
results render new insights into the foundations of quantum
contextuality and a proof-of-principle approach to charac-
terize the underlying quantum states and measurements
manifesting quantum contextuality via experimental sta-
tistics. We provide an innovative scheme to attest robust
self-testing for any noncontextuality inequality and present
a concrete illustration for the case of the generalized KCBS
inequality, which is defined for any odd number of
measurement events n ≥ 5. Lastly, in terms of applications,
our results allows one to verify quantum systems locally
under the following three assumptions characteristic
of Kochen-Specker contextuality scenarios [10,12,13].
Assumption 1: The measurements are ideal [14,15] (i.e.,
they give the same outcome when performed consecutive
times, they do not disturb compatible measurements, all
their coarse grainings admit realizations that satisfy these
properties), Assumption 2: The measured system has no
more memory than its information carrying capacity, each
measurement device is only used once, and there is an
unlimited supply of them. Assumption 3: The measure-
ments obey the compatibility relations dictated by the odd
cycle graph. In the case of Bell self-testing, it is necessary
to assume that the involved parties are spacelike separated
and that there is no superluminal communication [16,17],
otherwise, the statistics that attain the quantum supremum
of a Bell inequality [18] can be simulated using classical
resources. In the same spirit, Assumption 2 is necessary in
the setting of contextuality, otherwise, contextuality can be
simulated by classical systems [19,20].
Self-testing in Bell scenarios.—To motivate our results, it

is instructive to survey the relevant results in the setting of
Bell nonlocality, a special case of contextuality where the
contexts are generated by the spacelike separation of
the involved parties [21]. The experimental tests that reveal
the nonlocal nature of a physical theory are called Bell
inequalities or Bell tests. Geometrically, a Bell inequality
corresponds to a half-space that contains the set of local
behaviors, i.e.,

X
a;b;x;y

Bab
xypðabjxyÞ ≤ Bl; ð1Þ

for all local behaviors pðabjxyÞ. The quantum supremum of
the Bell inequality (1), denoted by Bq, is the largest possible
value of the expression

P
a;b;x;y B

ab
xypðabjxyÞ, when

pðabjxyÞ ranges over the set of quantum behaviors, i.e.,

pðabjxyÞ ¼ hψ jAxja ⊗ Byjbjψi;

for a quantum state jψi ∈ HA ⊗ HB and quantum mea-
surements fAxjag, fByjbg acting on HA and HB, respec-
tively. Besides their physical significance, Bell inequality
violations witness the existence of certifiable randomness,
and have been leveraged to power many other important
information-theoretic tasks [22–24].
The feature of Bell inequalities that is most pertinent to

this work is that the quantum realizations that achieve the
quantum supremum of a Bell inequality are sometimes
uniquely determined up to local isometries and ancilla
degrees of freedom. Formally, a Bell inequality is a self-test
for the realization ðHA;HB;ψ ; fAxjag; fByjbgÞ if for any
other realization ðHA0 ;HB0 ;ψ 0; fA0

xjag; fB0
yjbgÞ that also

attains the quantum supremum, there exists a local isometry
V ¼ VA ⊗ VB and an ancilla state jjunki such that

Vjψ 0i ¼ jjunki ⊗ jψi;
VðA0

xja ⊗ B0
yjbÞjψ 0i ¼ jjunkiðAxja ⊗ ByjbÞjψi: ð2Þ

In practical terms, however, when a Bell experiment is
performed in the lab, experimental imperfections will only
allow us to achieve a value which is close, but not equal, to
the ideal quantum supremum Bq. These practical consid-
erations naturally lead to the notion of robust self-testing.
Specifically, a Bell inequality is an ðϵ; rÞ-robust self-test for
the realization ðHA;HB;ψ ; fAxjag; fByjbgÞ if it is a self-test
as defined above, and furthermore, whenever for some
realization ðHA0 ;HB0 ;ψ 0; fA0

xjag; fB0
yjbgÞ,

X
a;b;x;y

Bab
xy hψ 0jðA0

xja ⊗ B0
yjbÞjψ 0i ≥ Bq − ϵ;

we have that

kVðA0
xja ⊗ B0

yjbÞjψ 0i − jjunkiðAxja ⊗ ByjbÞjψik ≤ OðϵrÞ:

As an example, the well-known Clauser-Horne-Shimony-
Holt (CHSH) Bell inequality is an ðϵ; 1

2
Þ-robust self-test for

the singlet state and appropriate Pauli measurements, e.g.,
see Refs. [25–28]. The term self-testing was first intro-
duced by Mayers and Yao [26] in the setting of Bell
nonlocality [16]. However, the idea underlying self-testing
is present in earlier works, for example, in the works of
Tsirelson [29], Summers-Werner [30], and Popescu-
Rohrlich [25]. Recent research on self-testing moves in
various new directions, e.g., which states can be self-tested
[31,32] or how to tighten the robustness results, so that self-
testing results have practical applications [33].
Self-testing in contextuality scenarios.—In this section

we introduce a natural analogue of the notion of
(robust) self-testing for contextuality scenarios, where the
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noncontextuality assumption is not enforced via locality.We
follow the exclusivity graph approach to contextuality [3].
A contextuality scenario is defined by a family of

measurement events e1;…; en. Two events are mutually
exclusive when they can be realized by the same meas-
urement but correspond to different outcomes. To the
events feigni¼1 we associate their exclusivity graph, whose
vertex set is f1;…; ng (denoted by [n]), and two vertices i,
j are adjacent (denoted by i ∼ j) if the measurement events
ei and ej are exclusive.
For an exclusivity graph Gex, we consider theories that

assign probabilities to the measurement events correspond-
ing to its vertices. A behavior corresponding to Gex is a
mapping p: ½n� → ½0; 1�, where pi þ pj ≤ 1, for all i ∼ j.
Here, the nonnegative scalar pi ∈ ½0; 1� encodes the prob-
ability that measurement event ei occurs. Furthermore, note
that the linear constraint pi þ pj ≤ 1 enforces that if
measurement event ei takes place [i.e., pðeiÞ ¼ 1�, the
event eiþ1 cannot take place.
A behavior p: ½n� → ½0; 1� is deterministic noncontextual

if all events have predetermined values that do not depend
on the occurrence of other events. Concretely, a determin-
istic noncontextual behavior p is a mapping p:
½n� → f0; 1g, where pi þ pj ≤ 1, for all i ∼ j. The poly-
tope of noncontextual behaviors, denoted by PncðGexÞ, is
the convex hull of all deterministic noncontextual behav-
iors. Behaviors that do not lie in PncðGexÞ are contextual. A
behavior p: ½n� → ½0; 1� is quantum if there exists a
quantum state ρ and projectors Π1;…Πn acting on a
Hilbert space H where

pi¼ trðρΠiÞ; ∀ i∈ ½n� and trðΠiΠjÞ¼ 0; for i∼j: ð3Þ

We refer to the realization ρ; fΠgni¼1 satisfying (3) as a
quantum realization of the behavior p. The convex set of all
quantum behaviors is denoted by PqðGexÞ. For the purposes
of this manuscript, we will denote a quantum realization by
fjuiihuijgni¼0. Furthermore, pi ≡ jhuojuiij2, ∀ i ∈ ½n� and
p ∈ PqðGexÞ. A noncontextuality inequality corresponds
to a half-space that contains the set of noncontextual
behaviors, i.e.,

X
i∈½n�

wipi ≤ BncðGex; wÞ; ð4Þ

for all p ∈ PncðGexÞ, where w1;…; wn ≥ 0.The quantum
supremum of the noncontextuality inequality (4), denoted
by BqcðGex; wÞ, is the largest value of the expressionP

i∈½n�wipi, as p ranges over the set of quantum behaviors
PqðGexÞ.
Motivated by Bell self-testing, we now introduce a

natural notion of “uniqueness” for the quantum realizations
fjuiihuijgni¼0 that attain the quantum supremum of a
noncontextuality inequality. In this setting, uniqueness

refers to identifying the state and measurement operators
that achieve the quantum supremum, up to a global
isometry. The notion of uniqueness and robustness appro-
priate for our work is introduced below.
Definition 1.—(Self-testing) A noncontextuality inequal-

ity
P

i∈½n� wipi ≤ BncðGex; wÞ is a self-test for the realiza-
tion fjuiihuijgni¼0 if (1) fjuiihuijgni¼0 achieves the quantum
supremum BqcðGex; wÞ. (2) For any other realization
fju0iihu0ijgni¼0 that also achieves BqcðGex; wÞ, there exists
an isometry V such that

VjuiihuijV† ¼ ju0iihu0ij; 0 ≤ i ≤ n: ð5Þ

Definition 2.—(Robustness) A noncontextuality inequal-
ity

P
i∈½n� wipi ≤ BncðGex; wÞ is an ðϵ; rÞ-robust self-test for

fjuiihuijgni¼0 if it is a self-test, and furthermore, for any
other realization fju0iihu0ijgni¼0 satisfying

Xn
i¼1

wijhu0iju00ij2 ≥ BqcðGex; wÞ − ϵ;

there exists an isometry V such that

kVjuiihuijV† − ju0iihu0ijk ≤ OðϵrÞ; 0 ≤ i ≤ n: ð6Þ

This definition of self-testing is in stark contrast to the
case of Bell self-testing, where uniqueness is defined up to
local isometries [recall Eq. (2)] to account for the physical
operational freedom of spacelike separated parties to pre-
process their local quantum systems and measurements.
Furthermore, unlike the case of Bell self-testing, in con-
textuality scenarios there is no meaningful sense in which
the state can be self-tested in isolation, rather, a state is
always self-tested in relation to a measurement. On a side
note, it is worth noticing that closeness between a pair of
quantum realizations implies closeness of the correspond-
ing pair of quantum behaviors.
How to show self-testing.—To show that a noncontex-

tuality inequality is a self-test we rely on the connection
with SDPs established in Ref. [3], where it was shown that
the quantum supremum of a noncontextuality inequality

max

�Xn
i¼1

wipi∶p ∈ PqðGexÞ
�
; ð7Þ

is equal to the value of the following SDP:

ϑðGex; wÞ ¼ max
Xn
i¼1

wiXii

subject to Xii ¼ X0i; 1 ≤ i ≤ n;

Xij ¼ 0; i ∼ j;

X00 ¼ 1; X ∈ S1þn
þ ; ð8Þ
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where S1þn
þ denotes the cone of positive semidefinite

matrices of size nþ 1. The optimization program (8) is
known as the Lovász theta number of the vertex-weighted
graph ðGex; wÞ [34], where the vertex-weighted graph refers
to a graph where a weight is assigned to each vertex.
Moreover, the equivalence between the optimization prob-
lems (7) and (8) also induces a correspondence between
their optimal solutions. Specifically, if p ∈ PqðGexÞ is
optimal for Eq. (7) and fjuiihuijgni¼0 is a quantum
realization of p, the Gram matrix of the vectors
ju0i; hu0ju1iju1i;…; hu0junijuni corresponds to an optimal
solution for Eq. (8). Conversely, for any optimal solution
X ¼ Gramðju0i; ju1i;…; juniÞ of the SDP (8), the realiza-
tion fjuiihuijkjuiihuijk−1gni¼0 is optimal for Eq. (7). This
correspondence leads to the following three-step proof
strategy for showing that the noncontextuality inequality
(7) is an ðϵ; 1

2
Þ-robust self-test. (i) First, show that the SDP

(8) has a unique optimal solution X�. (ii) Second, show that
any ϵ-suboptimal solution X of Eq. (8), i.e., a feasible X
where

P
iwiXii ≥ ϑðGexÞ − ϵ, satisfies kX̃ − X�kF ≤ OðϵÞ.

(iii) Third, show that for two positive semidefinite matrices
that are ϵ close in Frobenius distance, the vectors in their
Gram decompositions are Oð ffiffiffi

ϵ
p Þ close in 2-norm.

Whenever the first step holds, the second step is satisfied
for the SDP (8) and the third step is always true. The proofs
of the first two steps hinge on the rich duality theory of
SDPs. Specifically, the Lagrange dual of the SDP (8) is
given by the least scalar t ≥ 0 for which

Z≡ tE00þ
Xn
i¼1

ðλi−wiÞEii−
Xn
i¼1

λiE0iþ
X
i∼j

μijEij≽0; ð9Þ

where Eij ¼ ðeie⊤j þ eje⊤i =2Þ and the column vectors
feigni¼0 form the standard basis of Rnþ1. Furthermore,
λi, wi, and μij are the Lagrange multipliers corresponding to
the constraints of the primal SDP (8). The first tool we use
is a sufficient condition for showing that an arbitrary SDP
admits a unique optimal solution, in terms of the existence
of an appropriate optimal solution for its dual problem; see
Theorem 1.2 in the Supplemental Material [35–42]. The
second crucial tool are error bounds for SDPs, which allow
us to bound the distance of a feasible solution from the set
of optimal solutions, in terms of the suboptimality of the
objective function; see Theorem 1.4 in the Supplemental
Material [35]. Combining these two tools, we arrive at our
main technical tool, allowing us to show that a non-
contextuality inequality is a self-test:
Main Theorem.—Consider a noncontextuality inequalityP
n
i¼1 wipi ≤ BncðGex; wÞ. Assume that (1) There exists an

optimal quantum realization fjuiihuijgni¼0 such that

X
i

wijhuiju0ij2 ¼ BqcðGex; wÞ

and hu0juii ≠ 0, for all 1 ≤ i ≤ n, and (2) There exists a
dual optimal solution Z� for the SDP (9) such that the
homogeneous linear system

M0;i ¼ Mi;i; for all 1 ≤ i ≤ n;

Mi;j ¼ 0; for all i ∼ j;

MZ� ¼ 0; ð10Þ

in the symmetric matrix variable M only admits the trivial
solutionM ¼ 0.Then, the noncontextuality inequality is an
ðϵ; 1

2
Þ-robust self-test for fjuiihuijgni¼0.

The proof of the main theorem is deferred to Sec. II in the
Supplemental Material [35]. In the next section we shift our
focus to a particular instance of the main theorem, namely,
the KCBS noncontextuality inequalities. Specifically, we
show that for the KCBS inequalities, condition (10) is
satisfied and therefore, such inequalities are robust self-tests.
An application: The KCBS inequalities.—A celebrated

noncontextuality inequality is the Klyachko-Can-
Binicioğlu-Shumovsky (KCBS) inequality, first introduced
for n ¼ 5 in Ref. [12] and subsequently generalized to
general odd values of n [43,44]. The KCBS inequality
corresponds to an odd number of measurement events
e1;…; en with the property that ei and eiþ1 are exclusive,
where indices are taken modulo n. The corresponding
exclusivity graph is the n cycle and the set of noncontextual
behaviors is PncðCnÞ. Concretely, for any odd n, the
KCBSn noncontextuality inequality is given by

max

�Xn
i¼1

pi∶p ∈ PncðCnÞ
�

¼ ðn − 1Þ
2

: ð11Þ

The KCBSn inequality witnesses quantum contextuality,
as quantum behaviors can achieve values greater than
ðn − 1Þ=2. Specifically, for any odd n, we have that

max

�Xn
i¼1

pi∶p ∈ PncðCnÞ
�

¼ n cos π=n
1þ cos π=n

; ð12Þ

and a quantum behavior in PqðCnÞ that achieves the
quantum supremum of the KCBSn inequality is

pðnÞ
i ¼ cos π=n

1þ cos π=n
; 1 ≤ i ≤ n: ð13Þ

A quantum realization that achieves the quantum
supremum corresponds to

ju0i ¼ ð1; 0; 0ÞT and

juji ¼ ( cosðθÞ; sinðθÞ sinðϕjÞ; sinðθÞ cosðϕjÞ)T; ð14Þ

where cos2ðθÞ ¼ f½cos ðπ=nÞ�=½1þ cos ðπ=nÞ�g and ϕj ¼
½jπðn − 1Þ=n� for 1 ≤ j ≤ n. As it turns out, the generalised
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KCBS inequality satisfies the assumptions of the main
theorem, and the resulting self-testing statement is formally
stated as follows:
Corollary.—For any odd integer n, the KCBSn inequal-

ity is an ðϵ; 1
2
Þ-robust self-test for the realization corre-

sponding to Eq. (14).
By the main theorem, the proof of the corollary boils

down to finding a dual optimal solution satisfying Eq. (10).
In Sec. III of the Supplemental Material [35], we show that
for any odd integer n, the following matrix has the desired
properties:

Z�
n ¼

�
ϑðCnÞ −e⊤n
−en In þ n−ϑðCnÞ

2ϑðCnÞ ACn

�
∈Rð1þnÞ×ð1þnÞ; ð15Þ

where en is the all-ones column vector of length n, and ACn

is the adjacency matrix of the cycle graph Cn.
Concretely, for n ¼ 5, the dual optimal solution is

Z⋆
5 ¼

0
BBBBBBBBB@

ffiffiffi
5

p
−1 −1 −1 −1 −1

−1 1 c 0 0 c

−1 c 1 c 0 0

−1 0 c 1 c 0

−1 0 0 c 1 c

−1 c 0 0 c 1

1
CCCCCCCCCA
; ð16Þ

where c ¼ ð5 − ffiffiffi
5

p
=2

ffiffiffi
5

p Þ. Robust self-testing for the five
cycle KCBS inequality corresponds to showing that the
only solution to the linear system M5Z⋆

5 ¼ 0 of the form

M5 ¼

0
BBBBBBBBB@

0 m1 m2 m3 m4 m5

m1 m1 0 m6 m9 0

m2 0 m2 0 m7 m10

m3 m6 0 m3 0 m8

m4 m9 m7 0 m4 0

m5 0 m10 m8 0 m5

1
CCCCCCCCCA

ð17Þ

is the matrix of all zeros.
Conclusions.—In this work we introduced an appropriate

extension of the notion of Bell self-testing to the framework
of contextuality, where the noncontextuality assumption is
not enforced via locality. In our main technical result, we
identified a sufficient condition for showing that an
arbitrary noncontextuality inequality is a robust self-test.
As an application of our main theorem, we showed that the
celebrated KCBS noncontextuality inequalities are robust
self-tests. Our main theorem is not restricted to KCBS
inequalities and can be used to self-test other noncontex-
tuality inequalities, given they satisfy the necessary con-
ditions; this will be the topic of future investigations.
Equally important, our proof techniques leverage a largely

unnoticed connection between unicity problems in physics
with uniqueness properties of optimization problems,
which we believe will be of independent interest to the
physics community.
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