This is the peer-reviewed version of the article accepted for publication in ENVIRONMENTAL AND EXPERIMENTAL BOTANY Volume 155, 609-618. 2018, which has been published in final form at https://doi.org/10.1016/j.envexpbot.2018.08.011

Gender dimorphism in Corema album across its biogeographical area and implications under a scenario of extreme drought events

M.C. Díaz Barradas ${ }^{1}$, M. Zunzunegui ${ }^{1}$, O. Correia ${ }^{2}$, F. Ain-Lhout ${ }^{3}$, M.P. Esquivias ${ }^{1}$
L. Álvarez-Cansino ${ }^{4}$
${ }^{1}$ Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, SPAIN.
${ }^{2}$ Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, PORTUGAL
${ }^{3}$ Université Ibn Zohr, Sciences et Techniques, Agadir, MOROCCO.
${ }^{4}$ Department of Plant Ecology. University of Bayreuth. Universitätsstrasse 30. 95440 Bayreuth. GERMANY

Corresponding author: M.C. Díaz Barradas email: diaz@us.es

Abstract

In dioecious species, traits may have evolved because of significantly different resource demands associated with male versus female sexual reproduction. It is generally assumed that females have higher reproductive costs, thereafter in long-lived species, males often exceed females in vigour and suffer lower physiological limitations under stress. However, large-scale studies of gender dimorphism and the link between survival and physiological responses and compensation mechanisms are still lacking. In this study, we compared canopy performance, photochemical efficiency, leaf water potential, $\Delta^{13} \mathrm{C}$, leaf nitrogen content and $\delta^{15} \mathrm{~N}$ in both genders of the dioecious species Corema album (Ericaceae) across all the species' biogeographical distribution. This

area corresponds to a wide climatic gradient, from temperate and humid to Mediterranean, across the Atlantic coast of the Iberian Peninsula.

Our results evidenced that the species responds to the bioclimatic gradient, and most variables were significantly correlated with annual rainfall and bioclimatic indices, although gender dimorphism was only manifested in $\Delta^{13} \mathrm{C}$ and in leaf water potential at the peak of the drought season. Female plants have significantly higher values of $\Delta^{13} \mathrm{C}$, which could be attributed to lower water use efficiency; however, male plants presented more negative leaf water potentials than females, especially in the populations with the warmest and most arid climate.

We concluded that C. album populations adjust to the climatic gradient at different hierarchical scales, from physiological instantaneous to time-integrated traits, with gender dimorphism only occurring in sub-optimal environments The absence of morphological differences between genders and the maintenance of a less negative water potential in females in the dry period in southern more arid populations, suggests the existence of compensatory mechanisms at underground level.

Keywords: chlorophyll fluorescence; climatic gradient; dioecious scrub; leaf area index (LAI); reproductive costs; water stress

1. Introduction

In dioecious plant species gender-specific ecological and morphological traits may have evolved because of significantly different resource demands associated with male versus female sexual reproduction (Dawson and Bliss, 1989; Dawson and Ehleringer, 1993). If resources are limited, reproduction competes directly with vegetative growth and investment in defence mechanisms; so that an increase in the energy allocated to one-
function results in a decrease in the energy allocated to the others (Juvany and MunnéBosch, 2015; Obeso, 2002). In the majority of cases, it has been postulated that females of dioecious species have greater reproductive allocation than males in order to produce flowers and fruits, which may cause a loss of growth or an increase in mortality especially in stressful environments. On the other hand, in order to produce pollen, male plants should need more nitrogen supply than females, which may lead to different resource demands (Barrett and Hough, 2013); these differences should be more important in wind-pollinated plants during the flowering period, generating a trade-off in the investment of growth and reproduction (Obeso, 2002; Zunzunegui et al., 2006). In relation to these ideas, in the literature there are many studies on gender distribution, morphology, growth and survival in dioecious plants (Allen and Antos, 1993; ÁlvarezCansino et al., 2010a; Diaz-Barradas and Correia, 1999; Herrera, 1988; Morales et al., 2016; Nicotra, 1999; Obeso, 1997; Zunzunegui et al., 2006). Yet, studies on genderspecific physiology in dioecious species are limited (Álvarez-Cansino et al., 2012; Álvarez-Cansino et al., 2010b; Correia and Díaz Barradas, 2000; Dawson et al., 2004; Dawson and Ehleringer, 1993; Juvany et al., 2014; Juvany and Munné-Bosch, 2015; Sánchez-Vilas and Retuerto, 2009). In particular, there is little knowledge on how differential physiological performance among genders is linked to gender-related differences in performance as growth and survival. Available studies are mostly at local scale, supporting the evidence that genders might exhibit differential competitive abilities derived from the different resource allocation to reproduction, which imply a certain degree of niche divergence (Eppley, 2006). These may lead to gender differential survival and spatial segregation of the sexes (SSS) in a spatially heterogeneous habitat (Bierzychudek and Eckhart, 1988; Sánchez-Vilas and Retuerto, 2009).

Several studies suggest that female plants present compensatory mechanisms to maintain their greater reproductive demands (Álvarez-Cansino et al., 2010b; Case and Barrett, 2004; Dawson et al., 2004). For example, higher CO_{2} assimilation, associated with higher reproductive allocation rates, has been found in females plants in relation to males in several species (Rakocevic et al., 2009). This may explain the lack of genderrelated differences in growth, mortality or SSS.

It is widely known that species adjust their physiological responses to environmental gradients (Ashcroft et al., 2016; Case and Barrett, 2004), and phenotypic plasticity is considered the major means by which plants cope with environmental heterogeneity (Valladares et al., 2007). Yet, how physiological responses, compensation mechanisms and their link to survival differ among sexes is not known at a representative species distribution scale. There is thus a need for a wide assessment of physiological differences among genders representative of species distribution areas, vegetative performance and its relationship with sex ratio and plant distribution. In this study we provide data on sexual dimorphism and morphological and physiological variations of the woody dioecious species Corema album (L.) D. Don (Ericaceae) over a wide environmental gradient corresponding to the entire biogeographical area. To our knowledge, this is the first study covering the distribution area of a dioecious species that analyses morpho-physiological gender dimorphism.

Corema album is a dioecious shrub endemic to the West coast of the Iberian Peninsula (Valdés et al., 1987). The species occurs along a wide bioclimatic gradient from Galicia in the Northwest with an Atlantic climate, to Gibraltar strait in the SouthWest with a typical Mediterranean climate, ranging along all the Atlantic coast of the Iberian Peninsula. Rainfall oscillates from 1500 in the North to 500 mm in the South along the species' biogeographical area (Álvarez-Cansino et al. 2013). Previous studies,
including our own, show that C. album exhibits gender-related differences in reproductive allocation; female shrubs show greater reproductive effort than males, due to fruit production (Álvarez-Cansino et al., 2010a; Guitián et al., 1997; Zunzunegui et al., 2006). Demographic differences between sexes reflected in sex ratio deviations or the occurrence of spatial segregation were found to be unrelated to any climatic variable across the complete biogeographical area, suggesting the existence of compensatory mechanisms that may counterbalance the higher reproductive effort of female plants (Álvarez-Cansino et al., 2012; Martins et al., 2017).

In a previous study on physiological traits on male and female plants of this species in three selected points of its biogeographical area (north, centre and south), results have shown that plants were physiologically stressed in the southernmost population during the summer drought, exacerbating gender-related differences (Álvarez-Cansino et al., 2012). Yet, this study was at the local scale and limited to one study year. In this study, we improved the limited existing data by extending our research to the complete biogeographical area of the species to test for the first time how physiological instantaneous and time-integrated variables change over the complete area of the species. We hypothesized that the absence of SSS found in Corema album is explained by female's compensatory mechanisms and that genders won't present any differences in performance in physiological and canopy structure (LAI).

Climate changes in the Mediterranean region are predicted to occur as a result of global warming (Christensen et al., 2007; IPCC, 2013), including a rise in mean temperature $\left(2-4{ }^{\circ} \mathrm{C}\right)$ and a decrease in the quantity and frequency of rainfall. In Mediterranean-type ecosystems, where water availability is one of the main environmental constraints limiting plant species regeneration (Castro et al., 2004; Gómez-Aparicio et al., 2008), a climatic scenario of increased drought is expected to
drive changes in community composition and geographic distribution of species. Under this scenario, plant performance and gender dimorphism in C. album will be affected, especially in the southern-most arid limit of its distribution. If climate is impacting genders survival differently, with the expected climate change gender dimorphism, compensatory mechanisms and sex ratio might be affected (Hultine et al., 2018; MunnéBosch, 2015). In this study, we completed the existing data set by repeating measurements over several years, to determine gender related differences that may be explained by inter annual variation. We provide extensive new data on the physiological ecology and performance of the dioecious shrub Corema album along the complete climatic gradient included in its distribution area.

We assumed that intraspecific morphological and physiological differences could be found along the studied bioclimatic gradient, but we were interested in knowing if significant gender differences in resource use (water and nitrogen), physiology and vegetative performance could be identified and if these could account for differences in habitat-specific conditions.

We hypothesised that gender-physiological and morphological dimorphism will directly respond to rainfall availability and aridity intensity, and that they will increase under extreme drought events. Due to their higher reproductive allocation, we expected females to respond more negatively than males to harsher conditions during dryer and warmer years.

We specifically addressed the following questions: (i) is vegetative performance measured through LAI higher in males than in females and do these differences increase with drought stress (across the gradient)? (ii) do males and females differ in water economy and photochemical efficiency, and do these differences increase with drought stress? (iii) do males and females differ in nitrogen economy? We approached these
questions studying eight different populations with large climatic differences in temperature and rainfall, during the spring and summer seasons, across the entire environmental gradient comprised in C. album's biogeographical range.

2. Materials and methods

2.1. Study species

The genus Corema D. Don (Ericaceae) only comprises two species occupying opposite sites on the North Atlantic coasts: Corema album (L.) D. Don is an endemic species of the Western and South-Western coasts of the Iberian Peninsula (C. album subsp. album), presenting a subspecies in Azores Islands (C. album subsp. azoricum Pinto da Silva), while C. conradii Torr. grows on the Eastern coasts of North America.
C. album is a dioecious shrub, densely branched, with alternate folded leaves, up to 1 m high, presenting small flowers and wind pollination. Male flowers have 3 red stamens (5 mm size) and female flowers are smaller with 3 red stigmas. The fruit is a more or less spherical berry (diameter 5-10 mm), white or pinkish, with 3 seeds (Valdés et al., 1987). The berries are eaten by a number of animals like rabbits, foxes, seagulls, magpies and other birds (Calviño-Cancela, 2002). Although the species has been described as strictly dioecious, some cases of subdioecy (Sakai and Weller, 1999) have been found in Huelva and Algarve coasts (Zunzunegui et al., 2006).
C. album subsp. album is an important shrub species of coastal dunes, growing on more or less mobile dunes and on sands over coastal cliffs and it can also be found in later successional stages on coastal habitats (Álvarez-Cansino et al., 2013; Clavijo et al., 2002; Díaz-Barradas et al., 2000). Its distribution area extends from the NW border of the Iberian Peninsula (Finisterre) to the straits of Gibraltar (Álvarez-Cansino et al., 2013; Valdés et al., 1987), although a population of this species has been described in the Mediterranean coasts of Spain (López-Dóriga., 2018).

2.2. Study sites

Eight coastal sites, from the North West to the South West of the Iberian Peninsula, extending over all the biogeographical area of the species, were sampled in this study. At all these sites, with sandy soil, Camariñas, São Jacinto, Osso da Baleia, Caparica, Troia, Santo André, Monte Gordo and El Asperillo, important natural populations of C. album were found (Fig. 1).

Fig. 1. Distribution map of Corema album across the Atlantic coast of the Iberian Peninsula, denoting the 8 study sites.

All study sites present climatically different conditions since the objective of the work is to know how gender-physiological and morphological dimorphism responds along the complete species' biogeographic gradient. The chosen populations varied markedly in climatic variables, the difference in mean annual temperature reaches 3.5 ${ }^{\circ} \mathrm{C}$ between the coolest and warmest populations, and annual accumulated precipitation can differ by over 800 mm between the Northernmost (the wettest) and Southernmost (the driest) populations. Light conditions were also different among the study sites, the
radiation registered in Camariñas ($400-500 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$) was three times lower than in the remaining areas ($1200-1500 ~ \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$).

Values of climatic variables were obtained over the past 30 years (1974-2004) from the nearest meteorological stations, from Instituto Nacional de Meteorología (INM, Spain), Xunta de Galicia (Martínez Cortizas et al. 2000), and Sistema Nacional de Informação de Recursos Hídricos (SNIRH, Portugal). To compare climatic conditions among populations and the aridity level along the study gradient two climatic indices were calculated (Table 1):

Emberger's aridity index: $\mathrm{Q}=(2000 \times \mathrm{MAP}) /\left(\mathrm{T}_{\max ^{2}}{ }^{2}-\mathrm{T}_{\text {min }}{ }^{2}\right)$.
Where: MAP is mean annual precipitation (mm) and $\mathrm{T}_{\max }$ and $\mathrm{T}_{\text {min }}$ are the mean maximum temperature of the hottest month $\left({ }^{\circ} \mathrm{K}\right)$ and the mean minimum temperature of the coldest month $\left({ }^{\circ} \mathrm{K}\right)$. The thresholds for Q index are the following: <15 Saharian; 1530 Arid; 30-65 Semi-arid; 65-100 Sub-humid; 100-170 Humid; >170 Per-humid (Daget, 1977).

Lang's thermopluviometric index: it = MAP/T
Where T is annual mean temperature $\left({ }^{\circ} \mathrm{C}\right)$ and MAP mean annual precipitation (mm), as an indicator (it>40 wet climate, it<40 dry climate) (Tormo Molina et al., 1992).

Table 1. Climatic variables of the study sites. Mean annual temperature (T), mean maximum (Tmax) and minimum temperatures ($\mathrm{T} m i n,{ }^{\circ} \mathrm{C}$), mean annual accumulated precipitation (MAP, mm), mean summer precipitation (July, August, September), mean spring precipitation (April, May and June), Emberger's aridity index (Q) and Lang's thermopluviometric index (it index).

Site	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Tmax $\left({ }^{\circ} \mathrm{C}\right)$	Tmin $\left({ }^{\circ} \mathrm{C}\right)$	MAP (mm)	Psummer (mm)	Pspring (mm)	Q Emberger	it index
Camariñas	13.7	24.0	6.5	1217	144	244	241.43	88.8
São Jacinto	14.2	22.1	6.3	961	64	155	211.56	67.68
Osso Baleia	14.3	24.2	4.8	917	75.7	219.5	164.24	64.13
Caparica	16.8	27.9	8.2	751	36.2	123.8	130.85	44.70
Troia	16	29.0	5.6	746	34	113	109.71	46.63

St. André	15.2	28.0	4.8	651	32.1	100	96.86	42.83
Monte Gordo	17.5	31.9	7.7	483	20	319	68.16	27.6
Asperillo	16.8	32.3	4.6	543	21.3	82.7	67.19	32.32

2.3. Leaf Area Index (LAI)

In each study population (except for Osso da Baleia), a 200 m belt transect was laid, consisting on ten $\left(10 \times 10 \mathrm{~m}^{2}\right)$ plots, each separated by 10 meters. In each plot, the number of all male, female and non-reproductive canopies of C. album was recorded. Measurements were made during the year 2002 (Álvarez-Cansino et al., 2013).

In each transect, a set of 20 reproductive individuals, 10 on each gender, were randomly selected for morphological, physiological and reproductive measurements. All selected plants were of similar size (60-70 cm canopy diameter) and they were sufficiently separated in space (the basal trunk at least 1.5 m between individuals of the same gender), to be clearly identified as different individuals. Old individuals of C. album with big and open canopy were avoided.

In each selected plant, of seven study sites, LAI was estimated using the LAI2000 Plant Canopy Analyser (LI-COR USA), that uses a fisheye light sensor that measures the attenuation of diffuse radiation simultaneously in five zenith angles comparing radiation measurements above and below the canopy (Welles, 1990). LAI measurements were made in June, which corresponds to the maximum vegetative growth of the species and before leaf fall during the summer period.

2.4. Physiological measurements

In the same selected plants of seven sites, measurements of midday water potential and photochemical efficiency were made in the middle of May and the beginning of September. The first corresponds to the spring-time when water is available in all the study areas and the temperature is optimum for photosynthetic activity. September
represents the end of the summer season when the maximum water stress is manifested especially for the Southern populations. Physiological measurements were made on consecutive sunny days both in May and September; with the exception of Camariñas, in the north, in which cloudy days are the most common meteorological condition.

Leaf water potential of 5 terminal shoots per plant was measured at midday using a pressure chamber of Scholander-type (Scholander et al., 1965), the mean value was used for each plant. Midday water potential represents the maximum water deficit experienced by the leaves and the xylem (Ackerly, 2004) and allowed a better comparison between genders and populations. Measurements were performed immediately after collecting the samples.

Midday photochemical efficiency of photosystem II (PSII), or maximum quantum yield of PSII ($\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}$) was measured in the field with a portable pulse-modulated fluorometer (Mini-Pam Photosynthesis Yield Analyzer; Walz, Effeltrich, Germany). Samples were dark-adapted with a leaf clip holder during 20 minutes, which was found to be sufficient to allow complete reoxidation of the PSII reaction centres and to ensure that all energy-dependent quenching was relaxed. Maximum $\left(\mathrm{F}_{\mathrm{m}}\right)$ and minimal $\left(\mathrm{F}_{\mathrm{o}}\right)$ fluorescence were measured to calculate maximum photochemical efficiency of PSII $\left(\left(\mathrm{F}_{\mathrm{m}}-\mathrm{F}_{\mathrm{o}}\right) / \mathrm{F}_{\mathrm{m}}\right.$ which is described as $\left.\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}\right)$. Steady-state fluorescence (F) under the prevailing ambient light and maximum fluorescence (F ' ${ }_{\mathrm{m}}$) during saturation pulse were also determined, to estimate midday effective quantum yield of PSII as $\left(\mathrm{F}^{\prime}{ }_{\mathrm{m}}-\mathrm{F}\right) / \mathrm{F}^{\prime}{ }_{m}$ ($\Phi_{\text {PSII }}$), or photochemical efficiency of PSII in light-adapted state, according to Genty et al. (1989). Five measurements on terminal twigs were carried out in each selected plant, and the mean value per plant was used for statistical analysis. Light experienced by plants during the measurements oscillated between 1200 and $1500 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$, from

São Jacinto to El Asperillo; however in Camariñas the light intensity ranged between 400 and $500 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ due to cloudy conditions.

2.5.Stable isotope analysis of leaves

A sample of new leaves was collected in September in all study individuals. Approximately 15-20 leaves per plant were dried at $60^{\circ} \mathrm{C}$, for 24 h and dry leaf samples were then milled to a fine powder and passed through a 40-mesh for isotopic analysis. The $\delta^{13} \mathrm{C}$ determinations for each plant were made on three $1-2 \mathrm{mg}$ subsamples by a Stable Isotope Mass Spectrometer (IRMS, Isoprime, GV, Manchester, UK) at the University of Lisbon (Portugal). The instrument error (twice the standard deviation) associated with each observation was 0.01%, and the sample preparation and analysis error between repeated analyses of the same ground tissue was less than 0.22%. Sample $\delta^{13} \mathrm{C}$ was calculated as:

$$
\delta^{13} \mathrm{C}_{\text {sample }}(\%)=\left(\mathrm{R}_{\text {sample }} / \mathrm{R}_{\text {standard }}-1\right) \times 1000(\%),
$$

where $\mathrm{R}_{\text {sample }}$ and $\mathrm{R}_{\text {standard }}$ refer to the ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ ratios of the plant sample and Pee Dee Belemnite carbonate standard, respectively. The stable carbon isotope ratio $\left(\delta^{13} \mathrm{C}\right)$ of a leaf tissue can serve as a proxy for integrated water-use efficiency (WUE) (Dawson et al., 2002; Farquhar et al., 1989).

According to the classic two-step discrimination model (Farquhar et al., 1982), ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ discrimination $\left(\Delta^{13} \mathrm{C}\right)$ was calculated as: $\Delta^{13} \mathrm{C}(\%)=\left(\delta^{13} \mathrm{C}_{\text {air }}-\delta \delta^{13} \mathrm{C}_{\text {sample }}\right) /(1+$ $\delta^{13} \mathrm{C}_{\text {sample }}$. Since these plants were studied in natural conditions, we assumed a $\delta^{13} \mathrm{C}$ value for atmospheric CO_{2} of -7.8% (Farquhar et al., 1989).

Leaves from 5 populations were also used for nitrogen content (\%) and isotope analysis. $\delta^{15} \mathrm{~N}$ was measured against the ammonium sulphate standard (IAEA, N_{2}). N
isotope ratios are reported per mil (\%) relative to atmospheric N_{2} (Shearer and Kohl 1993) as:

$$
\delta^{15} \mathrm{~N}(\%)=\left(\mathrm{R}_{\text {sample }} / \mathrm{R}_{\text {atmos }}-1\right) \times 1000(\%),
$$

where $R_{\text {sample }}$ represents the isotope ratio $\left({ }^{15} \mathrm{~N} /{ }^{14} \mathrm{~N}\right)$ in sample foliage, and $\mathrm{R}_{\text {atmos }}$ is ${ }^{15} \mathrm{~N} /{ }^{14} \mathrm{~N}$ for atmosphere N_{2} as standard. The standard deviation of 10 repeated samples was $<0.2 \%$ for $\delta^{15} \mathrm{~N}$.

2.6.Comparison among years

As leaf water potential revealed to be the most significant variable for sexual dimorphism in El Asperillo (see results in this manuscript), we repeated the measurements of midday leaf water potential, in ten individuals of each gender, in this site at the peak of the dry season (September) in three contrasted years: 2002 (with an average annual rainfall of 560.6 mm and average maximum summer temperatures of $36.5^{\circ} \mathrm{C}$ for July and August), 2003 (rainfall 549.5 mm , but extremely elevated summer temperatures, $41.5^{\circ} \mathrm{C}$) and 2005 (annual rainfall lower than 50% of the average values, 173 mm and elevated summer temperatures, $39.5^{\circ} \mathrm{C}$). This comparison, made in the southern limit of species' biogeographical area, could function to forecast the behaviour of this species under a scenario of extreme drought events.

2.7. Data analysis

Physiological and morphological variables (LAI, leaf water potential, Fv/Fm, ФPSII, $\delta^{13} \mathrm{C}, \delta^{15} \mathrm{~N}$ and N content), were analysed using a two-way ANOVA to compare sites and gender-related differences within sites (both considered as fixed factors). The Tukey test was used for comparison among sites for each season.

Regression analyses were applied to evaluate possible relationships among plant variables with rainfall and bioclimatic indices.

The assumption of normality was tested with the Kolmogorov-Smirnov test. All statistical analyses were performed with the SPSS 24 software package (Chicago, IL, USA).

3. Results

3.1. Leaf Area Index (LAI)

LAI clearly followed the bioclimatic gradient. The Northern populations showed higher values than the Southern ones, with a clear biogeographical pattern, but differences between genders were not found (Fig. 2a). In the two-way ANOVA, there were significant differences between sites, but no differences were found between gendersand in the interaction between site and gender either (Table 2). Comparisons among sites, using Tukey test, showed that LAI of plants growing in Camariñas was significantly higher than all other sites ($\mathrm{p}<0.05$) and there was a progressively decrease associated to the increase in aridity, with the lowest values in Monte Gordo and El Asperillo sites (Fig. 2a). For both genders LAI values were significantly correlated with MAP $\left(\mathrm{R}^{2}{ }_{\text {males }}=0.92 ; \mathrm{R}^{2}\right.$ females $\left.=0.86\right)$, Emberger $\left(\mathrm{R}^{2}{ }_{\text {males }}=0.92 ; \mathrm{R}^{2}\right.$ females $\left.=0.87\right)$ and Lang's thermopluviometric index $\left(\mathrm{R}^{2}{ }_{\text {males }}=0.91 ; \mathrm{R}^{2}{ }_{\text {females }}=0.87\right),(P<0.05$ in all cases $)$, (Fig. 2b).

Table 2. Two-way ANOVA of effects of site and gender on leaf area index of Corema album (TypeIII SS: Sum of Squares; df: degrees of freedom).

	TypeIII SS	df	F	\boldsymbol{P}
Site	60.19	6	29.80	$<\mathbf{0 . 0 0 1}$
Gender	0.33	1	0.99	0.322
SitexGender	1.73	6	0.86	0.529

Fig. 2. a) LAI of male and female plants in the different study populations (Data represent mean \pm SD of 10 individuals of each gender). Letters indicate population groups following Tukey test. b) Average LAI values of 10 male and 10 female plants versus Emberger's aridity index of each location. The regression line for each gender, R^{2} and P are also indicated in the plot.

3.2. Physiological measurements

Water potential of male and female plants revealed significant differences between sites in May and significant differences between sites, genders, and the interaction between site and gender in September (Table 3).

Table 3. Two-way ANOVA of effects of site and gender on leaf water potential, $\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}$ (maximum quantum yield) and effective quantum yield in May and September (SS: Sum of Squares; df: degrees of freedom).

			MAY			SEPTEMBER		
		df	SS	F	P	SS	F	P
Leaf	Site	6	837.32	35.04	$<\mathbf{0 . 0 0 1}$	4736.49	34.27	$<\mathbf{0 . 0 0 1}$
	Gender	1	9.046	2.27	0.134	367.76	15.96	$<\mathbf{0 . 0 0 1}$
Potential	Site x gender	6	28.60	1.19	0.313	602.79	4.36	$\mathbf{0 . 0 0 1}$
$\mathrm{~F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}$	Site	6	0.06	15.74	$<\mathbf{0 . 0 0 1}$	0.31	35.54	$<\mathbf{0 . 0 0 1}$
	Gender	1	<0.01	0.60	0.439	<0.01	0.04	0.843
	Site x gender	6	0.02	3.91	$\mathbf{0 . 0 0 1}$	<0.01	0.56	0.754

Effective	Site	6	3.093	132.58	$<\mathbf{0 . 0 0 1}$	1.093	16.29	$<\mathbf{0 . 0 0 1}$
	Gender	1	0.002	0.54	0.462	0.010	0.93	0.335
Yield	Site x gender	6	0.018	0.78	0.585	0.064	0.95	0.456

Regarding the sites, the Northern populations Camariñas, São Jacinto and Caparica exhibited higher water potential values than those from the Southern populations ($\mathrm{p}<0.05$) in May; while in September the differences amplified, the population of Camariñas exhibited the highest leaf water potential values, although significant differences only existed among northern and southern populations ($\mathrm{p}<0.05$), (Fig. 3a).

In September, water potential was significantly correlated with MAP (R^{2} males $=0.86 ; \mathrm{R}^{2}$ females $=0.67$), Emberger's aridity index $\left(\mathrm{R}^{2}{ }_{\text {males }}=0.87 ; \mathrm{R}^{2}{ }_{\text {females }}=0.69\right)$ and Lang's index ($\mathrm{R}^{2}{ }_{\text {males }}=0.84 ; \mathrm{R}^{2}$ females $=0.65$), ($\mathrm{p}<0.05$ in all cases), (Fig. 3b).

While in May female plants tended to exhibit lower water potential than males, in September the opposite pattern was found, with male plants showing more negative water potential values than females. However, significant differences between genders were only found in September in El Asperillo.

Fig. 3. a) Leaf water potential of male and female plants in the different study populations (spring and summer). Data represent mean $\pm \mathrm{SD}$ of 10 individuals of each gender. Letters indicate population groups following Tukey test and $*$ the existence of gender significant differences. b) September average leaf water potential values of 10 male and 10 female plants versus Emberger's aridity index of each location. The regression line for each gender, R^{2} and P are also indicated in the plot.

Male-plants' leaf water potential values were progressively lower (more negative) than female values as the mean summer rainfall diminished, as it is shown in the ANOVA results (Fig. 3a and Table 3). It is remarkable to observe that gender differences in water potential were associated with the decrease in water availability in summer, and were progressively accentuated, as the site aridity is more extreme. Gender dimorphism (measured as the difference between male and female leaf water potential in September) was significantly correlated with summer rainfall $\left(\mathrm{R}^{2}=0.69, P=0.02\right)$ (Fig.
4).

Summer precipitation (mm)

Fig. 4. Gender dimorphism in each location, measured as the average of 10 male minus 10 female leaf water potential in September versus summer rainfall (July, August and September). The regression line, R^{2} and P are also indicated in the plot.

Fig. 5. Maximum quantum yield $\left(\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}\right)$ of male and female plants in the different study populations (spring and summer). Data represent mean \pm SD of 10 individuals of each gender. Letters indicate population groups following Tukey test.

Maximum quantum yield ($\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}$) showed significant differences between northern and southern populations either in May and September (Fig. 5). In both months there were significant differences among sites and no differences between genders. The interaction between site and gender was only significant in May (Table 3). The same statistical results were obtained by eliminating from the analysis the northernmost population (Camariñas, with considerably lower radiation conditions); there were significant differences among sites in both months ($P<0.001$) and no differences between genders ($P_{\text {May }}=0.555$ and $P_{\text {September }}=0,724$. Maximum quantum yield in September approximately matched summer rainfall, but the relationship was not significant ($P=0.08$ for males and 0.18 for females).

Effective quantum yield always exhibited lower values than optimal quantum yield, showing a thermal dissipation of energy (Table S1). There were no significant
relations with any climatic variables reflecting the biogeographical gradient. In both sampling periods, May and September, there were significant differences between sites, but there were no differences between genders and the interaction site x gender was not significant either (Table 3). In this case, also the same statistical results were obtained when eliminating the population of Camariñas (significant differences among sites, $P<0.001$, and no differences between genders, $P_{\text {May }}=0.696$ and $\left.P_{\text {September }}=0,498\right)$.

3.3. Elemental and stable isotope analysis

The values of $\Delta^{13} \mathrm{C}$ were significantly higher in the northern populations although the data did not follow the bioclimatic gradient (Fig. 6a). There were significant differences among sites and genders; female values of $\Delta^{13} \mathrm{C}$ were higher than male values, although the interaction site x gender was not significant (Table 4). There was a significant relationship $\left(R^{2}=0.644, p=0.02\right)$ for female $\Delta^{13} \mathrm{C}$ with rainfall of the growing season (winter and spring), while this relationship did not occur in males (Fig. 6b).

Table 4. Two-way ANOVA of effects of site and gender on $\Delta^{13} \mathrm{C}, \delta^{15} \mathrm{~N}$ and N content. (SS: Sum of Squares; df: degrees of freedom;

		df	SS	F	P
	Site	7	67.513	10.46	$<\mathbf{0 . 0 0 1}$
$\Delta^{13} \mathrm{C}$	Gender	1	11.718	12.72	$<\mathbf{0 . 0 0 1}$
	SitexGender	7	3.175	0.49	0.839
$\delta^{15} \mathrm{~N}$	Site	4	323.28	30.55	$<\mathbf{0 . 0 0 1}$
	Gender	1	0.625	0.23	0.628
	SitexGender	4	11.615	1.09	0.363
N content	Site	4	0.601	12.93	$<\mathbf{0 . 0 0 1}$
	Gender	1	0.005	0.20	0.823
	SitexGender	4	0.027	0.57	0.682

Fig. 6. a) $\Delta^{13} \mathrm{C}$ values of male and female plants in the different study populations. Data represent mean \pm SD of ten individuals of each gender. Letters indicate population groups following Tukey test. b) Average $\Delta^{13} \mathrm{C}$ of 10 male and 10 female plants versus winter-spring rainfall (January, February and March) of each location. The regression line for each gender, R^{2} and P are also indicated in the plot.

Values of $\delta^{15} \mathrm{~N}$ were extremely negative in the arid populations (south) and increase progressively to the north, with the exception of Monte Gordo population (Table S1). There were significant differences among sites, but not between genders and neither in the interaction between site and gender (Table 4). In relation to elemental values, El Asperillo exhibited the highest values of N content in leaves (Table S1), there were significant differences among sites but not for genders and the interaction between site and gender was not significant either (Table 4).

3.4. Responses to extreme drought events

Comparing the values of leaf water potential in El Asperillo population, in the same season among different years, we can observe the plant response to the inter-annual variability of rainfall (Fig. 7).

There were no significant differences between 2002 and 2003, however, the values of the dry year (2005) were significantly lower ($P<0.05$). Gender dimorphism continued to maintain the same observed pattern, male plants presented significantly
more negative values than female plants for the three study years. Our results evidenced that gender dimorphism did not increase with the drier conditions.

Fig. 7. Comparison of mean values \pm standard deviation leaf water potential of 10 male and 10 female plants among different years in El Asperillo. Data of September leaf water potential of male and female plants in 2002 (rainfall 560.6 mm , summer maximum temperatures $36.5^{\circ} \mathrm{C}$), 2003 ($549.5 \mathrm{~mm}, 41.5^{\circ} \mathrm{C}$) and 2005 ($173.0 \mathrm{~mm}, 39.5^{\circ} \mathrm{C}$). Significant differences among genders are indicated with an * $(P<0.05)$ and among years with letters $(P<0.05)$.

4. Discussion

Our results evidenced that populations of Corema album exhibited significant differences in morphological and physiological attributes across the species' biogeographical area, which are clearly correlated to climatic variables such as annual rainfall and bioclimatic indices. Gender dimorphism was observed in $\Delta^{13} \mathrm{C}$ and clearly manifested in leaf water potential in summer in the most stressful end of the species distribution area. In this study, we have shown how gender dimorphism on physiological instantaneous and time-integrated variables changes over the complete
biogeographical area of a dioecious species in response to sub-optimal environmental conditions.

4.1.Leaf area index (LAI)

In the literature, there are many studies in which male plants of dioecious species usually exhibit higher performance in their aerial structure. For instance, in a review article of sexual dimorphism in flowering plants, Barrett and Hough (2013) established that in long-lived species, males often exceed females in vigour, shoot size, and in their capacity for clonal propagation, although exceptions could occur (Sakai and Burris, 1985). In different species of Leucadendron the degree of serotiny (accumulating cones for a longer period) was strongly associated with the degree of branching: females in species with well-developed serotiny showed less ramification degree than males (Harris and Pannell, 2010).

Accordingly with the results of this study, C. album plants did not show any gender dimorphism in the aerial canopy, measured as LAI. This time-integrated index only responded to the bioclimatic gradient, with no differences between male and female plants. Previous results in C. album evidenced the existence of a sexual segregation in branch elongation timing, associated to gender reproductive efforts (Zunzunegui et al., 2006), but at the end of the growing season, the accumulated elongation was the same in male and female plants.

4.2.Physiological responses

Reproductive costs result in physiological trade-offs in resource distributions, and these can influence future vegetative growth and reproduction (Barrett and Hough, 2013). In C. album, leaf water potential during the growth season (May) exhibited significant
differences among Northern and Southern populations as expected across a large bioclimatic gradient. In some study sites, female plants tended to have slightly more negative values than males, attending to trade-offs for fruit production, but differences were not significant. Similar results were locally found by Álvarez-Cansino et al. (2010b) and Zunzunegui et al. (2006) in a population in the South of Spain. However, during the peak of the dry season in September, gender dimorphism increased from the Northern to the Southern populations, in association to the summer rainfall decrease. In contrast with our expectations of males performing better under drier conditions, due to their relatively lower investment in reproduction (Obeso, 2002), females of C. album showed significantly higher water potentials values than males at the extreme end of the biogeographical area during the drought season, which might be associated to a better hydrological status. This dimorphism is clearly manifested by the good correlation found in this study between gender leaf water potential differences and summer rainfall (Fig. 4).

In May all populations exhibited a fairly good physiological performance, although there were significant differences for $\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}$ for some populations. However, in September the situation was different and Southern populations suffered a remarkable physiological stress. In several populations, summer $\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}$ showed values below the theoretical optimum of 0.83 measured for most plant species (Maxwell and Johnson, 2000), indicating signs of photoinhibition of PSII (Correia and Ascensão, 2017). Additionally, all studied populations of C. album presented values of $\Phi_{\text {PSII }}$ that indicated stress to PSII via heat energy dissipation (Maxwell and Johnson, 2000), in response to the midday increased radiation and VPD.

These results can be explained by a response to high solar radiation and temperatures coupled with low water availability, amplified by sandy soils' properties
(similar results, analysing three populations, were found by Álvarez-Cansino et al., 2012). The importance of local conditions was manifested through the significant differences in $\mathrm{F}_{\mathrm{v}} / \mathrm{F}_{\mathrm{m}}$ among populations. Yet, we found no signs of gender dimorphism in the photosynthetic response. Other studies have found signs of higher photoinhibition in female plants of dioecious species, associated to the reproductive period and drought stress, as it has been reported in the dwarf palm Chamaerops humilis (Morales et al., 2016) and in the subdioecious species Honckenya peploides (Sánchez-Vilas and Retuerto, 2011). Or what is more, when comparing reproductive and non-reproductive shoots of female Pistacia lentiscus, higher photoinhibition was observed in reproductive shoots (Juvany et al., 2014).

In relation to water economy, females tended to show higher values of $\Delta^{13} \mathrm{C}$, which could be attributed to lower integrated WUE. Since females allocate a greater investment to reproduction in order to produce an enormous amount of fleshy fruits during the summer season (Díaz-Barradas et al., 2016; Zunzunegui et al., 2006), they should have a less conservative water use response than males. Similar results have been reported in other dioecious species such as Acer negundo (Dawson and Ehleringer, 1993) and Ilex aquifolium (Retuerto et al., 2000). Moreover, populations' $\Delta^{13} \mathrm{C}$ values were positively correlated to winter-spring rainfall in females when most of the leaf biomass is produced. This result can be interpreted as a sign of plant response to water availability during the period of leaf biomass production.

Although Corema album is a wind-pollinated plant, with extremely large pollen production during the flowering period, which requires a high investment in nitrogenrich pollen (Delph et al., 1993; Harris and Pannell, 2008), we were not able to find any gender dimorphism in nitrogen content in leaves and nitrogen sources, measured through $\delta^{15} \mathrm{~N}$. However, $\delta^{15} \mathrm{~N}$ values decreased from the southern to the northern
populations, which indicate shifts in nitrogen sources associated with the precipitation regime.

The results of this study evidence that females seem to present lower water use efficiency in leaves, and on the other hand better water status during summer at the drier end of the species' biogeographical area. The explanation for this apparent paradox of females presenting a better physiological status than males during the summer season could be explained by the implementation of finely integrated morphological or physiological compensatory mechanisms, as it has been described in dioecious plants by other authors (Álvarez-Cansino et al., 2010b; Obeso, 2002; Tozawa et al., 2009).

In a previous local study, through the analysis of water stable isotopes, it was found that females of C. album should have deeper roots than males conferring them potential higher water availability during the drought period (Álvarez-Cansino et al., 2010b). On the other hand, this result has been supported by a reproductive effort experiment, in which female plants continued to exhibit higher vegetative growth during the second year after reproductive effort had been removed, which evidenced the idea of higher female-storing capacity in underground structures (Álvarez-Cansino et al., 2010a). Compensatory mechanisms favouring water capture in female individuals is a logical explanation for the enhanced water status found in females in relation to males during the dry period (Álvarez-Cansino et al., 2010b) and could ultimately explain the lack of biased sex ratio among the species distribution area, despite a 3 -fold higher reproductive effort in females due to fruit production (Álvarez-Cansino et al., 2013; Martins et al., 2017; Zunzunegui et al., 2006). Having a larger root system, females would increase both nutrient and water uptake and as a consequence, they might improve C acquisition. Gender-specific differences in biomass allocation have been found in the subdioecious plant Honckenya peploides, in which females had greater
belowground biomass than males (Sánchez-Vilas et al., 2012). In Northern populations of C. album, where water and nutrients don't represent a limited resource, plants probably do not present such extreme compensatory mechanisms and sexual dimorphism was not so evident, as occurred in other dioecious species that only exhibit gender dimorphism under harsher conditions (Kohorn, 1994; Wallace and Rundel, 1979).

In extremely dry years, plants suffer a dramatic water stress and a higher variability among individuals within a single population, which has been manifested by our results in the extreme southern end of plant biogeographical area. If this situation continued over a longer period, it would probably affect population survival and limit its distribution area, as it has been proposed in different models of climate change (Hultine et al. 2018). In dioecious species such as C. album one gender may be differentially affected under sub-optimal environmental conditions of its biogeographical area. For slow-growing, long-lived species as C. album, global change represents an array of opposing selective pressures which at long-time scales may affect the ecological limits of phenotypic plasticity, decoupling climate from local adaptations and leading to an increase in vulnerability and a higher risk of mortality, which can be differential between genders under this new climatic scenarios (Munné-Bosch, 2015; Valladares et al., 2007).

Since dioecious plants, as all plants, present hierarchical organization, and allocation to reproduction is affected by modularity, it is important to consider several levels of the modular hierarchy for the analysis of the cost of reproduction under different environmental conditions (Juvany and Munné-Bosch, 2015; Obeso, 1997).In our study, we analysed different levels of plant organization, from instantaneous photochemical efficiency, to time-integrated water-use efficiency through $\Delta^{13} \mathrm{C}$ and
plant canopy performance as LAI. Our results evidenced the existence of sexual dimorphism in leaf water potential, and are supported by other previous data (ÁlvarezCansino et al., 2012; Álvarez-Cansino et al., 2010a), that point out to the existence of sexual dimorphism located at underground level.

In the literature, Spatial Sexual Segregation (SSS) has been reported in >30 dioecious species from 20 families, and in the vast majority of cases male-biased sex ratios are reported in more stressful sites (Bierzychudek and Eckhart, 1988; Mercer and Eppley, 2010). The general model of dioecious plants proposes that SSS occurs by females living in better microsites; in C. SSS was not found in any location of the species' biogeographical area (Álvarez-Cansino et al., 2013; Martins et al., 2017). The results of this study, together with previous evidence (Álvarez-Cansino et al., 2010; Sánchez-Vilas et al., 2012, Hultine et al., 2018) suggest that SSS might exist at the underground level, where females can exploit deeper soil profiles, especially in the extreme end of the species' biogeographical area. With this mechanism, they could maintain the same canopy performance than males, lower integrated WUE and an extraordinary production of fleshy fruits during the summer period that can reach more than 7000 berries m^{-2} plant (Díaz-Barradas et al., 2016). Our results are therefore consistent with a higher efficiency in resource use in females than in males of C. album (Álvarez-Cansino et al., 2012; Álvarez-Cansino et al., 2010a).

Acknowledgements

This work was funded by national funds through the University of Seville (Spain) and the FCT - Fundação para a Ciência e a Tecnologia (Portugal) in the frame of the project UID/BIA/00329/2013. The authors thank Alicia Clavijo, Juan Jáuregui and Fernando Hurtado for their support.

References

Ackerly, D., 2004. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol. Monogr. 74, 25-44.

Allen, G.A., Antos, J.A., 1993. Sex ratio variation in the dioecious shrub Oemleria cerasiformis. Am. Nat. 141, 537-553.

Álvarez-Cansino, L., Barradas, M.C.D., Zunzunegui, M., Esquivias, M.P., Dawson, T.E., 2012. Gender-specific variation in physiology in the dioecious shrub Corema album throughout its distributional range. Funct. Plant Biol. 39, 968-978. https://doi.org/10.1071/FP12131

Álvarez-Cansino, L., Zunzunegui, M., Díaz Barradas, M.C., Correia, O., Esquivias, M.P., 2013. Effects of temperature and rainfall variation on population structure and sexual dimorphism across the geographical range of a dioecious species. Popul. Ecol. 55, 135-146. https://doi.org/10.1007/s10144-012-0336-3

Álvarez-Cansino, L., Zunzunegui, M., Díaz Barradas, M.C., Esquivias, M.P., 2010a. Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album. Ann. Bot. 106, 989-998. https://doi.org/10.1093/aob/mcq197

Álvarez-Cansino, L., Zunzunegui, M., Díaz Barradas, M.C., Esquivias, M.P., 2010 b. Physiological performance and xylem water isotopic composition underlie genderspecific responses in the dioecious shrub Corema album. Physiol. Plant. 140, 3245. https://doi.org/10.1111/j.1399-3054.2010.01382.x

Álvarez-Cansino, L., Zunzunegui, M., Díaz Barradas, M.C., Esquivias, M.P., 2010. Physiological performance and xylem water isotopic composition underlie genderspecific responses in the dioecious shrub Corema album. Physiol. Plant. 140.
https://doi.org/10.1111/j.1399-3054.2010.01382.x
Ashcroft, M.B., Casanova-Katny, A.A., Mengersen, K., Rosenstiel, T.N., Turnbull, J.D., Wasley, J., Waterman, M.J., Zúñiga, G.E., Robinson, S.A., Zuniga, G.E., Robinson, S.A., Zúñiga, G.E., Robinson, S.A., 2016. Bayesian methods for comparing species physiological and ecological response curves. Ecol. Inform. 34, 35-43. https://doi.org/10.1016/j.ecoinf.2016.03.001

Barrett, S.C.H., Hough, J., 2013. Sexual dimorphism in flowering plants. J. Exp. Bot. 64, 67-82. https://doi.org/10.1093/jxb/err313

Bierzychudek, P., Eckhart, V., 1988. Spatial segregation of the sexes of dioecious plants. Am. Nat. 132, 34-43.

Calviño-Cancela, M., 2002. Spatial patterns of seed dispersal and seedling recruitment in Corema album (Empetraceae): the importance of unspecialized dispersers for regeneration. J. Ecol. 90, 775-784. https://doi.org/10.1046/j.13652745.2002.00711.x

Case, A.L., Barrett, S.C.H., 2004. Environmental stress and the evolution of dioecy: Wurmbea dioica (Colchicaceae) in Western Australia. Evol. Ecol. 18, 145-164. https://doi.org/10.1023/B:EVEC.0000021152.34483.77

Clavijo, A., Díaz-Barradas, M.C., Ain-Lhout, F., Zunzunegui, M., Correia, O., 2002. A fragmentação como causa principal da redução do habitat de Corema album na sua área de distribuição. Rev. Biol. 20, 109-120.

Correia, O., Ascensão, L., 2017. Summer semi-deciduous species of the Mediterranean landscape: a winning strategy of Cistus species to face the predicted changes of the Mediterranean climate., in: Plant Biodiversity: Monitoring, Assessment and Conservation. pp. 195-217. https://doi.org/10.1079/9781780646947.0195

Correia, O., Díaz Barradas, M.C., 2000. Ecophysiological differences between male and
female plants of Pistacia lentiscus L. Plant Ecol. 149, 131-142.
Daget, P., 1977. Le bioclimat méditerranéen: analyse des formes climatiques par le système d'Emberger. Vegetatio 34, 87-103.

Dawson, T.E., Bliss, L.C., 1989. Patterns of water use and tissue water relation in the dioecious shrub, Salix arctica: the physiological basis for habitat partitioning between the sexes. Oecologia 79, 332-343.

Dawson, T.E., Ehleringer, J.R.., 1993. Gender-specific physiology, carbon isotope discrimination, and habitat distribution in Boxelder, Acer negundo. Ecology 74, 798-815.

Dawson, T.E., Ward, J.K., Ehleringer, J.R.., 2004. Temporal scaling of physiological responses from gas exchange to tree rings: a gender-specific study of Acer negundo (Boxelder) growing under different conditions. Funct. Ecol. 18, 212-222.

Delph, L.F., Lu, Y., Jayne, L.D., 1993. Patterns of resource allocation in a dioecious Carex (Cyperaceae). Am. J. Bot. 80, 607-615.

Díaz-Barradas, M.C., Correia, O., 1999. Sexual dimorphism, sex ratio and spatial distribution of male and female shrubs in the dioecious species Pistacia lentiscus L. Folia Geobot. 34, 163-174.

Díaz-Barradas, M.C., Correia, O., Zunzunegui, M., Ain-Lhout, F., Clavijo, A., Silva, P., Ferreira, S., 2000. Distribuiçâo de sexos na especie Corema album ao longo de um gradiente climático. Rev. Biol. 18, 7-22.

Díaz-Barradas, M.C., Costa, C., Correia, O., León-González, A.J., Navarro-Zafra, I., Zunzunegui, M., Alvarez-Cansino, L., Martín-Cordero, C., 2016. Pentacyclic triterpenes responsible for photoprotection of Corema album (L.) D. Don white berries. Biochem. Syst. Ecol. 67, 103-109.

Díaz-Barradas, M.C., Costa, C., Correia, O., León-González, A.J., Navarro-Zafra, I.,

Zunzunegui, M., Álvarez-Cansino, L., Martín-Cordero, C., 2016. Pentacyclic triterpenes responsible for photoprotection of Corema album (L.) D.Don white berries. Biochem. Syst. Ecol. 67. https://doi.org/10.1016/j.bse.2016.05.009

Eppley, S.M., 2006. Females make tough neighbors: Sex-specific competitive effects in seedlings of a dioecious grass. Oecologia 146, 549-554. https://doi.org/10.1007/s00442-005-0026-3

Harris, M.S., Pannell, J.R., 2010. Canopy seed storage is associated with sexual dimorphism in the woody dioecious genus Leucadendron. J. Ecol. 98, 509-515. https://doi.org/10.1111/j.1365-2745.2009.01623.x

Harris, M.S., Pannell, J.R., 2008. Roots, shoots and reproduction: sexual dimorphism in size and costs of reproductive allocation in an annual herb. Proc. Biol. Sci. 275, 2595-602. https://doi.org/10.1098/rspb.2008.0585

Herrera, C.M., 1988. Plant size, spacing patterns, and host-plant selection in Osyris quadripartita, a hemiparasitic dioecious shrub. J. Ecol. 76, 995-1006.

Hultine, K.R., Bush, S.E., Ward, J.K., Dawson, T.E., 2018. Does sexual dimorphism predispose dioecious riparian trees to sex ratio imbalances under climate change? Oecologia 187, 921-931. https://doi.org/10.1007/s00442-018-4190-7

Juvany, M., Müller, M., Pintó-Marijuan, M., Munné-Bosch, S., 2014. Sex-related differences in lipid peroxidation and photoprotection in Pistacia lentiscus. J. Exp. Bot. 65, 1039-1049. https://doi.org/10.1093/jxb/ert446

Juvany, M., Munné-Bosch, S., 2015. Sex-related differences in stress tolerance in dioecious plants: A critical appraisal in a physiological context. J. Exp. Bot. 66, 6083-6092. https://doi.org/10.1093/jxb/erv343

Kohorn, L.U., 1994. Shoot morphology and reproduction in jojoba: advantages of sexual dimorphism. Ecology 75, 2384-2394.

López-Dóriga I.L., 2018. The Archaeobotany and Ethnobotany of Portuguese or White. Ethnobiol. Lett. 9, 19-32. https://doi.org/10.14237/ebl.9.2.2018.1069

Martins, A., Freitas, H., Costa, S., 2017. Corema album: unbiased dioecy in a competitive environment. Plant Biol. 19, 824-834. https://doi.org/10.1111/plb. 12584

Maxwell, K., Johnson, G.N., 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 51, 659-668. https://doi.org/10.1093/jxb/51.345.659

Morales, M., Pintó-Marijuan, M., Munné-Bosch, S., 2016. Seasonal, sex- and plant size-related effects on photoinhibition and photoprotection in the dioecious Mediterranean dwarf palm, Chamaerops humilis. Front. Plant Sci. 7, 1-12. https://doi.org/10.3389/fpls.2016.01116

Munné-Bosch, S., 2015. Sex ratios in dioecious plants in the framework of global change. Environ. Exp. Bot. 109, 99-102. https://doi.org/10.1016/j.envexpbot.2014.08.007

Nicotra, A.B., 1999. Sexually dimorphic growth in the dioecious tropical shrub, Siparuna grandiflora. Funct. Ecol. 13, 322-331. https://doi.org/10.1046/j.13652435.1999.00326.x

Obeso, J.R., 2002. The costs of reproduction in plants Author. New Phytol. 155, 321348. https://doi.org/10.1046/j.1469-8137.2002.00477.x

Obeso, J.R., 1997. Costs of Reproduction in Ilex Aquifolium: Effects at Tree, Branch and Leaf Levels. J. Ecol. 85, 159-166.

Rakocevic, M., Medrado, M.J.S., Martim, S.F., Assad, E.D., 2009. Sexual dimorphism and seasonal changes of leaf gas exchange in the dioecious tree Ilex paraguariensis grown in two contrasted cultivation types. Ann. Appl. Biol. 154, 291-301. https://doi.org/10.1111/j.1744-7348.2008.00298.x

Retuerto, R., Fernández Lema, B., Rodríguez Roiloa, S., Obeso, J.R., 2000. Gender, light and water effects in carbon isotope discrimination, and growth rates in the dioecious tree Ilex aquifolium. Funct. Ecol. 14, 529-537. https://doi.org/10.1046/j.1365-2435.2000.t01-1-00454.x

Sakai, A.K.., Burris, T.A.., 1985. Growth in male and female aspen clones : a twenty-five-year longitudinal study. Ecology 66, 1921-1927.

Sakai, A.K., Weller, S.G., 1999. Gender and sexual dimorphism in flowering plants: a review of terminology, biogeographic patterns, ecological correlates, and phylogenetic approaches, in: gender and sexual dimorphism in flowering plants. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1-31. https://doi.org/10.1007/978-3-662-03908-3_1

Sánchez-Vilas, J., Bermúdez, R., Retuerto, R., 2012. Soil water content and patterns of allocation to below-and above-ground biomass in the sexes of the subdioecious plant Honckenya peploides. Ann. Bot. 110, 839-848. https://doi.org/10.1093/aob/mcS157

Sánchez-Vilas, J., Retuerto, R., 2011. Reproduction reduces photosynthetic capacity in females of the subdioecious Honckenya peploides. Acta Oecologica 37, 155-163. https://doi.org/10.1016/j.actao.2011.01.013

Sánchez-Vilas, J., Retuerto, R., 2009. Sex-specific physiological, allocation and growth responses to water availability in the subdioecious plant Honckenya peploides. Plant Biol. 11, 243-254. https://doi.org/10.1111/j.1438-8677.2008.00105.x

Scholander, P.F., Hammel, H.T., Bradstreet, E.D., Hemmingsen, E.A., 1965. Sap Pressure in Vascular Plants. Science (80-.). 148, 339-346.

Tormo Molina, R., Ruiz Téllez, T., Devesa Alcaraz, J.A., 1992. Aportación a la bioclimatología de Portugal. An. Jard. Bot. Madrid 49, 245-264.

Tozawa, M., Ueno, N., Seiwa, K., 2009. Compensatory mechanisms for reproductive costs in the dioecious tree Salix integra. Botany 87, 315-323. https://doi.org/10.1139/B08-125

Valdés, B. (Benito), Talavera, S., Fernández-Galiano, E., Fundación para la Ecología y la Protección del Medio Ambiente., 1987. Flora vascular de Andalucía occidental. Ketres Editora.

Valladares, F., Gianoli, E., Gómez, J.M., 2007. Ecological limits to plant phenotypic plasticity. New Phytol. 176, 749-763. https://doi.org/10.1111/j.14698137.2007.02275.x

Wallace, C.S., Rundel, P.W., 1979. Sexual dimorphism and resource allocation in male and female shrubs of Simmondsia chinensis. Oecologia 44, 34-39.

Welles, J.M., 1990. Some indirect methods of estimating canopy structure. Remote Sens. Rev. 5, 31-43. https://doi.org/10.1080/02757259009532120

Zunzunegui, M., Díaz Barradas, M.C., Clavijo, A., Álvarez Cansino, L., Ain Lhout, F., García Novo, F., 2006. Ecophysiology, growth timing and reproductive effort of three sexual foms of Corema album (Empetraceae). Plant Ecol. 183, 35-46. https://doi.org/10.1007/s11258-005-9004-4

841 Supplementary content
842 Table S1. Average and \pm standard deviation of the experimental data in all study populations of

		LAI	Fv/Fm May	$\begin{aligned} & \Phi_{\text {PSII }} \\ & \text { May } \\ & \hline \end{aligned}$	Fv/Fm Sept	$\Phi_{\text {PSII }}$ Sept	$\begin{aligned} & \hline \Psi \mathrm{Pa} \\ & \text { May } \\ & \hline \end{aligned}$	$\Psi \mathrm{MPa}$ Sept	$\Delta^{13} \mathrm{C} \%$ 0	ठ ${ }^{15}$ N\%	N \%
Camariñas	M	3.96	0.74	0.55	0.78	0.44	-0.70	-1.00	17.93	-5.51	0.59
		± 0.65	± 0.025	± 0.059	± 0.024	± 0.119	± 0.064	± 0.120	± 1.50	± 1.93	± 0.12
	F	3.51	0.78	0.60	0.78	0.46	-0.75	-1.01	18.10	-4.16	0.59
		± 0.70	± 0.003	± 0.092	± 0.042	± 0.15	± 0.077	± 0.097	± 1.21	± 2.11	± 0.18
S. Jacinto	M	3.25	0.75	0.62	0.75	0.26	-0.75	-1.22	17.92	-7.32	0.62
		± 0.83	± 0.011	± 0.072	± 0.023	± 0.083	± 0.097	± 0.314	± 1.24	± 1.00	± 0.08
	F	3.04	0.75	0.64	0.75	0.21	-0.90	-1.17	18.96	-7.69	0.59
		± 0.73	± 0.019	± 0.060	± 0.024	± 0.067	± 0.142	± 0.277	± 0.908	± 1.24	± 0.12
Osso	M		0.79	0.55	0.77	0.32		-1.36	19.01		
Baleia			± 0.013	± 0.085	± 0.029	± 0.18		± 0.101	± 0.177		
	F		0.79	0.55	0.76	0.25		-1.31	19.56		
			± 0.016	± 0.048	± 0.038	± 0.11		± 0.104	± 0.54		
Caparica	M	2.75	0.74	0.31	0.63	0.16	-0.71	-1.41	17.35	-9.42	0.56
		± 0.49	± 0.028	± 0.07	± 0.040	± 0.051	± 0.112	± 0.281	± 0.470	± 0.79	± 0.06
	F	2.68	0.74	0.28	0.65	0.17	-0.70	-1.32	17.92	-9.07	0.62
		± 0.42	± 0.018	± 0.051	± 0.056	± 0032	± 0.081	± 0.198	± 0.960	± 1.16	0.09
Troia	M	2.11					-1.11		17.55		
		± 0.42					± 0.24		± 0.646		
	F	2.01					-1.10		18.31		
		± 0.53					± 0.35		± 0.575		
S. André	M	2.01	0.74	0.27	0.70	0.21	-1.27	-1.70	17.49		
		± 0.68	± 0.034	± 0.051	± 0.038	± 0.069	± 0.222	± 0.660	± 0.719		
	F	2.36	0.75	0.28	0.69	0.21	-1.33	-1.41	18.21		
		± 0.69	± 0.027	± 0.077	± 0.054	± 0.042	± 0.151	± 0.281	± 1.56		
Monte	M	1.63	0.79	0.55	0.77	0.55	-1.27	-2.90	18.55	-5.51	0.71
Gordo		± 0.37	± 0.013	± 0.048	± 0.029	± 0.048	± 0.088	± 0.842	± 1.18	± 2.07	± 0.06
	F	1.56	0.79	0.55	0.76	0.55	-1.28	-2.25	18.74	-4.95	0.68
		± 0.28	± 0.016	± 0.047	± 0.038	± 0.045	± 0.133	± 0.890	± 0.803	± 2.17	± 0.12
Asperillo	M	1.97	0.75	0.26	0.68	0.18	-1.14	-3.13	16.82	-9.17	0.84
		± 0.26	± 0.024	± 0.042	± 0.033	± 0.040	± 0.331	± 0.745	± 1.070	± 1.60	± 0.09
	F	1.80	0.72	0.26	0.70	0.22	-1.114	-1.90	17.15	-9.12	0.83
		± 0.33	± 0.064	± 0.041	± 0.048	± 0.056	± 0.394	± 0.350	± 0.573	± 1.23	± 0.06

848

Highlights

1. Corema album populations respond to the climatic gradient of the species' biogeographical area.
2. Gender dimorphism is only recognized in $\Delta^{13} \mathrm{C}$ and in leaf water potential in the dry season.
3. Female plants have lower integrated water use efficiencies to maintain fruit production.
4. Leaf water potential is more negative in male plants (September in southern populations).
5. Females might have deeper roots than males as a compensatory mechanism, presenting underground SSS.
