
PHYSICAL REVIEW E 106, 044125 (2022)

Excited-state quantum phase transitions in the anharmonic
Lipkin-Meshkov-Glick model: Static aspects
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The basic Lipkin-Meshkov-Glick model displays a second-order ground-state quantum phase transition and
an excited-state quantum phase transition (ESQPT). The inclusion of an anharmonic term in the Hamiltonian
implies a second ESQPT of a different nature. We characterize this ESQPT using the mean field limit of the
model. The alternative ESQPT, associated with the changes in the boundary of the finite Hilbert space of
the system, can be properly described using the order parameter of the ground-state quantum phase transition,
the energy gap between adjacent states, the participation ratio, and the quantum fidelity susceptibility.
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I. INTRODUCTION

Ground-state quantum phase transitions (QPTs), zero-
temperature transitions that are triggered by quantum fluctu-
ations instead of thermal ones, have been in the limelight in
recent years due to their deep implications in the understand-
ing of many-body quantum systems [1]. In these transitions
the ground state of the system undergoes abrupt and qual-
itative changes when one or several control parameters in
the Hamiltonian straddle a critical value. Since the seminal
works of Gilmore and co-workers [2–4], there have been
numerous works characterizing QPTs in two-level quantum
systems of different dimensionality used to model nuclear
and molecular systems, such as the interacting boson model
(IBM) or the vibron model (see Refs. [5–7] and references
therein). A full classification of ground-state QPTs in two-
level models with different dimensionality can be found in
Ref. [8].

The study of QPTs has been extended to the realm of
excited states, introducing the concept of excited-state quan-
tum phase transition (ESQPT) which implies a nonanalyticity
in the density of states and the energy level flow which,
in most cases, is associated with a ground-state QPT and
the existence of a critical point in the energy functional
obtained from the classical or mean field limit of the sys-
tem [9–11]. The nature of the nonanalyticity in the energy
level density in nondegenerate stationary points of systems
with n effective degrees of freedom is such that the order
of the derivative of the level density that is nonanalytic is
n − 1 [11–15]. Excited-state quantum phase transitions have
received a great deal of attention in many systems, fostered
by detection of their precursors in molecular spectra [16–19],
superconducting microwave billiards [20], and spinor conden-
sates [21]. In the last case, some promising developments have

been recently published [22,23]. Reference [24] is a review
on different aspects of ESQPTs with an extensive reference
list.

A system where ESQPTs have been studied is the two-
dimensional limit of the vibron model (2DVM), a two-level
model built upon the bilinear products of two Cartesian op-
erators and a scalar bosonic operator [25,26]. This model has
been used to reproduce bending spectra of molecules, as its
two dynamical symmetries can be associated with the bending
degrees of freedom for linear and bent molecular species, as
well as the interesting situations that lie in between these
two limiting cases [27,28]. The basic 2DVM Hamiltonian,
including only a number and a pairing operator, presents a
second-order ground-state QPT and an associated ESQPT that
can be linked to the effect over excited energy levels of the
barrier to linearity in nonrigid molecular systems [26]. In fact,
most experimental ESQPT signatures that were identified in
the bending degrees of freedom of nonrigid molecules are
associated with this ESQPT [16,17,19]. The obtention of re-
sults of spectroscopic quality in the modeling of molecular
spectra implies the explicit inclusion of anharmonic terms in
the 2DVM Hamiltonian. In Ref. [29] it was shown that the
inclusion of anharmonicity in the Hamiltonian results in a
second ESQPT in the broken-symmetry phase, which is where
the typical spectroscopic signatures of nonrigid molecules are
found. More recently, in the pursuit of the description of the
transition state in isomerization reactions [18], it has been
found that the second ESQPT can also be present in the sym-
metric phase for sufficiently large values of the anharmonicity
and it is not associated with the ground-state QPT but it stems
from changes in the phase-space boundary of the 2DVM’s
finite-dimensional Hilbert space [30].

A particular kind of such ESQPTs has been already studied
in matter-radiation interaction models with two degrees of
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freedom (Dicke and Tavis-Cummings models). In this case,
the authors referred to these ESQPTs happening at the bound-
ary of the model space as static ESQPTs, due to their lack of
effect on the system dynamics. In this way, they can be distin-
guished from the more usual ESQPTs, which the authors refer
to as dynamic ESQPTs [31]. More information on ESQPTs
associated with the finiteness of the system Hilbert space can
be found in Refs. [15,24].

Our aim is to extend the results obtained for the 2DVM
[29,30] to the Lipkin-Meshkov-Glick (LMG) model. This
model was introduced as a toy model for interacting fermions
in nuclear physics, to help assess the performance of dif-
ferent approximations used in the study of nuclear structure
[32–34]. It can be mapped to a set of spins with a long-range
all-to-all interaction, and from their initial purpose it was
later used in many different contexts. In particular, it was
extensively used for the study of QPTs [35–45] and ESQPTs
[46–55]. The general LMG model presents first-, second-,
and third-order ground-state QPTs [43], something that has
attracted the interest of researchers. In a basic formulation,
with a Hamiltonian composed of two operators that can be
mapped to a number and a pairing operator, the model has a
second-order ground-state QPT and its associated ESQPT. A
particular realization of the LMG model has a classical limit
energy functional that is equal to classical limit of the IBM
and it has been used as a tool to shed light upon QPTs and
ESQPTs in this model [56–58]. It is also a toy model that can
be applied in quantum computing [59–61]. The interest in the
LMG model was further fostered by the achievement of differ-
ent experimental realizations, using molecular magnets [62],
optical cavities [63], Bose-Einstein condensates [64], nuclear
magnetic resonance systems [65], trapped atoms [66–68], and
cold atoms [69].

The purpose of the present article is to explore how the
LMG model is modified, including in the model Hamiltonian
the anharmonic two-body term n̂(n̂ + 1) with a negative con-
trol parameter α. We perform a mean field analysis of the
anharmonic LMG model, characterize ground-state QPT in
this case, and perform a study of the two ESQPTs that appear
in the model making use of different quantities such as the
energy gap between adjacent levels, the ground-state QPT or-
der parameter, the participation ratio, and the quantum fidelity
susceptibility. This paper will be followed by another one
that focuses on the effect of the two ESQPTs on dynamical
properties of the model [70].

The present paper is organized as follows. In Sec. II
we introduce the anharmonic LMG model, review its al-
gebraic structure, provide its Hamiltonian matrix elements,
and study the model mean field or thermodynamic limit
using the coherent state formalism. Section III includes a
description of the different quantities used to characterize the
anharmonic LMG ESQPTs and the results obtained for differ-
ent anharmonicity and system-size values. We summarize in
Sec. IV.

II. MODEL

The LMG model has recently been attracting increasing at-
tention after the experimental realization of one-dimensional
spin- 1

2 lattices with a variable interaction range [66,71]. Using

Pauli spin matrices σi,β , with i = 1, 2, . . . , N and β = x, y, z,
the system Hamiltonian is

Ĥ (a) = B
N∑

i=1

σi,z +
N∑

i< j=1

K

|i − j|a σi,xσ j,x, (1)

where we assume h̄ = 1, B is the amplitude of an exter-
nal magnetic field, K is the energy scale of the interactions
between different spin sites, and the parameter a controls
the interaction range. For a = 0 the interaction range is in-
finite and the Hamiltonian (1) is mapped to the LMG model
[32–34]

Ĥ = Ĥ (a=0) = (1 − ξ )(S + Ŝz ) + 2ξ

S

(
S2 − Ŝ2

x

)
, (2)

where we introduce collective spin operators Ŝβ =
1
2

∑N
i=1 σi,β for β = x, y, z, add a constant term

2BS − KS(2S − 1), and define a single control parameter ξ ,
making 2B = 1 − ξ and SK = −ξ . The control parameter is
defined in the range ξ ∈ [0, 1], driving the system from one
phase to the other one. Indeed, from an algebraic point of
view, the LMG Hamiltonian given by Eq. (2) presents a u(2)
algebraic structure, with two limiting dynamical symmetries:
u(2) ⊃ u(1) and u(2) ⊃ so(2). Each dynamical symmetry is
associated with a different phase. For ξ = 1, the Hamiltonian
is diagonal in the basis associated with the so(2) subalgebra
and this is known as the deformed or broken-symmetry
phase; in contrast, for ξ = 0 the Hamiltonian is diagonal in
the u(1) subalgebra basis and it is in the normal or symmetric
phase [72]. The LMG model Hamiltonian (2) experiences a
second-order ground-state QPT at the critical value of the
control parameter ξc = 0.2 [43].

Inspired by the work in Refs. [29,30], we include in the
Hamiltonian (2) an anharmonic term, using a second-order
operator on Ŝz,

Ĥanh = (1 − ξ )(S + Ŝz ) + α

2S
(S + Ŝz )(S + Ŝz + 1)

+ 2ξ

S

(
S2 − Ŝ2

x

)
. (3)

The new Hamiltonian still depends on the control parameter ξ ,
which drives the system between phases, but it also depends
on a second control parameter α. For α = 0, we recover the
original Hamiltonian (2), and for α values different from
zero, the ξ = 0 limit is transformed from a truncated one-
dimensional harmonic oscillator to an anharmonic oscillator.
That is the reason why we refer to the Hamiltonian (3) as the
anharmonic LMG (ALMG) model. It is worth noting that the
limit so(2) is no longer recovered for ξ = 1, unless α = 0. In
Ref. [73], a preliminary study of an anharmonic LMG model
using only operators diagonal in the u(1) basis was carried
out.

The Hilbert space for the Hamiltonian (1) has dimension
2N , but in the long-range interaction (3) there is a drastic
reduction in the dimension of the Hilbert space due to the
conservation of the total spin [Ŝ2, Ĥ ] = 0. We focus on the
sector that corresponds to the maximum angular momentum
S = N/2, with a Hilbert space dimension N + 1.

In the ALMG model, as in the original LMG model, there
are two bases available to carry out the calculations, one
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defined by the u(2) ⊃ u(1) dynamical algebra, |S, Mz〉, where
Mz = −S, . . . , 0, . . . , S is the projection of the total spin S in

the z direction. The matrix elements of the Hamiltonian (3) in
the u(1) basis are

〈S, M ′
z|Ĥanh|S, Mz〉 =

{
(1 − ξ )(S + Mz ) + ξ

2S
[4S2 − (S − Mz )(S + Mz + 1) − (S + Mz )(S − Mz + 1)]

+α

2

[
S + 1 +

(
2 + 1

S

)
Mz + M2

z

s

]}
δM ′

z,Mz

− ξ

2S

√
(S − Mz )(S − Mz − 1)(S + Mz + 2)(S + Mz + 1)δM ′

z,Mz+2. (4)

As can be easily seen from the matrix elements in Eq. (4),
only states with M ′

z = Mz or M ′
z = Mz ± 2 are connected;

hence the ALMG Hamiltonian (3) conserves parity (−1)S+Mz

and the Hamiltonian matrix is split into two blocks, one for
positive or even parity and dimension S + 1 and the other for
negative or odd parity with dimension S. The second basis
is associated with the u(2) ⊃ so(2) symmetry |S, Mx〉, and in
this case it is the projection of the spin in the x direction, the
second quantum label in the basis. The matrix elements in this
case can be deduced from the previous ones once the system
is rotated [72].

We depict in Fig. 1 the correlation energy diagram for the
ALMG Hamiltonian (3) with a system size N = 2S = 120
and α = 0 and −0.6 in Figs. 1(a) and 1(b), respectively.
In both cases, we plot the normalized excitation energy as
a function of the control parameter ξ . Both positive- and
negative-parity states are included in the figure; positive-
parity energy levels are plotted with blue solid lines and
odd-parity states with red dashed lines. Figure 1(a) shows
clearly the ground-state QPT at ξc = 0.2 and the separatrix,
marked by a high density of states, which is the boundary
between the two ESQPT phases. Excited states above the
separatrix have a u(1) (symmetric) character, while those
below it have an so(2) (broken symmetry) character. It can
be appreciated in the figure how beyond the critical value of
the control parameter ξ and for states under the separatrix, the
even- and odd-parity states are degenerated. From this figure it
is already clear that the new ESQPT is not a static ESQPT
using the notation introduced in Ref. [31]. In the present case,
as it is confirmed in the semiclassical analysis in the next
section, the nonanalyticity of the density of states is of the
same kind in the two ESQPTs and both have noticeable effects
on the system dynamics [70].

Figure 1(b) is the correlation energy diagram for a negative
α value. As expected from the results obtained for the two-
dimensional limit of the vibron model [29,30], there is a new
separatrix that crosses the one associated with the ground-
state QPT and the degeneracy pattern is more complex. In
order to better understand the second separatrix we study the
classical limit of the model, making use of the spin coherent
states formalism [74].

Classical limit of the model

The classical limit of the Hamiltonian (3) can be obtained
within a mean field analysis, studying the large-size limit of
the model. We perform this study using spin coherent states

[74]. From the usual definitions and using the notation intro-
duced in the preceding section, the spin ladder operators are
Ŝ± = Ŝx ± iŜy and the spin coherent state is defined as

|[S]μ〉 = exp(μŜ+)

(1 + |μ|2)S
|S,−S〉

= 1

(1 + |μ|2)S

2S∑
p=0

√(
2S

p

)
μp|S,−S + p〉, (5)

where μ is a complex parameter that encompasses the clas-
sical position and momentum variables, |S,−S + p〉 is a
eigenstate of Ŝz, Ŝz|S,−S + p〉 = (−S + p)|S,−S + p〉, and

(Ŝ+)p|S,−S〉 =
√

p!(2S)!
(2S−p)! |S,−S + p〉 [74]. The expectation

value of the operators Ŝz, Ŝ+, and Ŝ− with the spin coherent
state (5) are

〈[S]μ|Ŝz|[S]μ〉 = S
|μ|2 − 1

|μ|2 + 1
,

〈[S]μ|Ŝ+|[S]μ〉 = S
2μ∗

|μ|2 + 1
,

〈[S]μ|Ŝ−|[S]μ〉 = S
2μ

|μ|2 + 1
. (6)

Thus, the classical limit of the ALMG model, Hcl(μ), can be
obtained as the expectation value of the Hamiltonian (3) (per
particle) with the coherent state in the large-system-size limit
(S → ∞)

Hcl(μ) = 〈[S]μ|Ĥanh|[S]μ〉
2S

= (1 − ξ )
|μ|2

1 + |μ|2 + α

( |μ|2
1 + |μ|2

)2

+ ξ

[
1 −

(
μ + μ∗

1 + |μ|2
)2]

, (7)

where the complex variable μ can be mapped into (q, p) (the
canonical coordinate and momentum) by

q = 1√
2

μ + μ∗√
1 + |μ|2

, (8)

p = −i√
2

(μ − μ∗)√
1 + |μ|2

. (9)
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(a)

(b)

FIG. 1. Correlation energy diagram depicting the normalized ex-
citation energies for even (blue solid lines) and odd (red dashed lines)
parity states as a function of the control parameter ξ ∈ [0, 1] for a
system with size N = 120 and anharmonicity parameter (a) α = 0
and (b) −0.6.

Applying this transformation, the resulting classical Hamilto-
nian is

Hcl(q, p) = 1 − ξ

2
(p2 + q2) + α

4
(p2 + q2)2

+ ξq2(p2 + q2 − 2) + ξ . (10)

The resulting energy functional should provide the func-
tional form of the separatrices that mark the critical ESQPT
energies in Fig. 1, one in the α = 0 case [Fig. 1(a)] and two

for α < 0 [Fig. 1(b)]. The separatrix starting at the critical
value of the control parameter ξc = 0.2 has been already char-
acterized for α = 0. We present results for both ESQPTs with
a special focus on the anharmonicity-related critical line, ex-
ploring whether this line has the same nature and implications
as the other and to what extent it has an impact in the system
structure. The changes in the system dynamics associated with
the introduction of the anharmonicity in the LMG model are
explored in [70].

Assuming ξ ∈ [0, 1] and α < 0, the critical or station-
ary points of the Hamiltonian, where the first derivatives of
Eq. (10) are zero, are

∂Hcl(q, p)

∂q
= 0

∂Hcl(q, p)

∂ p
= 0

−→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
q2

0 = 0, p2
0 = 0

)
(
q2

1 = 5ξ−1
4ξ+α

, p2
1 = 0

)
(
q2

2 = ξ−1−2α

2ξ
, p2

2 = 1+2α+3ξ

2ξ

)
(
q2

3 = 0, p2
3 = ξ−1

α

)
.

(11)

According to the classical limit, the origin is a stationary
point and it corresponds to the system ground state in the
control parameter range ξ ∈ [0, ξc] where the critical point is
ξc = 0.2. For values of the control parameter ξ ∈ (ξc, 1], the
minimum energy is attained for the (q1, p1) coordinate and
momentum values. In this way, the system ground-state en-
ergy as a function of the control parameters can be expressed
as

Egs(ξ, α) =
{

ξ, ξ � 0.2
−1+ξ (10+4α−9ξ )

4(α+4ξ ) , ξ > 0.2.
(12)

From this equation is clear that the Hamiltonian (3) in the
mean field limit has a critical point at ξc = 0.2, where the
second derivative of the ground-state energy with respect to
the control parameter ξ is discontinuous. This is in good
agreement with the results obtained in [8] for a Hamiltonian
including one- and two-body operators. Hence, the crossing
of this critical point is marked by a second-order ground-state
QPT. The energy gap vanishes and the ground state becomes
parity degenerated. In addition to this and in a way similar to
other systems with a transition between u(n) and so(n + 1)
dynamical symmetries [26], an ESQPT appears at an energy
Hcl(q0, p0) = ξ . The critical excitation energy of the ESQPT
defines the separatrix with a high density of states shown in
Fig. 1. An analytical expression for this separatrix can be
computed as

f1(ξ, α) = Hcl(q0, p0) − Hcl(q1, p1) = (1 − 5ξ )2

4(4ξ + α)
(13)

for ξ ∈ (ξc, 1].
For negative α values there can be a second separatrix

in this system, as shown in Fig. 1(b). When the condition
α < (ξ − 1)/2 is satisfied, the second ESQPT appears at a
critical energy Hcl(q2, p2) = 1 + α. The excitation energy for
this new ESQPT marks the second separatrix in Fig. 1(b) and
can be computed as

f2(ξ, α) =
{

Hcl(q2, p2) − Hcl(q0, p0) = 1 + α − ξ, ξ � ξc

Hcl(q2, p2) − Hcl(q1, p1) = (1+2α+3ξ )2

4(α+4ξ ) , ξ > ξc.

(14)
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(a)

(b)

FIG. 2. Contour plots of the classical Hamiltonian (10) for systems with (a) α = 0.0 and (b) α = −0.6 and different values of the control
parameter, from left to right: ξ = 0.15, 0.3, 0.4, and 0.5. Each row shares the scale (right color axes).

As previously mentioned, a similar ESQPT in the broken-
symmetry phase of the two-dimensional limit of the vibron
model was studied in Ref. [29] and it was recently shown to
be present in the symmetric phase of the model too [30].

In the symmetric phase ξ ∈ [0, ξc], pair of eigenstates
with different parities are degenerate for energies above the
f2(ξ, α) separatrix. In the broken-symmetry phase ξ ∈ (ξc, 1],
both separatrices can coexist and the pairs of eigenvalues with
even and odd parities are degenerate below and above both of
them and nondegenerate in between the two separatrices. This
is shown clearly in Fig. 1(b). The critical point (q3, p3) marks
the largest energy of the system, Hcl(q3, p3) = −1+(2+4α−ξ )ξ

4α
,

if the solution (q2, p2) exists. In fact, taking this into account
and equating Hcl(q2, p2) = Hcl(q3, p3), the threshold value of
α in order that the second ESQPT exists can be obtained as
αth(ξ ) = (ξ − 1)/2. From this equation it is clear that the
second ESQPT is present not only in the broken-symmetry
phase, but also in the symmetric phase. This was recently
discussed for a different model, the 2DVM [30], and it is
a clear example of an ESQPT without an associated QPT,
something that usually happens in systems with more than
one control parameter for some trajectories in the parameter
space [75–77]. In this case, the situation is somewhat different
and the second ESQPT can be associated with changes in the
boundaries in the finite Hilbert space of the system [15,24,31].

In Fig. 2 we show the contour plot of the classical
Hamiltonian (10) for two different values of the anharmonic
interaction, one without the f2 (ESQPT (14), with α = 0.0
[Fig. 2(a)]) and another with a value of the control parameter
smaller than the threshold, α = −0.6 [Fig. 2(b)]. In both cases
different values of the control parameter ξ have been studied,
from left to right ξ = 0.15, 0.3, 0.4, and 0.5. The cases with
α = 0.0 present one minimum for ξ < 0.2 and two minima in
the broken-symmetry phase [Fig. 2(a)]. In the four examples
the maximum values of the energy correspond to q2

2 + p2
2 = 2.

When the control parameter α takes a value smaller than
the threshold [Fig. 2(b)], two maxima appear for q3 = 0 and

p3 �= 0, which correspond to the new system limit. In these
cases, systems present a new ESQPT due to the system limit
q2

2 + p2
2 = 2.

In order to check the threshold value αth(ξ ), we have com-
puted the maximum excitation energy for different values of α

and system sizes and we have fit the maximum normalized ex-
citation energy to a functional form Emax = Ecl + cN−b for a
constant ξ = ξc. The resulting values of Ecl for ξc and various
values of α are a good estimate of the maximum excitation
energy of the system in the classical limit. The difference
between Ecl and the separatrix f2(ξc, α) is depicted in Fig. 3,

FIG. 3. The olive green solid line is the difference between the
maximum normalized excitation energy of the ALMG (see the text
for details) and the separatrix (14) for ξ = ξc = 0.2. The horizontal
blue dashed line marks the zero value.
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FIG. 4. Density of states ν(E ) as a function of the normalized energy E/N for an ALMG Hamiltonian with α = −0.6 and (a) ξ = 0.15
and (b) ξ = 0.6. The red solid line is the ν(E ) density of states computed with Eq. (15). Also depicted is the density of states computed for the
normalized eigenvalues of an ALMG Hamiltonian (3) with N = 4000 (orange bars).

where it is clear how the threshold value of α exists and is
equal to the value αth(ξc) = −0.4.

As can be clearly seen in Fig. 1, the existence of an ESQPT
can be traced back to abrupt changes in the system available
phase space which produces a maximum in the local density
of states at the separatrices, for the critical energy of the tran-
sition [12,24,31,48]. From the classical Hamiltonian (10), we
can evaluate the semiclassical approximation to the quantum
density of states as a function of the system’s energy [78]. In
the particular case of the LMG and ALMG models

ν(E ) = 1

2π

∫∫
dq d p δ(E − Hcl(q, p))

= 1

2π

∫∫
dφ d jzδ(E − Hcl(φ, jz )), (15)

where instead of the phase-space generalized coordinate and
associated momentum we used a different pair of canoni-
cal variables φ ∈ [0, 2π ) and jz ∈ [− j, j] that facilitate the
derivation of an analytical formula for the density of states
of the ALMG model. Using the properties of the Dirac delta
function (see the Appendix), we can obtain the analytical
formula for the density of states

ν(ε) = 1

4π

∫ 2π

0

× dφ∣∣∣∣
√( 1−ξ+α

2

)2 − (α + 4ξ cos2 φ)
( 2+2ξ+α

4 − ξ cos2 φ − ε
)∣∣∣∣

,

(16)

where ε is the scaled energy value ε = E/N .

In Fig. 4 we plot the density of states ν(E ) calculated
with Eq. (16) (red line) versus the normalized energy for
α = −0.6 (the same α value used in the correlation en-
ergy diagrams of Fig. 1) and two ξ values: 0.15 [symmetric
phase, Fig. 4(a)] and 0.6 [broken-symmetry phase, Fig. 4(b)].
For the sake of comparison, we also include the density of
states computed from the eigenvalues of an ALMG Hamil-
tonian (3) for the same control parameters and a system size
N = 2000. It can be clearly appreciated how the density of
states in Fig. 4(a) has a maximum at the f2(ξ = 0.15, α =
−0.6) + Egs(ξ = 0.15, α = −0.6) = 0.4 critical energy in
the symmetric phase and in Fig. 4(b) at f1(ξ = 0.6, α =
−0.6) + Egs(ξ = 0.6, α = −0.6) = 0.4 (leftmost maximum)
and f2(ξ = 0.6, α = −0.6) + Egs(ξ = 0.6, α = −0.6) = 0.6
(rightmost maximum) critical energies in the broken-
symmetry phase. The agreement between the results for
Eq. (16) and the density of states computed from the system
energies is excellent and it is worth noting how in all cases the
peaks will transform into logarithmic divergences for an infi-
nite system size, as expected [14]. This has deep implications
in the system dynamics, as shown in [70].

In the next section we characterize the two ESQPTs and
their associated separatrices using different quantities.

III. RESULTS

In this section we characterize the two ESQPTs that arise
in the ALMG using four different quantities: the gap between
adjacent positive-parity energy levels, the expectation value
of the operator n̂ = S + Ŝz, the participation ratio, and the
quantum fidelity susceptibility.
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FIG. 5. Gap between adjacent energy levels in the ALMG model
as a function of the normalized excitation energy for (a) ξ = 0.15 and
(b) ξ = 0.6; anharmonicity parameter α = 0 (yellow), −0.3 (blue),
−0.4 (green), and −0.6 (brown); and system size N = 120 (dashed
lines) and 1200 (solid lines).

A. Energy gap

The occurrence of an ESQPT is most often marked by a
discontinuity in the density of states or one of its derivatives.
In cases such as the LMG model (2), for a given value of
the control parameter ξ > ξc = 0.2, the difference in energy
between adjacent eigenstates is minimum at or close to the
critical energy of the ESQPT, due to the high density of
states at this excitation energy (see Fig. 1). Results are more
complex once we introduce the anharmonic correction in the
LMG model Hamiltonian (3).

In Fig. 5 we plot the difference between adjacent
positive-parity energy levels as a function of the normal-
ized excitation energy for system-size values N = 2S = 120
(dashed lines) and 1200 (solid lines), for control parame-
ter ξ equal to 0.15 [Fig. 5(a)] and 0.6 [Fig. 5(b)], and for
α = 0,−0.3,−0.4,−0.6. The results in Fig. 5(a), where the
system is in the symmetric phase (ξ = 0.15 < ξc), can be
explained by considering the second separatrix (14). The
f2(ξ, α) line marks the critical energy value for the ESQPT as-
sociated with the anharmonic term in ξ > ξc and, as explained
above, there is a threshold α and the effects of the anharmonic
term in this phase can be noticed only when the parameter α

is beyond this threshold value [see the line for α = −0.4 in
Fig. 5(a)]. The crossing of the critical energy is marked by an
abrupt minimum in the energy gap, as expected. When this
study is extended to the broken-symmetry phase [Fig. 5(b)],
there are two minima, one for each separatrix, for negative
α values, except for α = −0.4, as this corresponds to the
point associated with the crossing of f1(ξ, α) and f2(ξ, α) in
Fig. 1(b). As expected, the ESQPT precursor is better defined
for larger system size, though for N = 2S = 120 the results
already clearly identify the ESQPT. The ALMG energy gap
results are in good agreement with the 2DVM results obtained
in the symmetric [30] and broken-symmetry [29] cases.

B. Number operator

The S + Ŝz term in Eqs. (2) and (3) is associated with the
u(1) Casimir operator and it can be denoted by the system

FIG. 6. Expectation value of the number operator n̂ in the system
eigenstates for (a) ξ = 0.15 and (b) ξ = 0.6; anharmonicity param-
eter α = 0 (yellow), −0.3 (blue), −0.4 (green), and −0.6 (brown);
and system size N = 120 (dashed lines) and 1200 (solid lines).

number operator n̂. This Casimir operator provides a suitable
realization of an order parameter for the ground-state QPT in
the ALMG case [35–37,47,51]. The expectation value of this
operator in the system eigenstates is a second ESQPT proxy
in the Hamiltonian (3). We depict in Fig. 6 the expectation
value of n̂ as a function of the normalized system excita-
tion energy for ξ = 0.15 [Fig. 6(a)] and 0.6 [Fig. 6(b)] and
different values of the anharmonicity parameter α (see the
figure caption) for system size N = 120 (dashed lines) and
1200 (solid lines). In all cases, the expectation value of n̂ is a
well-defined minimum (maximum) for the eigenstates closer
to the f1(ξ, α) [ f2(ξ, α)] separatrix. This fact will be better
understood once we introduce the inverse participation ratio
to characterize both ESQPTs.

It is worth emphasizing that in the symmetric case there
is no minimum; the f1(ξ, α) line is only defined for ξ > ξc.
This is clearly shown in Fig. 6(a), where ξ = 0.15 < ξc. In
addition, as in the energy gap case, this quantity has a peak
only for values beyond the α threshold value that corresponds
to the second separatrix f2(ξ, α).

C. Participation ratio

The participation ratio (PR) provides the localization of a
quantum state in a given basis [79]. For a state |ψ〉, expressed
in a basis {|n〉}D−1

n=0 as |ψ〉 = ∑D−1
n=0 Cn|n〉, the PR is defined as

P(ψ ) = 1∑D−1
n=0 |Cn|4

, (17)

where D stands for the Hilbert space dimension, which in
this case is D = N + 1. This quantity is also often referred
to as the inverse participation ratio [80] or the number of
principal components [81]. In the case in which the state is
maximally delocalized, Cn = 1/

√
D for all n and P(ψ ) = D;

if the state is equal to one basis element (all Cn = 0 but one
that is equal to unity), the localization is maximal in the basis
and P(ψ ) = 1. A series of works in algebraic models for
systems in one-, two-, and three-dimensions having a u(n + 1)
dynamical algebra has shown that the eigenstates closer to
the critical energy in a u(n) − so(n + 1) second-order ground-
state quantum phase transition are strongly localized in the
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(a)

(b)

(c)

(d)

FIG. 7. Normalized participation ratio as a function of the normalized excitation energy for an ALMG model with ξ = 0.15, system size
N = 600, and different anharmonicity parameter values: (a) α = 0 (yellow), (b) α = −0.3 (blue), (c) α = −0.4 (green), and (d) α = −0.6
(brown). In each case, the PR values for eigenstates of interest have been marked with black circles and the squared components of these
eigenstates as a function of the corresponding u(1) basis state index are shown in the insets (see the text for details).

u(n) basis [51,82,83]. In the ALMG case there is a strong
localization in the u(1) basis of the states close to either one
of the two separatrices. In particular, the eigenstates with en-
ergies close to the critical energy of the f1(ξ, α) separatrix are
highly localized in the n = 0 component (|S, Mz = −S〉) of
the basis, something that was already checked in [51] for the
LMG model. However, for the localization of the eigenstates
with energies close to the second separatrix f2(ξ, α), critical
energy is due to a high component in the n = N basis state
(|S, Mz = S〉). This is shown in Figs. 7 and 8 for systems in
the symmetric phase (ξ = 0.15) and in the broken-symmetry
phase, respectively. In both cases, the system size is N = 600

and results are depicted for (from top to bottom) α = 0,
−0.3, −0.4, and −0.6. In each panel some representative
eigenstates have been chosen and the values of their squared
components in the u(1) basis are shown in the corresponding
insets.

In Fig. 7 the only α value beyond the threshold value is
α = −0.6, shown in Fig. 7(d). In Figs. 7(a)–7(c) the PR is
minimum at the spectrum edges, where eigenstates are max-
imally localized in the |S, Mz = −S〉 and |S, Mz = S〉 states,
as expected in the symmetric phase where the u(1) dynamical
symmetry provides a convenient approximation. However, in
Fig. 7(d) (brown line), a well-defined PR minimum appears
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(a)

(b)

(c)

(d)

FIG. 8. Normalized participation ratio as a function of the normalized excitation energy for an ALMG model with ξ = 0.6, system size
N = 600, and different anharmonicity parameter values: (a) α = 0 (yellow), (b) α = −0.3 (blue), (c) α = −0.4 (green), and (d) α = −0.6
(brown). In each case, the PR values for eigenstates of interest have been marked with black circles and the squared components of these
eigenstates as a function of the corresponding u(1) basis state index are shown in the insets (see the text for details).

associated with the f2(ξ, α) separatrix and the ESQPT in-
duced by the anharmonic term in Eq. (3). The eigenstate
labeled as C in this panel, i.e., the eigenstate with a mini-
mum PR value which is not in the spectrum edges, is highly
localized (low PR) and its squared components in the inset
reveal that the localization takes place for the last basis state
|S, Mz = S〉.

The PR values in the broken-symmetry phase are shown
in Fig. 8. In the α = 0 case [Fig. 8(a), yellow curve], the
states at the edge of the spectrum have low values of the

PR, as expected, and the ground state is not well localized
in the n = 0 basis state, as we have straddled the critical
ground-state QPT and the u(1) dynamical symmetry is no
longer a convenient approximation for the system eigenstates.
There is a local PR minimum, labeled as C, associated with
the f1(ξ, α) separatrix and the ESQPT that stems from the
appearance of a maximum in the origin. When α = −0.3
[Fig. 8(b), blue curve], precursors from both ESQPTs can be
observed. In this case the f1(ξ, α) separatrix is found at lower
energies than the f2(ξ, α) separatrix and the states close to
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the separatrices and that constitute local minima for the PR
are labeled as C and E , respectively. Both states are strongly
localized and, from the information in the insets, the first one
has a dominant component in the |S, Mz = −S〉 basis state and
the second case in the |S, Mz = S〉 basis state. The situation
is reversed in the α = −0.6 case [Fig. 8(d), brown curve] as
the anharmonicity induced ESQPT (C state) lies now at lower
energies than the original ESQPT (E state). Figure 8(c) (green
curve) is a special case, where only one PR local minimum
appears, besides the spectrum edges, as for these particular
ξ and α values there is a crossing of the two separatrices.
The eigenstate having a local minimum value of the PR,
labeled as C, is well localized with high components in both
|S, Mz = −S〉 and |S, Mz = S〉 basis states. This is in good
agreement with the results obtained for an anharmonic 2DVM
Hamiltonian [18,30].

D. Quantum fidelity susceptibility

Quantum fidelity for a system with a single control param-
eter λ and a Hamiltonian Ĥ (λ) = Ĥ0 + λĤ I is defined as the
modulus of the overlap between the ground state of the system
for λ and λ + δλ,

F (λ, δλ) = |〈ψ0(λ)||ψ0(λ + δλ)〉|. (18)

This quantity, originally introduced in the realm of quantum
information [84], was later used for the characterization of
QPTs as it efficiently tracks the sudden change in the wave
function of the system ground state as it straddles the critical
value of the control parameter [85–87]. The quantum fidelity
susceptibility (QFS) is defined as the second-order (and lead-
ing) term in the series expansion of F (λ, δλ) as a function of
δλ [86,87],

χF (λ) = −∂2F (λ, δλ)

∂ (δλ)2
= lim

δλ→0

−2 ln F (λ, δλ)

(δλ)2
. (19)

The QFS reaches a maximum at the critical value of the λ

control parameter and it is independent of the δλ value. Using
first-order perturbation theory, the QFS can be expressed as
[87]

χF (λ) =
D−1∑
i �=0

|〈ψi(λ)|Ĥ I |ψ0(λ)〉|2
[Ei(λ) − E0(λ)]2

, (20)

where |ψi(λ)〉 is the ith eigenvector of the Hamiltonian Ĥ (λ)
and Ei(λ) is its associated eigenvalue.

Recently, Khalouf-Rivera et al. suggested to extend the use
of the QFS to the study of ESQPTs using as an example
the 2DVM and its application to the bending of nonrigid
molecules [88]. Following the procedure detailed in that work,
we define a Hamiltonian with a new control parameter λ ∈
[−1, 1] grouping the interactions in Eq. (3) considering the
dynamical symmetry they belong to

Ĥ (λ)

= (1 − λ)

{
(1 − ξ )(S + Ŝz ) + α

2S
(S + Ŝz )(S + Ŝz + 1)

}

+ (1 + λ)

{
2ξ

S

(
S2 − Ŝ2

x

)}
, (21)

Ĥ (λ) = Ĥ0 + λĤ I ,

Ĥ I = −(1 − ξ )(S + Ŝz ) − α

2S
(S + Ŝz )(S + Ŝz + 1)

+ 2ξ

S

(
S2 − Ŝ2

x

)
. (22)

In this way, if our starting point is a Hamiltonian (3) with
given values of ξ and α, the Hamiltonian (22) for λ = −1
(λ = 1) is diagonal in the u(1) [so(2)] basis and we recover
the original Hamiltonian for λ = 0. The QFS definition in
Eq. (20) can be extended to encompass excited states of the
Hamiltonian (22) [88],

χ
( j)
F (λ) =

D−1∑
i �= j

|〈ψi(λ)|Ĥ I |ψ j (λ)〉|2
[Ei(λ) − Ej (λ)]2

, (23)

where |ψ j (λ)〉 is the jth eigenstate of the Ĥ (λ) Hamiltonian
with j = 0, . . . , D − 1.

In Fig. 9(a) we report the normalized QFS χ/N2 as a
function of the normalized excitation energy E/N for the
ALMG model with ξ = 0.3 and α = −0.6, a system which
is located between the ground-state QPT and the separatrices
cross, and different system sizes N = 256 (blue), 512 (or-
ange), 1024 (green), 2048 (red), and 4096 (purple). In both
transitions the QFS is maximum near the critical energy, since
the maximum due to f1 (lower energy) is higher than the f2

one (higher energy). In Figs. 9(b) and 9(c) we show a detailed
close-up of peaks, i.e., the lower-energy transition [Fig. 9(b)]
and higher-energy transition [Fig. 9(c)]. We have added an in-
terpolation with splines for each system (red dashed lines) and
highlighted its maximum value (red pluses). Therefore, the
mean field values of the critical energies are plotted with black
dotted lines. In Figs. 9(d) and 9(e) we plot the maximum value
of QFS χmax

spline (chartreuse circles and left axes) as well as its
position with respect to the mean field value |Emax

spline/N − fMF|
(black pluses and right axes) using logarithmic scale. As ex-
pected, in both transitions the critical energy tends to the mean
field value and the QFS diverges according to power laws

χmax
spline ∝ Na, (24)∣∣Emax

spline/N − fMF

∣∣ ∝ Nb, (25)

with a = 2.110(7) and b = −1.009(6) for the first transition
(13) and a = 2.125(4) and b = −0.947(14) for the second
transition (14).

IV. CONCLUSION

In this first work of a series of two papers (the second
paper is Ref. [70]), we have analyzed the QPT and ESQPTs
in the LMG model, including in the model Hamiltonian an
anharmonic term dependent on the second-order Casimir op-
erator of the u(1) system subalgebra (S + Ŝz )(S + Ŝz + 1).
We have thoroughly studied this system with a focus on its
static properties. The second work deals with dynamic aspects
and how the ESQPTs modify the system evolution. This work
has been fostered by the results obtained considering anhar-
monicity effects in the 2DVM, and the main motivation to
extend this study to the LMG model is twofold. On the one
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(a) (b)

(c)

(d)

(e)

FIG. 9. (a) Normalized quantum fidelity susceptibility χ
( j)
F (λ = 0)/N2 as a function of the normalized excitation energy for the ALMG

with ξ = 0.3 and α = −0.6 for different system sizes N = 256 (blue), 512 (orange), 1024 (green), 2048 (red), and 4096 (purple). (b) and
(c) Close-up of each extreme of the QFS. The mean field values of the critical energies (13) and (14) are plotted with a black dotted line. The
red dashed lines correspond to the interpolation with splines used to locate the positions of maxima, which are highlighted with red pluses.
(d) and (e) Maximum values obtained with the interpolation of the QFS χmax

spline (chartreuse circles and left axes) and the distances of the energies
where these maxima occur to the mean field critical energies |Emax

spline/N − fMF| (black pluses and right axes) versus the system size N using
logarithmic scale. The power interpolation has been added (green dashed lines) in all cases. See the text for details.

hand, the test of different approaches in the LMG model has
been pervasive since their definition in nuclear structure stud-
ies. It is a simple toy model that offers an excellent playground
for approximations and theoretical studies. On the other hand,
the possibility of accessing experimental realizations of the
model provides further interest in studies based on the LMG
model.

Apart from defining the ALMG model Hamiltonian and
its mean field limit energy functional, we have presented the
ground-state QPT properties for its energy functional as well
as the two ESQPTs that appear in the system for negative
values of the anharmonicity parameter α. The mean field re-
sults for the ground-state QPT properties do not qualitatively
change under the inclusion of the anharmonic term in the
model Hamiltonian. There are still two phases, a symmetric
one and a broken-symmetry phase, with a critical value of
the ξ control parameter ξc = 0.2 that marks a point where a
second-order ground-state QPT takes place. The first ESQPT
is linked to the ground-state QPT in the sense that it can
be explained from the existence of a local maximum in the
energy functional once the control parameter goes through its
critical value and enters the system’s broken-symmetry phase.
However, the second ESQPT is explained from the influence
of the anharmonic term on the phase-space boundary of the
system, something that in the classical or mean field limit of
the system is reflected as a lowering of the asymptotic values
of the energy functional for negative values of the parameter
α. The influence on the system’s spectrum of the two ES-
QPTs can be seen in Fig. 1(b), where even- and odd-parity

states are shown: The level piling and different degeneracy
patterns depending on the ESQPT phases are clearly shown,
together with the two separatrices. We have deduced from
the classical energy functional analytic expressions for the
two separatrix lines f1(ξ, α) and f2(ξ, α), valid in the ther-
modynamical limit, and we have illustrated how there is a
threshold value of the parameter α for the second ESQPT to be
manifested in the symmetric phase of the system, for ξ < ξc

(see Fig. 3).
We have characterized the ALMG ESQPTs computing the

adjacent energy level gap, the expectation value of the u(1)
number operator, the participation ratio, and the quantum fi-
delity susceptibility for various values of the anharmonicity
parameter and system sizes. The calculations were carried
out for two values of the control parameter ξ : ξ = 0.15 for
a system in the symmetric phase and ξ = 0.6, which brings
the system into the broken-symmetry phase. The quantities
we have used allow us to clearly locate both ESQPTs, and
the PR shows a strong localization for states with energies
close to the critical ESQPT energies. In the ESQPT with
separatrix f1(ξ, α), the localization happens for the |S,−S〉
basis state, while for the second ESQPT, with separatrix
f2(ξ, α), the localization occurs in the |S, S〉 basis state. The
QFS is also sensitive to both ESQPTs, having a larger im-
pact on the QFS value, with the ESQPT occurring at lower
energies.

The existence of ESQPTs has strong implications on sys-
tem structure and dynamics. Recently, it was proposed that a
conserved quantity can be defined in one of the phases of an
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ESQPT and the equilibrium values of relevant observables in
this phase are dependent on the value of this newly defined
constant [89]. This important result can be applied to the
ESQPTs with separatrices f1(ξ, α) and f2(ξ, α). Exploring
this issue will be a future development of interest with the
ALMG.
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APPENDIX: ALMG MODEL DENSITY OF STATES

As mentioned in the main text, when obtaining the density
of states for the ALMG model using the Gutzwiller semiclas-
sical approximation [78], it is handier to recast the ALMG
Hamiltonian by replacing the pseudospin Ŝi with a classical
angular momentum ji, instead of the q and p generalized

coordinate and momentum used in Eq. (10),

Hcl = (1 − ξ )( j + jz ) + α

2 j
( j + jz )( j + jz + 1)

+ 2ξ

j

(
j2 − j2

x

)
. (A1)

We introduce the classical angular momentum azimuthal
angle φ = tan−1( jy/ jx ) ∈ [0, 2π ) and its z component jz ∈
[− j, j] as a valid pair of canonical variables

Hcl = (1 − ξ )( j + jz ) + α

2 j
( j + jz )( j + jz + 1)

+ 2ξ

j

[
j2 − (

j2 − j2
z

)
cos2 φ

]
. (A2)

The density of states (15) for the new pair of canonical vari-
ables is

ν(E ) = 1

2π

∫ 2π

0
dφ

∫ j

− j
d jzδ(E − Hcl(φ, jz ))

= 1

2π

N

2

∫ 2π

0
dφ

∫ 1

−1
dx δ(E − Hcl(φ, x)), (A3)

where we introduce the rescaled variable x = jz/ j ∈ [−1, 1]
and the corresponding Jacobian term j = N/2. Working, as
in Eq. (7), with the Hamiltonian and energy per particle H =
Hcl/N and ε = E/N and taking into consideration the Dirac
delta property

∫
dz δ(z/a) = |a| ∫ dz δ(z), we obtain

ν(ε) = 1

4π

∫ 2π

0
dφ

∫ 1

−1
dx δ(ε − H(φ, x)). (A4)

In order to continue, the Dirac delta composition with a func-
tion f (x) is

δ( f (x)) =
∑

i

δ(x − xi )∣∣ df (xi )
dx

∣∣ , (A5)

where the sum extends over all xi, the different roots of f (x).
If we apply this property to f (x) = ε − H(φ, x) in Eq. (A4)
we have two possible roots

x± = ξ − 1 − α ±
√

(1 − ξ + α)2 − (α + 4ξ cos2 φ)(2 + 2ξ + α − 4ξ cos2 φ − 4ε)

α + 4ξ cos2 φ
, (A6)

though x− is not a valid solution as it is outside the x variable range. Applying Eq. (A5) to Eq. (A4) for the x+ root, we obtain
the final result in Eq. (16),

ν(ε) = 1

4π

∫ 2π

0

dφ∣∣∣∣
√( 1−ξ+α

2

)2 − (α + 4ξ cos2 φ)
( 1+ξ

2 + α
4 − ξ cos2 φ − ε

)∣∣∣∣
. (A7)

[1] L. Carr, Understanding Quantum Phase Transitions (CRC,
Boca Raton, 2010).

[2] R. Gilmore and D. H. Feng, Phase transitions in nuclear matter
described by pseudospin Hamiltonians, Nucl. Phys. A 301, 189
(1978).

[3] R. Gilmore, The classical limit of quantum nonspin systems,
J. Math. Phys. 20, 891 (1979).

[4] D. H. Feng, R. Gilmore, and S. R. Deans, Phase transitions and
the geometric properties of the interacting boson model, Phys.
Rev. C 23, 1254 (1981).

[5] P. Cejnar and J. Jolie, Quantum phase transitions in the interact-
ing boson model, Prog. Part. Nucl. Phys. 62, 210 (2009).

[6] R. F. Casten, Quantum phase transitions and structural evolution
in nuclei, Prog. Part. Nucl. Phys. 62, 183 (2009).

044125-12

https://doi.org/10.1016/0375-9474(78)90260-9
https://doi.org/10.1063/1.524137
https://doi.org/10.1103/PhysRevC.23.1254
https://doi.org/10.1016/j.ppnp.2008.08.001
https://doi.org/10.1016/j.ppnp.2008.06.002


EXCITED-STATE QUANTUM PHASE TRANSITIONS IN … PHYSICAL REVIEW E 106, 044125 (2022)

[7] P. Cejnar, J. Jolie, and R. F. Casten, Quantum phase transitions
in the shapes of atomic nuclei, Rev. Mod. Phys. 82, 2155 (2010).

[8] P. Cejnar and F. Iachello, Phase structure of interacting boson
models in arbitrary dimension, J. Phys. A: Math. Theor. 40, 581
(2007).

[9] P. Cejnar, M. Macek, S. Heinze, J. Jolie, and J. Dobeš,
Monodromy and excited-state quantum phase transitions in in-
tegrable systems: Collective vibrations of nuclei, J. Phys. A:
Math. Gen. 39, L515 (2006).

[10] M. A. Caprio, P. Cejnar, and F. Iachello, Excited state quantum
phase transitions in many-body systems, Ann. Phys. (NY) 323,
1106 (2008).

[11] P. Cejnar and P. Stransky, Impact of quantum phase transitions
on excited-level dynamics, Phys. Rev. E 78, 031130 (2008).

[12] P. Stránský, M. Macek, and P. Cejnar, Excited-state quantum
phase transitions in systems with two degrees of freedom: Level
density, level dynamics, thermal properties, Ann. Phys. (NY)
345, 73 (2014).

[13] P. Stránský, M. Macek, A. Leviatan, and P. Cejnar, Excited-state
quantum phase transitions in systems with two degrees of free-
dom: II. Finite-size effects, Ann. Phys. (NY) 356, 57 (2015).

[14] P. Stránský and P. Cejnar, Classification of excited-state quan-
tum phase transitions for arbitrary number of degrees of
freedom, Phys. Lett. A 380, 2637 (2016).

[15] M. Macek, P. Stránský, A. Leviatan, and P. Cejnar, Excited-
state quantum phase transitions in systems with two degrees
of freedom. III. Interacting boson systems, Phys. Rev. C 99,
064323 (2019).

[16] D. Larese and F. Iachello, A study of quantum phase transitions
and quantum monodromy in the bending motion of non-rigid
molecules, J. Mol. Struct. 1006, 611 (2011).

[17] D. Larese, F. Pérez-Bernal, and F. Iachello, Signatures of
quantum phase transitions and excited state quantum phase
transitions in the vibrational bending dynamics of triatomic
molecules, J. Mol. Struct. 1051, 310 (2013).

[18] J. Khalouf-Rivera, M. Carvajal, L. F. Santos, and F. Pérez-
Bernal, Calculation of transition state energies in the HCN-
HNC isomerization with an algebraic model, J. Phys. Chem.
A 123, 9544 (2019).

[19] J. Khalouf-Rivera, F. Pérez-Bernal, and M. Carvajal, Excited
state quantum phase transitions in the bending spectra of
molecules, J. Quant. Spectrosc. Radiat. Transfer 261, 107436
(2021).

[20] B. Dietz, F. Iachello, M. Miski-Oglu, N. Pietralla, A. Richter,
L. von Smekal, and J. Wambach, Lifshitz and excited-state
quantum phase transitions in microwave Dirac billiards, Phys.
Rev. B 88, 104101 (2013).

[21] L. Zhao, J. Jiang, T. Tang, M. Webb, and Y. Liu, Dynamics in
spinor condensates tuned by a microwave dressing field, Phys.
Rev. A 89, 023608 (2014).

[22] P. Feldmann, C. Klempt, A. Smerzi, L. Santos, and M. Gessner,
Interferometric Order Parameter for Excited-State Quantum
Phase Transitions in Bose-Einstein Condensates, Phys. Rev.
Lett. 126, 230602 (2021).

[23] J. Cabedo, J. Claramunt, and A. Celi, Dynamical preparation
of stripe states in spin-orbit-coupled gases, Phys. Rev. A 104,
L031305 (2021).

[24] P. Cejnar, P. Stránský, M. Macek, and M. Kloc, Excited-state
quantum phase transitions, J. Phys. A: Math. Theor. 54, 133001
(2021).

[25] F. Iachello and S. Oss, Algebraic approach to molecular spectra:
Two dimensional problems, J. Chem. Phys. 104, 6956 (1996).

[26] F. Pérez-Bernal and F. Iachello, Algebraic approach to two-
dimensional systems: Shape phase transitions, monodromy, and
thermodynamic quantities, Phys. Rev. A 77, 032115 (2008).

[27] F. Iachello, F. Pérez-Bernal, and P. H. Vaccaro, A novel alge-
braic scheme for describing nonrigid molecules, Chem. Phys.
Lett. 375, 309 (2003).

[28] F. Pérez-Bernal, L. F. Santos, P. H. Vaccaro, and F. Iachello,
Spectroscopic signatures of nonrigidity: Algebraic analyses of
infrared and Raman transitions in nonrigid species, Chem. Phys.
Lett. 414, 398 (2005).

[29] F. Pérez-Bernal and O. Álvarez-Bajo, Anharmonicity effects in
the bosonic U(2)-SO(3) excited-state quantum phase transition,
Phys. Rev. A 81, 050101(R) (2010).

[30] J. Khalouf-Rivera, F. Pérez-Bernal, and M. Carvajal,
Anharmonicity-induced excited-state quantum phase transition
in the symmetric phase of the two-dimensional limit of the
vibron model, Phys. Rev. A 105, 032215 (2022).

[31] M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G.
Hirsch, Comparative quantum and semiclassical analysis of
atom-field systems. I. Density of states and excited-state quan-
tum phase transitions, Phys. Rev. A 89, 032101 (2014).

[32] H. J. Lipkin, N. Meshkov, and A. J. Glick, Validity of many-
body approximation methods for a solvable model, Nucl. Phys.
62, 188 (1965).

[33] N. Meshkov, A. J. Glick, and H. J. Lipkin, Validity of
many-body approximation methods for a solvable model: (II).
Linearization procedures, Nucl. Phys. 62, 199 (1965).

[34] A. J. Glick, H. J. Lipkin, and N. Meshkov, Validity of
many-body approximation methods for a solvable model: (III).
Diagram summations, Nucl. Phys. 62, 211 (1965).

[35] R. Botet and R. Jullien, Large-size critical behavior of infinitely
coordinated systems, Phys. Rev. B 28, 3955 (1983).

[36] S. Dusuel and J. Vidal, Finite-Size Scaling Exponents of the
Lipkin-Meshkov-Glick Model, Phys. Rev. Lett. 93, 237204
(2004).

[37] S. Dusuel and J. Vidal, Continuous unitary transformations
and finite-size scaling exponents in the Lipkin-Meshkov-Glick
model, Phys. Rev. B 71, 224420 (2005).

[38] W. D. Heiss, F. G. Scholtz, and H. B. Geyer, The large N
behaviour of the Lipkin model and exceptional points, J. Phys.
A: Math. Gen. 38, 1843 (2005).

[39] F. Leyvraz and W. D. Heiss, Large-n Scaling Behavior of the
Lipkin-Meshkov-Glick Model, Phys. Rev. Lett. 95, 050402
(2005).

[40] O. Castaños, R. López-Peña, J. G. Hirsch, and E. López-
Moreno, Phase transitions and accidental degeneracy in non-
linear spin systems, Phys. Rev. B 72, 012406 (2005).

[41] O. Castaños, R. López-Peña, J. G. Hirsch, and E. López-
Moreno, Classical and quantum phase transitions in the
Lipkin-Meshkov-Glick model, Phys. Rev. B 74, 104118
(2006).

[42] G. Engelhardt, V. M. Bastidas, C. Emary, and T. Brandes, ac-
driven quantum phase transition in the Lipkin-Meshkov-Glick
model, Phys. Rev. E 87, 052110 (2013).

[43] E. Romera, M. Calixto, and O. Castaños, Phase space analysis
of first-, second- and third-order quantum phase transitions
in the Lipkin–Meshkov–Glick model, Phys. Scr. 89, 095103
(2014).

044125-13

https://doi.org/10.1103/RevModPhys.82.2155
https://doi.org/10.1088/1751-8113/40/4/001
https://doi.org/10.1088/0305-4470/39/31/L01
https://doi.org/10.1016/j.aop.2007.06.011
https://doi.org/10.1103/PhysRevE.78.031130
https://doi.org/10.1016/j.aop.2014.03.006
https://doi.org/10.1016/j.aop.2015.02.025
https://doi.org/10.1016/j.physleta.2016.06.031
https://doi.org/10.1103/PhysRevC.99.064323
https://doi.org/10.1016/j.molstruc.2011.10.016
https://doi.org/10.1016/j.molstruc.2013.08.020
https://doi.org/10.1021/acs.jpca.9b07338
https://doi.org/10.1016/j.jqsrt.2020.107436
https://doi.org/10.1103/PhysRevB.88.104101
https://doi.org/10.1103/PhysRevA.89.023608
https://doi.org/10.1103/PhysRevLett.126.230602
https://doi.org/10.1103/PhysRevA.104.L031305
https://doi.org/10.1088/1751-8121/abdfe8
https://doi.org/10.1063/1.471412
https://doi.org/10.1103/PhysRevA.77.032115
https://doi.org/10.1016/S0009-2614(03)00851-0
https://doi.org/10.1016/j.cplett.2005.07.119
https://doi.org/10.1103/PhysRevA.81.050101
https://doi.org/10.1103/PhysRevA.105.032215
https://doi.org/10.1103/PhysRevA.89.032101
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90864-3
https://doi.org/10.1103/PhysRevB.28.3955
https://doi.org/10.1103/PhysRevLett.93.237204
https://doi.org/10.1103/PhysRevB.71.224420
https://doi.org/10.1088/0305-4470/38/9/002
https://doi.org/10.1103/PhysRevLett.95.050402
https://doi.org/10.1103/PhysRevB.72.012406
https://doi.org/10.1103/PhysRevB.74.104118
https://doi.org/10.1103/PhysRevE.87.052110
https://doi.org/10.1088/0031-8949/89/9/095103


J. GAMITO et al. PHYSICAL REVIEW E 106, 044125 (2022)

[44] S. Campbell, Criticality revealed through quench dynamics in
the Lipkin-Meshkov-Glick model, Phys. Rev. B 94, 184403
(2016).

[45] M. Heyl, F. Pollmann, and B. Dóra, Detecting Equilibrium
and Dynamical Quantum Phase Transitions in Ising Chains Via
Out-of-Time-Ordered Correlators, Phys. Rev. Lett. 121, 016801
(2018).

[46] A. Relaño, J. M. Arias, J. Dukelsky, J. E. García-Ramos, and
P. Pérez-Fernández, Decoherence as a signature of an excited-
state quantum phase transition, Phys. Rev. A 78, 060102(R)
(2008).

[47] P. Ribeiro, J. Vidal, and R. Mosseri, Exact spectrum of the
Lipkin-Meshkov-Glick model in the thermodynamic limit and
finite-size corrections, Phys. Rev. E 78, 021106 (2008).

[48] P. Pérez-Fernández, A. Relaño, J. M. Arias, J. Dukelsky, and
J. E. García-Ramos, Decoherence due to an excited-state quan-
tum phase transition in a two-level boson model, Phys. Rev. A
80, 032111 (2009).

[49] P. Pérez-Fernández, P. Cejnar, J. M. Arias, J. Dukelsky, J. E.
García-Ramos, and A. Relaño, Quantum quench influenced
by an excited-state phase transition, Phys. Rev. A 83, 033802
(2011).

[50] Z.-G. Yuan, P. Zhang, S.-S. Li, J. Jing, and L.-B. Kong, Scaling
of the Berry phase close to the excited-state quantum phase
transition in the Lipkin model, Phys. Rev. A 85, 044102 (2012).

[51] L. F. Santos, M. Távora, and F. Pérez-Bernal, Excited-state
quantum phase transitions in many-body systems with infinite-
range interaction: Localization, dynamics, and bifurcation,
Phys. Rev. A 94, 012113 (2016).

[52] Q. Wang and F. Pérez-Bernal, Excited-state quantum phase
transition and the quantum-speed-limit time, Phys. Rev. A 100,
022118 (2019).

[53] Q. Wang and F. Pérez-Bernal, Probing an excited-state quantum
phase transition in a quantum many-body system via an out-of-
time-order correlator, Phys. Rev. A 100, 062113 (2019).

[54] D. Gutiérrez-Ruiz, D. Gonzalez, J. Chávez-Carlos, J. G. Hirsch,
and J. D. Vergara, Quantum geometric tensor and quantum
phase transitions in the Lipkin-Meshkov-Glick model, Phys.
Rev. B 103, 174104 (2021).

[55] D. J. Nader, C. A. González-Rodríguez, and S. Lerma-
Hernández, Avoided crossings and dynamical tunneling close
to excited-state quantum phase transitions, Phys. Rev. E 104,
064116 (2021).

[56] J. Vidal, J. M. Arias, J. Dukelsky, and J. E. García-Ramos,
Scalar two-level boson model to study the interacting boson
model phase diagram in the Casten triangle, Phys. Rev. C 73,
054305 (2006).

[57] J. E. García-Ramos, P. Pérez-Fernández, J. M. Arias, and E.
Freire, Phase diagram of the two-fluid Lipkin model: A “butter-
fly” catastrophe, Phys. Rev. C 93, 034336 (2016).

[58] J. E. García-Ramos, P. Pérez-Fernández, and J. M. Arias,
Excited-state quantum phase transitions in a two-fluid Lipkin
model, Phys. Rev. C 95, 054326 (2017).

[59] J. Larson, Circuit QED scheme for the realization of the
Lipkin-Meshkov-Glick model, Europhys. Lett. 90, 54001
(2010).

[60] M. J. Cervia, A. B. Balantekin, S. N. Coppersmith, C. W.
Johnson, P. J. Love, C. Poole, K. Robbins, and M. Saffman, Lip-
kin model on a quantum computer, Phys. Rev. C 104, 024305
(2021).

[61] K. Chinni, P. M. Poggi, and I. H. Deutsch, Effect of
chaos on the simulation of quantum critical phenomena
in analog quantum simulators, Phys. Rev. Res. 3, 033145
(2021).

[62] C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz,
B. A. Jones, and A. J. Heinrich, Large magnetic anisotropy of
a single atomic spin embedded in a surface molecular network,
Science 317, 1199 (2007).

[63] S. Morrison and A. S. Parkins, Dynamical Quantum Phase
Transitions in the Dissipative Lipkin-Meshkov-Glick Model
with Proposed Realization in Optical Cavity QED, Phys. Rev.
Lett. 100, 040403 (2008).

[64] T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, Classical
Bifurcation at the Transition from Rabi to Josephson Dynamics,
Phys. Rev. Lett. 105, 204101 (2010).

[65] A. G. Araujo-Ferreira, R. Auccaise, R. S. Sarthour, I. S.
Oliveira, T. J. Bonagamba, and I. Roditi, Classical bifurca-
tion in a quadrupolar NMR system, Phys. Rev. A 87, 053605
(2013).

[66] P. Jurcevic, B. Lanyon, P. Hauke et al., Quasiparticle
engineering and entanglement propagation in a quan-
tum many-body system, Nature (London) 511, 202
(2014).

[67] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C.
Hempel, B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos, Direct
Observation of Dynamical Quantum Phase Transitions in an
Interacting Many-Body System, Phys. Rev. Lett. 119, 080501
(2017).

[68] J. A. Muniz, D. Barberena, R. J. Lewis-Swan, D. J. Young,
J. R. K. Cline, A. M. Rey, and J. K. Thompson, Exploring
dynamical phase transitions with cold atoms in an optical cavity,
Nature (London) 580, 602 (2020).

[69] V. Makhalov, T. Satoor, A. Evrard, T. Chalopin, R. Lopes,
and S. Nascimbene, Probing Quantum Criticality and Symme-
try Breaking at the Microscopic Level, Phys. Rev. Lett. 123,
120601 (2019).

[70] J. Khalouf-Rivera, J. Gamito, F. Pérez-Bernal, J. M. Arias, and
P. Pérez-Fernández, Excited-state quantum phase transitions
in the anharmonic Lipkin-Meshkov-Glick model II: Dynamic
aspects, arXiv:2207.04489.

[71] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M.
Foss-Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe,
Non-local propagation of correlations in quantum systems
with long-range interactions, Nature (London) 511, 198
(2014).

[72] A. Frank and P. Van Isacker, Algebraic Methods in Molec-
ular and Nuclear Structure Physics (Wiley, New York,
1994).

[73] L. Fortunato and L. Sartori, Detailed Analysis of Quantum
Phase Transitions Within the u(2) Algebra, Commun. Theor.
Phys. 54, 589 (2010).

[74] J. M. Radcliffe, Some properties of coherent spin states, J. Phys.
A: Gen. Phys. 4, 313 (1971).

[75] A. Relaño, C. Esebbag, and J. Dukelsky, Excited-state quantum
phase transitions in the two-spin elliptic Gaudin model, Phys.
Rev. E 94, 052110 (2016).

[76] P. Stránský, P. Cejnar, and R. Filip, Stabilization of prod-
uct states and excited-state quantum phase transitions in
a coupled qubit-field system, Phys. Rev. A 104, 053722
(2021).

044125-14

https://doi.org/10.1103/PhysRevB.94.184403
https://doi.org/10.1103/PhysRevLett.121.016801
https://doi.org/10.1103/PhysRevA.78.060102
https://doi.org/10.1103/PhysRevE.78.021106
https://doi.org/10.1103/PhysRevA.80.032111
https://doi.org/10.1103/PhysRevA.83.033802
https://doi.org/10.1103/PhysRevA.85.044102
https://doi.org/10.1103/PhysRevA.94.012113
https://doi.org/10.1103/PhysRevA.100.022118
https://doi.org/10.1103/PhysRevA.100.062113
https://doi.org/10.1103/PhysRevB.103.174104
https://doi.org/10.1103/PhysRevE.104.064116
https://doi.org/10.1103/PhysRevC.73.054305
https://doi.org/10.1103/PhysRevC.93.034336
https://doi.org/10.1103/PhysRevC.95.054326
https://doi.org/10.1209/0295-5075/90/54001
https://doi.org/10.1103/PhysRevC.104.024305
https://doi.org/10.1103/PhysRevResearch.3.033145
https://doi.org/10.1126/science.1146110
https://doi.org/10.1103/PhysRevLett.100.040403
https://doi.org/10.1103/PhysRevLett.105.204101
https://doi.org/10.1103/PhysRevA.87.053605
https://doi.org/10.1038/nature13461
https://doi.org/10.1103/PhysRevLett.119.080501
https://doi.org/10.1038/s41586-020-2224-x
https://doi.org/10.1103/PhysRevLett.123.120601
http://arxiv.org/abs/arXiv:2207.04489
https://doi.org/10.1038/nature13450
https://doi.org/10.1088/0253-6102/54/4/01
https://doi.org/10.1088/0305-4470/4/3/009
https://doi.org/10.1103/PhysRevE.94.052110
https://doi.org/10.1103/PhysRevA.104.053722


EXCITED-STATE QUANTUM PHASE TRANSITIONS IN … PHYSICAL REVIEW E 106, 044125 (2022)

[77] Á. L. Corps and A. Relaño, Energy cat states induced by a
parity-breaking excited-state quantum phase transition, Phys.
Rev. A 105, 052204 (2022).

[78] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics
(Springer, New York, 2013).

[79] F. M. Izrailev, Simple models of quantum chaos: Spectrum and
eigenfunctions, Phys. Rep. 196, 299 (1990).

[80] F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod.
Phys. 80, 1355 (2008).

[81] V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi, The
nuclear shell model as a testing ground for many-body quantum
chaos, Phys. Rep. 276, 85 (1996).

[82] L. F. Santos and F. Pérez-Bernal, Structure of eigenstates and
quench dynamics at an excited-state quantum phase transition,
Phys. Rev. A 92, 050101(R) (2015).

[83] F. Pérez-Bernal and L. F. Santos, Effects of excited state quan-
tum phase transitions on system dynamics, Prog. Phys. Fortschr.
Phys. 65, 1600035 (2017).

[84] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, 10th ed. (Cambridge University Press,
New York, 2011).

[85] P. Zanardi and N. Paunković, Ground state overlap and
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