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Abstract—This paper proposes an access control system based 
on the simultaneous authentication of what the user has and who 
the user is. At enrollment phase, the wearable access device (a 
smart card, key fob, etc.) stores a template that results from the 
fusion of the intrinsic device identifier and the user biometric 
identifier. At verification phase, both the device and user 
identifiers are extracted and matched with the stored template. 
The device identifier is generated from the start-up values of the 
SRAM in the device hardware, which are exploited as a 
Physically Unclonable Function (PUF). Hence, if the device 
hardware is cloned, the authentic identifier is not generated. The 
user identifier is obtained from level-1 fingerprint features 
(directional image and singular points), which are extracted from 
the fingerprint images captured by the sensor in the access 
device. Hence, only genuine users with genuine devices are 
authorized to access and no sensitive information is stored or 
travels outside the access device. The proposal has been validated 
by using 560 fingerprints acquired in live by an optical sensor 
and 560 SRAM-based identifiers.  

Keywords—Fingerprint recognition; Physical unclonable 
functions, PUFs; Electronic systems on chip. 

I.  INTRODUCTION 

Traditionally, passwords have been employed for access 
control. However, since passwords must be remembered by the 
users, they are selected according to familiar words and dates, 
which are weak and vulnerable to attacks. A solution is to use 
wearable devices such as smart cards, key fobs, security 
tokens, or smart phones. Basically, a password stored in the 
device provides access to the system. In this way, “what the 
user knows” (the password which has to be remember) is 
converted to “what the user has” (the device which provides a 
password) and the user does not have to remember it. The 
security is higher if the password is not stored but generated by 
the hardware in the device. A device with Physical Unclonable 
Functions (PUFs) in its hardware cannot be cloned physically 
because the variability of the hardware manufacturing process 
creates a device with unique properties (like hardware 
fingerprints) that are exploited to regenerate unique, unclonable 
and unpredictable identifiers [1]-[2]. 

However, if the access device is stolen, an attacker can 
employ it to access. A solution to avoid this is to include 

biometric authentication in the access device. In this way, the 
attacker cannot access to the system because the genuine 
biometric data stored in the device do not match with the 
impostor data extracted and processed in the device. Currently, 
fingerprint recognition is widely used in smart phones. 
However, in the context of wearable devices with higher 
constraints of size, power consumption and real-time operation 
(i.e. smart cards, key fobs, wristbands, etc.), fingerprint 
recognition algorithms should be selected carefully to be 
implemented in the electronic system on chip of the access 
device [3]-[4]. A possibility is to employ simple algorithms to 
extract coarse fingerprint information from several fingers 
(instances) and several samples per finger, so that combination 
of information increases distinctiveness [5]. 

This paper proposes the fusion of hardware and user 
fingerprints in order to combine “what the user has” and “who 
the user is” in the same device. From a security point of view, 
this combination has a high potential since both types of 
information are required, so that the possibilities of incorrectly 
verifying unauthorized users are reduced significantly. Another 
advantage is that the fusion (performed in an obfuscated way) 
generates a protected template which can be stored in the 
access device without security problems [5]-[6]. In addition, 
the identifiers resulting from the fusion can be employed to 
generate secret keys to establish a secure communication link 
with the verifier of the access control system, so that no 
sensitive information travels outside the access device [7]. 

This paper focuses on the design of an access device that 
can combine biometric and PUF information. The hardware of 
the device has to include an acquisition module to capture 
biometric samples and processing modules to extract biometric 
and PUF information. Since both the selected user and device 
identifiers are binary, they are fused by using XOR operations. 
The objective is to implement all the required operations for 
the enrollment and verification in an electronic system on chip 
included in the access device. To the best of authors’ 
knowledge no similar access device has been proposed in the 
literature. 

The paper is structured as follows. Firstly, Section II 
describes the generation of binary biometric identifiers based 
on the selection of a simple fingerprint recognition algorithm. 
The use of the PUF identifier based on the start-up values of 
SRAMs is described in Section III. Section IV presents results 
of the fusion of biometric identifiers (which in turn combine 
several fingers and samples from each finger to obtain high 
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distinctiveness) and device identifiers as well as a possible 
authentication scheme suitable for a system-on-chip realization. 
Finally, conclusions are given in Section V. 

II. IDENTIFIERS BASED ON BIOMETRICS 

One of the most distinctive biometric traits is fingerprints. 
Fingerprints are captured by means of sensors (the most 
extended types are optical or capacitive) and are converted to 
images. Fingerprint images are composed of ridges (depicted in 
dark in the left of Fig. 1) and valleys (depicted in white in Fig. 
1). Generally, fingerprint images are not compared directly at 
the verification step because there are variations between 
different captures. In contrast, fingerprint images are processed 
to obtain distinctive features. 

There are three different fingerprint features, depending on 
the information level considered to process the fingerprint 
image. Level-1 features offer global information, which 
describes the fingerprint as a whole. The most extended 
approaches employ textures (basically, ridge orientations or 
frequencies) or geometric information. For example, 
directional image (also known as orientation image, field or 
map, or directional field or map) contains local ridge 
orientations for each pixel, or singular points which are central 
points where ridges converge (cores) or diverge (deltas). Level-
2 features require a detailed analysis of the fingerprint image to 
obtain local information. The traditional level-2 features are 
minutiae: endings (ridges which end) and bifurcations (ridges 
which are divided into two ridges). Level-3 features are finer 
details of ridges such as width, shape, edge contour, pores, 
incipient ridges, breaks or scars. 

The algorithms to extract and process the fingerprint 
features are more complex as the detail of the feature increases. 
For example, if the recognition is based on level-2 features, a 
complex preprocessing to enhance fingerprint images is 
required to locate minutiae correctly. In this work, level-1 
features are selected to offer the sufficient recognition 
information with low processing complexity to implement the 
algorithm in a wearable device with high constraints in terms 
of size, power consumption and real-time operation. The 
fingerprint feature considered is based on a distinctive window 
of the directional image centered at the core point of the 
fingerprint image. 

For the feature selected, one of the most relevant steps is 
the directional image extraction. There are two main 

approaches for the computation of the directional image: 
gradients and slits (also known as masks). The computation of 
the directional image using gradients is based on applying 
convolution of windows centered at each image pixel with 
horizontal and vertical operator matrices (Sobel, Gaussian, or 
Prewitt). The computation of the directional image based on 
slits associates a discrete direction from a set of predefined 
directions to each pixel depending on the neighbor luminance 
values for the current ridge within a window. The objective is 
to find the dominant ridge direction at each pixel [8]. Both 
approaches are similar in terms of computational complexity. 
Their performance in terms of accuracy in directional image 
extraction can be seen in the study reported in [9]. That study 
shows that the method based on slits performs better than 
gradients. 

Our analysis carried out over several fingerprint databases 
also shows that fingerprint features based on slits offer a better 
trade-off between implementation cost and recognition than 
level-1 features based on gradient computations. Hence, 
although in previous works we used level-1 features based on 
gradients [5], the features used in this paper are based on slits. 
The multiscale directional operator proposed in [8] has been 
employed to estimate the direction of the ridges at every pixel. 
The basic idea is to calculate the standard deviation of the 
luminance of the pixels which determine each predefined 
direction (or slit). Then, the direction at each image pixel is 
selected as the slit with the maximum difference of the 
standard deviations between the luminance of the pixels at that 
slit and the pixels at the orthogonal direction. 

The parameters selected to calculate the slits are based on 
the results obtained in [9]: 16 directions, 9 pixels for each 
direction, and a smoothing window size of 27 x 27 pixels. 

The correct extraction of the core point is crucial for the 
level-1 feature selected. The approaches proposed for the 
extraction of the singular points are based on detecting 
discontinuities in the directional image. The traditional way to 
compute the singular points is based on the Poincaré Index. 
However, this method alone cannot detect correctly the 
singular points if the fingerprint images are captured with bad 
quality and no enhancement is applied as considered here to 
reduce processing steps. Hence, a method based on complex 
filtering has been considered. The convolution of the 
directional image with complex filters allows detecting 
prominent symmetries even in images of low quality [10]. The 
implementation reported in [11] has been employed. It finds 
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Fig. 1. Extraction of the fingerprint feature.



several core point candidates (up to 19) for each fingerprint 
image. 

A window is centered at each core point candidate of the 
fingerprint image to obtain the most of the distinctive 
information. The selection of the distinctive window size is 
relevant for the recognition process. An adequate size value 
depends on the fingerprint image size acquired by the sensor. 
For most fingerprint sensors, which capture a fingerprint size 
of, approximately, 300 x 300, a small window size (for 
example, 32 x 32) does not give enough information and a 
medium size (such as a 64 x 64 window) offers limited 
information. The most suitable option is a large window size 
(for instance, 128 x 128). Enlarging the window size from 128 
x 128 to 256 x 256 implies increasing the number of fingerprint 
images with uncompleted windows. It has to be considered that 
the core point is not usually located in the central part of the 
image because the fingerprint capture is not centered with 
respect to the sensor. 

In order to reduce the size of the feature vector, redundant 
information is removed by down-sampling the distinctive 
window. We have proven experimentally that the most suitable 
down-sampling factor for maintaining the distinctive 
information is 8. Therefore, the down-sampled distinctive 
window size is 16 x 16. Since 16 direction values are possible 
at each pixel, each direction value can be represented by 4 bits 
and the biometric identifier contains 16 x 16 x 4 = 1024 bits 
(per core point candidate). The complete process for the 
extraction of the biometric identifier is illustrated in Fig. 1. 

Since the proposed level-1 features are sequences of 
ordered bits, matching two identifiers is done by computing 
their Hamming Distance (HD) to obtain a score value which 
indicates the number of different bits. 

III. IDENTIFIERS BASED ON PUFS 

PUFs allow generating unique and distinctive identifiers 
because they exploit intrinsic features of the hardware that are 
consequence of the manufacturing process variability. Since 
process variability is usually random, PUF responses are 
random and cannot be predicted, which is very interesting to 
avoid attacks. 

Different types of electronic circuits have been employed as 
PUFs: SRAMs, latches, D Flip-Flops, arbiters, ring oscillators, 
etc. [1]. In this paper, the memory cells of SRAMs have been 
selected since SRAMs are required by the processing carried 
out in the access device, so that no additional circuitry has to be 
included to perform as PUF. The start-up values of the SRAM 
memory cells in an access device are almost the same for each 
powered up. In the other side, the start-up values in another 
access device are quite different. Hence, the device can be 
identified by the SRAM start-up values. The start-up values 
generated are random and difficult to predict. In addition, since 
they are lost when the memory is powered down, the identifier 
is generated on the fly and does not need to be stored, which is 
more secure. 

The identification process with SRAM start-up values is 
composed of two stages (as the identification process with 
biometrics): (1) registration or enrollment of the memory (n 

start-up values from n memory cells are stored as template) and 
(2) verification (the n start-up values are obtained again from 
the memory and compared with the template). 

Two sets of start-up values (PUF responses) are compared 
by computing their Hamming Distance (HD). Ideally, several 
PUF responses from the same memory should have zero 
Hamming distance. However, some bit flipping is unavoidable 
among different start-ups of the same memory [2]. Anyway, bit 
flipping does not affect the identification process because the 
Hamming distances between PUF responses of genuine 
memories are clearly smaller than the distances between PUF 
responses of genuine and impostor memories. 

If all the bits of the set of start-up values are assumed to be 
independent (as should be ideally), the probability of finding t 
different bits in n bits is given by a binomial distribution, as 
follows: 
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where p is the bit flipping probability. 

According to the Moivre-Laplace theorem, if the number of 
Hamming distances measured for PUF responses is large, the 
binomial distribution can be approximated by a normal 
distribution whose mean value (µ) is pn ⋅  and the standard 

deviation value (σ) is ( )p1pn −⋅ . If the distribution is 

calculated for the genuine population of PUF responses, the bit 
flipping probability is ideally zero. In the other side, if the 
distribution is calculated for the impostor population, the bit 
flipping probability is 0.5 ideally (as the probability when 
tossing a coin). 

The biggest distance between PUF responses of genuine 
memories can be estimated by considering the maximum intra 
HD, which is defined as follows: 
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where m is the number of PUF responses evaluated from k 
devices and R are the PUF responses to compare.  

For the comparison between genuine and impostor 
memories, the smallest distance can be estimated by the 
minimum inter HD, which is defined as follows: 
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Identification can be carried out without error if the 
maximum intra HD is smaller than the minimum inter HD. In 
addition, in order to generate ideal identifiers, the maximum 
intra HD should tend to 0% and the minimum inter HD should 
tend to 50%. These conditions should also apply for biometric 
identifiers. However, the level-1 fingerprint features described 
in Section II do not offer so much distinctiveness as PUF 
identifiers. This is illustrated in the following section. 

IV. DESIGN OF THE ACCESS DEVICE 

A. User identifiers 

The fusion of multiple sources of fingerprint information is 
employed to achieve higher performance in individual 
recognition as well as to increase the security because if more 
information is required, an attack is more difficult. The fusion 
scenarios considered here are several fingers and several 
captures of each finger. This can be done if the access device 
contains a fingerprint sensor and a way to communicate with 
the user so as to control which finger and sample is being 
placed in the sensor. The fusion of biometric information can 
be applied at all stages of the recognition process: fingerprint 
acquisition, features, matching scores, and recognition 
decision. The most extended alternative is at the score level, 
which is simpler than the fusion of data or features and 
maintains a higher amount of recognition information than the 
decision level. Hence, score level is considered for the design 
of the access device. 

Recognition systems apply multi-sample fusion by default. 
At enrollment, which is performed once to register the user, 
several samples (typically, three) of the same finger are 
acquired to obtain the best representation of the captures. At 
matching, which is performed as many times as the recognition 
is needed, the user is required to introduce fewer samples 
(typically, one). 

The access device considers the acquisition of 3 samples of 
each finger at enrollment and 1 or 2 samples at matching. 
Hence s3 ⋅  sequences of bits are stored as templates for each 
finger, assuming that s core point candidates are found for each 
finger sample. At verification, if s sequences of bits are 

extracted from 1 sample of a finger or s2 ⋅  sequences are 
extracted from 2 samples, all possible combinations are 

considered ( 2s3 ⋅   or 2s6 ⋅ Hamming distances are computed) 
and the matching score for each finger is evaluated as the 
minimum value of all of them. In addition, the access device 
considers the acquisition of 2 fingers. The final matching score 
for both fingers is evaluated as the average of the matching 
scores for each finger. Hamming distances, minimum and 
average are very simple operations to implement. 

The fingerprint database employed to obtain recognition 
results has been created by using an optical sensor (the FS90 
sensor from Futronic) and fingerprints captured in live. The 
fingerprint database is composed of 56 individuals and each 
person introduces 2 fingers and 5 samples for each finger (560 
fingerprints in total). The recognition results in terms of EER 
(Equal Error Rate), ZeroFMR (Zero False Match Rate) and 
ZeroFNMR (Zero False Non-Match Rate) are shown in Table 
I. Recognition results are obtained considering all the possible 
combinations according to the FVC (Fingerprint Verification 
Competition) recommendations and removing symmetric 
comparisons. 

For the multi-sample and multi-instance fusion (two fingers 
and three samples at enrollment and two fingers and two 
samples at matching) the FMR and FNMR curves are 
illustrated on the left of Fig. 2 and the genuine and impostor 
distributions are shown on the right of Fig 2. 

B. Device identifiers 

The PUF response database employed to obtain device 

TABLE I: RECOGNITION INDICATORS FOR DIFFERENT APPROACHES OF 
BIOMETRIC FUSION 

Biometric approach EER ZeroFMR ZeroFNMR 
3 samples at enrollment and 1 
sample at matching 

1.91 21.81 72.40 

3 samples at enrollment and 2 
samples at matching 

0.67 10.54 30.55 

2 fingers and 3 samples at 
enrollment and 2 fingers and 2 
samples at matching 

0.36 0.55 2.12 
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Fig. 2. FNMR and FMR curves and genuine and impostor distributions for recognition based on fingerprint identifiers. 



recognition results has been created from SRAM modules 
included in 10 integrated circuits evaluated at 6 different 
operation conditions of temperature and power supply voltage, 
taking 20 start-up responses at each operation condition [2]. 
One of the results obtained was that the mean value of the 
maximum intra HD was 6.80%. 

Since the 99.74% of a normal distribution, approximately, 
is in the interval [µ-3σ, µ+3σ], we have considered that the 
value µ+3σ is equal to the maximum intra HD value (6.80%). 

Since µ= pn ⋅ and σ= ( )ppn −⋅ 1 , we have considered a bit 

flipping probability p equal to 0.048 for n=1024 (ideally, p 
should be zero for the bit flipping of PUF responses generated 
by the same memory). 1024 bits are considered to identify a 
device because 1024 bits are also considered to identify a user. 
These parameters have been selected to carry out the 
simulation of 112 sets of 1024 memory cells and 5 start-ups for 
each set. Therefore, 112 different 1024-bit identifiers are 
generated following a binomial distribution based on the 
selected parameters. 112 device identifiers are considered 
because 112 fingerprint identifiers are also considered (if 
several core points are detected, the same device identifier is 
employed). 5 start-ups for each device identifier are considered 
because 5 samples are also considered for each fingerprint 
identifier. Simulations were performed with Matlab. 

Similarly to the biometric recognition using 2 fingers and 3 
samples at enrollment and 2 fingers and 2 samples at matching, 
2 sets of 1024 memory cells and 3 start-ups are considered at 
enrollment and the same sets of 1024 memory cells and 2 start-
ups at matching. The FMR and FNMR curves are illustrated on 
the left of Fig. 3 and the genuine and impostor distributions are 
shown on the right of Fig 3. The device identifiers are reliable 
and unique because the genuine distribution is near to 0% and 
the impostor distribution is around 50%. In addition, genuine 
and impostor distributions are well separated. 

C. Fusion of user and device identifiers 

Two approaches are possible for the fusion of both 
identifiers: concatenation-based or XOR-based fusions. At 

security level, XOR-based fusion offers more advantages since 
the resulting identifier is random. The properties of the PUF 
identifier, such as uniqueness, reliability and unpredictability 
are maintained for the resulting identifier. In addition, the 
template identifier is protected because the XOR operation 
obfuscates the PUF and biometric information and none of 
them can be recovered. The resulting identifiers do not contain 
sensitive information and, hence, can be stored as template in a 
non-volatile memory of the access device which does not need 
to be secure. In addition, the recognition operations are 
performed in the protected domain at a bit level (or feature 
level) without recover the PUF and biometric information 
separately at a Hamming distance level (or score level). 

Let us consider that ( 1B ,…, IB ) are the instances captured 

as templates at enrollment, ( '
1B ,…, '

IB ) are the instances 
captured as inputs at matching, S and S’ the template and the 
input samples, P and P’ are the template and input PUF 
identifiers, Sfusion is a fusion operator that provides a 
normalized score from the fusion of the sample scores (t at 
enrollment and q at matching), and Tfusion is a fusion operator 
that results a normalized score from the fusion of the instance 
scores. The score computation is as follows: 
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In the case of multi-sample fusion, the most suitable fusion 
operator is min because the best sample is selected. For multi-
instance fusion, the most suitable fusion operator is sum 
(average) to take into account the different instances. Fig. 4 
shows the recognition and distribution curves for the fusion of 
PUF identifiers with the biometric identifiers based on 2 
fingers and 3 samples at enrollment and 2 fingers and 2 
samples at matching. EER=0 because genuine and impostor 
distributions are separated. 
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Fig. 3. FNMR and FMR curves and genuine and impostor distributions for recognition based on PUF identifiers. 



All the functionality described above can be implemented 
in a system-on-chip included in the access device. For an 
example of authentication with only one user registered in the 
access device, two fingers are considered and three samples of 
fingerprints are acquired for each finger at enrollment. At the 
same time, the corresponding start-up values from a SRAM in 
the device are collected for each sample. Then, the features are 
extracted for each sample and for each core point detected. 
Once each fingerprint identifier is XOR-ed with its associated 
PUF identifier, two sets of 3-fused identifiers are obtained and 
stored as template in a flash memory. At the matching stage, 
two sets of 2-fused identifiers are obtained and compared to the 
template. The identifiers from each set are compared by a 
Hamming distance, thus resulting six score values for each set. 
The scores from each set are fused by a min operator and the 
resulting two scores are fused by a sum (average) operator. A 
threshold is imposed for this score to make a recognition 
decision. This scheme is illustrated in Fig. 5. All the operations 
required are very suitable for a system-on-chip implementation. 

V. CONCLUSIONS 

The fusion of fingerprint and PUF identifiers is employed 
in this work to increase the security of an access control 
system. Recognition results show that the identifiers generated 
provide a zero EER, that is, a well separation between genuine 
and impostor distributions. In addition, the XOR operation 
employed for the fusion of identifiers obfuscates the 
information and allows performing the recognition in a 
protected domain. Since the involved processing has low 
computational cost, it is suitable to be performed in a system 
on chip in a wearable access device. 
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Fig. 4. FNMR and FMR curves and genuine and impostor distributions for recognition based on the fusion of PUF and fingerprint identifiers. 


