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Abstract—This paper presents the design of a prototype for a 
wearable device that implements a recognition system based on in-
air signature into a FPGA that receives data from a 3-axis 
accelerometer. The Dynamic Time Warping (DTW) algorithm has 
been analyzed and simplified to reduce the complexity of the 
hardware architecture that implements the matching in the FPGA. 
Despite simplification, accuracy of the recognition is maintained 
and the Equal Error Rate, EER, is 4.21% considering a public 
database with 120 in-air signatures. A prototype based on a 
Spartan 6 LX9 microboard connected to an ultralow power 
ADXL345 accelerometer has been developed.  Performance of the 
prototype working with in-air signatures has been verified with a 
script developed in Matlab-Simulink. The execution time for 
matching is 22 ms and the estimated average power consumption of 
the matching in the FPGA is 26 mW. 

Keywords—Biometrics; In-air signature; DTW; Hardware in 
FPGAs; CAD tools 

I.  INTRODUCTION 
Biometrics is the science which studies measurements based 

on physical and behavioral attributes of a person to recognize 
individuals [1]. Several traits such as fingerprints, faces, voice, or 
iris, among others, have been widely studied and employed in 
biometric recognition systems. The application contexts range 
from forensic science, law enforcement, access control systems, 
and surveillance systems to the latest trends in wearable 
technology. 

Wearable technology requires low-cost, small and lightweight 
devices, which imposes high constraints in terms of resources, 
real-time response and power consumption. The selection of a 
biometric trait suitable for wearable devices should consider 
small-size sensors to acquire the signals as well as algorithms of 
low complexity that maintain discrimination capability. The in-
air signature satisfies these constraints.  It is based on drawing a 
signature in the air (or any movement which is difficult to 
reproduce by an impostor) by employing a device which contains 
an accelerometer. In-air signature offers information from two 
points of view: physical and behavioral. On the one hand, it 
depends on the arm length and the hand size. On the other hand, 
it depends on the capability to move the wrist, the way to 

reproduce the signature (fast or slow movements) and the way to 
use the device [2]. 

Biometric recognition by in-air signature was proposed by the 
Group of Biometrics, Biosignals, and Security (GB2S), which 
belongs to the Centro de Domótica Integral (CeDInt), from 
Polytechnical University of Madrid. They implemented an in-air 
signature-based individual recognition system in a smartphone 
(iPhone 3G). Samples were acquired by the 3-axis accelerometer 
embedded in the smartphone [2]. The recognition algorithms 
were developed as an iOS application. Later, researchers from the 
National Chiao Tung University (NCTU) developed an 
application, which is currently available in Google Play [3]. 
Recently, in-air gestures have also been applied to handwriting 
recognition [4]. 

While the above commented solutions are software 
implementations, the focus of this work is the implementation of 
in-air signature-based recognition algorithms in dedicated 
hardware, meeting the requirements of wearable gadgets such as 
bracelets, car keys, etc., in terms of small size and low power 
consumption. The algorithm has been analyzed and simplified to 
achieve that the complete recognition process (enrollment and 
matching) can be included with low cost in the same device. In 
the enrollment phase, the in-air signature is acquired and stored 
in the device memory as a template to register an individual. In 
the matching phase, another in-air signature is acquired and 
matched against the template or the N templates stored in the 
memory. If one template is registered, the recognition process is 
known as authentication, while if N templates are registered, the 
process is known as identification. In any case, doing enrollment 
and matching within the same device is much more secure than 
doing them in separate devices, because the number of attacks 
that can be carried out decreases considerably. 

The paper is structured as follows. Section II reviews the 
main algorithms applied to in-air signature recognition. Section 
III presents the analysis done to obtain the specifications for the 
hardware implementation of the system. Recognition results are 
shown for the selected specifications. Section IV describes the 
design of a prototype based on a FPGA and a 3-axis 
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accelerometer as a first step towards the design of a wearable 
device. Finally, conclusions are given in Section V. 

II. IN-AIR SIGNATURE RECOGNITION ALGORITHMS 
The in-air signature is composed of three sequences of 

acceleration values (x, y, and z) associated to the 3-axis 
accelerometer. Axis x represents the left-right direction, axis y 
represents the up-down direction, and axis z represents the front-
back direction. The matching operation implies the comparison 
of the template to the input sequences, which results a score 
value. The comparison of the score value to a predefined 
threshold value results the recognition decision. 

The acceleration values acquired can be employed directly 
(no normalization is applied), can be divided by the maximum 
acceleration acquired by the accelerometer (maximum 
normalization), can be divided by the maximum absolute value of 
the sequence (maximum on-sequence normalization), or can be 
subtracted from the average and divided by the maximum 
absolute value of the sequence (maximum-average 
normalization). The recognition results in [5] show that no 
normalization and maximum normalization offer a higher 
accuracy. Hence, this work focuses on both solutions, which are 
similar (since maximum normalization is just a scale adjustment) 
and are the least complex options from a hardware 
implementation point of view. 

Two in-air signatures (i.e. the input signature to verify and the 
stored signature or template) cannot be compared directly 
because the signatures carried out by the same individual differ 
from one capture to another. For example, the individual can 
apply more or less speed and the signatures can start at different 
time instants. The sequences captured for each axis of the 
signatures should be aligned firstly (to correct the variations), and 
then processed to obtain a similarity value. Although Hidden 
Markov Models (HMMs) [6] and Neural Networks (NNs) have 
been employed for this purpose [7], dynamic programming 
algorithms are more effective to obtain the optimal alignment 
because HMMs and NNs require training stages. Two dynamic 
programming algorithms are employed in the literature: LCS 
(Longest Common Sequence) and DTW (Dynamic Time 
Warping). The LCS algorithm looks for the optimal alignment by 
maximizing the length of the common subsequence of two 
sequences, that is, it maximizes the similarities between two 
sequences. In contrast, the DTW algorithm looks for the optimal 
alignment by minimizing the Euclidean distance between two 
sequences, that is, it minimizes the differences between two 
sequences. Regarding complexity, LCS and DTW are similar 
since they are based on the same paradigm and employ similar 
operations. Regarding recognition performance, the work in [5] 
proves that DTW algorithms provide better results than LCS 
algorithms. Hence, this work focuses on DTW implementation. 

In the DTW algorithm, the alignment of two sequences (v and 
w) is computed by using a cost matrix S whose elements, S(i, j), 
are obtained as follows: 

 )}1,(),1,1(),,1(min{),(),( −−−−+= jiSjiSjiSjidjiS  (1) 

where d(i, j) is the difference between the points (vi and wj) of 
the sequences (v and w). Typically, d is computed by the 
Euclidean distance as follows: 
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The values of the first column and the first row of S are filled 
as follows: 
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Let us illustrate how the DTW algorithm works with the 
following example: 

v=template = [0.390, 0.679, 0.375, 0.500, 0.492] 

w=input = [0.730, 0.359, 0.273, 0.265, 0.281] 

where template is the sequence stored in the database at the 
enrollment phase and input is the sequence captured at the 
recognition phase. 

The matrix of Euclidean distances for the example considered 
is shown in Fig. 1. Fig. 2 illustrates how these distances are 
employed to calculate the matrix S. The last element of the 
matrix S (within a circle in Fig. 2) is named the matrix cost value 
and will be referred to as Cx, Cy, and Cz, depending on the axis 

0.116 0.002 0.126 0.053 0.057

0.000 0.102 0.000 0.020 0.018

0.014 0.165 0.010 0.052 0.048

0.016 0.171 0.012 0.055 0.052

0.012 0.158 0.008 0.048 0.045
 

 
Fig. 1. Example of matrix of Euclidean distances, d(i,j). 
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0.116 0.218 0.118 0.138 0.156

0.130 0.281 0.128 0.170 0.186

0.146 0.301 0.140 0.183 0.222

0.158 0.304 0.148 0.188 0.228
 

 
Fig. 2. Construction of the cost matrix in the DTW algorithm by using the 
distances d(i, j) in Fig. 1. 



considered. If Lv is the length of the sequence v and Lw is the 
length of the sequence w, the last element will be referred to as 
S(Lv, Lw). 

Although the matrix cost value offers information about the 
similarity of two sequences, the sequences are firstly aligned to 
determine a similarity value by means of the Euclidean distance. 
The optimal path for alignment is obtained from the element 
S(Lv, Lw) to the element S(1,1) by the type of movement 
performed in the computation of the matrix S: vertical (i-1,j), 
diagonal (i-1,j-1), or horizontal (i,j-1), which is given by the 
value considered in the minimum operation in (1). For the 
example considered, the optimal path obtained is shown in gray 
in Fig. 3. The path indicates the indices of the aligned elements 
from the original sequences (the column indices of the elements 
in the path indicate the elements of the template and the row 
indices, the elements of the input sequence) as follows: 

templateIndices = [1, 2, 3, 3, 4, 5] 

inputIndices = [1 ,1, 2, 3, 4, 5] 

Hence, the horizontal or vertical movements imply to insert 
elements in the sequences to align them. The aligned sequences 
obtained in the example are the following: 

template' = [0.390, 0.679, 0.375, 0.375, 0.500, 0.492] 

input’ = [0.730, 0.730, 0.359, 0.273, 0.265, 0.281] 

Once the sequences are aligned (v’, w’), their length, L’, is the 
same. The Euclidean distance of the aligned sequences is 
calculated as follows: 
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For each axis, a Euclidean distance value is obtained (Ex, Ey, 
and Ez), so that he final score is calculated by the sum of the 
Euclidean distance values: 

 zyx EEEscore ++=  (5) 

III. ALGORITHM SIMPLIFICATION FOR HARDWARE 
IMPLEMENTATION 

Hardware implementation oriented to wearable devices 
requires selecting algorithms of low complexity to satisfy the 
constraints imposed by the application context. At the same time, 
recognition performance should be considered to achieve a 
tradeoff between simplicity and accuracy. Recognition accuracy 

is evaluated in terms of EER (Equal Error Rate). The EER is the 
value where False Match Rate (FMR) and False Non-Match Rate 
(FNMR) coincide (FMR=FNMR). FMR and FNMR represent 
the two types of recognition errors at matching. If the biometric 
samples from two different individuals match, it is a false match, 
and if the two biometric samples from the same individual do not 
match, it is a false non-match. The number of false matches for 
the impostor distribution determines the performance indicator 
named as False Match Rate (FMR). The number of false non-
matches for the genuine distribution determines the performance 
indicator named as False Non-Match Rate (FNMR). 

The comparison of the score value to a predefined threshold 
value, t, results the match or non-match decision. Therefore, 
FMR and FNMR are functions of the threshold value selected, t, 
so they can be expressed as FMR(t) and FNMR(t). There is a 
tradeoff between FMR and FNMR in every biometric recognition 
system. The value predefined for the threshold t depends on the 
final application. The evaluation of a biometric recognition 
system in a generic way requires considering all possible values 
for t to compute FMR and FNMR values over the genuine and 
impostor distributions. 

In order to analyze how algorithm simplification for hardware 
implementation influences recognition performance, the in-air 
signature database in [8] has been considered (in particular, the 
database GB2SDB1). It is composed of 30 individuals and 4 in-
air signature captures for each individual. 

The score value used in the hardware realization should be 
normalized; so that it does not depend on the time taken by the 
individual in drawing the signature (this time is usually different 
for the same individual and the same signature). In order to 
normalize the score values, the approaches shown in Table I have 
been considered. For the normalization based on the division of 
the score value by the maximum length of the template and input 

TABLE I: Normalization approaches for the score values: 

Score normalized by the maximum length of 
the template and input sequence 

Score normalized by the maximum length of 
the templates 

Score normalized by the length of the aligned 
sequences for each axis 
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Fig. 3. Path which describes the alignment of sequences. 



sequences (first column of Table I) the EER value is 3.69%. The 
normalization based on the division of the score value by the 
maximum length of the stored templates, as in the second column 
of Table I, gives an EER value of 4.90%. The division of the 
Euclidean distances by the length of the aligned sequences for 
each axis, as in the third column of Table I, gives an EER value 
of 5.48%. Therefore, the normalization selected for the hardware 
implementation is the first approach because it offers the highest 
accuracy. 

The above commented results are obtained from the 
computation of the Euclidean distances in (4). As summarized in 
Section II, such distances for each axis are computed after the 
alignment of the sequences once the optimal path is found from 
the cost matrix processing. Another study carried out has been to 
use as score metric the matrix cost value, which is obtained 
directly from the matrix computation, instead of using the 
Euclidean distances in (4). This implies an important reduction of 
complexity because it is not necessary to process the matrix to 
obtain the aligned sequences and then to compute the Euclidean 
distance. Regarding accuracy, performance is maintained because 
recognition results are similar for the two approaches. In the 
example illustrated in Section II, it can be seen that the matrix 
cost value C and the Euclidean distance value E are the same for 
the two sequences (both results are 0.228). Fig. 4 illustrates the 
FNMR-FMR curves obtained when this simplification is applied 
to the database GB2SDB1 (compared to applying the algorithm 
without simplification). 

Another simplification considered for hardware 
implementation is to take into account fixed-length instead of 
variable-length sequences because the creation of the cost matrix 
is less complex if the sequence sizes do not change. Let us define 
Lfixed as the length value predefined for the sequences. For the 
experimental database analyzed herein, this value has been fixed 
to 600. The captured sequences whose length was higher than 
Lfixed were down-sampled. In contrast, padding was needed for 

the sequences whose length was lower than Lfixed. Fig. 5 
illustrates how the influence of such simplification on the 
FNMR-FMR curves of the database GB2SDB1 is small. The 
resulting EER is 4.21%, which is very similar to the EER without 
simplification. 

In summary, the expression of the normalized matching score 
selected to be computed in hardware is the following: 

 
fixed
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where Cx, Cy, and Cz are the matrix cost values resulting from 
the DTW matrices computed for the x-, y-, and z-axis sequences 
from the template and input captures, respectively. 

IV. DESIGN OF A WEARABLE PROTOTYPE 
As a first approach for a wearable device, the Spartan-6 LX9 

microboard has been selected to evaluate the implementation of 
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Fig. 4. Comparison of FNMR and FMR results when considering 
Euclidean distances and matrix cost values. 
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Fig. 5. Comparison of FNMR and FMR results when considering 
sequences with variable and fixed lengths. 

 
Fig. 6. Spartan 6 LX9 microboard connected to a 3-axis accelerometer and 
a gyroscope through Pmod interfaces. 



the acquisition and the matching stages as dedicated hardware in 
a low-cost FPGA (Spartan-6 LX9 CSG324-2 from Xilinx). 

The in-air signature acquisition is performed by the small, 
thin and ultralow power ADXL345 3-axis accelerometer. It uses 
a standard 12-pin Pmod connector that is inserted in the LX9 
microboard. Additionally, a gyroscope (the ADXRS453) which 
captures information of movements in different directions and 
orientations has also been connected to the microboard using 
another Pmod interface. A future study to carry out is how the 
fusion of different information (accelerations and orientations) 
can improve recognition performance. Fig. 6 shows the Spartan 6 
LX9 microboard connected to both types of acquisition devices. 
The gyroscope in particular has been fixed adequately to the 
microboard to avoid undesirable vibrations of the sensor when 
performing the in-air signatures. 

The acquisition stage (needed by enrollment and matching 
phases) is in charge of capturing the acceleration values provided 
by the accelerometer. The code provided by Analog Devices in 
[9] has been reused to program in the FPGA a system based on 
the processor MicroBlaze that communicates with the 
accelerometer via the SPI interface. 

A. Hardware Design Methodology 
A hardware design methodology based on CAD tools has 

been employed. It follows a top-down design flow that starts with 
the high-level description of the system in Matlab-Simulink. The 
software reported in [10] has been employed to describe the 
complete alignment of sequences by means of the DTW 
algorithm, which is in charge of the matching operation. The 
code programmed in Matlab uses floating-point arithmetic. This 
Matlab code was translated to a Simulink model which takes into 
account the simplifications explained in Section III and hardware 
considerations such as delays, buffers, memory, and fixed-point 
data. The performance of both implementations was compared. 

A script has been developed to capture the acceleration data 
into the Matlab workspace by a serial communication. In this 
way, the matching stage that is performed inside the prototype as 
dedicated hardware can be compared to the matching stage 
performed in Matlab-Simulink with the same data. Fig. 7 shows 
examples of accelerations and orientations captured by the 
prototype with this script. 

The implementation in the device of the matching algorithm 
as dedicated hardware has been done with HDL Coder (included 

in Matlab-Simulink), which aims to facilitate hardware designs 
for any type of device (ASIC or FPGA), since it is possible to 
generate synthesizable HDL code (VDHL or Verilog). HDL 
Coder has also been used to generate the testbenches employed 
to simulate and verify the circuit at hardware code level. ISE Isim 
simulator has been employed for these simulations. This 
constitutes another verification point whose results can be 
compared to the results from the high-level descriptions. 

The final stage of the design flow is the device 
implementation. Since the prototype is based on a Xilinx FPGA, 
the tools from Xilinx ISE environment have been used to 
complete the process. 

B. Hardware Implementation of the Matching Algorithm 
Hardware implementations of the DTW algorithm in FPGAs 

can be seen in [11], where a hardware coprocessor is described in 
the context of a HW/SW system. The implementation described 
in the following for the block matching is focused on dedicated 
hardware to achieve more reduced figures of area, power, and 
processing time. Data are processed in a serial way, that is, the 
acceleration values captured by the accelerometer are transmitted 
one by one to the block matching, which carries out the DTW 
algorithm. 

The inputs to the block matching are the template stored in a 
BRAM inside the FPGA in the enrollment stage and the 
acceleration values captured in the verification stage. The 
acceleration values are coded with 29 bits (1 bit for the sign, 16 
bits for the integer part, and 12 bits for the fractional part). The 
output is the last element of the DTW cost matrix, S(Lfixed, Lfixed), 
for each axis, coded with 20 bits (16 bits for the integer part and 
4 bits for the fractional part). Fig. 8 shows the structure of this 
block. It receives the template and input acceleration values for 
each axis and returns the matrix cost value associated to that axis. 

For each clock cycle, the operations expressed in (1), (2) and 
(3) are computed in parallel. Hence, the process finishes after 

 
 
Fig. 7. Examples of acceleration and orientation values acquired by the 
prototype. 
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Lfixed x Lfixed clock cycles. Instead of storing all the elements of 
the DTW cost matrix, only Lfixed+1 elements of the matrix 
associated to the currently processed element are stored. A FIFO 
memory (which stores Lfixed+1 elements) and registers are 
employed for this purpose as illustrated in Fig. 9 for the example 
analyzed in Section II. 

The block has been implemented in the Spartan-6 LX9 
CSG324-2 FPGA of the Avnet LX9 microboard, employed for 
the design of the prototype. The schematic of the block is 
illustrated in Fig. 10. The occupation and timing results are 
included in Table II. The occupation percentage of Spartan-6 
FPGA allows the inclusion of other biometric algorithms to 
implement multi-biometric fusion (for example, processing the 
gyroscope data, as commented above). Since each acceleration 
value is processed in one clock cycle, the execution time for 
aligning two 600-element sequences is 7.35 ms (600x600/49 
MHz). Such results meet real-time requirements and improve 
considerably the time required by a software implementation 
(410 ms running on a 3.2-GHz Intel Core i7 CPU with 6-GB 
RAM). Regarding power consumption, the implementation offers 
a low value (in addition, the device can be powered down when 
no in-air signature is drawn). 

In order to compute the score value for the complete 
recognition system as in (6), it is necessary to calculate a matrix 
cost value for each axis (x, y, and z). This can be performed in a 
serial or parallel way. In the serial approach, less resources but 
more time is required, and, in the parallel approach, more 
resources but less time is required. Taking into account the 
results shown in Table II, the serial approach has been selected in 
this prototype. Hence, the total execution time for aligning two 
600-element in-air signatures (with three sequences each 
signature) is 22.05 ms. 

The block matching works with fixed-point data (in contrast 
to the software implementation also analyzed in Matlab-
Simulink, which works with floating-point data). The selection of 
the fixed-point accuracy in hardware has been done by 
comparing the resulting cost metric values from the software 
implementation SWcost to the resulting cost metric values from 
the hardware implementation HWcost for all the in-air signatures 
of the public database considered. The error measured as in (7) 
gives an acceptable value of 0.21 for the fixed-point data 
selected. The total number of comparisons N is determined by the 
genuine and impostor distributions by removing symmetric 
comparisons and avoiding correlations: each sample is matched 
against the remaining samples of the same in-air signature for the 
genuine distribution, and the first sample of each person is 
matched against the first sample of the remaining people for the 
impostor distribution. 

 ∑
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V. CONCLUSIONS 
This paper describes the hardware implementation of a 
biometric recognition system based on in-air signature. The 
recognition algorithm has been analyzed to obtain specifications 
that are a good trade-off between hardware simplification and 
recognition accuracy. A public database of signatures has been 
employed for this analysis. A low-cost design flow supported 
by CAD tools from Matlab-Simulink and Xilinx ISE has 
allowed designing a prototype based on the Spartan-6 LX9 
microboard connected to an ADXL345 3-axis accelerometer. Its 
functionality has been verified at different abstraction levels 
(from software to hardware descriptions). Preliminary 
biometric recognition results obtained with the prototype 
show that the calibration of the sensors is crucial to reduce 
dispersion of the genuine population. In future work, 
systematic analysis of the recognition errors will be carried 
out as well as multi-biometric fusion will be considered to 
combine in-air signature with other biometric traits, such as 
fingerprints or voice. 
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