
Hardware Implementation of a Biometric Recognition
Algorithm based on In-Air Signature

Rosario Arjona, Rocío Romero-Moreno, Iluminada Baturone
Microelectronics Institute of Seville (IMSE-CNM)

Universidad de Sevilla - CSIC
Seville, Spain

{arjona, lumi}@imse-cnm.csic.es

Abstract—This paper presents the design of a prototype for a
wearable device that implements a recognition system based on in-
air signature into a FPGA that receives data from a 3-axis
accelerometer. The Dynamic Time Warping (DTW) algorithm has
been analyzed and simplified to reduce the complexity of the
hardware architecture that implements the matching in the FPGA.
Despite simplification, accuracy of the recognition is maintained
and the Equal Error Rate, EER, is 4.21% considering a public
database with 120 in-air signatures. A prototype based on a
Spartan 6 LX9 microboard connected to an ultralow power
ADXL345 accelerometer has been developed. Performance of the
prototype working with in-air signatures has been verified with a
script developed in Matlab-Simulink. The execution time for
matching is 22 ms and the estimated average power consumption of
the matching in the FPGA is 26 mW.

Keywords—Biometrics; In-air signature; DTW; Hardware in
FPGAs; CAD tools

I. INTRODUCTION
Biometrics is the science which studies measurements based

on physical and behavioral attributes of a person to recognize
individuals [1]. Several traits such as fingerprints, faces, voice, or
iris, among others, have been widely studied and employed in
biometric recognition systems. The application contexts range
from forensic science, law enforcement, access control systems,
and surveillance systems to the latest trends in wearable
technology.

Wearable technology requires low-cost, small and lightweight
devices, which imposes high constraints in terms of resources,
real-time response and power consumption. The selection of a
biometric trait suitable for wearable devices should consider
small-size sensors to acquire the signals as well as algorithms of
low complexity that maintain discrimination capability. The in-
air signature satisfies these constraints. It is based on drawing a
signature in the air (or any movement which is difficult to
reproduce by an impostor) by employing a device which contains
an accelerometer. In-air signature offers information from two
points of view: physical and behavioral. On the one hand, it
depends on the arm length and the hand size. On the other hand,
it depends on the capability to move the wrist, the way to

reproduce the signature (fast or slow movements) and the way to
use the device [2].

Biometric recognition by in-air signature was proposed by the
Group of Biometrics, Biosignals, and Security (GB2S), which
belongs to the Centro de Domótica Integral (CeDInt), from
Polytechnical University of Madrid. They implemented an in-air
signature-based individual recognition system in a smartphone
(iPhone 3G). Samples were acquired by the 3-axis accelerometer
embedded in the smartphone [2]. The recognition algorithms
were developed as an iOS application. Later, researchers from the
National Chiao Tung University (NCTU) developed an
application, which is currently available in Google Play [3].
Recently, in-air gestures have also been applied to handwriting
recognition [4].

While the above commented solutions are software
implementations, the focus of this work is the implementation of
in-air signature-based recognition algorithms in dedicated
hardware, meeting the requirements of wearable gadgets such as
bracelets, car keys, etc., in terms of small size and low power
consumption. The algorithm has been analyzed and simplified to
achieve that the complete recognition process (enrollment and
matching) can be included with low cost in the same device. In
the enrollment phase, the in-air signature is acquired and stored
in the device memory as a template to register an individual. In
the matching phase, another in-air signature is acquired and
matched against the template or the N templates stored in the
memory. If one template is registered, the recognition process is
known as authentication, while if N templates are registered, the
process is known as identification. In any case, doing enrollment
and matching within the same device is much more secure than
doing them in separate devices, because the number of attacks
that can be carried out decreases considerably.

The paper is structured as follows. Section II reviews the
main algorithms applied to in-air signature recognition. Section
III presents the analysis done to obtain the specifications for the
hardware implementation of the system. Recognition results are
shown for the selected specifications. Section IV describes the
design of a prototype based on a FPGA and a 3-axis

This work has been partially supported by TEC2011-24319 and IPT-2012-
0695-390000 projects from Ministerio de Economía y Competitividad of the
Spanish Government (with support from the PO FEDER-FSE).

accelerometer as a first step towards the design of a wearable
device. Finally, conclusions are given in Section V.

II. IN-AIR SIGNATURE RECOGNITION ALGORITHMS
The in-air signature is composed of three sequences of

acceleration values (x, y, and z) associated to the 3-axis
accelerometer. Axis x represents the left-right direction, axis y
represents the up-down direction, and axis z represents the front-
back direction. The matching operation implies the comparison
of the template to the input sequences, which results a score
value. The comparison of the score value to a predefined
threshold value results the recognition decision.

The acceleration values acquired can be employed directly
(no normalization is applied), can be divided by the maximum
acceleration acquired by the accelerometer (maximum
normalization), can be divided by the maximum absolute value of
the sequence (maximum on-sequence normalization), or can be
subtracted from the average and divided by the maximum
absolute value of the sequence (maximum-average
normalization). The recognition results in [5] show that no
normalization and maximum normalization offer a higher
accuracy. Hence, this work focuses on both solutions, which are
similar (since maximum normalization is just a scale adjustment)
and are the least complex options from a hardware
implementation point of view.

Two in-air signatures (i.e. the input signature to verify and the
stored signature or template) cannot be compared directly
because the signatures carried out by the same individual differ
from one capture to another. For example, the individual can
apply more or less speed and the signatures can start at different
time instants. The sequences captured for each axis of the
signatures should be aligned firstly (to correct the variations), and
then processed to obtain a similarity value. Although Hidden
Markov Models (HMMs) [6] and Neural Networks (NNs) have
been employed for this purpose [7], dynamic programming
algorithms are more effective to obtain the optimal alignment
because HMMs and NNs require training stages. Two dynamic
programming algorithms are employed in the literature: LCS
(Longest Common Sequence) and DTW (Dynamic Time
Warping). The LCS algorithm looks for the optimal alignment by
maximizing the length of the common subsequence of two
sequences, that is, it maximizes the similarities between two
sequences. In contrast, the DTW algorithm looks for the optimal
alignment by minimizing the Euclidean distance between two
sequences, that is, it minimizes the differences between two
sequences. Regarding complexity, LCS and DTW are similar
since they are based on the same paradigm and employ similar
operations. Regarding recognition performance, the work in [5]
proves that DTW algorithms provide better results than LCS
algorithms. Hence, this work focuses on DTW implementation.

In the DTW algorithm, the alignment of two sequences (v and
w) is computed by using a cost matrix S whose elements, S(i, j),
are obtained as follows:

)}1,(),1,1(),,1(min{),(),(−−−−+= jiSjiSjiSjidjiS (1)

where d(i, j) is the difference between the points (vi and wj) of
the sequences (v and w). Typically, d is computed by the
Euclidean distance as follows:

 2)(),(ji wvjid −= (2)

The values of the first column and the first row of S are filled
as follows:

)1,1(),1(),1(

)1,1()1,()1,(

−+=

−+=

jSjdjS

iSidiS
 (3)

Let us illustrate how the DTW algorithm works with the
following example:

v=template = [0.390, 0.679, 0.375, 0.500, 0.492]

w=input = [0.730, 0.359, 0.273, 0.265, 0.281]

where template is the sequence stored in the database at the
enrollment phase and input is the sequence captured at the
recognition phase.

The matrix of Euclidean distances for the example considered
is shown in Fig. 1. Fig. 2 illustrates how these distances are
employed to calculate the matrix S. The last element of the
matrix S (within a circle in Fig. 2) is named the matrix cost value
and will be referred to as Cx, Cy, and Cz, depending on the axis

0.116 0.002 0.126 0.053 0.057

0.000 0.102 0.000 0.020 0.018

0.014 0.165 0.010 0.052 0.048

0.016 0.171 0.012 0.055 0.052

0.012 0.158 0.008 0.048 0.045

Fig. 1. Example of matrix of Euclidean distances, d(i,j).

0.116 0.118 0.244 0.297 0.354

0.116

0.130

0.146

0.158

0.116 0.118 0.244 0.297 0.354

0.116 0.218 0.118 0.138 0.156

0.130 0.281 0.128 0.170 0.186

0.146 0.301 0.140 0.183 0.222

0.158 0.304 0.148 0.188 0.228

Fig. 2. Construction of the cost matrix in the DTW algorithm by using the
distances d(i, j) in Fig. 1.

considered. If Lv is the length of the sequence v and Lw is the
length of the sequence w, the last element will be referred to as
S(Lv, Lw).

Although the matrix cost value offers information about the
similarity of two sequences, the sequences are firstly aligned to
determine a similarity value by means of the Euclidean distance.
The optimal path for alignment is obtained from the element
S(Lv, Lw) to the element S(1,1) by the type of movement
performed in the computation of the matrix S: vertical (i-1,j),
diagonal (i-1,j-1), or horizontal (i,j-1), which is given by the
value considered in the minimum operation in (1). For the
example considered, the optimal path obtained is shown in gray
in Fig. 3. The path indicates the indices of the aligned elements
from the original sequences (the column indices of the elements
in the path indicate the elements of the template and the row
indices, the elements of the input sequence) as follows:

templateIndices = [1, 2, 3, 3, 4, 5]

inputIndices = [1 ,1, 2, 3, 4, 5]

Hence, the horizontal or vertical movements imply to insert
elements in the sequences to align them. The aligned sequences
obtained in the example are the following:

template' = [0.390, 0.679, 0.375, 0.375, 0.500, 0.492]

input’ = [0.730, 0.730, 0.359, 0.273, 0.265, 0.281]

Once the sequences are aligned (v’, w’), their length, L’, is the
same. The Euclidean distance of the aligned sequences is
calculated as follows:

 ∑
=

−=
'

1

2'')(
L

k
kk wvE (4)

For each axis, a Euclidean distance value is obtained (Ex, Ey,
and Ez), so that he final score is calculated by the sum of the
Euclidean distance values:

 zyx EEEscore ++= (5)

III. ALGORITHM SIMPLIFICATION FOR HARDWARE
IMPLEMENTATION

Hardware implementation oriented to wearable devices
requires selecting algorithms of low complexity to satisfy the
constraints imposed by the application context. At the same time,
recognition performance should be considered to achieve a
tradeoff between simplicity and accuracy. Recognition accuracy

is evaluated in terms of EER (Equal Error Rate). The EER is the
value where False Match Rate (FMR) and False Non-Match Rate
(FNMR) coincide (FMR=FNMR). FMR and FNMR represent
the two types of recognition errors at matching. If the biometric
samples from two different individuals match, it is a false match,
and if the two biometric samples from the same individual do not
match, it is a false non-match. The number of false matches for
the impostor distribution determines the performance indicator
named as False Match Rate (FMR). The number of false non-
matches for the genuine distribution determines the performance
indicator named as False Non-Match Rate (FNMR).

The comparison of the score value to a predefined threshold
value, t, results the match or non-match decision. Therefore,
FMR and FNMR are functions of the threshold value selected, t,
so they can be expressed as FMR(t) and FNMR(t). There is a
tradeoff between FMR and FNMR in every biometric recognition
system. The value predefined for the threshold t depends on the
final application. The evaluation of a biometric recognition
system in a generic way requires considering all possible values
for t to compute FMR and FNMR values over the genuine and
impostor distributions.

In order to analyze how algorithm simplification for hardware
implementation influences recognition performance, the in-air
signature database in [8] has been considered (in particular, the
database GB2SDB1). It is composed of 30 individuals and 4 in-
air signature captures for each individual.

The score value used in the hardware realization should be
normalized; so that it does not depend on the time taken by the
individual in drawing the signature (this time is usually different
for the same individual and the same signature). In order to
normalize the score values, the approaches shown in Table I have
been considered. For the normalization based on the division of
the score value by the maximum length of the template and input

TABLE I: Normalization approaches for the score values:

Score normalized by the maximum length of
the template and input sequence

Score normalized by the maximum length of
the templates

Score normalized by the length of the aligned
sequences for each axis

),max(inputtemplate

zyx
LL
EEE ++

L

EEE zyx
max

++

z
z

y

y

x
x

L
E

L
E

L
E

'''
++

0.116 0.118 0.244 0.297 0.354

0.116 0.218 0.118 0.138 0.156

0.130 0.281 0.128 0.170 0.186

0.146 0.301 0.140 0.183 0.222

0.158 0.304 0.148 0.188 0.228

Fig. 3. Path which describes the alignment of sequences.

sequences (first column of Table I) the EER value is 3.69%. The
normalization based on the division of the score value by the
maximum length of the stored templates, as in the second column
of Table I, gives an EER value of 4.90%. The division of the
Euclidean distances by the length of the aligned sequences for
each axis, as in the third column of Table I, gives an EER value
of 5.48%. Therefore, the normalization selected for the hardware
implementation is the first approach because it offers the highest
accuracy.

The above commented results are obtained from the
computation of the Euclidean distances in (4). As summarized in
Section II, such distances for each axis are computed after the
alignment of the sequences once the optimal path is found from
the cost matrix processing. Another study carried out has been to
use as score metric the matrix cost value, which is obtained
directly from the matrix computation, instead of using the
Euclidean distances in (4). This implies an important reduction of
complexity because it is not necessary to process the matrix to
obtain the aligned sequences and then to compute the Euclidean
distance. Regarding accuracy, performance is maintained because
recognition results are similar for the two approaches. In the
example illustrated in Section II, it can be seen that the matrix
cost value C and the Euclidean distance value E are the same for
the two sequences (both results are 0.228). Fig. 4 illustrates the
FNMR-FMR curves obtained when this simplification is applied
to the database GB2SDB1 (compared to applying the algorithm
without simplification).

Another simplification considered for hardware
implementation is to take into account fixed-length instead of
variable-length sequences because the creation of the cost matrix
is less complex if the sequence sizes do not change. Let us define
Lfixed as the length value predefined for the sequences. For the
experimental database analyzed herein, this value has been fixed
to 600. The captured sequences whose length was higher than
Lfixed were down-sampled. In contrast, padding was needed for

the sequences whose length was lower than Lfixed. Fig. 5
illustrates how the influence of such simplification on the
FNMR-FMR curves of the database GB2SDB1 is small. The
resulting EER is 4.21%, which is very similar to the EER without
simplification.

In summary, the expression of the normalized matching score
selected to be computed in hardware is the following:

fixed

zyx

L
CCC

normScore
++

= (6)

where Cx, Cy, and Cz are the matrix cost values resulting from
the DTW matrices computed for the x-, y-, and z-axis sequences
from the template and input captures, respectively.

IV. DESIGN OF A WEARABLE PROTOTYPE
As a first approach for a wearable device, the Spartan-6 LX9

microboard has been selected to evaluate the implementation of

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Normalized Matching Score (%)

%

FNMR FMR

Euclidean Distance
Cost

Fig. 4. Comparison of FNMR and FMR results when considering
Euclidean distances and matrix cost values.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Normalized Matching Score (%)

%

FNMR FMR

Database length
Fixed length

Fig. 5. Comparison of FNMR and FMR results when considering
sequences with variable and fixed lengths.

Fig. 6. Spartan 6 LX9 microboard connected to a 3-axis accelerometer and
a gyroscope through Pmod interfaces.

the acquisition and the matching stages as dedicated hardware in
a low-cost FPGA (Spartan-6 LX9 CSG324-2 from Xilinx).

The in-air signature acquisition is performed by the small,
thin and ultralow power ADXL345 3-axis accelerometer. It uses
a standard 12-pin Pmod connector that is inserted in the LX9
microboard. Additionally, a gyroscope (the ADXRS453) which
captures information of movements in different directions and
orientations has also been connected to the microboard using
another Pmod interface. A future study to carry out is how the
fusion of different information (accelerations and orientations)
can improve recognition performance. Fig. 6 shows the Spartan 6
LX9 microboard connected to both types of acquisition devices.
The gyroscope in particular has been fixed adequately to the
microboard to avoid undesirable vibrations of the sensor when
performing the in-air signatures.

The acquisition stage (needed by enrollment and matching
phases) is in charge of capturing the acceleration values provided
by the accelerometer. The code provided by Analog Devices in
[9] has been reused to program in the FPGA a system based on
the processor MicroBlaze that communicates with the
accelerometer via the SPI interface.

A. Hardware Design Methodology
A hardware design methodology based on CAD tools has

been employed. It follows a top-down design flow that starts with
the high-level description of the system in Matlab-Simulink. The
software reported in [10] has been employed to describe the
complete alignment of sequences by means of the DTW
algorithm, which is in charge of the matching operation. The
code programmed in Matlab uses floating-point arithmetic. This
Matlab code was translated to a Simulink model which takes into
account the simplifications explained in Section III and hardware
considerations such as delays, buffers, memory, and fixed-point
data. The performance of both implementations was compared.

A script has been developed to capture the acceleration data
into the Matlab workspace by a serial communication. In this
way, the matching stage that is performed inside the prototype as
dedicated hardware can be compared to the matching stage
performed in Matlab-Simulink with the same data. Fig. 7 shows
examples of accelerations and orientations captured by the
prototype with this script.

The implementation in the device of the matching algorithm
as dedicated hardware has been done with HDL Coder (included

in Matlab-Simulink), which aims to facilitate hardware designs
for any type of device (ASIC or FPGA), since it is possible to
generate synthesizable HDL code (VDHL or Verilog). HDL
Coder has also been used to generate the testbenches employed
to simulate and verify the circuit at hardware code level. ISE Isim
simulator has been employed for these simulations. This
constitutes another verification point whose results can be
compared to the results from the high-level descriptions.

The final stage of the design flow is the device
implementation. Since the prototype is based on a Xilinx FPGA,
the tools from Xilinx ISE environment have been used to
complete the process.

B. Hardware Implementation of the Matching Algorithm
Hardware implementations of the DTW algorithm in FPGAs

can be seen in [11], where a hardware coprocessor is described in
the context of a HW/SW system. The implementation described
in the following for the block matching is focused on dedicated
hardware to achieve more reduced figures of area, power, and
processing time. Data are processed in a serial way, that is, the
acceleration values captured by the accelerometer are transmitted
one by one to the block matching, which carries out the DTW
algorithm.

The inputs to the block matching are the template stored in a
BRAM inside the FPGA in the enrollment stage and the
acceleration values captured in the verification stage. The
acceleration values are coded with 29 bits (1 bit for the sign, 16
bits for the integer part, and 12 bits for the fractional part). The
output is the last element of the DTW cost matrix, S(Lfixed, Lfixed),
for each axis, coded with 20 bits (16 bits for the integer part and
4 bits for the fractional part). Fig. 8 shows the structure of this
block. It receives the template and input acceleration values for
each axis and returns the matrix cost value associated to that axis.

For each clock cycle, the operations expressed in (1), (2) and
(3) are computed in parallel. Hence, the process finishes after

Fig. 7. Examples of acceleration and orientation values acquired by the
prototype.

Cost matrix
calculation

t

i

C

clk
ctrl

FIFO
(L+1 20-bit

values)

Register Bank
(3 20-bit
registers)

20 20 20

29

29

20

20

Data from
accelerometer

sel
Stored Template

29

Fig. 8. Structure of the block Matching.

Lfixed x Lfixed clock cycles. Instead of storing all the elements of
the DTW cost matrix, only Lfixed+1 elements of the matrix
associated to the currently processed element are stored. A FIFO
memory (which stores Lfixed+1 elements) and registers are
employed for this purpose as illustrated in Fig. 9 for the example
analyzed in Section II.

The block has been implemented in the Spartan-6 LX9
CSG324-2 FPGA of the Avnet LX9 microboard, employed for
the design of the prototype. The schematic of the block is
illustrated in Fig. 10. The occupation and timing results are
included in Table II. The occupation percentage of Spartan-6
FPGA allows the inclusion of other biometric algorithms to
implement multi-biometric fusion (for example, processing the
gyroscope data, as commented above). Since each acceleration
value is processed in one clock cycle, the execution time for
aligning two 600-element sequences is 7.35 ms (600x600/49
MHz). Such results meet real-time requirements and improve
considerably the time required by a software implementation
(410 ms running on a 3.2-GHz Intel Core i7 CPU with 6-GB
RAM). Regarding power consumption, the implementation offers
a low value (in addition, the device can be powered down when
no in-air signature is drawn).

In order to compute the score value for the complete
recognition system as in (6), it is necessary to calculate a matrix
cost value for each axis (x, y, and z). This can be performed in a
serial or parallel way. In the serial approach, less resources but
more time is required, and, in the parallel approach, more
resources but less time is required. Taking into account the
results shown in Table II, the serial approach has been selected in
this prototype. Hence, the total execution time for aligning two
600-element in-air signatures (with three sequences each
signature) is 22.05 ms.

The block matching works with fixed-point data (in contrast
to the software implementation also analyzed in Matlab-
Simulink, which works with floating-point data). The selection of
the fixed-point accuracy in hardware has been done by
comparing the resulting cost metric values from the software
implementation SWcost to the resulting cost metric values from
the hardware implementation HWcost for all the in-air signatures
of the public database considered. The error measured as in (7)
gives an acceptable value of 0.21 for the fixed-point data
selected. The total number of comparisons N is determined by the
genuine and impostor distributions by removing symmetric
comparisons and avoiding correlations: each sample is matched
against the remaining samples of the same in-air signature for the
genuine distribution, and the first sample of each person is
matched against the first sample of the remaining people for the
impostor distribution.

 ∑
=

−=
N

k
kCOSTkCOST HWSW

N
error

1

1 (7)

V. CONCLUSIONS
This paper describes the hardware implementation of a
biometric recognition system based on in-air signature. The
recognition algorithm has been analyzed to obtain specifications
that are a good trade-off between hardware simplification and
recognition accuracy. A public database of signatures has been
employed for this analysis. A low-cost design flow supported
by CAD tools from Matlab-Simulink and Xilinx ISE has
allowed designing a prototype based on the Spartan-6 LX9
microboard connected to an ADXL345 3-axis accelerometer. Its
functionality has been verified at different abstraction levels
(from software to hardware descriptions). Preliminary
biometric recognition results obtained with the prototype
show that the calibration of the sensors is crucial to reduce
dispersion of the genuine population. In future work,
systematic analysis of the recognition errors will be carried
out as well as multi-biometric fusion will be considered to
combine in-air signature with other biometric traits, such as
fingerprints or voice.

REFERENCES
[1] A. K. Jain, P. Flynn, and A. Ross, Handbook of Biometrics, Springer,

2008.
[2] J. Guerra-Casanova, C. Sánchez-Ávila, G. Bailador, and A. de Santos-

Sierra, “Authentication in mobile devices through hand gesture
recognition”, Int. J. Inf. Secur. Vol. 11 (2), pp. 65-83, April 2012.

[3] In-air signature for mobile security, http://spectrum.ieee.org/consumer-
electronics/portable-devices/inair-signature-gives-mobile-security-to-the-
passwordchallenged

[4] Y. Hsu, C. Chu, Y. Tsai, and J. Wang, “An inertial pen with dynamic time
warping recognizer for handwriting and gesture recognition”, DOI
10.1109/JSEN.2014.2339843, IEEE Sensors Journal.

[5] J. Guerra-Casanova, C. Sánchez-Ávila, G. Bailador, and A. de Santos-
Sierra, “Time series distances measures to analyze in-air signatures to
authenticate users on mobile phones,” IEEE Int. Carnahan Conf. on
Security Technology (ICCST), pp. 1-7, October 2011.

[6] J. S. Wang, and F. C. Chuang, “An accelerometer-based digital pen with a
trajectory recognition algorithm for handwritten digit and gesture
recognition, “ IEEE Trans. on Industrial Electronics. Vol. 59 (7), pp. 2998-
3007, 2012.

[7] L. Tong, Q. Song, Y. Ge, and M. Liu, “HMM-based human fall detection
and prediction method using tri-axial accelerometer,” IEEE Sensors
Journal. Vol. 13 (5), pp. 1849-1856, 2013.

[8] Gesture Database, https://sites.google.com/site/engb2s/gb2sgesturedb1
[9] ADXL345 pmod Xilinx FPGA Reference Design,

http://wiki.analog.com/resources/fpga/xilinx/pmod/adxl345
[10] Software implementation of a Dynamic Time Warping Algorithm,

http://www.mathworks.com/matlabcentral/fileexchange/6516-dynamic-
time-warping

[11] H. Liu, and N. Bergmann, “An FPGA softcore based implementation of a
bird call recognition system for sensor networks,” Proc. of the Design and
Architectures for Signal and Image Processing. DASIP, pp. 1-6, October
2010.

TABLE II: Implementation results for matching block

Device Slices
(%)

Max. frequency
(MHz)

Block RAMs
(%)

Power
(mW)

Spartan 6 27 49 3 26
1430 slices and 32 18-Kb block RAMs in total for Spartan-6 LX9
CSG324-2.

https://sites.google.com/site/engb2s/gb2sgesturedb1
http://wiki.analog.com/resources/fpga/xilinx/pmod/adx

	I. Introduction
	II. In-air Signature Recognition Algorithms
	III. Algorithm simplification for Hardware Implementation
	IV. Design of a Wearable Prototype
	A. Hardware Design Methodology
	B. Hardware Implementation of the Matching Algorithm

	V. Conclusions
	References

