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Abstract The Lorenz system presents a double-zero
bifurcation (a double-zero eigenvalue with geometric
multiplicity two). However, its study by means of stan-
dard techniques is not possible because it occurs for
a non-isolated equilibrium. To circumvent this diffi-
culty, we add in the third equation a new term, Dz2. In
this Lorenz-like system, the analysis of the double-zero
bifurcation of the equilibrium at the origin guarantees,
for certain values of the parameters, the existence of a
heteroclinic cycle between the two equilibria located
on the z-axis. The numerical continuation in parameter
space of the locus of heteroclinic connections allows
to detect various degeneracies of codimension two and
three, some of which have not been previously stud-
ied in the literature. These bifurcations are organizing
centers of the complicated dynamics exhibited by this
system. Furthermore, studying how the bifurcation sets
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evolve when D tends to zero, we are able to explain, in
the Lorenz system, the origin of several global connec-
tions which are related to T-point heteroclinic loops.
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1 Introduction

Lorenz system, since its introduction 60 years ago [1],
has become an icon in the world of dynamical systems.
Although it was derived from a simplified model of
convection in the atmosphere, this systemappears in the
study of a wide variety of problems (see, for instance,
[2–10]). In spite of the hundreds of papers devoted to
studying the complex dynamics that it exhibits (see, for
example, [11–22] and references therein) the origin of
many of its intricate behaviors is still a long way off.

When a specific system is studied, the combination
of analytical and numerical methods is usually useful
to shed light on concrete aspects of its dynamics, in
some region of the parameter space. For example, the
application of this strategy to a 3D modified van der
Pol–Duffing oscillator, starting with the study of local
bifurcations of equilibria, provides very interesting
information about its behavior (see, for instance, [23–
29] and references therein). Regarding global bifur-
cations, from the pioneering works of Shilnikov it is
well known that they can be at the origin of extremely
complicated dynamical behavior (see [30–32] and ref-
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erences therein; an excellent survey appears in [30]
detailing the important contributions of Shilnikov). A
simple analytical way to detect global connections is
from a Takens–Bogdanov bifurcation (the lineariza-
tion matrix has a double-zero eigenvalue with geomet-
ric multiplicity one) (see, for example, [33–44] and
references therein). If the double-zero eigenvalue has
geometric multiplicity two (the so-called double-zero
bifurcation), a heteroclinic connection may also appear
[45,46].

In the case of the Lorenz system, some local bifurca-
tions can be studied by standard techniques (analysis of
the linearization around an isolated equilibrium, com-
putation of the reduced system on the center manifold,
study of the unfolding of the normal form), as the Hopf
and Takens–Bogdanov bifurcations [16,47–49]. How-
ever, other singularities (double-zero, Hopf-pitchfork
and triple-zero) are exhibited by non-isolated equilib-
ria, which makes their study more difficult [50].

To avoid this problem, we are going to introduce a
Lorenz-like system, as simple as possible, that presents
a double-zero bifurcation in an isolated equilibrium.
Specifically, wewill add a single term, Dz2, to the third
equation of the Lorenz system. In this way, after ana-
lyzing this Lorenz-like system, we will obtain valuable
information for the Lorenz system bymaking D tend to
zero (see Fig. 12). Specifically, we will explain how a
degenerate heteroclinic connection organizes a family
of infinitely many homoclinic orbits previously found
in the literature [51, Fig. 6], [52, Fig. 8(B)], [17, Fig. 3],
whose origin was unknown. This family is related to a
kind of heteroclinic loop called T-point [11,32,53–58].
Note that the idea of studying a degenerate heteroclinic
cycle in the Lorenz system by introducing new pertur-
bation parameters was already used in Ref. [59].

This paper is organized as follows. In Sect. 2, we
introduce the new Lorenz-like system. Section3 is
devoted to the analytical study of the double-zero bifur-
cation undergone by its equilibrium at the origin (the
results obtained are summarized in Theorem 1). The
most important outcome is that, in a region of param-
eter space, the existence of a heteroclinic connection
is guaranteed. A detailed numerical analysis, the core
of this paper, appears in Sect. 4. The continuation of
the heteroclinic orbit emerged from the double-zero
bifurcation allows to detect several global bifurcations
(homoclinic and heteroclinic connections) of codimen-
sion two and three (see Fig. 7) which act as impor-
tant organizing centers of the dynamics. As far as we

know, the theoretical analysis of three of these degen-
erate global connections has not been performed so
far in the literature. Moreover, we find that the curve
of heteroclinic connections accumulates on a line seg-
ment of saddle-node bifurcations of periodic orbits (see
Fig. 3d). Unlike similar cases known in the literature,
this heteroclinic orbit accumulates on a non-hyperbolic
periodic orbit. This is because the heteroclinic connec-
tion exists on the other side of the saddle-node curve,
that is, in the zone where the periodic orbits do not
exist. On the other hand, studying how the bifurca-
tion sets evolve when D tends to zero, we are able to
explain, in the Lorenz system, the origin of an infinite
sequence of global connections which are related to
T-points (see Fig. 12). In this scenario, the three new
degenerate global connections mentioned above play
a key role. Finally, some conclusions are included in
Sect. 5.

2 A Lorenz-like system

The Lorenz system is given by (see [1,60])

ẋ = σ(y − x),
ẏ = ρx − y − xz,
ż = −bz + xy,

(1)

where σ , ρ and b are real parameters. The equilibria
are the origin (0, 0, 0) and a pair of symmetric non-
trivial equilibria

(±√
b(ρ − 1),±√

b(ρ − 1), ρ − 1
)

when b(ρ − 1) > 0. The Lorenz equations are invari-
ant under the change (x, y, z) → (−x,−y, z), which
implies that the z-axis is invariant (and, therefore, there
is a heteroclinic connection between the origin and the
equilibria at infinity corresponding to this axis).

The characteristic polynomial of its linearization
matrix at the origin is given by p = λ3 + p1λ2 +
p2λ + p3, with

p1 = b + 1 + σ, p2 = σ(1 + b − ρ) + b,

p3 = −bσ(ρ − 1).

The origin exhibits a triple-zero bifurcation when
σ = −1, ρ = 1 and b = 0. In the (ρ, b, σ )-parameter
space, three curves of codimension-two bifurcations e-
merge from this point corresponding to Takens–Bogda-
nov (when σ = −1, ρ = 1 and b �= 0), Hopf-pitchfork
(if σ = −1, b = 0 and ρ > 1) and double-zero (for
b = 0, ρ = 1 and σ �= −1) singularities of the origin.

Specifically,when thedouble-zerobifurcationoccurs,
the linearization matrix has the eigenvalues λ1 = λ2 =
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0, λ3 = −σ − 1. But, for these parameter values, the
analysis of the origin cannot be performed because it
is not an isolated equilibrium. Also, the corresponding
normal form is degenerate (all coefficients of zk are
null). To avoid this, we introduce a new nonlinear term
in the third equation,

ẋ = σ(y − x),
ẏ = ρx − y − xz,
ż = −bz + xy + Dz2,

(2)

where D ∈ R, so that the Lorenz system (1) is embed-
ded in this one. As we will see in Sect. 4, the use of
numerical continuationmethodswill allowus, reaching
D = 0, to obtain valuable information on the Lorenz
system.

From now on, in our theoretical analysis we will
assume that D �= 0. Thus, system (2) can have up to
four equilibria, namely

E1 = (0, 0, 0), E2 =
(
0, 0,

b

D

)
,

E3,4 =
(
±√

M,±√
M, ρ − 1

)
,

with M = b(ρ − 1) − D(ρ − 1)2.

Observe that E2 exists if D �= 0 and E3,4 whenM > 0.
Note that, as in the Lorenz system, system (2) is also
invariant to the change (x, y, z) → (−x,−y, z). In this
way, the equilibria E1 and E2 are always connected by
a heteroclinic orbit located on the z-axis.

The origin E1 exhibits the following local bifurca-
tions (when D �= 0):

(i) A pitchfork bifurcation when ρ = 1, σ �= −1,
b �= 0.

(ii) A transcritical bifurcation of equilibria, involving
E1 and E2, when b = 0, ρ �= 1, σ �= −1.

(iii) A Hopf bifurcation if σ = −1, ρ > 1, b �= 0.
(iv) A Takens–Bogdanov bifurcation (a double-zero

eigenvalue with geometric multiplicity one) when
ρ = 1, σ = −1, b �= 0.

(v) A double-zero bifurcation (a double-zero eigen-
value with geometric multiplicity two) for ρ = 1,
b = 0, σ �= −1. In this work, we will analyze this
bifurcation.

(vi) A Hopf-transcritical bifurcation when σ = −1,
b = 0, ρ > 1.

(vii) A degenerate triple-zero bifurcation appears when
b = 0, ρ = 1, σ = −1.

Remark that the linearization matrix at the origin
is the same for systems (1) and (2). The only bifurca-
tion of the origin that appears in system (2) and not in

the Lorenz system is the transcritical bifurcation (ii).
This causes system (2) to undergo a Hopf-transcritical
bifurcation instead of a Hopf-pitchfork as in the Lorenz
system.

As can be straightforwardly verified, when D �= 0,
system (2) is symmetric to the change

(x, y, z, t, σ, ρ, b, D)

→
(
x, y, z − b

D
, t, σ, ρ − b

D
,−b, D

)
. (3)

Consequently, all the results obtained for E1 can be
easily translated for E2.

3 A double-zero bifurcation at the origin

In this section we analyze the double-zero bifurcation
undergone by the origin, E1. Since this degeneracy
occurs when ρ = 1, b = 0, σ �= −1, D �= 0, our
local study is valid for ρ and b close to one and zero,
respectively.

The bifurcations that appear in system (2) as a con-
sequence of the double-zero singularity are summa-
rized in the following theorem, whose proof is the core
of this section. We will focus on the most interesting
case, which occurs when limit cycles appear from a
Hopf bifurcation. These periodic orbits disappear in a
heteroclinic connection. The corresponding bifurcation
sets are drawn in Fig. 1.

Theorem 1 The equilibrium E1 of system (2) under-
goes a double-zero bifurcation DZ if ρ = 1, b = 0,
σ �= −1, D �= 0. In a vicinity of this singular-
ity, there are only limit cycles when D > 0 and
σ ∈ (−∞,−1) ∪ (0,+∞). In this situation, the fol-
lowing bifurcations appear (see Fig.1):

1. A transcritical bifurcationT, whenb = 0. It involves
the equilibria E1 and E2.

2. Two pitchfork bifurcations, P1 for ρ = 1 (concern-
ing E1 and E3,4) and P2 when b = D(ρ − 1) +
O(ρ2) (involving E2 and E3,4).

3. A Hopf bifurcation h of the equilibria E3,4, when
b = 2D(ρ −1), σ �= 1/3. This bifurcation is super-
critical if σ > 1/3, whereas it is subcritical when
σ < 1/3.

4. A heteroclinic cycle connecting E1 and E2, for

ρ − 1 = 1

2D
b + σ(3σ − 1)

8D2(σ + 1)2(3σ + 2D(σ + 1))

×b2 + O(b3), (4)
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when σ �= 1/3. The global connection is attrac-
tive if σ > 1/3 and repulsive when σ < 1/3. The
loop is formed by two heteroclinic connections: one
is placed on the invariant z-axis (which exists for
any value of the parameters and is therefore of zero
codimension) and the other one is placed outside
this axis (it is structurally unstable).

When the conditions D > 0 and σ ∈ (−∞,−1) ∪
(0,+∞) are not fulfilled, only local bifurcations of
equilibria (transcritical and pitchfork) are present.

In the analysis of the double-zero bifurcation under-
gone by E1 in system (2) (this codimension-two bifur-
cation occurs when ρ = 1, b = 0, σ �= −1, D �= 0),
we first perform the change

x = Y − σ Z , y = Y + Z , z = X,

which converts system (2), for b ≈ 0 and ρ ≈ 1, to

Ẋ = −bX + (1 − σ)Y Z + DX2 + Y 2 − σ Z2,

Ẏ = σ 2(1 − ρ)ΔZ + σ(ρ − 1)ΔY

−σΔXY + σ 2ΔX Z ,

Ż = (ρ − 1)ΔY − (
1 + σ(σ + ρ)Δ

)
Z

−ΔXY + σΔX Z , (5)

with Δ = 1

σ + 1
, σ �= −1. Next, considering the cen-

ter manifold to second order, Z = −Δ2XY + · · · , we
obtain the reduced system

Ẋ = −bX + DX2 + Y 2 + · · · ,

Ẏ = σ(ρ − 1)ΔY + σΔ
( − 1 + (ρ − 1)σΔ2)

×XY + · · · . (6)

If we truncate this system to second order, the change
x = Y , y = X leads to

ẋ = σ(ρ − 1)Δx + σΔ
( − 1 + (ρ − 1)σΔ2

)
xy,

ẏ = −by + x2 + Dy2.
(7)

Now, by means of the change

x → 1√|D| x, y → −1

D
y + b

2D
, D �= 0,

we obtain

ẋ = μ1x + axy,
ẏ = μ2 − sgn(D)x2 − y2,

(8)

with

μ1 = σΔ

2D

(
2D(ρ − 1) − b + b(ρ − 1)σΔ2),

μ2 = b2

4
, a = σΔ

D

(
1 + (1 − ρ)σΔ2). (9)

Due to its importance in determining the behavior of the
system (8), we need to study the sign of a in the vicinity
of ρ = 1 and b = 0. If D > 0 and σ ∈ (−∞,−1) ∪
(0,+∞) or if D < 0 and σ ∈ (−1, 0), then a > 0.
Alternatively, when D > 0 and σ ∈ (−1, 0) or when
D < 0 and σ ∈ (−∞,−1)∪(0,+∞), we have a < 0.

System (8) can be analyzed using the study of
the Hopf-saddle-node bifurcation carried out in [33,
Sect. 4]. Thus, comparing system (8) with [33, Eq.
(7.4.9)], we can obtain the bifurcations exhibited by
(8). Consequently, we deduce that system (8) is in case
III [33, Sect. 4] when D > 0 and σ ∈ (−∞,−1) ∪
(0,+∞). It is in cases IIa-IIb, when D < 0 and σ ∈
(−∞,−1) ∪ (0,+∞). However, as μ2 = b2/4 > 0,
there is no Hopf bifurcation (because, in cases IIa-IIb,
it only exists when μ2 < 0) and only transcritical and
pitchfork bifurcations of equilibria appear. Note that
the trivial cases I and IV (IVa-IVb), where only equi-
libria exist (as there are no periodic orbits, there are
no global connections either), appear when D < 0
and σ ∈ (−1, 0) and when D > 0 and σ ∈ (−1, 0),
respectively.

In what follows we will focus on the case where the
most interesting dynamics appears, that is, when there
are periodic orbits (if D > 0 and σ ∈ (−∞,−1) ∪
(0,+∞)). Thus, system (8) can have up to four equi-
libria,
(
0,±b

2

)
,

(
±

√
N + O(|b, ρ − 1|3),−D(ρ − 1) + b

2

)
,

where N = D(ρ − 1) (b − D(ρ − 1)), which must be
positive for these latter equilibria to exist.

Note that E1 corresponds to the equilibrium (0,−b/2)
and E2 to (0, b/2).

From the study carried out in [33, Sect. 7.4], we can
deduce that the following local bifurcations are present
(see Fig. 1):

– A transcritical bifurcation T, involving E1 and E2,
for b = 0.

– Two pitchfork bifurcations, P1 for ρ = 1 and P2 if
b = D(ρ − 1) + O(ρ2).

– A Hopf bifurcation h of the equilibria E3,4 when
2D(ρ − 1) = b.

As explained in [33, Sect. 7.4], the second-order terms
included in system (8) allow neither the study of the
Hopf bifurcation nor that of the heteroclinic connec-
tion. This is because the system is integrable for the
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Fig. 1 Bifurcation set of system (2) in a neighborhood of the
double-zero bifurcation DZ exhibited by the equilibrium E1, for
D > 0, when σ < 1/3 (left) and σ > 1/3 (right). The curves,
according to Theorem 1, correspond to the following bifurca-
tions: T, transcritical; P1 and P2, pitchfork; h, Hopf of E3,4
(supercritical when σ > 1/3 and subcritical if σ < 1/3); He,
heteroclinic loop between E1 and E2 (attractive if σ > 1/3 and

repulsivewhen σ < 1/3). The phase portraits, in the (r, z̄)-plane,
are for system (11). On the z̄-axis, the filled circle represents the
equilibrium of (11) that corresponds to equilibrium E1 in system
(2) and the empty circle is used for the equilibrium that corre-
sponds to E2. For b < 0, to obtain the phase portrait in region
(i ′), it is enough to interchange the two equilibria on the z-axis
in the phase portrait of region (i). (Color figure online)

values of the parameters where the two bifurcations
occur: a continuum of periodic orbits bounded by a
heteroclinic loop appears (see [33, Fig. 7.4.9] for the
easiest case a = 2). Therefore, to complete the analysis
it is necessary to also include the third-order terms.

Hence, the reduced system of (5) on to the center

manifold up to third order, Z = Δ2Y
(

− X + Δ(D −
2σΔ)X2 + ΔY 2

)
+ · · · , is

Ẋ = −bX + DX2 + Y 2 + (σ − 1)Δ2XY 2,

Ẏ = σ(ρ − 1)ΔY + σΔ
( − 1 + (ρ − 1)σΔ2)XY

−σ 2Δ3(Δ(ρ − 1)(−2Δσ + D) + 1
)
X2Y

−σ 2Δ4(ρ − 1)Y 3. (10)

The change

X = −1

D
z̄ + b

2D
, Y = 2

√
2D + (σ − 1)Δ2b

r,

transforms (10) into

ṙ = μ̃1r + ã r z̄ + c̃ r3 + d̃ r z̄2,
˙̄z = μ̃2 − r2 − z̄2 + ẽ r2 z̄,

(11)

where

μ̃1 = σΔ(ρ − 1) − σΔ

2D
b + σ 2Δ3

2D
b(ρ − 1)

−σ 2Δ3

4D2 b2 + O(|b, ρ − 1|3),

μ̃2 = b2

4
+ O(|b, ρ − 1|3),

ã = σΔ

D
+ O(|b, ρ − 1|),
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c̃ = O(|b, ρ − 1|), d̃ = −σ 2Δ3

D2 + O(|b, ρ − 1|),

ẽ = (σ − 1)Δ2

D
+ O(|b, ρ − 1|).

Finally, through the change of coordinates,

s = r(1 + gz̄), w = z̄ + hr2 + i z̄2,

τ = (1 + j z̄)−1t,

where we choose

g = c̃ − ãh, i = ãẽ + d̃ − c̃ + 3ãh + 2ãc̃

3ã
,

j = ãẽ − 2d̃ + 2c̃ + 2ãc̃

3ã
, h ∈ R,

system (11) becomes
ds

dτ
= μ̂1s + âsw,

dw

dτ
= μ̂2 − s2 − w2 + f̂ w3,

(12)

where

μ̂1 = μ̃1 + O(|b, ρ − 1|3),
μ̂2 = μ̃2 + O(|b, ρ − 1|3),
â = ã + O(|b, ρ − 1|),
f̂ = Δ2(1 − 3σ)

3D
+ O(|b, ρ − 1|).

Thus, in system (12), we can analyze both the Hopf
bifurcation and the heteroclinic connection.

Regarding the Hopf bifurcation, a standard analysis
provides the first Lyapunov coefficient

a1 = 3 f̂

8η
, where η =

√
2(μ̂2â3 − μ̂2

1â − f̂ μ̂3
1)

|â| .

If a1 < 0 the Hopf bifurcation is supercritical, whereas
it is subcritical when a1 > 0. Consequently, the bifur-
cation is supercritical if f̂ < 0, i.e, if σ > 1/3 and it
is subcritical when σ < 1/3. The Hopf bifurcation is
degenerate when σ = 1/3 (since a1 = 0), this occurs
at the point (ρ, b, σ ) = (ρ, 2D(ρ − 1), 1/3).

As far as the heteroclinic connection is concerned,
its existence is ensured byMelnikov’smethod if f̂ �= 0,
which occurs when σ �= 1/3. The curve of these global
connections is estimated by [36,61,62] (only if â = 2
a Hamiltonian case appears [33])

μ̂1 = −3â2 f̂

2(3â + 2)
μ̂2 + O(μ̂2

2),

which according to the original parameters is

ρ − 1 = 1

2D
b + σΔ3(3σ − 1)

8D2(3Δσ + 2D)
b2 + O(b3)

= 1

2D
b + σ(3σ − 1)

8D2(σ + 1)2(3σ + 2D(σ + 1))
b2

+O(b3).

In thiswaywe have already proved all the statements
of Theorem 1.

We end this section noting that, when ρ = 1, b = 0,
σ = 1/3, D �= 0, system (2) exhibits a degener-
ate double-zero bifurcation DDZ (because f̂ = 0
when σ = 1/3). Although its local analysis is not
complicated, we have not included it here for brevity.
To perform it (i.e., to determine the character of the
Hopf bifurcation and of the heteroclinic connection),
it would be necessary to compute the reduced sys-
tem of (5) up to fifth order on the center manifold
(see similar computations in [45, Sect. 3.1]). From this
pointDDZ in the three-parameter space, two curvesDh
and DHe emerge, corresponding to a degenerate Hopf
bifurcation Dh and to degenerate heteroclinic connec-
tions DHe. In the next section we do a global analy-
sis (numerical continuation of the curves that originate
at point DDZ, whose existence is guaranteed by the
local analysis; see Fig. 7). On the other hand, remark
that, when b = 0 and σ = 1/3, Lorenz system has an
invariant algebraic surface [15].

4 Numerical study

Based on the above theoretical analysis, we are going
to perform a numerical study with the continuation
code AUTO [63]. We will “extend” the bifurcation sets
from the vicinity of the double-zero bifurcation DZ
of the equilibrium E1 = (0, 0, 0), that occurs when
(ρ, b) = (1, 0) and σ �= −1, D �= 0. We are going to
focus on the case of greatest dynamical richness, that is,
when curves of Hopf bifurcation h and of heteroclinic
connections He emerge from the point DZ (see Fig. 1).
This happens if D > 0 and σ ∈ (−∞,−1)∪(0,+∞).

We divide this analysis in two parts. In Sect. 4.1, our
objective will be to study the degeneracy of the double-
zero bifurcation DDZ which, according to the previous
analytical study of Sect. 3, appears when σ = 1/3. To
do this we will fix D = 0.1 and then we will take slices
σ = constant in the (ρ, b, σ )-parameter space, in the
vicinity of the point DDZ located at (1, 0, 1/3). This
will allow us to find several degenerate heteroclinic
bifurcations, of codimension two and three (see Fig. 7).

In the second part, in Sect. 4.2,we are going to obtain
information about the Lorenz system, by making D
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tend to zero (see Fig. 12). Specifically, we will explain
how some degenerate global connections organize the
family of homoclinic orbits previously found in the lit-
erature (see [51, Fig. 6], [52, Fig. 8(B)], [17, Fig. 3]),
whose origin was unknown.

4.1 Degenerate double-zero

According to the previous analytical study of Sect. 3
there is a degeneracy of the double-zero bifurcationDZ
when σ = 1/3. So first we fix σ = 0.3 and, in order to
numerically obtain the bifurcation curves arising from
the DZ bifurcation point, we are going to draw several
bifurcation diagrams (note that, for σ = 0.3, we must
obtain the left bifurcation set of Fig. 1).

First, we set b = 0.2 and continue in the parameter
ρ the equilibrium E3. It undergoes a Hopf bifurcation
that we will denote by h, for ρ ≈ 2.1940452. The
bifurcation diagram corresponding to the saddle peri-
odic orbit, which arises to the left of h for b = 0.2,
appears in Fig. 2a. As can be seen, this periodic orbit
does not experience any bifurcation before ending, for
ρ ≈ 2.1907764, in a heteroclinic cycle between the
equilibria E1 = (0, 0, 0) and E2 = (0, 0, 2), which
we denote by He. This cycle is formed by two hete-
roclinic connections (see Fig. 2a), the one located on
the z-axis (which exists for any value of the parame-
ters), and the one located outside the z-axis (which is
structurally unstable).

We point out that, in order not to overcomplicate the
notation of this work, although a heteroclinic bifurca-
tion (in parameter space) and a heteroclinic cycle (in
phase space) are two different objects, we are going
to denote them with the same label, He. Furthermore,
if we have to indicate which equilibrium is involved
in a particular bifurcation, we will do so by using a
superscript (as we did, for example, with the pitchfork
bifurcations P1 and P2 in Theorem 1).

When b = 0.3 (see Fig. 2b), a stable periodic orbit
arises from the Hopf bifurcation h (ρ ≈ 2.9069632) to
the right. Subsequently, for ρ ≈ 2.9072735, it under-
goes a saddle-node bifurcation of periodic orbits sn
when it collapses with a saddle periodic orbit which
finally disappears in a heteroclinic cycle for ρ ≈
2.9068041. Finally, in Fig. 2c, for b = −0.2, we show
the bifurcation diagram corresponding to the saddle
periodic orbit, which arises to the left of h. As in the
case b = 0.2 this periodic orbit does not experience

any bifurcation before ending in a heteroclinic cycle
between E2 = (0, 0,−2) and E1 = (0, 0, 0), for
ρ ≈ 0.1907764. Its projection onto the (x, z)-plane
also appears in Fig. 2c.We note that the results obtained
for b = −0.2 were expected due to the symmetry that
system (2) has: when passing through b = 0 the equi-
libria E1 and E2 undergo the transcritical bifurcation
T , and consequently the above diagram can be easily
obtained by applying the change of variables (3).

Now we can numerically compute in the (ρ, b)-
plane the bifurcation curves detected in the diagrams
of Fig. 2 for σ = 0.3. Thus, in Fig. 3a we have drawn
the three straight lines that intersect at the double-zero
bifurcation point DZ, namely P1, pitchfork bifurcation
of E1 for ρ = 1, P2, pitchfork bifurcation of E2 for
b = 0.1(ρ−1) andT, transcritical bifurcation between
E1 and E2 for b = 0. We also see the curves h and He
corresponding, respectively, toHopf bifurcations of the
equilibria E3,4 and to heteroclinic connections between
the equilibria E1 and E2. In particular, the Hopf bifur-
cation curve h is given by:

[2D(ρ − 1) − b − σ − 1] [b(ρ + σ) − 2D(ρ − 1)σ

+D(1 − ρ2)] + 2(b − D(ρ − 1)) (ρ − 1)σ = 0,

2D(ρ − 1) − b − σ − 1 �= 0,

b(ρ + σ) − 2D(ρ − 1)σ + D(1 − ρ2) > 0. (13)

Note that when D = 0, (13) coincides with the expres-
sion for the curve of the Hopf bifurcation of the non-
trivial equilibria in the Lorenz system [48, Sect. 3.1].

Let us remember that due to the symmetry that sys-
tem (2) presents, we can easily obtain the third quadrant
of the bifurcation set by applying the change of vari-
ables (3) to each of the curves of the first quadrant. For
this reason, in what follows, we will only focus on the
first quadrant.

To analyze some of the degeneracies that may exist
on the curve He in the first quadrant of the parameter
plane (ρ, b), we will denote by λ1, λ2, λ3 the eigen-
values of the Jacobian matrix at E1 = (0, 0, 0) and
λ∗
1, λ∗

2, λ∗
3 the eigenvalues of the Jacobian matrix at

E2 = (0, 0, b/D), where

λ1,2 = −(1 + σ) ± √
(1 − σ)2 + 4σρ

2
, λ3 = −b,

and

λ∗
1,2 = −(1 + σ) ± √

(1 − σ)2 + 4σ(ρ − b/D)

2
,

λ∗
3 = b. (14)

123



A. Algaba et al.

)c()b()a(

2,191 2,192 2,193 2,194
ρ

0

50

100

150

200

250

P
er
io
d

0 0,2 0,4
x

0

1

2

z

h

He

2,9068 2,9069 2,9070 2,9071 2,9072 2,9073
ρ

0

50

100

150

200

P
er
io
d

0 0,2 0,4 0,6 0,8
x

0

1

2

3

z

h

He

sn

0,191 0,192 0,193 0,194
ρ

0

50

100

150

200

250

P
er
io
d

0,0 0,2 0,4
x

-2

-1

0

z

h

He

Fig. 2 For σ = 0.3 and D = 0.1, bifurcation diagram of the
asymmetric periodic orbit born in the bifurcation Hopf h of the
equilibrium E3 for: a b = 0.2. b b = 0.3. c b = −0.2. In the
inset of panels (a–c), projection onto the (x, z)-plane of the hete-

roclinic cycle He connecting the origin E1 and E2, that exist for
ρ ≈ 2.1907764, ρ ≈ 2.9068041 and ρ ≈ 0.1907764, respec-
tively

Note that in the first quadrant of the parameter plane
λ2 < λ3 < 0 < λ1 and Re(λ∗

2) ≤ Re(λ∗
1) < 0 < λ∗

3.

In this case, the saddle quantities are given by δ1 =
∣∣∣λ3
λ1

∣∣∣

and δ2 =
∣∣∣
Re(λ∗

1)

λ∗
3

∣∣∣. The saddle quantity correspond-

ing to the heteroclinic cycle is given by the product
δ1δ2 ≡ δ12 (when δ12 = 1 the heteroclinic cycle is
degenerate [33]). Moreover, in a neighborhood of the
point DZ = (1, 0) in the first quadrant, the eigenvalues

of E2 are real, consequently δ2 =
∣∣∣
λ∗
1

λ∗
3

∣∣∣. Therefore, the
curve where the product δ1δ2 ≡ δ12 = 1 satisfies the
equation

b =
(1 + σ)D

[
−(1 + σ) + √

(1 + σ)2 − 4σ(1 − ρ)
]

σ
·

(15)

Initially the Hopf bifurcation curve h arises from
the point DZ to the right of the heteroclinic connection
curve He, being subcritical (see Theorem 1). As can
be seen in Fig. 3a, on the curve h there is a degener-
acy of codimension two at the point Dh, that occurs
when (ρ, b) ≈ (2.7093960, 0.2730477), where the
first Lyapunov coefficient a1 vanishes. From this point
Dh a saddle-node bifurcation curve of periodic orbits
sn arises (this curve is drawn in the inset of Fig. 3a).
It ends in another degeneracy DHe, for (ρ, b) ≈
(3.1169844, 0.3279419), located on the curve of het-
eroclinic connections He, where it is verified that
δ12 = 1. We remark that the curves h and He intersect
at the point (ρ, b) ≈ (2.925824, 0.302549) and they
change their relative position (this change can be seen
better in Fig. 3c). At the points of the curveHe between

the degeneracies DZ and DHe, it is true that δ12 < 1
and, in accordance with the bifurcation diagrams in
Fig. 2, a saddle periodic orbit arises from the hetero-
clinic cycle. Next, on the curve He a new degeneracy
DHe2 appears for (ρ, b) ≈ (3.9754280, 0.43837613),
where λ∗

1 = λ∗
2 = −0.65 and, as a consequence, in the

remaining points the equilibrium E2 changes its con-
figuration, becoming a saddle-focus since both eigen-
values are now complex. Note that we use superscripts
to indicate on the curve He which of the two equilib-
ria (E1 or E2) experiences a certain degeneration. The
previous change implies that, in the range of Fig. 3a in
the first quadrant, the expression of the curve where
δ12 = 1 is now

ρ = 3 + 10σ + 3σ 2

4σ
, (16)

instead of Eq. (15). As we can see, this expression

does not depend on b, since now δ2 =
∣∣∣
Re(λ∗

1)

λ∗
3

∣∣∣.
Note that in the range of Fig. 3a, on the curve h
there is another degenerate point Dh, for (ρ, b) ≈
(4.17986, 0.466067), where a1 = 0. As we will see
later in Fig. 7, this second Dh point is not involved in
the degeneracy DDZ of the double-zero bifurcation.
The fold of the curve Dh with respect to σ explains its
existence when σ = 0.3.

From our numerical study we deduce that the
dynamics around the point DHe2 is very complex
(this bifurcation will be considered in more detail in
Sect. 4.2). Thus, we conjecture the existence of an infi-
nite sequence of bifurcation curves of various types
that emanate from this point: saddle-nodes of asymmet-
ric and symmetric periodic orbits, period-doublings of
the asymmetric periodic orbits, symmetry-breakings of
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Fig. 3 Forσ = 0.3, D = 0.1: a Partial bifurcation set in a neigh-
borhood of the double-zero point DZ. b Bifurcation diagram for
b = 5.4. c Partial bifurcation set in the first quadrant, in a range
outside the panel (a). The projection on the (x, z)-plane of the
T-pointTP is drawn in the inset. dZoom of panel c near the accu-

mulation process of He. For b = 5.4: e a degenerate symmetric
periodic orbit, placed on the curve SN1, for ρ ≈ 33.413688; f
the heteroclinic cycle on He, for ρ ≈ 33.414582 (the black line
corresponds to the connection placed on the invariant z-axis).
(Color figure online)
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the symmetric periodic orbits, homoclinic connections
of the origin..., which implies the existence of diverse
types of attractors in a neighborhood of the origin (see
[45, Fig. 8]). In Fig. 3c we have included one of them,
Ho (blue color), the first curve of the sequence of homo-
clinic connections of the origin that arise from the point
DHe2. This interesting point that, as far as we know,
has not been studied in the literature, will deserve to
be analyzed theoretically in the future. In this work we
restrict ourselves to studying some of the bifurcations
that it organizes in system (2) and that will give us
information about the Lorenz system (see Sect. 4.2).

Once we have numerically found all the bifurcation
curves whose existence is guaranteed by the analysis
of the double-zero degeneracy, we are going to study in
more depth the behavior of the heteroclinic curveHe as
we move away from the point DZ. For this task we are
going to detect new bifurcations by considering the dia-
gram of Fig. 3b, for b = 5.4.We see that now the pair of
asymmetric attractive periodic orbits, that arises from
theHopf bifurcationh, ends at a homoclinic connection
of the origin, Ho. Moreover, the symmetric attractive
periodic orbit that also arises from Ho ends in a hete-
roclinic connection between the equilibria E3,4, He34.
As observed in the bifurcation diagram, the symmet-
ric periodic orbit exhibits several bifurcations, namely:
two saddle-node bifurcations, SN1 and SN2, a torus
bifurcation HH and two symmetry-breaking bifurca-
tions, PPO.

We are now in a position to see that the hetero-
clinic curve He ends in an interesting accumulation
process. In Fig. 3c we have drawn a partial bifurca-
tion set, in the first quadrant, at another range of val-
ues furthest from DZ. In addition to the curves P2, h
and He, we can see two curves of saddle-node bifurca-
tion of symmetric periodic orbits, SN1 and SN2. Both
curves collapse at the cusp point CU, when (ρ, b) ≈
(29.57655304, 4.6665097). The curve Ho (of homo-
clinic connections of the origin) is located to the left
of SN1 in the range of this figure. We observe that
the curve He experiences a sequence of oscillations,
each time closer to each other, which accumulates to
the curve SN1. In this figure we have also included
the curve of heteroclinic connections He34 between
the equilibria E3,4 (brown color), which arises from
the point TP, for (ρ, b) ≈ (17.7017834, 2.4215793),
where a heteroclinic cycle, called (principal) T-point,
exists. The projection onto the (x, z)-plane of the T-
point TP heteroclinic loop is drawn in the inset of

Fig. 3c, where the black line corresponds to the inter-
section between the one-dimensional manifolds of the
equilibria E1 and E4 and the red one to the inter-
section between the two-dimensional manifolds. This
codimension-two bifurcation organizes three curves of
global connections corresponding to homoclinic orbits
of the origin and to homoclinic and heteroclinic orbits
of the equilibria E3,4 [11,17,32].We note that the curve
SN1 is related to a degeneracy that appears, outside the
range of Fig. 3c, on the curve He34.

In the zoom shown in Fig. 3d, we can observe bet-
ter that the curve He accumulates on a line segment
on SN1. As a consequence, the heteroclinic orbit itself
accumulates on the corresponding non-hyperbolic peri-
odic orbit placed on SN1, as can be seen in Fig. 3e,
f when b = 5.4. We have drawn, respectively, the
phase portraits of the degenerate symmetric periodic
orbit that exists when ρ ≈ 33.413688 on the curve
SN1 and of the heteroclinic orbit on the curve He for
ρ ≈ 33.414582 (in this accumulation process, the hete-
roclinic orbit performsmore andmorewindings around
the non-hyperbolic periodic orbit). On the other hand,
in Fig. 3d we have also drawn the curves of the other
bifurcations present in the diagram of Fig. 3b. Thus, the
torus bifurcation HH exists between the curves SN2

and PPO. The endpoints of HH correspond to Takens–
Bogdanov bifurcations of periodic orbits TBPO (dou-
ble +1 Floquet multiplier with geometric multiplicity
one), also named 1:1 resonances of periodic orbits [64].
Examples of this situation can be found for the Lorenz
system in [20,49]. Although in this work we do not
focus on them, it should be noted that the cascades of
period-doubling bifurcations, exhibited by the asym-
metric periodic orbits emerged from the symmetry-
breaking bifurcations PPO, give rise to a sequence
of Takens–Bogdanov bifurcations of periodic orbits
(with double -1 Floquet multiplier), also named 1:2
resonances of periodic orbits. The complex dynamics
present in this scenario is illustrated, for instance, in
the figures of the works [20,49].

A similar accumulation process, but relative to a
curve of homoclinic connections, has been found in
[65] where a curve of homoclinic orbits accumulates
on a segment in parameter space while the homoclinic
orbit itself approaches a saddle periodic orbit. A theo-
retical study of this type of behavior has been carried
out in [66]. It is interesting to note the following fact.
Although in our case there is no saddle periodic orbit
in the region where the curve ends up accumulating
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over a segment of SN1 (the saddle periodic orbit exists
in the region between the curves SN1 and SN2), how-
ever, the heteroclinic orbit behaves in a similar way to
the homoclinic orbit studied in [65,66]. Let us discuss
those details.

In the accumulation process of the curve He, the
maxima and the minima (with respect to ρ) con-
verge to separate points on SN1 (that limit the accu-
mulation segment of He). To understand the evolu-
tion of the heteroclinic orbit (located outside the z-
axis) along the curve He we are going to look at
how it changes in the first minima, marked as (1),
(2) and (3) in Fig. 3d. In Fig. 4a, c we have drawn,
for σ = 0.3, the projections on the (x, z)-plane of
the heteroclinic orbits labelled (1) and (3), placed,
respectively, at (ρ, b) ≈ (30.0154396, 4.6367200) and
(ρ, b) ≈ (32.1468879, 5.1240339). Their temporal
profiles t-z appear in Fig. 4b, d. As can be seen in
these figures (similarly as it occurs in [65, Fig. 10]
with the homoclinic orbits), if we start from the hete-
roclinic orbit (1), to go around each of the non-trivial
equilibria E3,4 (black bullets) one more time, we have
to go to the point (3) of the curve He, that is, go
through two oscillations on such a curve. We note
that the projection onto the (x, z)-plane of the hete-
roclinic orbit corresponding to the point (2), placed
at (ρ, b) ≈ (31.6099774, 4.9976719), surrounds equi-
librium E3 twice and equilibrium E4 only one time.

In [65, Table 1] (inspired by the results of the the-
oretical analysis carried out in [66]) the authors build
a table to check if consecutive maxima (or minima) of
the homoclinic curve converge to their limit with a rate
given by the stable eigenvalue of the saddle-periodic
orbit to which the homoclinic orbit approaches. Their
table contains data of the distances dist(i) between
the i th and the (i − 1)st maximum of the homoclinic
curve. The numbers dist(i) were determined as the
Euclidean distances between fold points (LP) detected
by AUTO/HomCont during continuation of the homo-
clinic curve. It seems that the ratios converge (within
numerical accuracy) to the stable Floquet multiplier. In
our case, as the periodic orbit to which the heteroclinic
cycle approaches is non-hyperbolic (it is on the curve
SN1), we want to check if the ratios of the distances
converge to the Floquet multiplier 1. We consider the
minima (with respect to ρ) of Fig. 3d, where the point
labelled (1) is the first minimum (i = 1). The results
appear in Table 1 and, according to them, it is plausible
that the ratios converge to 1.

Table 1 For σ = 0.3 and D = 0.1, distances dist(i) between
the (i + 1)th and the i th minimum of the curve He and their
ratios, dist(i)/dist(i − 1)

i dist(i) dist(i)/dist(i − 1)

1 1.6348813716

2 0.5515797634 0.3373821324

3 0.2510243729 0.4551007660

4 0.1345820461 0.5361313904

5 0.0803617162 0.5971206302

6 0.0518220796 0.6448602905

10 0.0142412156 0.7614073846

20 0.0022340045 0.8692080074

40 3.2262084789e−04 0.9306352572

60 1.0097576035e−04 0.9526560989

100 2.2851831113e−05 0.9709947053

The point labelled (1) in Fig. 3d is the first minimum. It seems
that the ratio approaches the Floquet multiplier +1 of the non-
hyperbolic periodic orbit on which the heteroclinic orbit accu-
mulates

When D = 0.1, to verify the above and determine
the existence of other degeneracies on the curve He,
we have drawn in Fig. 5a, for σ = 0.3, the value of
the product δ12 at the points of the curve He in a wider
range than that of Fig. 3a, namely when b ∈ (0, 2.5]. In
fact, in this figure it can be observed that, in the neigh-
borhood of the point DZ, the product δ12 < 1 for the
points of the curve He. Subsequently, there is a value
(red bullet) where δ12 = 1, being both saddle-node
equilibrium points (this point of the graph corresponds
to the lowest point DHe of the curve He in the first
quadrant in Fig. 3a). Next, in the zone where δ12 > 1,
the existence of a maximum is observed. This maxi-
mum corresponds to the point DHe2 in Fig. 3a on the
curve He where a double eigenvalue λ∗

1 = λ∗
2 appears.

Finally, the existence of another point (blue bullet) is
observed where, being the equilibrium E1 a real saddle
and E2 a saddle-focus, it is true that δ12 = 1. This point
on the graph corresponds to the upper point DHe for
(ρ, b) ≈ (5.225, 0.5951172) which appears in Fig. 3a.
As we will see later, this degeneration is not related to
the double-zero degeneracy DZ analyzed in this work.
In the remaining points, it is observed that δ12 < 1 and
its value decreases as b increases.

In Fig. 5b we have made a similar graph for σ =
0.2, maintaining the same range for the parameter b.
In this case, it is observed that at all points of the
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Fig. 4 For σ = 0.3, D = 0.1: a Projection on the (x, z)-plane of
the heteroclinic orbit labelled (1) in Fig. 3d. (b) Temporal profile
z(t) of heteroclinic orbit (1). (c) Projection on the (x, z)-plane
of the heteroclinic orbit labelled (3). (d) Temporal profile z(t)

of heteroclinic orbit (3). Note that, to simplify the drawings, we
have not included the heteroclinic connection located on the z-
axis which joins E2 and E1 (it is structurally stable). This does
appear drawn in Fig. 3f

curve He, since it arises from the degeneracy DZ, it
is true that δ12 < 1. As before, this graph presents a
local maximum where a degeneration of the same type
occurs as in the previous case. At this point DHe2, for
(ρ, b) ≈ (6.643798, 0.7443798) from the curve He, it
is verified that λ∗

1 = λ∗
2 = −0.6 and from that point

on the heteroclinic cycle the equilibrium E2 changes
from real saddle to saddle-focus. As a consequence of
the above, and due to the continuity of the function
δ12 with respect to the parameters, there must exist a
value in the three-parameter space (ρ, b, σ ) where a

codimension-three degeneracy occurs, since the degen-
eracies DHe2 and δ12 = 1 coincide at this point.
Indeed, as can be seen in Fig. 5c at the point DDHe2,
for (ρ, b, σ ) ≈ (6.1866153, 0.6915487, 0.2126370),
when D = 0.1, the heteroclinic cycle He undergoes a
double degeneracy since the equilibrium E2 changes
from real saddle to saddle-focus and also the product
δ12 = 1.

Now we fix σ = 0.4, that is, we move to the other
side of the critical value σ = 1/3, where the degener-
acy DDZ of the double-zero bifurcation of the origin
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Fig. 5 For D = 0.1, product of saddle quantities δ12 versus
parameter b on the points of the curve He when: a σ = 0.3. b
σ = 0.2. c σ ≈ 0.212637. (Color figure online)

occurs. In Fig. 6a, we have represented the curves of
Hopf bifurcation h and of heteroclinic connections He.
Note that in the range shown in this figure these curves
do not intersect and, in a neighborhood of the point
DZ, they have their positions exchanged with respect
to those in Fig. 3a (since now the curve h arises from
DZ to the left of the curve He, as can be seen in Fig. 1
when σ > 1/3). In addition, the Hopf bifurcation h

now appears supercritical, and at the point Dh, for
(ρ, b) ≈ (4.4526922, 0.5295297), it changes its char-
acter because another degeneracy a1 = 0 occurs. We
note that this degeneracy is also present for σ = 0.3
(it corresponds to the second point Dh marked in
Fig. 3a), but it is not related to the degenerate double-
zero bifurcation DDZ (the degeneracy Dh appears due
to the minimum of the curve Dh with respect to σ , see
Fig. 7). Indeed, when σ ≈ 1/3 this second degeneracy
a1 = 0 is experienced at the point Dh which occurs at
(ρ, b) ≈ (4.4094488, 0.5046604).

As we can see in Fig. 6b, in a neighborhood of
DZ, δ12 > 1 for this heteroclinic cycle. In this situ-
ation, the periodic orbit arising from the curve He is
attractive and, as expected, there is no longer a point
on that curve where δ12 = 1 when both equilibria
are real saddle. As in the previous case, in the region
where δ12 > 1, there is a point DHe2, which occurs
at (ρ, b) ≈ (3.0167880, 0.3241788), where a maxi-
mum exists. At this point a double eigenvalue occurs,
λ∗
1 = λ∗

2 = −0.7, and by increasing the value of b,
the equilibrium E2 changes from real saddle to saddle-
focus. In this zone we see that for σ = 0.4 there is
still a point DHe, when (ρ, b) ≈ (4.675, 0.5451430),
where δ12 = 1. This fact confirms that this degener-
acy is not related to DDZ, as can be seen in Fig. 7.
In fact, when σ ≈ 1/3 the degeneracy δ12 = 1,
being E2 a saddle-focus equilibrium, is experienced
at (ρ, b) ≈ (5, 0.5740328).

In Fig. 6a, we havemarked the degeneracyDHe2 (as
we said before, we conjecture that an infinite sequence
of curves of homoclinic connections arises from it).We
have also drawn the first curve of homoclinic connec-
tions of the origin Ho (blue color) that emerges from
DHe2 (see the inset of Fig. 6a) and we have detected
a degenerate point DHo, which occurs at (ρ, b) ≈
(9.1386649, 1.2353206), where λ3 = −λ1 = −b, and
consequently δ1 = 1. Although we have preferred not
to draw it so as not to overcomplicate Fig. 6a,we remark
that a second homoclinic connection to the origin aris-
ing from DHe2 ends spiraling in a T-point TP, which
occurs at (ρ, b) ≈ (15.3331808, 2.0863007). As we
are going to see in Sect. 4.2, the interaction between
the curves emerged from the degenerate points DHe2,
DHo and TP is crucial to explain the disposition in the
Lorenz system of the family of infinitely many homo-
clinic orbits previously found in the literature [51, Fig.
6], [52, Fig. 8B], [17, Fig. 3].
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That is why, in the second part of this numerical
study,we analyze the existence of the degeneracyDHe2

when D = 0 (Lorenz system). This will allow us to find
its relationship with the sequence of homoclinic con-
nections of the origin present in [17, Figs. 3–4], includ-
ing the homoclinic connection that ends at the T-point
heteroclinic loop TP.

Now we are going to determine in the (ρ, b, σ )-
space, when D = 0.1, the loci where the degenerate
bifurcations that we have found occur. We represent in
Fig. 7 the projections onto the (ρ, σ )- and the (b, σ )-
planes of the bifurcation curves corresponding to the
four codimension-two degeneracies that exist in the
first quadrant of Fig. 3a, namely Dh (degenerate Hopf
bifurcation of the equilibria E3,4; green color), DHe
(degeneracy condition δ12 = 1 on the curve of hete-
roclinic connections He between E1 and E2 when the
equilibrium E2 is a real saddle (red color) and when
it is a saddle-focus (orange color)), DHe2 (degener-
acy on the curve He when E2 changes from real sad-
dle to saddle-focus; black color) and DZ (double-zero
bifurcation of the equilibrium E1; blue color). We have
also drawn the degeneracy DHo (degeneracy condition
δ1 = 1 on the curve of homoclinic connections of the
origin Ho; magenta color) which we can see in Fig. 6a.

In Fig. 7, we observe that the curves Dh and
DHe emerge from the point DDZ which occurs at
(ρ, b, σ ) = (1, 0, 1/3). Remark that both curves are

tangent at DDZ and the equilibria E1 and E2 are real
saddle.

The red curve DHe ends at the point DDHe2, which
is located on the curve DHe2, being tangent to it. Let us
remember that at DDHe2 a double degeneracy occurs
on the heteroclinic cycle He (δ12 = 1 and the equi-
librium E2 changes from real saddle to saddle-focus).
From that point, the other curve DHe (of equation (16)
in the case of Fig. 7a, where δ12 = 1) also emerges.
This curve is located to the right of the curve DHe2,
in the area where the equilibrium E2 is saddle-focus,
although in this case it is not tangent to the curve DHe2

at DDHe2. Now we see that the two degenerate points
Dh, that exist on the curve h in the range of Fig. 3a for
σ = 0.3, belong to the same branch of the curve Dh
and, due to a lack of transversality with respect to the
parameter σ , these two degeneracies disappear when
the value of σ decreases.

Finally, we note that on the curve DHe2 there
are other codimension-three degeneracies of the het-
eroclinic cycle He. Specifically, in Fig. 7 we have
marked the point DDHe12, located at (ρ, b, σ ) ≈
(4.9938042, 0.5552146, 0.2511140), where δ1 = 1
(since λ1 = −λ3 = 1). As can be seen, from DDHe12

the curve DHo of degenerate homoclinic connections
Ho emerges. We remark that δ1 < 1 at the points of
the curve DHe2 above DDHe12 while δ1 > 1 for those
belowDDHe12. Thus, δ1 < 1 at the pointsDHe2 shown
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in Figs. 3a and 6a. As we are going to see in Sect. 4.2,
the type of global bifurcations that emerge from DHe2

will depend on the value of δ1.
Until now we have done our numerical study by

setting D = 0.1. We are going to end this subsec-
tion by looking at how the curve He evolves when
D varies. In Fig. 8, for σ = 0.4, we have rep-
resented in the (ρ, b)-plane the curves where the
global connections He occur for the values D =

0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 1, 5. We recall that
DHe2 (marked with black bullets in this figure) corre-
sponds to a degeneracy on the curve He because the
equilibrium E2 changes from real saddle to saddle-
focus.

As shown in Fig. 8, in the (ρ, b)-plane all the curves
He arise from the double-zero degeneracyDZ. It is true
that, setting a value of b, as the value of the D increases,
the component z = b

D > 0 of E2 decreases. Thus, this
equilibrium approaches E1 and, as a consequence, the
value of ρ in the points of the curves He corresponding
to these heteroclinic cycles approaches the value ρ = 1
where these cycles disappear. On the other hand, when
D −→ 0+, the curves He are approaching the ρ-axis.
This fact leads us to conjecture that the heteroclinic
cycles corresponding to the value D = 0 (Lorenz sys-
tem) are located on the axis b = 0 being therefore
degenerate.

4.2 Approaching the Lorenz system (D = 0)

The main objective of this subsection is to see how the
global connections related to the double-zero bifurca-
tion of system (2) allow to explain the origin of the
global connection curves present in the partial bifurca-
tion set found in the Lorenz system for ρ = 50 (see
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[17, Figs. 1 and 3]). We note that this complex distribu-
tion of the homoclinic connections in the Lorenz sys-
tem has been previously found in the literature [51,52],
although the reason for this complicated behavior was
unknown. Specifically, we want to analyze the evolu-
tion of these global connection curves when D �= 0
(keeping ρ = 50, we will start with D = 0.5 and we
will decrease the value of D until we reach D = 0) and
then to determine if some of the curves in the Lorenz
system are related to the degeneracies found here on the
curve He. In what follows, we will see that the degen-
eraciesDHe2,DHo andTP play a key role in justifying
the presence of the curves drawn in [17, Figs. 1 and 3]
for the Lorenz system.

In Fig. 9a, we have represented a partial bifurca-
tion set in the (b, σ )-parameter plane, for ρ = 50,
D = 0.5 (three zooms of this bifurcation set appear
in Fig. 9b–d). The curve h of supercritical Hopf bifur-
cation of E3,4, given by (13), has a vertical asymptote
when b = 2D(ρ − 1) = 49 and ends at the point
(b, σ ) = (48, 0) (outside the range of the figure), since
now the condition 2D(ρ − 1) − b − σ − 1 �= 0 of
(13) is not fulfilled. A degenerate point DHe2, which
it placed at (b, σ ) ≈ (50.34911853, 204.78806517),
appears on the heteroclinic curve He. At this point the
equilibrium E2 changes from real saddle to saddle-
focus, whereas E1 is real saddle with δ1 > 1. From
DHe2, as we said above, we conjecture that an infinite
sequence of curves of homoclinic connections to the
origin emerges, in addition to other bifurcation curves.
We have only represented the first three curves of this
infinite sequence, namely Ho, Ho0

TP and Ho0
TPS. The

periodic orbits that arise from any of these homoclinic
connections are attractive since δ1 > 1 holds for all
their points.

The notation we will employ from now on for the
curves of homoclinic connections to the origin is sim-
ilar to that used in [17]. On the one hand, we use a
superscript to give information about the shape of the
homoclinic orbit in the upper zone of the range of exis-
tence of the homoclinic curve (when it emerges from
DHe2). On the other hand, the subscript informs about
the shape of the homoclinic connection in the lower part
of the region shown in the parameter plane (sometimes
the curve ends in a codimension-two point and, in other
cases, it leaves the region drawn in the figure). Specifi-
cally, in Hoi

j, the superscript i (the same explanation is
valid for the subscript j) indicates the number of turns
around one of the non-trivial equilibria E3,4, in our

case E4, given by the projection in the (x, z)-plane of
the homoclinic orbit whose leading unstable manifold
arises towards the positive semi-axis x > 0 (note that
because of the symmetry a pair of the corresponding
orbits exists).

The difference between the homoclinic connections
corresponding to these three curves, Ho, Ho0

TP and
Ho0

TPS, can be seen in Fig. 9e where we have drawn
their projection on the (x, z)-plane for σ = 100. As
can be observed, the homoclinic orbit corresponding to
the curve Ho (green) whose leading unstable manifold
arises towards the positive semi-axis x > 0 does not
cross the z-axis and reaches equilibrium E1 on its right
hand side. On the contrary, the homoclinic orbit corre-
sponding to the curve Ho0

TP (black) crosses the z-axis
once (red line in the inset of Fig. 9e), close to E2 (black
bullet), and enters E1 from its left side. For its part,
the homoclinic orbit corresponding to the curve Ho0

TPS
(blue) crosses the z axis twice before entering E1 on
its right side. According to their shape, the correspond-
ing superscript is “0” in the three cases (to simplify the
notation of the principal homoclinic orbit to the ori-
gin we use Ho instead of Ho0

0). The curves Ho0
TP and

Ho0
TPS end, respectively, at the principal T-point TP,

which occurs at (b, σ ) ≈ (51.8873485, 14.3396057)
(bullet orange), and at the secondary T-point TPS, sit-
uated at (b, σ ) ≈ (52.2305506, 6.8452189). The pro-
jection onto the (x, z)-plane of these two heteroclinic
cycles can be seen in Fig. 9f–g. Although in these two
cases the subscript should be “∞” (because the homo-
clinic curves end spiraling at the T-points), we prefer
to use “TP” and “TPS” to distinguish both curves.

As was the case with the heteroclinic connection
curve in Fig. 3c, d, the curve He accumulates on a line
segment on a saddle-node bifurcation curve of symmet-
ric periodic orbits SN1 (see Fig. 9b). This saddle-node
curve arises from the cusp bifurcation point CU, which
occurs at (b, σ ) ≈ (55.0074131, 11.8687941). To the
right of CU there is another bifurcation curve SN2 of
the same type.

In what follows, we are going to focus on seeing the
evolution of the curvesHo andHo0

TP as well as of other
new homoclinic curves which, as we will see, emerge
from DHe2 (we will no longer show the curve Ho0

TPS
because it is not relevant to the results we present).
Thus, keeping ρ = 50, we decrease the value of the
parameter to D = 0.21 and draw the partial bifur-
cation set of Fig. 10a. As in Fig. 9a, the bifurcation
curves h, He, Ho and Ho0

TP are also present. The Hopf
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Fig. 9 For ρ = 50, D = 0.5: a Partial bifurcation set in the
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TP (curves of

homoclinic orbits to the origin) and He (heteroclinic connection
between E1 and E2). The principal T-point is marked with an
orange bullet. b For σ = 100, bifurcation diagram of the sym-

metric and asymmetric periodic orbits that end at Ho and of the
asymmetric periodic orbits emerged from h, Ho1

1, Ho2
2 and Ho3

3.
For σ = 100, projection onto the (x, z)-plane of the homoclinic
orbit corresponding to the curve: c Ho for b ≈ 25.7178751; d
Ho1

1 for b ≈ 24.965864; e Ho2
2 for b ≈ 25.543696; f Ho3

3 for
b ≈ 25.610137. (Color figure online)

bifurcation curve h now ends, for the same reason as
before, at the point (b, σ ) = (19.58, 0), and the point
of codimension two DHe2 continues to exist on the
curve He, for (b, σ ) ≈ (20.8579428, 199.2891303).
However, while E1 is still a real saddle, now δ1 < 1
(which implies an important change as we will dis-
cuss below). From point DHe2 the homoclinic connec-
tions to the origin Ho0

TP and Ho continue to emerge
but, as can be seen in the figure, a new degenera-
tion DHo appears on the curve Ho, when (b, σ ) ≈
(30.2447608, 50.3854047). At this point, δ1 = 1 (since
λ2 < λ3 = −λ1 = −b). So, from Ho, a non-stable

periodic orbit arises between the pointsDHe2 andDHo
(since δ1 < 1) whereas this periodic orbit is stable
below the point DHo (δ1 > 1). As a consequence
of this, for this value of D there is a new infinite
sequence {Hoi

i} of homoclinic connections to the origin
(apart from other bifurcation curves such as saddle-
node of periodic orbits, symmetry-breaking of sym-
metric periodic orbits, etc.) that join DHe2 and DHo.
In Fig. 10a we have represented the first three curves of
the sequence, namely Ho1

1, Ho2
2 and Ho3

3 (dashed line).
As seen in Fig. 10d–f, for σ = 100, these homo-

clinic connections are different from those that exist
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in the Ho (see Fig. 10c) and HoTP curves (see Fig. 9e)
in the sense that their projection onto the (x, z)-plane
surrounds both non-trivial equilibria E3,4 (black bul-
lets). Note that, although we have not represented them
in Fig. 10a, on the curve Ho0

TP there are several points
DHo (the intersectionpoints of this curvewith the curve
δ1 = 1), where the same degeneracy present on curve
Ho is experienced.

To see the relationship that exists between the peri-
odic orbits that arise from these homoclinic connec-
tions, and justify the previously mentioned difference,
we draw in Fig. 10b the bifurcation diagram for σ =
100. An asymmetric non-stable periodic orbit arises
from Ho, which after undergoing a saddle-node bifur-
cation of periodic orbits sn (for b ≈ 25.6078095)
disappears as a stable periodic orbit at the supercrit-
ical Hopf bifurcation h. Due to the symmetry, a non-
stable symmetric periodic orbit also arises from Ho
[67], which undergoes a symmetry-breaking bifurca-
tion PPO, for b ≈ 25.1363078. The attractive periodic
orbit arising from PPO undergoes a saddle-node bifur-
cation SN in which it becomes a saddle. Finally, it ends
in the homoclinic connection Ho0

TP.
The saddle asymmetric periodic orbit that emerges

from the bifurcation PPO is the one that ends in
the homoclinic connection Ho1

1 and, as it arises from
the symmetry breaking of a symmetric periodic orbit
whose projection on the (x, z)-plane surrounds both
non-trivial equilibria E3,4, the projection of this homo-
clinic connection also does. Finally, the saddle asym-
metric periodic orbits arising from Ho2

2 and Ho3
3 also

end, without undergoing any bifurcation, on the homo-
clinic connection Ho. Consequently, this is an example
of a system in which infinitely many periodic orbits
bifurcate from a homoclinic connection to a real sad-
dle (δ < 1) and its theoretical analysis has not yet been
carried out. Note that this is not surprising since an infi-
nite number of saddle periodic orbits is born right after
the homoclinic-butterfly bifurcation (a pair of homo-
clinic orbits to the origin) with a saddle equilibrium
with δ < 1 [68,69].

The three-parameter continuation of DHo allows
to detect that, for ρ = 50, there is a codimension-
three degeneracy on the curve He when (b, σ, D) ≈
(40.6626754, 203.1965805, 0.4054090). At this point,
He exhibits a double degeneracy since δ1 = 1 for E1

and, simultaneously, E2 changes from real saddle to
saddle-focus. We called DDHe12 to this codimension-
three degeneracy when we found it for D = 0.1 (see

Fig. 7) which, as far as we know, has not been studied
in the literature either. We note that the points where
the equilibrium E1 fulfills that δ1 = 1 do not depend
on the value of the parameter D.

As a consequence, when D < Dc ≈ 0.4054090, the
pointDHo appears on the curveHo in the (b, σ )-plane.
This implies that, in this parameter plane, the bifurca-
tions related to the degeneracy DHe2 are different on
each side of the value Dc. Specifically, new bifurcation
curves emerge fromDHe2 when D < Dc (for example,
those of the new sequence of homoclinic connections
of the origin Hoi

i) since now δ1 < 1 for the equilibrium
E1.

Next, to try to explain the origin of the curves that
appear in [17, Figs. 1–4] for Lorenz system (D = 0),
we investigate in Fig. 11 how the bifurcation set evolves
as D decreases.

When D = 0.2, we see in Fig. 11a how a con-
tact has already been produced between the curves
Ho1

1 and Ho0
TP of Fig. 10a. This implies that although

these curves of homoclinic connections continue to
emerge from the point DHe2, placed at (b, σ ) ≈
(19.8533783, 199.0625408), they have swapped the
points of the parameter plane where they now end.
Thus, Ho0

1 ends in DHo, situated at (b, σ ) ≈ (29.5439
568, 46.3809284) and Ho1

TP does it in TP (orange bul-
let), located at (b, σ ) ≈ (21.2063502, 16.809238). We
note that the contact between the curves Ho0

TP and Ho1
1

occurs near the pointDHo, in a zonewhere these homo-
clinic connections are orientable. The tangency takes
place betweenHo1

1 and the outer loop of the spiral curve
Ho0

TP, since, in this zone, the projection on the (x, z)-
plane of the homoclinic orbit corresponding to these
values gives a turn to each of the equilibria E3,4. Let us
remember that although initially, when it arises from
DHe2, the projection of the homoclinic orbit corre-
sponding to the curve Ho0

TP only surrounds one of the
equilibria E3,4, in our case E3 (see Fig. 9e), later the
homoclinic orbit turns around the same equilibrium,
in our case E4, one more time (in the phase space) as
the curve turns one more time (in the parameter plane)
in its spiraling way towards the T-point. In the inset
of Fig. 11a, to illustrate the evolution of the homoclinic
orbits along the curveHo0

1, we show the projection onto
the (x, z)-plane of two of them. The first one (in black),
for σ = 150, b ≈ 20.0900594, is “close to” DHe2 (its
shape justifies the superscript “0”) whereas the second
one (in red), σ = 50, b ≈ 27.0985454, is “close to”
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DHo (its shape justifies the subscript “1”). Equilibria
E3,4 are also marked in the corresponding colors.

In Fig. 11b we see how, by decreasing the value of
the parameter to D = 0.1, the same contact process
has been repeated between the curve Ho2

2 (whose pro-
jection on the (x, z)-plane gives two turns to the equi-
librium E4 according to Fig. 10e) and the outer loop of
the spiral curve Ho1

TP of Fig. 11a, whose homoclinic
orbits have a projection with the same number of turns
to each of the equilibria E3,4. As a consequence, there
is a new curve of homoclinic connections Ho1

2 that,
like the curve Ho0

1, goes from the point DHe2, located
at (b, σ ) ≈ (9.8657655, 196.6255324), to the point
DHo, situated at (b, σ ) ≈ (12.2833185, 4.4438448).
We also draw in Fig. 11b the curves of homoclinic con-

nections Ho3
3 and Ho13

13 that are orientable at all points.
Between these two curves are located the curves Hoi

i
(i = 4, 5, . . . , 12) which we have not drawn so as not
to overload the figure excessively.

Since we want to keep decreasing D to get closer to
D = 0, in Fig. 11c we have drawn a partial bifurcation
set for D = 0.001. In this case we have included the
curve P2 where a pitchfork bifurcation of the equilib-
rium E2 takes place when b = D(ρ −1) = 0.049. The
Hopf bifurcation curve h has a vertical asymptote at
b = 2 D (ρ − 1) = 0.098 and ends by contacting the b
axis at the point (b, σ ) = (0.04998, 0), since now the
condition b(ρ + σ) − 2D(ρ − 1)σ + D(1 − ρ2) > 0
of (13) is not fulfilled (see the inset of Fig. 11c). In
agreement with what was obtained in Fig. 8 the curve
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of heteroclinic cyclesHe is close to the axis b = 0, pre-
senting a vertical asymptote for b ≈ 0.0979964 very
close to the asymptote of the curve h. In this case the
degeneracy DHe2 continues to exist and is placed at
(b, σ ) ≈ (0.09796673, 193.8617781). In the region
between Ho and Ho0

1 we have drawn (see Fig. 11c–d)
the curves Ho13

14, Ho14
15, Ho15

16, Ho16
TP, Ho17

17, Ho18
18 and

Ho19
19, which all arise from the point DHe2.
As we can see, the curve Ho16

TP, whose orbit makes
16 turns around E4 when it arises from DHe2, is the
one that now ends at the T-point TP (orange bullet),
placed at (b, σ ) ≈ (4.837184, 18.241456). As can be
seen in the inset of Fig. 11c, the curves Hon (homo-
clinic connections to E3,4) and He34 (heteroclinic con-
nections between E3 and E4) arise from the point TP,
with the shape predicted in [11]. As in the Lorenz sys-
tem, these two curves are so close as to be almost indis-
tinguishable. They end in Shil’nikov-Hopf degenerate
points SH [17,70] when they intersect the Hopf curve
h at (b, σ ) ≈ (0.1103258, 1.0293202). In the zoom
of Fig. 11d we have also included the first four curves
of homoclinic connection Ho0

1, Ho1
2, Ho2

3 and Ho3
4 (in

order not to complicate this figure too much, we have
not included the curves Ho4

5, Ho5
6,…, Ho12

13 which are
placed consecutively between Ho3

4 and Ho13
14).

In Fig. 12a we consider D = 0 (Lorenz system).
Now the Hopf curve h is bounded and exists between
the points (b, σ ) ≈ (0, 1.089065) and (b, σ ) ≈
(0, 45.910935), where the condition b(ρ + σ) > 0
is not satisfied (see [48]). Furthermore, in this case
we know that the curve of heteroclinic cycles He no
longer exists in the (b, σ )-plane, although there are
infinitely many heteroclinic orbits (placed outside the
z-axis) joining points of the continuum of equilibria
Ez = (0, 0, z), z ∈ R, that exists on the z-axis when
b = 0 [59]. Thus, the three-parameter continuation in
the (b, σ, D)-space of the pointDHe2 of theFig. 11c for
D = 0.001 allows us to obtain the point DHe2∗, placed
at (b, σ∗, D) ≈ (0, 193.8318321, 0). For ρ = 50,
as the value of σ reaches σ∗, the equilibrium point
Ez∗ ≈ (0, 0, 97.9592478) has a double degeneracy
since it has a nonzero double eigenvalue and a zero
eigenvalue. Remember that when b = 0 the eigenval-
ues of the equilibria Ez are [14]

λ1,2 = −(1 + σ) ± √
(1 + σ)2 + 4σ(ρ − z − 1)

2
,

λ3 = 0. (17)

The heteroclinic orbit connecting the origin and the
non-isolated equilibrium Ez∗ is represented in Fig. 12b,
labeled 2.

For ρ = 50, σ = σ∗, there are still infinitely many
heteroclinic orbits and, among all of them, the one
that arises from the origin ends at Ez∗ , which has a
nonzero double eigenvalue λ1 = λ2 = −(1+σ∗)

2 ≈
−97.4159, λ3 = 0. Likewise, the equilibrium Ez0 ,
where z0 = ρ − 1 = 49, has a double-zero eigenvalue.
The eigenvalues of the rest of the infinite equilibria sat-
isfy λ2 < λ3 = 0 < λ1 (“zero-saddle”) for z < z0,
λ2 < λ1 < λ3 = 0 (“zero-node”) when z0 < z < z∗
and λ1,2 = α ± iβ (α < 0, β �= 0), λ3 = 0 (“zero-
focus”) if z > z∗.

We note that the equilibrium Ez0 organizes the infi-
nite heteroclinic orbits that join two points of the z-axis,
in the sense that all these heteroclinic orbits arise from
points Ez with z < z0 (“zero-saddle”) and end at points
Ez with z > z0 (“zero-node” if z < z∗ or “zero-focus”
when z > z∗). In Fig. 12b we have also drawn two rep-
resentative heteroclinic orbits. One (label 1) starts at
z = 20 (0 < z) and ends at a point with z0 < z < z∗
(this equilibrium is a “zero-node”) and the other (label
3) starts at z = −20 (z < 0) and ends at an equilibrium
point with z∗ < z (this is a “zero-focus” and conse-
quently the heteroclinic orbit approaches this point in
a spiral way, as can be noticed in the zoom).

The key fact is that, when we perturb the Lorenz
system with D �= 0, the only heteroclinic orbit that
continues to exist is the one that joins the origin E1 with
E2 (the only equilibria that exist on the z-axis). Note
that when b = D = 0, the eigenvalues (λ1, λ2, λ3) of
the equilibrium points Ez , including that of Ez∗ , are
the same as the eigenvalues of E2 = (0, 0, b/D) when
b, D �= 0 (see (14)), if we take z = b/D in Eq. (17).

For other values of σ (when b = D = 0), we have
found numerical evidence that the heteroclinic connec-
tion leaving the origin ends in another equilibrium but
which does not have a double eigenvalue. Also, a het-
eroclinic orbit still exists between two equilibria of the
z-axis, where the upper equilibrium (with z > z0) has
a double eigenvalue but the lower equilibrium (with
z < z0) is not the origin.

The numerical continuation of the curves Hoi
j of

Fig. 12c shows that all of them arise from the degener-
acy DHe2∗. Also, as can be seen in Fig. 12d, the curve
Ho17

TP ends at the principal T-point, in agreement with
the result obtained in [17, Figs. 3–4]. This indicates that
there is a parameter value D ∈ (0, 0.001) where there
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Fig. 12 a For ρ = 50, D = 0, partial bifurcation set in the
(b, σ )-plane.bProjection on the (x, z)-plane of heteroclinic orbit
(label 2) corresponding to point DHe2∗ in panel (a). The hetero-
clinic orbits that start at z = 20 (label 1) and at z = −20 (label

3) are also represented. One zoom of this last orbit in the vicinity
of its endpoint (a “zero-focus”) is also drawn. c Zoom of panel
(a) in the vicinity of the T-point (orange bullet). d Zoom of panel
(c). (Color figure online)

has been a contact between the curves Ho16
TP and Ho17

17
of Fig. 11d, giving rise to the new curves Ho16

17 and
Ho17

TP drawn in Fig. 12. Finally we note that the bifur-
cation set of Fig. 11c, d, for D = 0.001, is similar to
that of [17, Fig. 4b], corresponding to ρ = 50.1. This
tells us that, given ρ = 50, decreasing the value of the
parameter D (transition from D = 0.001 to D = 0)
in system (2) produces on the curves Hoi

j, the same
effect as that obtained when the value of ρ is decreased
(transition from ρ = 50.1 to ρ = 50) in Lorenz system
(1).

5 Conclusions

In this work, given the difficulties that appear to
study the double-zero bifurcation in the Lorenz system
(because it is exhibited by a non-isolated equilibrium),
we propose the new system (2) which encompasses the
Lorenz system. To do this we add the term Dz2 in the
third equation and, since the continuum of equilibria
disappears, it is already possible to study the double-
zero bifurcation. Once we have shown that the double-
zero degeneracy of the origin guarantees, in a certain
region of the parameter space, the existence of hetero-
clinic cycles (see Theorem 1), we carry out a numerical
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study to see how that heteroclinic connection evolves
as it separates from the singularity.

At first, in Sect. 4.1, we have moved to either side
of a degeneracy of the double-zero bifurcation which
occurs when σ = 1/3. This has allowed us to find
that the curve of heteroclinic connections accumulates
on a line segment of the saddle-node curve SN1 (see
Fig. 3d). As far as we know, this is the first example in
which the accumulation process occurs in the region
in which the periodic orbit involved in the saddle-
node bifurcation does not exist. Thus, the heteroclinic
cycle accumulates on a non-hyperbolic periodic orbit.
In addition, we have found the following global bifur-
cations of codimension two (see Fig. 7):

• DHe, degenerate heteroclinic connection because
δ12 = 1, being E2 a real saddle equilibrium. This
curve joins points DDZ and DDHe2. In the param-
eter plane, a curve of saddle-node bifurcations
emanates from DHe. We note that from this point
DDHe2 arises another degeneration DHe, degener-
ate heteroclinic connection because δ12 = 1, being
E2 a saddle-focus equilibrium.

• DHe2, degenerate heteroclinic connection because
E2 changes from real saddle to saddle-focus (the
double real eigenvalue is negative). As far as
we know, this degeneration has not been stud-
ied in the literature. From the numerical results
we have found, we conjecture the existence of an
infinite sequence of bifurcation curves of various
types that emanate from this point: saddle-nodes
of asymmetric and symmetric periodic orbits,
period-doublings of the asymmetric periodic orbits,
symmetry-breakings of the symmetric periodic
orbits, homoclinic connections of the origin,...
(recall that a similar scenario appears in a Belyakov
bifurcation [71–74], exhibited by a homoclinic con-
nection at an equilibriumpoint inR3 where a pair of
eigenvalues change from real to complex; it seems
that the point DHe2 is a “heteroclinic analogue”
of the so-called Belyakov point). Remark that two
degeneracies DDHe2 and DDHe12 appear on this
curve. DHe2 exhibits even greater bifurcation rich-
ness when δ1 < 1.

• DHo, degenerate homoclinic connection of the ori-
gin because δ1 = 1, being a real saddle. In the
generic situation for a neutral resonant saddle (see
[31, Sect. 2.2.1] and [32, Theorem 5.13]) there are
two possibilities. If the homoclinic orbit is non-

twisted, an extra curve of saddle-node bifurcation
of periodic orbit appears whereas if it is twisted,
two curves originate at the critical point (which
correspond to a double homoclinic orbit and to a
period-doubling bifurcation). However, the bifur-
cation scenario we have found here is much more
complicated (we conjecture that infinitely many
curves appear, see Figs. 10a, 11b) and it deserves
to be studied theoretically in the near future. It
seems that the structurally stable heteroclinic con-
nection along the z-axis between E2 and the origin
affects the bifurcations involved at this singularity.
Remark that the curveDHo emerges from the point
DDHe12. We believe that the point DHo is very
important since according to the Shilnikov crite-
rion [75] the Lorenz attractor originates from this
point (see [76] for more details).

The above degeneracies are organized by the codi-
mension-three global bifurcations:

– DDHe2, degenerate heteroclinic connectionbecause
δ12 = 1 and E2 changes from real saddle to saddle-
focus.

– DDHe12, degenerate heteroclinic connection
between E1 (with δ1 = 1) and E2 (which changes
from real saddle to saddle-focus). Due to the rich-
ness of the bifurcations that appear around it,
the theoretical study of this degeneracy should be
addressed in the future.

System (2) is a particular unfolding of the Lorenz
system in such a way that, when the continuum of equi-
libria disappears, it exhibits structurally stable bifur-
cations. Thus, in Sect. 4.2, studying how the bifur-
cation sets evolve when D tends to zero, we have
been able to explain, in the Lorenz system, the ori-
gin of the global connections which are related to a
T-point, a codimension-two heteroclinic loop. Con-
cretely, we have shown that the degenerate global con-
nection DHe2 is their main organizing center (see
Fig. 12).

It also deserves to be highlighted that, when we
introduce the new term Dz2 in the Lorenz system, one
of the two infinite heteroclinic orbits (that connect the
origin and one equilibrium on the sphere at infinity, see
[14, Theorem 2(b)]) becomes finite.
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