
Electrical Power and Energy Systems xxx (xxxx) xxx
Contents lists available at ScienceDirect

International Journal of Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Pseudo-optimal five-level DCC modulation based on machine learning✩

Pablo Montero-Robina a,∗, Francisco Gordillo b, Fabio Gómez-Estern c, Federico Cuesta b

a Autel Iberia, S.L., Barcelona, Spain
b Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Sevilla, Spain
c Escuela Técnica Superior de Ingeniería, Universidad Loyola Andalucía, Sevilla, Spain

A R T I C L E I N F O

Keywords:
Classification and regression trees
Diode-clamped converter
Mixed-integer linear optimization
Multilevel converter

A B S T R A C T

This paper presents a method for the control design of five-level DCC converters based on mixed-integer
optimization and machine learning. The resulting controller is computationally simple and can be easily
implemented on low-resource control hardware using simple nested ‘‘if-else’’ statements. The optimization
problem is recalled from previous work by modifying the cost function to further enhance the dynamic
performance. Additionally, and in contrast to previous works, the online implementation accomplished in
this paper allows the system to cover a wider range of operating points. For this, the optimization problem is
solved offline for several operating conditions, and the results are gathered into a dataset to train classification
and regression trees (CARTs), which are later used online. Due to the generalization capability of the CARTs,
a more flexible and less resource-intensive implementation is achieved which is capable of operating at points
outside the ones considered in the training dataset. The resulting control strategy is compared in simulation
and experiments with several alternative approaches found in the literature. This approach can be extended
to other power converter topologies, allowing the implementation of optimized modulations.
1. Introduction

Trends in energy consumption encourage researchers to look for
feasible solutions that reduce the cost of grid infrastructure. High-
power industrial applications have been the scope of this search, as
they facilitate the delivery and consumption of energy from the high-
voltage distribution grid in a straightforward way [1]. Therefore, the
voltage limits of power electronics devices are a major concern in the
field [2]. In this context, multilevel converter topologies emerged as
a predominant solution [3]. The use of serialized switching devices
enables them to support larger grid voltage by dividing it among the
connected devices [4]. Furthermore, they can achieve more accurate
modulation and reduction of current distortion, which facilitates the
fulfillment of the grid codes EN50160. However, as the number of
levels increases, so does the control complexity as there are more
possible switching states. Besides, the additional capacitors have to be
balanced, which involves additional control objectives. If this aspect is
not taken into account, the system may not behave properly or even
suffer irreversible damage.

There are a large number of multilevel converter topologies, and
each has its advantages and drawbacks [5]. This paper focuses on
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the diode-clamped converter (DCC) [6]. The three-level neutral-point-
clamped (NPC) converter belongs to this topology and is one of the
most investigated, accepted, and used multilevel converter topologies
in the industry. However, the five-level one still finds some reluctance.
This is due to the increase in the number of switching vectors (125) and
the control objectives that must be considered. Therefore, designing a
proper modulation algorithm to command the switches is vital for the
integration of this topology. The modulation must satisfactorily imple-
ment the desired output voltages at the same time that the capacitors
must be evenly charged. This is not an easy task, and many different
approaches are currently found in the literature as shown below.

A strategy based on space-vector modulation (SVM) that solves the
modulation and balancing issues is the one presented in [7], which
uses a combination of a small switching vector and two outer ones
in such a way that balancing capabilities can be achieved using the
redundant vectors of the small one. The work shown in [8] further
takes this approach to produce a switching sequence that guarantees
smooth transitions between switching periods. These approaches will
be referred to as space-vector-based algorithms (SVBA) from now on
for comparative purposes. In another line, [9] uses carrier-based PWM
with zero-sequence injection in such a way that it takes into account the
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capacitor voltage balance for a five-level DCC. However, this approach
only offers balancing capabilities for applications with low power factor
values or low modulation indices, as operating with high modulation
indexes does not guarantee capacitor voltage balancing in five-level
DCC [8]. Alternatively, work [10] presents a modulation strategy that
decouples the achievement of the output voltage from the capacitor
voltage balancing control accomplishing both control objectives simul-
taneously. Thus, it is referred as integrated control modulation (ICM).
For this, the modulation could use any level within a switching period.
Furthermore, the original ICM (OICM) is modified (MICM) to improve
performance. This strategy is based on the implementation of PWM for
every level. Any of the aforementioned approaches present a solution
for the modulation and voltage balancing of five-level DCC but they are
not optimized in terms of number of commutations, that is, using the
minimal amount of levels every switching period.

In the field of optimal approaches, one well-known option is the
finite-control set model predictive control (FCS-MPC) [11]. For this,
at every sampling interval, all possible switching states are evaluated
with a cost function that covers, with different weights, the control
objectives: current reference tracking, capacitor voltage balancing, and
reduced number of commutations. Therefore, the optimum switching
state is selected and implemented in the next sampling interval. Note
that the performance of the system depends on how these objectives are
weighted in the cost function. As a noticeable disadvantage, the FCS-
MPC selects only one switching state in each sampling period, losing
the advantage the PWM has of commuting inside the switching period.
In [12], by defining a mixed-integer linear programming optimization
problem, with control objectives as constraints and key variables to
account for the optimal result, a cost function leads to the best solution
in terms of duty ratios for every phase at every level. Therefore, in
contrast to FCS-MPC, the PWM is still used, as the outputs of the
optimization problem are the levels that will be used every switching
period. Unfortunately, this optimization problem has a large computa-
tional burden and cannot be executed online. A solution was presented
in [13], where the optimization problem was solved offline for an
operating point under steady state conditions, and the optimization
results were stored in a look-up table (LUT)—this approach will be
referred to as LUT from now on. However, large variations in the
modulation index or the power factor can change the conditions under
which the LUT was obtained, and hence impede the fulfillment of the
control objectives. Consequently, the LUT approach seems infeasible for
systems that require a wider range of operating points. To overcome
this and to avoid the need to solve the optimization problem at every
sampling instant, we propose in this paper a machine learning-based
approach, with improved optimization, that deals with this lack of
generality and difficulty of online implementation in such a way that
the resulting online algorithm takes the form of decision trees, which
are simple and require very low computational load. In summary, an
easy-to-implement algorithm is obtained that seeks optimality while
still using PWM.

Machine learning is probably the fastest-spreading technical field to-
day, boosted by the steady increase of processing power, the abundance
of data thanks to mobile and IoT technologies, and the refinement of
data science algorithms. In automatic control, neural networks have
been the most common machine learning tool since the 1990s [14].
whether as a predictor, a tool for optimization, decision making, or
determination of the control action. Machine learning algorithms have
also been used for a long time in converter control applications [15,16].
In a recent paper [17], real-time implementation of DC/DC power con-
verter control based on deep machine learning techniques is analyzed.
See [18], and the references therein, for a detailed overview of arti-
ficial intelligence applications for power electronics, including expert
systems, fuzzy logic, metaheuristics, and machine learning. In machine
learning, two main types of learning can be outlined: supervised and
unsupervised. The former considers both input and output datasets in
2

the learning algorithm, while the latter is mainly used in classification
algorithms that do not require feedback and thus is less common in
control problems. A well-known supervised classification algorithm is
Classification and Regression Trees (CART) [19] or their extension,
Random Forests [20]. CART can capture complex and nonlinear re-
lations and can also be very helpful in detecting critical variables, in
addition to other advantages in the field of automatic control [21].
Therefore, the CART algorithm is a well established method and it is
well suited to the problem considered in this paper, since choosing
which switches to commute is equivalent to a classification problem.

In this paper, the CART algorithm is used as a mean to directly
obtain the results of the optimization problem from the system state
information with no need to execute online traditional solvers. For
this, the information obtained by solving the optimization problem
offline along a full grid cycle [12,13], which is previously codified
(the input–output dataset), is used to train several CARTs. These CARTs
will associate the codified system state (input) with the corresponding
codified optimal modulation (output). Afterwards, the resulting trees
are implemented online using the same codification for the inputs
and decodification for the outputs. In addition, by considering several
operating points simultaneously in the training datasets, a more general
solution is expected, which will overcome the limitations of using look-
up tables which are valid for particular operating points. To increase
the generality of the resulting trees, the use of quantitative information
is avoided in the tree training. That is why raw input data is codified
into qualitative variables, that provide enough information of the sys-
tem state, before feeding the CART algorithm. In the same way, the
output of the tree is a coded number with qualitative information about
how to implement the modulation in each sampling time (it will be
called modulation policy in the following).

Simulation and experimental results are presented showing the
validity of the method for different working conditions compared to
existing approaches.

In particular, the novelties of this paper compared to [13] are the
following:

• The proposed method avoids the use of LUTs to obtain the modu-
lation criteria and uses the decision trees obtained from the CART
training. Such decision trees are less resource-demanding than
LUTs.

• Several operating points are considered in the training datasets,
achieving a general solution, as will be shown later in simulations
and experiments.

• Additional performance features are introduced into the cost
function to achieve best steady-state performance.

• A comparison by simulation with several approaches: LUT [13],
FCS-MPC [11], OICM–MICM [10], and the original SVBA [7].

• Experimental comparison with the enhanced SVBA approach with
balancing capabilities [8].

This approach, which combines offline optimization and Machine
Learning to perform online modulation could be consider for other
types of topologies. This could include MMC for HVDC, as the large
number of submodules does not pose a problem for offline optimization
resolution. Furthermore, additional objectives could be included in the
cost function depending on the target application.

The outline of the paper is given as follows:

• Section 2: A description of the five-level DCC as a grid-connected
rectifier is presented along with its mathematical model. More-
over, the strategy for controlling the currents and dc-link voltage
of the converter that is later used in simulation and experiments
is also introduced, highlighting the role of the modulation process
on which this paper focuses on.

• Section 3: The modulation stage as an optimization problem is
formulated and discussed in further detail as in [13]. Some im-
provements are presented. It is also shown that this optimization
is carried out offline and, thus, the optimization execution time
is not a problem for online modulation operation, but the need of

an alternative for online implementation is demonstrated.
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Fig. 1. Circuit of a three-phase five-level diode-clamped converter.

• Section 4: The pre- and post-processing stages for the optimization
results as well as training and online implementation of the
decision trees are presented.

• Section 5: The comparison in simulations in MATLAB-Simulink®
with alternative control approaches is shown and discussed.

• Section 6: Experimental results are depicted and compared with
other control techniques.

• Section 7: Some conclusions are drawn.

2. System model and control scheme

2.1. System model

This paper focuses on a three-phase, five-level DCC connected to
the grid in AC/DC configuration. The diagram of this converter is
shown in Fig. 1. The system is composed of a filter of inductance
𝐿, three phases with 8 switches and 6 diodes each, a dc-link (𝑣𝑑𝑐)
composed of 4 capacitors — whose voltages are 𝑣𝑐1, 𝑣𝑐2, 𝑣𝑐3 and 𝑣𝑐4,
respectively –, and a resistor 𝑅 connected to the dc-link to emulate the
consumption of power. Phase currents and voltages are denoted as 𝑖𝑖
and 𝑣𝑠𝑖 for 𝑖 = 𝑎, 𝑏, 𝑐, respectively. The output voltage of each phase
𝑖 is measured from point 𝑖 to dc-link middle point 𝑜3. The switching
states of each phase (𝑓𝑖𝑗) will be equal to 1 if phase 𝑖 is connected to
level 𝑗 and 0 otherwise, for 𝑖 = 𝑎, 𝑏, 𝑐 and 𝑗 = 1,… , 5. For the dc-link
capacitor voltage unbalance, variables 𝑣𝑑1, 𝑣𝑑2, 𝑣𝑑3 are defined using the
following system of equations

⎡

⎢

⎢

⎢

⎢

⎣

𝑣𝑑1
𝑣𝑑2
𝑣𝑑3
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⎥

⎥
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⎢

⎢

⎣

𝑣𝑐1
𝑣𝑐2
𝑣𝑐3
𝑣𝑐4

⎤

⎥

⎥

⎥

⎥

⎦

. (1)

The dynamical model of the system in 𝛼𝛽 can be retrieved by apply-
ing the Kirchhoff’s laws (KL) to Fig. 1 and the Clarke transformation,
resulting as follows

𝐿 𝑑
𝑑𝑡

[

𝑖𝛼
𝑖𝛽

]

=
[

𝑣𝑠𝛼
𝑣𝑠𝛽

]

−
[

𝑣𝛼
𝑣𝛽

]

, (2)

where parasitic resistors are obviated for the current dynamics and
[

𝑣𝛼
𝑣𝛽

]

= (𝑣𝑐1(𝑡) + 𝑣𝑐2(𝑡))
[

𝑓𝛼5
𝑓𝛽5

]

+ 𝑣𝑐2(𝑡)
[

𝑓𝛼4
𝑓𝛽4

]

− 𝑣𝑐3(𝑡)
[

𝑓𝛼2
𝑓𝛽2

]

− (𝑣𝑐3(𝑡) + 𝑣𝑐4(𝑡))
[

𝑓𝛼1
𝑓𝛽1

]

, (3)

for the output voltage. System sampling and switching frequencies (for
PWM implementation) have the same value 𝑓s. By assuming that its
corresponding period (𝑇 = 1∕𝑓s) is sufficiently small, the switching
function 𝑓𝑖𝑗 can be averaged by using the duty ratio 𝑑𝑖𝑗 instead, which
expresses the fraction of the sampling interval in which phase 𝑖 = 𝑎, 𝑏, 𝑐
is connected to point 𝑜𝑗 . With this, the resulting model contains only
continuous signals, and the constraints ∑5 𝑑 = 1 for 𝑖 = 𝑎, 𝑏, 𝑐 must
3

𝑗=1 𝑖𝑗
be fulfilled. This averaging stage can be applied to Eq. (3), obtaining
the duty ratios 𝑑𝑘𝑗 for 𝑘 = 𝛼, 𝛽. Note that one degree of freedom is made
explicit in the 𝑑𝛼𝛽,𝑗 → 𝑑𝑎𝑏𝑐,𝑗 transformation and will be used in the same
way as [22] and will be explained later.

Assuming that the capacitors are equalized 𝑣𝑐1 = 𝑣𝑐2 = 𝑣𝑐3 = 𝑣𝑐4 =
𝑣𝑑𝑐∕4, variable 𝑣𝑘 can be normalized and averaged as 𝑢𝑘:

𝑢𝑘 ≐
𝑣𝑘
𝑣𝑑𝑐
4

= 2𝑑𝑘5 + 𝑑𝑘4 − 𝑑𝑘2 − 2𝑑𝑘1. 𝑘 = 𝛼, 𝛽. (4)

Using 𝑢𝑘 for 𝑘 = 𝛼, 𝛽 as control signals, a standard current controller can
be used to compute their values in such a way that the phase currents
{𝑖𝛼 , 𝑖𝛽} track their references {𝑖𝛼∗, 𝑖𝛽∗}.

Once 𝑢𝛼 , 𝑢𝛽 are known, their transformation to 𝑎𝑏𝑐 leaves open
one degree of freedom. This value will be called 𝑥 and is limited by
the definition of duty ratio, Eq. (4) and the modulation boundaries
𝑢𝑖 ∈ [−2, 2] for 𝑖 = 𝑎, 𝑏, 𝑐, yielding an upper and lower bound for 𝑥.
In summary,

⎡

⎢

⎢

⎣

𝑢𝑎
𝑢𝑏
𝑢𝑐

⎤

⎥

⎥

⎦

=𝑇[𝛼𝛽→𝑎𝑏𝑐]

[

𝑢𝛼
𝑢𝛽

]

+
⎡

⎢

⎢

⎣

1
1
1

⎤

⎥

⎥

⎦

𝑥 (5)

𝑢𝑖 =2𝑑𝑖5 + 𝑑𝑖4 − 𝑑𝑖2 − 2𝑑𝑖1 ; 𝑢𝑖 ∈ [−2,−1, 0, 1, 2] (6)
5
∑

𝑗=1
𝑑𝑖𝑗 = 1 𝑖 = 𝑎, 𝑏, 𝑐 , (7)

where 𝑇[𝛼𝛽→𝑎𝑏𝑐] is the inverse Clark transformation. The optimization
problem that will be formulated in Section 3 will use this degree of
freedom, 𝑥, and it will also consider constraints (6) and (7).

The dynamics of 𝑣𝑑1, 𝑣𝑑2, 𝑣𝑑3 (1) are obtained from the capacitor
dynamics and the definition of duty ratios as

𝐶
𝑑𝑣𝑑1
𝑑𝑡

=
∑

𝑖=𝑎,𝑏,𝑐
(−𝑑𝑖4𝑖𝑖) (8)

𝐶
𝑑𝑣𝑑2
𝑑𝑡

=
∑

𝑖=𝑎,𝑏,𝑐
(−(𝑑𝑖1 + 𝑑𝑖5)𝑖𝑖) (9)

𝐶
𝑑𝑣𝑑3
𝑑𝑡

=
∑

𝑖=𝑎,𝑏,𝑐
(−𝑑𝑖2𝑖𝑖), (10)

where terms 𝑑𝑖𝑗 𝑖𝑖 refer to the averaged current of phase 𝑖 that goes into
node 𝑜𝑗 .

Note that this formulation relates the duty ratio values with the
current control fulfillment (𝑖𝑎𝑏𝑐 → 𝑖∗𝑎𝑏𝑐) in (6), and with the capacitor
balance issue in (8)–(10).

2.2. Control strategy

The main blocks of the control scheme used in this paper are
shown in Fig. 2. Notice that this work focuses on the modulation
block and how it deals with the capacitor voltage problem based on
an optimization process and machine learning, as it will be detailed in
Sections 3 and 4 (Fig. 4 shows the proposed real-time implementation
of the modulation block).

A conventional two-block control scheme based on dc-link voltage
and current controllers is used. However, alternative approaches based
on averaged modeling, for example, could be used [23–25], as they can
provide the modulation block with the required inputs. This fact also
illustrates the flexibility of the proposed method.

The remainder of this section is devoted to briefly introduce the
dc-link and current controller that are later used in simulation and
experiments. It is worth mentioning that this is not the aim of the paper
and, therefore, they are included briefly for the sake of completeness.

In grid-connected power converters, it is common to implement two
cascaded controllers: dc-link voltage regulation and current reference
tracking [26]. In this way, the dc-link voltage controller defines the
references for the current controller. The former outputs the desired
active power (𝑝∗) in such a way that the dc-voltage reaches its reference
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Fig. 2. Control scheme of the proposal. Notice that the paper focuses on the
block ‘‘Modulation’’. For blocks ‘‘Dc-link controller’’ and ‘‘Current controller’’ different
approaches can be used.

at steady-state. To achieve this, a simple PI controller is commonly
employed [27]:

𝑝∗ = 𝑘𝑑𝑐𝑝
(

𝑣∗𝑑𝑐
2 − 𝑣2𝑑𝑐

)

+ 𝑘𝑑𝑐𝑖 ∫

𝑡

0

(

𝑣∗𝑑𝑐
2 − 𝑣2𝑑𝑐

)

𝑑𝜏 (11)

where 𝑘𝑑𝑐𝑝 and 𝑘𝑑𝑐𝑖 are the control parameters. Once the active power
reference is known and the reactive power reference is given externally
(𝑞∗), the current references might be extracted as follows:

[

𝑖∗𝛼
𝑖∗𝛽

]

= 1
𝑣2𝑠𝛼 + 𝑣2𝑠𝛽

[

𝑣𝑠𝛼 −𝑣𝑠𝛽
𝑣𝑠𝛽 𝑣𝑠𝛼

] [

𝑝∗

𝑞∗

]

. (12)

These references input the current controller, where the well-known
non-ideal proportional-resonant (PR) controller [28] is used in this
paper. The formulation for such controller is

𝐺𝜔𝑟
PR(𝑠) = 𝑘𝑝 +

2𝐾𝑟𝜔𝑐𝑠
𝑠2 + 2𝜔𝑐𝑠 + 𝜔2

𝑟
[

𝑢𝛼
𝑢𝛽

]

= 4
𝑣𝑑𝑐

(

−𝐺
𝜔𝑔
PR

([

𝑖∗𝛼 − 𝑖𝛼
𝑖∗𝛽 − 𝑖𝛽

])

+
[

𝑣𝑠𝛼
𝑣𝑠𝛽

]

)

, (13)

where 𝜔𝑟 is the resonant frequency – tuned to be equal to the grid
one (𝜔𝑔) –, 𝜔𝑐 is the cut-off frequency, and 𝑘𝑝 and 𝐾𝑟 are the control
parameters. Thus, the values of 𝑢𝛼 and 𝑢𝛽 are obtained and then
transformed to 𝑎𝑏𝑐 (5) once variable 𝑥 is chosen. Capacitor voltage
balance highly depends of this value, and still some degrees of freedom
remain as the ones that are present in Space Vector Modulation. This
stage is not trivial in five-level converters, above all if voltage balance
is required (see, for example [7,8] where this problem is addressed with
SVM related methods). This paper presents a different approach based
on mixed-integer optimization for the computation of duty ratios and
machine learning for the achievement of simple algorithms that are
implementable online.

In the following, variables 𝜂𝑎, 𝜂𝑏 and 𝜂𝑐 are used as the corre-
sponding values for 𝑢𝑎, 𝑢𝑏 and 𝑢𝑐 when 𝑥 is chosen to be zero in
Eq. (5):

⎡

⎢

⎢

⎣

𝜂𝑎
𝜂𝑏
𝜂𝑐

⎤

⎥

⎥

⎦

≐ 𝑇[𝛼𝛽→𝑎𝑏𝑐]

[

𝑢𝛼
𝑢𝛽

]

. (14)

3. Modulation as an optimization problem

This section is devoted to present the modulation stage (shown
in Fig. 2) as an optimization problem. Thus, it begins recalling the
optimization procedure described in [12] and implemented in [13]
through look-up tables, and several improvements in the formulation
are made with respect to them. Therefore, a linear, mixed-integer
optimization problem is considered, which obtains the duty ratios 𝑑𝑖𝑗
that accomplish 𝑢𝛼 and 𝑢𝛽 at the same time that other objectives, such
as capacitor voltage balance and reduced number of commutations, are
pursued. In contrast to [13], this paper resorts to machine learning to
4

obtain decision trees that are used online to implement the results of
the optimization approach. With this, an improvement in the robustness
is achieved as it will be shown in Sections 5 and 6.

3.1. Optimization problem

This section presents the formulation of the linear mixed-integer
optimization problem that could be solved at every sampling instant
to determine which duty ratios 𝑑𝑖𝑗 for each phase 𝑖 = 𝑎, 𝑏, 𝑐 and level
𝑗 = 1,… , 5 are chosen to be different from zero, i.e. which levels are
used.

The following objectives are considered as constrains for the opti-
mization problem [22]:

• The sum of the duty ratios for each phase 𝑖 has to be 1 (7).
• The output of the power controller (𝑢𝛼 , 𝑢𝛽) (13) has to be accu-

rately modulated in 𝑎𝑏𝑐 taking into account (4):

𝑢𝑖 = 2𝑑𝑖5 + 𝑑𝑖4 − 𝑑𝑖2 − 2𝑑𝑖1. (15)

• The balancing error signals cannot increase:

sign(𝑣𝑑𝑝)
𝑑𝑣𝑑𝑝
𝑑𝑡

≤ 0 , 𝑝 = 1, 2, 3. (16)

Considering (8)–(10), these constraints can be related to the duty
ratios. Note that strict constraints in the sign of 𝑑𝑣𝑑𝑝

𝑑𝑡 for 𝑝 = 1, 2, 3
might yield an increase in the number of commutations, that is
why these constraints are softened to a non-strict inequality.

The desired behavior is prioritized by descending order of prece-
dence:

1. Reduce as much as possible the number of commutations in
order to reduce the switching losses. For this, the lowest amount
of non-zero 𝑑𝑖𝑗 should be prioritized.

2. Large jumps within a phase must take place as little as possible.
Large jumps are the sequential use of non-consecutive levels, and
they can be expressed mathematically for a generic phase 𝑖 as:

𝑑𝑖𝑗1 ≠ 0; 𝑑𝑖𝑗2 = 0; 𝑑𝑖𝑗3 ≠ 0 when 𝑗1 < 𝑗2 < 𝑗3

for {𝑗1, 𝑗2, 𝑗3} ∈ {1, 2, 3, 4, 5}. (17)

Large jumps increase the current ripple and compromise the
voltage limits of the devices, and thus they should be penalized.

3. Since the previous objectives are expressed in the cost function
as integer numbers, it is likely that several points achieve the
same score. In these cases, the points that fulfill the strict in-
equality in (8)–(10) should be prioritized over others, which is
a point not considered in [12,13]. Furthermore, the signal error
derivative magnitude may also be taken into account for the
same purpose. These considerations are gathered in a new term
2 of the cost function as is shown in Eq. (18).

From [13] and adding term 2, the cost function results in

𝑓cost =
∑

𝑖=𝑎,𝑏,𝑐

( 5
∑

𝑗=1
𝑠𝑖𝑗 +

6
∑

𝑚=1
𝑝𝑖𝑚𝑞𝑖𝑚

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
term 1

+
3
∑

𝑝=1

(

𝛼ℎ𝑝 − 𝛼1sign(𝑣𝑑𝑝)
𝑑𝑣𝑑𝑝
𝑑𝑡

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
term 2

.

(18)
A brief explanation of these variables and their associated con-

straints are given in the following.

• Integer variables 𝑠𝑖𝑗 ≥ 0 for 𝑖 = 𝑎, 𝑏, 𝑐 and 𝑗 = 1,… , 5 are greater
than zero in the cases when level 𝑗 in phase 𝑖 is being used for
the current solution, i.e. if duty ratio 𝑑𝑖𝑗 ≠ 0, and equal to zero
in the opposite case. To fulfill such purpose, the following linear
constraint is defined:

𝑠 − 𝑑 ≥ 0 for 𝑖 = 𝑎, 𝑏, 𝑐; 𝑗 = 1,… , 5. (19)
𝑖𝑗 𝑖𝑗
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• Integer variables 𝑝𝑖𝑚 ∈ {0, 1} and 𝑞𝑖𝑚 ∈ {1, 2, 3} are used to
penalize large jumps in the solution candidate considered for each
phase 𝑖. Large jumps are classified using index 𝑚 = 1,… , 6 for the
6 types of large jumps: levels 1–3, 2–4, 3–5, 1–4, 2–5, and 1–5.
Auxiliary variable 𝑝𝑖𝑚 is introduced in order to register whether
the large jumps are taking place (𝑝𝑖𝑚 = 1) or not (𝑝𝑖𝑚 = 0). A cost
𝑞𝑖𝑚 ∈ {1, 2, 3} is used in (18) that expresses the amount of non-
used intermediate levels. For example, large jump 1–4 has two
intermediate levels and two non-zero duty ratios – 𝑠𝑖1 = 1, 𝑠𝑖4 = 1
– then 𝑞𝑖4 = 2. Besides, the detection stage, i.e. determination
of 𝑝𝑖𝑚, for phase 𝑖 must search for the occurrence of 𝑑𝑖𝑗 ≠ 0 for
𝑗 = 𝑗𝑚1 and 𝑗 = 𝑗𝑚2 and 𝑑𝑖𝑗 = 0 for 𝑗𝑚1 < 𝑗 < 𝑗𝑚2. This can be
considered by means of the following constraints.

𝑠𝑖𝑗𝑚1 + 𝑠𝑖𝑗𝑚2 − 𝑟𝑖𝑚 ≤ 1; 0 ≤ 𝑟𝑖𝑚 ≤ 1 (20)

𝑟𝑖𝑚 − 𝑝𝑖𝑚 −
𝑗𝑚2−1
∑

𝑗=𝑗𝑚1+1
𝑠𝑖𝑗 ≤ 0; 0 ≤ 𝑝𝑖𝑚 ≤ 1, (21)

where 𝑟𝑖𝑚 = 1 if the outer levels of the large jump candidate are
used (𝑑𝑗𝑚1 ≠ 0 and 𝑑𝑗𝑚2 ≠ 0).

• Integer variables ℎ𝑝 ≥ 0 for 𝑝 = 1, 2, 3 indicate whether 𝑑𝑣𝑑𝑝
𝑑𝑡 fulfills

the strict inequality 𝑑𝑣𝑑𝑝
𝑑𝑡 sign(𝑣𝑑𝑝) < 0 (ℎ𝑝 ≤ 0) or not (ℎ𝑝 > 0).

Therefore, the following constraint is added:

ℎ𝑝 −
𝑑𝑣𝑑𝑝
𝑑𝑡

sign(𝑣𝑑𝑝) ≥ 0, for 𝑝 = 1, 2, 3 (22)

• Weighting factors 𝛼1 and 𝛼 satisfy 𝛼1 ≪ 𝛼 ≪ 1 in such a way that
term 2 will only be relevant for candidates with the same value
in term 1, prioritizing, firstly, the fulfillment of a larger amount
of strict inequalities, and secondly, the voltage balance speed.

In summary, a linear, mixed-integer optimization problem is formu-
lated. As it can be seen, such a problem has to be solved every sampling
time, which may not be feasible for typical digital signal processors.
Therefore, it is proposed to solve the problem offline and resort to
Machine Learning to come up with a reduced procedure with an easy
and fast implementation, as it will be exposed in Section 4.

3.2. Solution of the optimization problem

The optimization problem has to be solved each sampling period,
resulting in the duty ratio values. However, the previous problem can
hardly be solved at usual switching frequencies (around 5–10 kHz).
For this, [12] proposes to solve it offline for 𝑁 samples over a grid
period under nominal operating conditions, recalling these results dur-
ing online operation. Given the fact that there are 8 combinations of
sign(𝑣𝑑𝑝), eight tables of results are obtained. Paper [13] accomplishes
such implementation by resorting to look-up tables that used the angle
of 𝑢𝛼𝛽 vector as index variable. Although this implementation was
validated experimentally even with slight variations of the operating
point, the LUT results were designed for specific operating conditions.
Consequently, the same LUT will not necessarily work under different
operating conditions, as will be shown later in experiments. This paper
proposes to use the optimization results to come up with a solution
that works in a wider range of operating points. For this, and contrary
to [13], in this paper several operating points are considered, and the
results of the optimization problem are stored in datasets.

It is shown in [12,13] that the solutions for every switching instant
usually have the following characteristics:

• One phase (𝑖fix) fixed to one level (𝑗fix), i.e. it has one duty ratio
equal to 1, and the remaining ones equal to zero.
5

𝑑𝑖fix𝑗fix = 1; 𝑑𝑖fix𝑗 = 0 ∀𝑗 ≠ 𝑗fix ∈ {1, 2, 3, 4, 5}
• Two phases (𝑖1 and 𝑖2) that commute between two levels only
(𝑗11–𝑗12 and 𝑗21–𝑗22 respectively), i.e. they have two duty ratios
different from zero, and the remaining ones equal to zero.

𝑑𝑖1𝑗11 ≠ 0; 𝑑𝑖1𝑗12 ≠ 0; 𝑑𝑖1𝑗 = 0 ∀𝑗 ≠ 𝑗11, 𝑗12 ∈ {1, 2, 3, 4, 5}

𝑑𝑖2𝑗21 ≠ 0; 𝑑𝑖2𝑗22 ≠ 0; 𝑑𝑖2𝑗 = 0 ∀𝑗 ≠ 𝑗21, 𝑗22 ∈ {1, 2, 3, 4, 5}

The idea is to use this knowledge about the solutions to the optimiza-
tion problem to propose a codification procedure for the inputs and
outputs of the CARTs. Thus, raw input and output data are transformed
into qualitative integer variables before feeding the CART algorithm, as
will be shown later. The data are arranged into eight datasets, one for
each sign(𝑣𝑑𝑝) combination, obtained by simulating several operating
conditions, and used to train a CART algorithm with the coded result
being the output. Section 4 will provide more information on the coding
of the inputs and results, as well as the training process. The resulting
CARTs can be easily implemented online, and given the generality of
the solutions of the CART learning algorithm and the codification of
input and output data, a wide range of operating points can be covered,
as will be shown in the simulation and experimental sections.

4. CART based modulation

The aim of this section is to depict how the previous optimal
modulation can be implemented online without requiring to solve the
optimization problem at every sampling time. For this, CARTs are
trained with a wide variety of system states and the corresponding
optimal modulation policies (solutions of the optimization problems
as shown in Section 3.2). The resulting CARTs are implemented for
online operation. Note that the optimization problem is solved for every
combination of signs of 𝑣𝑑1, 𝑣𝑑2, 𝑣𝑑3 as this factor imposes a different
constraint on the optimization problem. Therefore, eight CARTs have
to be obtained.

For this objective, several issues need to be tackled and elaborated
in the following sections: (1) Codification of system state and resultant
modulation policy into integer variables as CART inputs and outputs,
respectively; (2) CART training; (3) Robust CART implementation for
online modulation.

4.1. CART inputs and outputs codification

This section presents a codification procedure for the system state
as well as modulation policies into integer variables. This codification
procedure will later be used for both the training and the online
implementation. As a result, each CART produces a coded output from
any possible input data. For this, instead of using raw data from the
continuous variables 𝑖𝑎, 𝑖𝑏, 𝑖𝑐 , 𝑢𝛼 and 𝑢𝛽 , the input data should represent
qualitative information of the system variables through discretized
integer variables, improving CART training and achieving generality at
the same time. Therefore, it is critical to select how to compute these
integer variables (from 𝑖𝑎, 𝑖𝑏, 𝑖𝑐 , 𝑢𝛼 and 𝑢𝛽) and how to code the output.

4.1.1. CART inputs
In the following, the computation of the 22 categorized integer vari-

ables that are later used as inputs in the CART, either in the training and
online implementation, is presented. For this, qualitative information is
extracted from the optimization results and this information is fed into
the CART generation algorithm. The qualitative information for each
sampling time was chosen carefully using expert knowledge and the
analysis of the optimization results for several test cases, such as:

• The sign of the currents 𝑖𝑎, 𝑖𝑏, 𝑖𝑐 : −1 for negative values, and 1 for
positive values. (3 variables)

• An integer number for each phase 𝑖 (level𝑖) that indicates between
which two levels the associated voltage reference 𝜂𝑖 (14) is found.
The code for this number is shown in Table 1. (3 variables)
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Fig. 3. Flowchart of carried out steps to obtain the eight decision trees based on the optimization problem.
Table 1
Integer number to indicate associated levels for 𝜂𝑖.

level𝑖 𝜂𝑖 level𝑖 𝜂𝑖
1 [−2,-1] 3 (0,1]
2 (−1,0] 4 (1,2)

Table 2
Integer number to indicate current order.
𝑟 Current order 𝑟 Current order

1 𝑖𝑎 ≥ 𝑖𝑏 ≥ 𝑖𝑐 4 𝑖𝑐 ≥ 𝑖𝑏 ≥ 𝑖𝑎
2 𝑖𝑎 ≥ 𝑖𝑐 ≥ 𝑖𝑏 5 𝑖𝑏 ≥ 𝑖𝑐 ≥ 𝑖𝑎
3 𝑖𝑐 ≥ 𝑖𝑎 ≥ 𝑖𝑏 6 𝑖𝑏 ≥ 𝑖𝑎 ≥ 𝑖𝑐

• A code (𝑟) that indicates the order relation among 𝑖𝑎, 𝑖𝑏 and 𝑖𝑐 .
This code is shown in Table 2. For example, when 𝑖𝑎 ≥ 𝑖𝑏 ≥ 𝑖𝑐 this
code is equal to 1, when 𝑖𝑎 ≥ 𝑖𝑐 ≥ 𝑖𝑏 the code is equal to 2, and
so on. (1 variable)

• Variables 𝑦𝑖𝑗 for 𝑖 = 𝑎, 𝑏, 𝑐 and 𝑗 = 1,… , 5 are set to 1 when there
exists a value of 𝑥 that satisfies 𝑥min ≤ 𝑥 ≤ 𝑥max such that the
corresponding value of 𝜂𝑖 + 𝑥 is equal to 𝑗. This means that for
the current sample data it is possible to consider a value of the
homopolar component such that 𝑢𝑖 ∈ [−2, 2] is equal to level 𝑗, as
it is shown in (5)–(7). Therefore, 𝑦𝑖𝑗 = 1 if 𝑥min ≤ 𝑗−3−𝜂𝑖 ≤ 𝑥max,
and 𝑦𝑖𝑗 = 0 otherwise. (15 variables)

The previous 22 variables are computed for every sample from 𝑖𝑎,
𝑖𝑏, 𝑖𝑐 , 𝑢𝛼 and 𝑢𝛽 , and will be used as representative of the current state
of the system for the CART.

4.1.2. CART outputs
Given one sample of the system, the optimization problem can be

solved. It is assumed that the optimization problem result dictates one
phase to be fixed at one level, while the other two phases commute
between two different levels. Therefore, a code that captures this
information is defined by using three numbers 𝑎1, 𝑎2, 𝑎3:

• The first number 𝑎1 indicates the pair of values 𝑖 and 𝑗 such that
𝑑𝑖𝑗 = 1, i.e. which phase 𝑖 is fixed at which level 𝑗.
Table 3 shows this codification (15 possible values)
6

Table 3
Integer number 𝑎1 to indicate which 𝑑𝑖𝑗 equals one.

𝑎1 (𝑖, 𝑗) 𝑎1 (𝑖, 𝑗) 𝑎1 (𝑖, 𝑗) 𝑎1 (𝑖, 𝑗) 𝑎1 (𝑖, 𝑗)

1 (𝑎,1) 2 (𝑎,2) 3 (𝑎,3) 4 (𝑎,4) 5 (𝑎,5)
6 (𝑏,1) 7 (𝑏,2) 8 (𝑏,3) 9 (𝑏,4) 10 (𝑏,5)
11 (𝑐,1) 12 (𝑐,2) 13 (𝑐,3) 14 (𝑐,4) 15 (𝑐,5)

Table 4
Integer number 𝑎2/𝑎3 to indicate pair of used levels.

Code Levels Code Levels Code Levels

1 1 − 2 5 1 − 3 8 1 − 4
2 2 − 3 6 2 − 4 9 2 − 5
3 3 − 4 7 3 − 5 10 1 − 5
4 4 − 5

• Numbers 𝑎2 and 𝑎3 represent the pair of levels that the remaining
phases use. The correspondence of 𝑎2 and 𝑎3 with the phases
follows alphabetical order: for example, if the phase used for code
𝑎1 is phase 𝑏, code 𝑎2 corresponds to phase 𝑎 and code 𝑎3 to
phase 𝑐. The pair of levels are coded by enumeration as shown
in Table 4. (10 possible values each)

These values can be combined into a single variable with 15 × 10 ×
10 = 1500 possible values. This variable is used as the output for the
CART algorithm and it is coded as follows

Output code ∶ (𝑎1 − 1) ⋅ 102 + (𝑎2 − 1) ⋅ 10 + (𝑎3 − 1). (23)

4.2. CART training

In this section, the CART inputs and outputs, as described in Sec-
tion 4.1, are gathered into datasets to perform the training of the
CARTs. This information comes from offline simulations where 𝑁 sam-
ples over a grid period at steady state conditions for several operating
points are obtained to feed the optimization problem. Both the system
state and the optimization result for every sample are stored to form the
training dataset. This training operation has to be computed for every
possible combination of signs of 𝑣 , 𝑣 , 𝑣 , obtaining as a result 8
𝑑1 𝑑2 𝑑3
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Table 5
CART training parameters.

Parameter Value Parameter Value

Samples per operation point and grid period 𝑁 100 Optimization weighting factor 𝛼1 0.01
Optimization weighting factor 𝛼 0.001 CART complexity parameter 𝑐𝑝 0.002

Training dataset coverage >85% Max. number of levels 11
Number of operating points (Table 6) 6 Integer input variables 22
Table 6
Operations points considered for the training data set.

No. 𝑣𝑑𝑐 (V) 𝑝 (kW) 𝑞 (kVA)

1 800 10 0
2 800 0 10
3 800 0 −10
4 700 10 0
5 700 0 10
6 700 0 −10

decision trees. Fig. 3 shows the summary of the training stage for one
operating point. In order to extend the operability of this approach,
additional operating points are considered, simulated and added to the
corresponding dataset. The training parameters and information on the
resulting trees are included in Table 5, and the considered operating
points are shown in Table 6.

The trees are generated using the recursive partitioning and regression
rees technique from the rpart library for R language. The arguments of
his function are: the input–output variables; the classification method
et as ‘‘class’’; the way the decisions are considered, in this case,
hrough the complexity parameter 𝑐𝑝, which determines that a split is
ot carried out if it does not decrease the overall lack of coverage by
he 𝑐𝑝 value; and a vector with the cost values. The latter is a vector
hat contains one cost value for each input such that the inputs with
ncreased cost would appear less frequently in the decision tree. The 𝑐𝑝
alue is tuned in such a way that a minimum of 85% of coverage of
he training data set is obtained.

The input cost values are justified and selected as:

• The sign of the currents and their order code (𝑟) keep the same
value for a large number of samples within one grid period, and
thus they should be consulted less frequently: Cost value = 5

• Variables level𝑖 are the next considered as they change more
frequently: Cost value = 2.5

• Variables 𝑦𝑖𝑗 are the easiest to classify due to their binary nature,
while they also provide useful information about the feasible
values of 𝑥: Cost value = 1.

In summary, there exist 22 variables to be used as input parameters
and one coded integer result whose value could range from 0 to 1500.
An example of a generated tree is depicted in Fig. A.14 in Appendix.
The maximum number of levels for all trees is 11, and they are balanced
with a similar percentage of coverage.

4.3. Implementation for online modulation

The computed decision trees can be easily implemented just by
means of simple nested ‘‘if...else’’ statements, making it possible to be
evaluated in real time in order to perform the modulation block within
the control loop shown in Fig. 2. Thus, Fig. 4 shows the detailed real
time implementation scheme for the modulation block, which consists
of the following steps:

4.3.1. CART selection
During online operation, the decision tree that corresponds to the

actual combination of sign(𝑣𝑑𝑝), 𝑝 = 1,… , 3, (see Eq. (1)) is selected, as
shown in Fig. 4.
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4.3.2. Computing CART inputs and evaluation
This CART is fed with the input data parameters computed from

the actual currents 𝑖𝑎𝑏𝑐 and voltage commands 𝑢𝛼𝛽 (see Section 4.1.1).
With these inputs, the ‘‘if...else’’ statements of the CART can be eval-
uated and, thus, the corresponding output code is obtained. (see Sec-
tion 4.1.2).

4.3.3. Decodification
In order to obtain the values of the duty ratios 𝑑𝑖𝑗 from the output

code, the following procedure is considered,

I. Variables 𝑎1, 𝑎2 and 𝑎3 are obtained from the output code. To
depict an example, let us consider an output code of 574 from
Fig. A.14. Variables 𝑎1, 𝑎2, 𝑎3 are extracted from the output code
by means of simple integer division:

𝑎1 = int(code∕102) + 1 = 6 (24)

𝑎2 = int((code − (𝑎1 − 1) ⋅ 102)∕10) + 1 = 8 (25)

𝑎3 = int((code − (𝑎1 − 1) ⋅ 102 − (𝑎2 − 1) ⋅ 10)) + 1 = 5 (26)

II. Using (5)–(7) with 𝑢𝛼 , 𝑢𝛽 obtained from (13), and the information
provided by 𝑎1, the value of 𝑥 is obtained.

III. Knowing 𝑥 and the information provided by 𝑎2 and 𝑎3, the
remaining 𝑑𝑖𝑗 are computed according to (5)–(7).

4.3.4. Duty cycle computation
To guarantee a robust implementation of the desired voltage vector,

for example, when the 𝑢𝛼 , 𝑢𝛽 values cannot be represented using the
levels indicated by 𝑎1, 𝑎2 and 𝑎3, we propose the following procedure:

I. The result is decoded and the levels to be used for each phase
are obtained according to 𝑎1, 𝑎2 and 𝑎3: fixed phase 𝑖fix at level
𝑙fix; phases 𝑖1 and 𝑖2 fixed at 𝑗11, 𝑗12 and 𝑗21, 𝑗22, respectively.

II. It is checked if the indicated fixed phase (𝑖fix) can be fixed at
level (𝑙fix), that is:

𝑥min ≤ 𝑙fix − 3 − 𝜂𝑖fix
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑥fix

≤ 𝑥max. (27)

If so, then set 𝑥 = 𝑥fix, otherwise 𝑥 is saturated to the closest
value 𝑥min or 𝑥max such that one phase is still fixed at one level.

III. A similar procedure is carried out for phases 𝑖1 and 𝑖2. For each
of them, they should be modulated using the indicated levels
taking into account the previous 𝑥 value. This is equal to check
if:

𝑗11 ≤ 𝜂𝑖1 + 3 + 𝑥 ≤ 𝑗12 (28)

𝑗21 ≤ 𝜂𝑖2 + 3 + 𝑥 ≤ 𝑗22. (29)

In the case this check is not fulfilled, the used levels are changed
to the nearest levels. That is, the closest levels above and below
of (𝜂𝑖 + 3+ 𝑥). Once the two levels for each phase, for which the
corresponding duty cycles are not zero, the computation of them
is obvious using trivial and well-known weighting formulae.

Because of this procedure, the implemented duty ratios might not be
the optimal values according to the formulated problem, which is the
reason why this work is entitled pseudo-optimal modulation. Additional
sources of error that could make the implemented result to diverge from

the optimal one are:



International Journal of Electrical Power and Energy Systems xxx (xxxx) xxxP. Montero-Robina et al.
Fig. 4. Implementation scheme for real time modulation block implementation with robust modulation of 𝑢𝛼 , 𝑢𝛽 .
Table 7
Converter parameters.
Parameter Value Parameter Value

Grid frequency 𝑓 50 Hz Sampling frequency 𝑓𝑠 10 kHz
Grid voltage 𝑣𝑠𝑎𝑏𝑐 230VRMS Switching frequency 𝑓𝑠𝑤 10 kHz
Inductance 𝐿 2 mH Prop. term PR controller 𝑘𝑝 5
Capacitance 𝐶 3300 μF Resonant term PR controller 𝐾𝑟 50
dc-link load 𝑅 [60,∞] Ω Prop. term dc-link controller 𝑘𝑑𝑐𝑝 0.05
dc-link voltage reference 𝑣∗𝑑𝑐 [700, 800] V Integral term dc-link controller 𝑘𝑑𝑐𝑖 1
Low-pass cut-off frequency (PR) 𝜔𝑐 2𝜋5 rad/s Resonant frequency (PR) 𝜔𝑟 2𝜋50 rad/s
Table 8
THD values of the currents (Fig. 5(a)) and number of commutations
over a grid period (Fig. 5(b)).
Approach THD (%) # Commt

CART 4.6 550
LUT 4.6 645
SVBA [7] 7.01 935

FCS-MPC [11]
10 kHz
25 kHz
50 kHz

13.42
5.10
2.54

210
540
1100

OICM [10] 5.40 1600
MICM [10] 4.2 1333

I. The measured variables, as well as the values of 𝑢𝛼 and 𝑢𝛽 ,
may not correspond exactly to any of the training data sets, and
therefore the result is inferred from the training datasets.

II. The CART algorithm has a coverage error and not all cases used
for the training are correctly matched in the output given by the
decision trees.

III. There were some samples that did not fulfill the generic rule of
one phase fixed to one level and the others using only two levels,
thus those few cases are neglected with the current approach —
less than 3% in any of the solved optimization problems.

Despite these sources of errors, it will be shown in the following
sections that the results are satisfactory. Overall, the implementation
that has been used in this paper is depicted in Figs. 2 and 4, where it
can be seen that the contribution lies in the modulation and voltage
balancing stage. In other words, the only requirement is to give the
phase currents 𝑖𝑎𝑏𝑐 and the voltage commands 𝑢𝛼𝛽 to the pre-processing
stage (apart from the signs of 𝑣𝑑1, 𝑣𝑑2 and 𝑣𝑑3 to select the appropriate
decision tree), which can be derived from any control technique that
relies on voltage vector modulation
8

4.4. Summary of CART based modulation and remarks

In summary for this approach, for each of the 8 possible combina-
tions of 𝑣𝑑1, 𝑣𝑑2, 𝑣𝑑3, the following steps were carried out:

1. The optimization problem is solved offline under fixed operating
conditions. Such optimization would determine which levels
to use for every sampled instant, obtaining a table for those
fixed operating conditions. Several operating conditions can be
gathered in a database. (Section 4.1.2)

2. For each sampling instant in the database, the 22 integer CART
inputs are obtained (from 𝑖𝑎, 𝑖𝑏, 𝑖𝑐 , 𝑢𝛼 and 𝑢𝛽), and the results,
i.e. which levels should be used in the modulation, are codified.
(Section 4.1)

3. The CART is trained offline with the previous information. As
a result, a decision tree (nested if-else) is obtained. Such a
tree yields a codified output when a string of inputs is given.
(Section 4.2)

Once all 8 offline decision trees have been computed, the online imple-
mentation (Section 4.3) consists of only the execution of the decision
tree considering the inputs obtained from the measurements, as shown
in Fig. 4.

Remark 1. This approach proposes a modulation stage to solve the
balancing capacitor voltages, but at the same time, the current control
is always fulfilled and given maximum priority.

Remark 2. This approach is based on the model of the five-level DCC,
as the optimization is based on the capacitor voltages balancing dynam-
ics. However, other multilevel converters with different dynamics can
be considered as long as the optimization problem is modified accord-
ingly. Furthermore, given that the desired output of the current control
is always prioritized and that the balancing is executed to modify the
sign of the derivatives of 𝑣𝑑1, 𝑣𝑑2, 𝑣𝑑3, without paying attention to their
magnitude, this approach fulfills the control objectives regardless of the
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Fig. 5. Simulation: Steady-state performance for the proposed approach (top), the LUT-based (second row), the SVBA (third row), the FCS-MPC for three different sampling and
switching rates (fourth row), and the OICM and MICM (bottom). 𝑣𝑑𝑐 = 800V, 𝑅 = 60Ω, 𝑞𝑟 = 0 kV A.
Fig. 6. Simulation: Capacitor voltages evolution starting from an unbalanced situation
𝑣𝑑1 = −40, 𝑣𝑑2 = 60, 𝑣𝑑3 = −5 for all the considered approaches under different tests
whose power references are shown at the top of the figure. 𝑣𝑑𝑐 = 700V.
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system parameters, such as capacitance or phase inductance (within the
boundaries of active and reactive power and modulation index).

5. Simulation results

Before testing the proposed technique in a real environment, some
in-depth simulations have been performed in MATLAB-Simulink®. The
operation points of the offline simulations considered to generate the
training datasets are the same shown in Table 6. For a proper com-
parison, 5 different modulation methods, with balancing capabilities,
for 5-level DCC converters are considered apart from the proposed one
(CART):

• A space-vector based algorithm [7] (SVBA).
• Two integrated control and modulation methods proposed in [10]

(OICM and MICM).
• A model-predictive control based on finite control set (FCS-

MPC) [11].
• The original proposal for the optimization problem implemented

through a look-up table [13] (LUT).

Among these six controllers, LUT, CART and FCS-MPC are based on
optimal formulations, whereas SVBA, OICM and MICM are based on
conventional approaches that uses averaged models.

The LUT method is an alternative procedure to implement the
results of the offline optimization based on interpolating them from
a look-up table. The SVBA combines the small and large switching
vectors in the space vector hexagon in such a way that balancing
capabilities are achieved for any operating point. The FCS-MPC is
based on selecting every sampling interval the switching state that
yields the lower value of a weighted cost function that covers current
reference tracking and voltage balance while minimizing the number
of commutations. The cost-function weighting values of the FCS-MPC
have been selected in such a way that the balancing error at steady
state is lower than 10 V. Moreover, the FCS-MPC approach has been
evaluated under three sampling frequencies: 10, 25 and 50 kHz. Lastly,
OICM and MICM define a control law to compute the duty ratios for
each phase and level in the control stage.
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Fig. 7. Simulation: (Left) The three cases of grid voltages with negative sequence component with phase-shifts: 0◦, 30◦ and −40◦. (Right) Resultant capacitor voltage differences
for the proposed approach.
Fig. 8. Experimental setup used for the experiments.

Table 7 shows the circuit and controller parameters which will be
used both in simulations and experiments. Table 6 shows the operating
points considered in the training dataset (see Section 4.2 for details on
the offline training process).

The phase currents in steady state for each of the modulation meth-
ods are depicted in Fig. 5(a) with a zoomed area of the switching ripple.
The values of the current total harmonic distortion (THD) computed in
simulation are shown in Table 8. The number of commutations is also
shown for each method in Table 8 based on the switching state output
depicted in Fig. 5(b).

5.1. Currents and commutations

The proposed method achieves a current distortion similar to that of
the LUT-based method and smaller number of commutations, which is
an expected outcome as both implement the same optimal formulation
and the CART generalizes the result of the optimization. SVBA and
OICM have larger THD values due to the fact that they tend to use
larger switching vectors, increasing the effective phase-phase voltage
and number of commutations. In contrast, MICM achieves better cur-
rent distortion at the cost of yielding more than twice the number of
commutations. FCS-MPC deserves special attention, as there is a trade-
off between the THD value and the number of commutations according
to the sampling frequency used. At 25 kHz, FCS-MPC achieves similar
current distortion and number of commutations as CART, but requires
10
Fig. 9. Experiment: Three-phase currents in steady-state for CART, LUT [13] and
SVBA [8]. 𝑣𝑑𝑐 = 750V, 𝑅 = 60Ω, 𝑞𝑟 = 0 kV A.

an increase in the sampling frequency, which may not be feasible in
certain scenarios.

5.2. Capacitor voltage balance

The capacitor voltage balancing capabilities are shown in Fig. 6
under several scenarios of power factor (depicted at the top of the
figure). This figure shows how the capacitor voltage values evolve
when the balance starts at 𝑡 = 1 from an unbalanced voltage condition
(𝑣𝑑1 = −40, 𝑣𝑑2 = 60, 𝑣𝑑3 = −5 for 𝑡 < 1). In comparison with LUT, CART
is able to achieve balancing under a wider range of operating points.
The LUTs were generated considering only the conditions of Test C,
therefore the balancing is not guaranteed for different conditions, as
happens with tests A, B, and D. On the contrary, due to the extended
training data set, the qualitative information used for input–output
data and its generalization capability, the CART approach is capable of
achieving voltage balance capabilities, thus achieving a more flexible
implementation of the optimization problem originally computed. It
should be mentioned that the power factors of tests B and D were not
explicitly considered in the training dataset ( Table 6), which indicates
the generalization capabilities of the CART method.

In terms of capacitor voltage balancing of the remaining approaches,
FCS-MPC exhibits the fastest balancing no matter the sampling fre-
quency or the test considered — which is why only two tests for the
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three sampling frequencies have been considered. However, no zero-
steady-state error is achieved. Alternatively, SVBA shows improved
balancing capabilities with the downsides of increased current distor-
tion and number of commutations (see Table 8). For the sake of clarity,
only the MICM approach is depicted, as its balancing capabilities are
better than those of the OICM. Still, MICM has the slowest balance
of the considered approaches without reaching zero-steady-state error.
Note that the differences in the settling time between Tests B, C and
D for SVBA and Test C and D for FCS-MPC have little effect on this
comparison. Therefore, for the sake of clarity, Tests A, E in SVBA and
Tests A, B, E for FCS-MPC are omitted here. Lastly, CART achieves
balancing times similar to LUT, which are faster than MICM, but slower
than SVBA or FCS-MPC. Nevertheless, this balancing times are not
expected to have any effect during steady state conditions, only during
transients, and thus it is mainly required that balanced conditions are
reached.

5.3. Operation under grid unbalanced conditions

Despite the fact that CART training has not considered an un-
balanced grid, the method still achieves balancing in the presence
of negative sequence. This is because the current control is always
fulfilled and the modulation only changes the derivatives of the ca-
pacitor voltage differences, no matter their magnitude. This is shown
in Fig. 7 where capacitor voltage balancing capabilities are shown for
different negative sequence conditions in the grid voltage. For the cases
considered, a phase voltage reduction of up to 20% in one phase is
given, and the proposed method should keep the capacitors balanced.
Different phase shifts of the negative sequence are considered and
shown in Fig. 7(a).

The resultant capacitor voltage differences are shown in Fig. 7(b). It
can be seen that in all cases the voltage differences are driven to zero in
a reasonable time. The behavior of the phase currents is omitted here
because it is almost identical to the top graph in Fig. 5(a).

5.4. Summary of simulations

In summary, for these simulations, the proposed method achieves
an acceptable balancing settling time, a good THD value, and a low
number of commutations, even in scenarios that were not covered in
the training dataset. Therefore, it performs better compared to the rest
of the approaches considered.

6. Experimental results

In this section, several experiments have been carried out with three
different modulations. The purpose of this comparison is to analyze
the feasibility and improvement of the current proposal compared to
the alternative implementation (LUT) and a more conventional strategy
(SVBA). These modulations are:

1. CART: Proposed modulation with the same trees obtained in the
simulation section (Section 5).

2. LUT: Alternative procedure presented in [13] for the implemen-
tation of the optimization results. It uses the same tables as the
one obtained for the simulations.

3. SVBA: space vector approach with balancing capabilities ex-
tracted from [8] as Improved Vector Decomposition SVM, which
modifies the vector sequence of [7] – used in simulation – to
improve current distortion and reduce commutations.

The system used for the experiments is shown in Fig. 8, and the same
decision trees and parameters ( Table 7) used in the simulation section
are considered.

Firstly, the phase currents obtained with the three approaches are
shown in Fig. 9, and their corresponding THD value in Fig. 10 for
𝑣 = 750V and 𝑅 = 60 Ω at steady-state conditions and nominal
11

𝑑𝑐
Fig. 10. THD values of the currents shown in Fig. 9.

Fig. 11. Experiment: Test 1. Active and reactive power behavior of the considered
three approaches (Table 9).

Fig. 12. Experiment: Test 2. Capacitor voltage balancing under unitary power factor
conditions when starting from an unbalanced capacitor voltage condition (𝑣𝑑1 =
−40, 𝑣𝑑2 = 60, 𝑣𝑑3 = −30). 𝑣∗𝑑𝑐 = 750V.
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Table 9
Load and dc-link voltage values used in Test1.

𝑡 ∶ 0 → 1.5 𝑡 ∶ 1.5 → 2.2 𝑡 ∶ 2.2 → 2.9 𝑡 ∶ 2.9 → 4.4 𝑡 ∶ 4.4 → 5.5

𝑣∗𝑑𝑐 (V) 𝑅 (Ω) 𝑣∗𝑑𝑐 (V) 𝑅 (Ω) 𝑣∗𝑑𝑐 (V) 𝑅 (Ω) 𝑣∗𝑑𝑐 (V) 𝑅 (Ω) 𝑣∗𝑑𝑐 (V) 𝑅 (Ω)

750 120 750 60 750 → 800 60 800 60 800 120
operating point. In spite of CART and LUT having different implemen-
tation approaches, both are based on the same optimization problem
(except for term 2 in (18) which is exclusive of this paper, although it
does not introduce noticeable differences in steady state). Therefore,
they yield very similar THD values, despite the fact that the CART
implementation is much more simple, among other advantages that
will be exposed in the following. Alternatively, the SVBA approach
improves the distortion from the simulations, but it is still larger than
CART or LUT in experiments. This is due to the fact that SVBA resorts
to small and large switching vectors within every sequence to allow the
use of redundant ones, which increases the switching ripple.

To evaluate the behavior of the system under different conditions,
three experimental tests are considered:

• Test 1: Dynamical test on modulation index and active power. In
this test, the values of the dc-link voltage reference (𝑣∗𝑑𝑐) and the
load (𝑅) are modified during online operation. These values are
shown in Table 9.

• Test 2: Capacitor voltage balancing under unitary power factor
condition. In this test, the system starts in an unbalanced situation
(similar to Test C in Fig. 6) with 𝑣𝑑1 = −40, 𝑣𝑑2 = 60, 𝑣𝑑3 = −30
and the balancing is activated at 𝑡 = 1. 𝑣∗𝑑𝑐 = 750 V and 𝑅 = 120Ω.

• Test 3: Dynamical test on reactive and active power. In this test,
the reactive power reference (𝑞∗) of the system is modified from
zero to 5 kV A at 𝑡 = 1, and to −5 kV A at 𝑡 = 4. In parallel, the
load is detached at 𝑡 = 2 to seek zero power factor. The power
conditions of this test is equivalent to those found in Test C, Test
B, Test A and Test E in simulation (Fig. 6). 𝑣∗𝑑𝑐 = 750 V and
𝑅 = [120, inf] Ω.

The first test is devoted to show how the CART approach performs
similarly to the LUT-based one when the operating conditions are those
for which the LUT was designed, and were considered, among others,
in the CART training dataset. Besides, the results when using SVBA
12
are also depicted. For this, the active and reactive powers, together
with their references, are depicted in Fig. 11. It can be seen that the
changes in 𝑣𝑑𝑐 or 𝑅 considered in Table 9 modify 𝑝∗ accordingly.
When comparing the three approaches, conclusions similar to those
corresponding to Fig. 9 can be extracted. The three approaches behave
satisfactorily, where CART and LUT present a similar ripple in the
instantaneous active and reactive power, while SVBA presents a slightly
larger ripple. The latter is consistent with the THD values shown in
Fig. 10.

Test 2 is focused on the capacitor voltage balancing capabilities
under unitary power factor conditions, i.e. the power factor under
which the LUT was generated and were also included in the training
dataset. As can be seen in Fig. 12, the capacitor voltage balancing takes
place at 𝑡 = 1, achieving a balanced condition in 1.2, 1.8 and 0.55 s
for CART, LUT and SVBA, respectively, which is similar to the results
obtained in simulations (test C in Fig. 6). Note that, this is a transient
state and it is only shown to prove that the capacitor voltage differences
are corrected in the three scenarios under nominal conditions, therefore
the balancing speed is of little concern for the steady-state performance.

Lastly, Test 3 is intended to show the feasibility of the three modu-
lation approaches under non-unitary power factor conditions. For this,
the reactive power reference is modified from 0 to 5 kVA at 𝑡 = 1,
and to −5 kVA at 𝑡 = 4. In parallel, the load starts at 120 Ω and
is detached at 𝑡 = 2 to emulate a power factor equal to zero. The
results are shown in Fig. 13. As can be seen, both CART and SVBA
keep the capacitors balanced under these changes, while LUT fails to
achieve this objective, similarly to the simulation results (tests B, D,
and E in Fig. 6). The main reason is that the LUTs were not obtained
under such power factor conditions, and therefore capacitor voltage
balancing is not guaranteed. In fact, the capacitor voltages start to
diverge from 𝑡 = 1 until the experiment has to be stopped to avoid
capacitor overvoltage. In contrast, and as one of the main benefits
of CART versus LUT, the CART approach is able to implement the
Fig. 13. Experiment: Test 3. (Left) Active and reactive power under changes in the reactive power (𝑞∗ = [0, 5,−5] kVA at 𝑡 = 1 and 𝑡 = 4), and when the load is detached from the
dc-link at 𝑡 = 2. (Right) Capacitor voltages evolution under the same experiment.
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Table 10
THD values of the currents (Fig. 9) and number of
commutations over a grid period.
Approach THD (%) # Commt

CART 4.6 528
LUT [13] 4.8 610
SVBA [8] 5.4 752

optimization results and fulfills this objective under non-unitary power
factor values. In fact, it is worth noting that the CART was trained only
for the conditions shown in Table 6, where condition 𝑞∗ ≠ 0 and 𝑝∗ ≠ 0
was not included. However, in period 1 ≤ 𝑡 ≤ 2, this condition is present
and the CART is able to maintain the capacitors balanced. Therefore,
this approach has been able to consider other operating points different
from those for which it has been trained, which indicates its robustness
and feasibility for wider operating points.

The average number of commutations per grid period produced
by each approach is measured in the period from 𝑡 = 0 to 𝑡 = 1 of
Test 1 (Fig. 11), yielding the results shown in Table 10. The proposed
approach stands out for its reduced THD value and the number of
commutations. Compared to SVBA, the CART approach has a lower
balancing speed, as shown in Fig. 12. However, let us remark that the
balancing is a secondary objective that takes effect during a transient
time. Once it is fulfilled, the performance indicators, such as THD and
switching losses, are more critical.

7. Conclusions

This paper presents a new method to implement the modulation
stage for 5-level DCCs based on a linear, mixed-integer optimization.
Such a problem is solved offline and its solutions are learned using
a classification and regression tree (CART) procedure. As a result,
eight regression trees are obtained that can be easily implemented
in low-resource control hardware by means of simple nested ‘‘if-else’’
statements. Furthermore, the resulting modulation algorithm achieves
capacitor voltage balance under a wide range of operating conditions
using three features: (1) consideration of several operating conditions
13
in the training dataset; (2) the way the qualitative information is
captured for the input–output training data; and (3) the generaliza-
tion capabilities of CARTs. The resulting modulation scheme has been
tested for several operating conditions, including some not covered in
the training set, showing enhanced effectiveness compared to other
approaches in both simulation and experiments. Additionally, random
forests have become an increasingly popular extension of CARTs, ex-
ploiting their randomness to produce even better decision trees, and
thus it may be advisable to extend this work in that direction. Other
classifications schemes, such as C4.5, might offer additional benefits
on the coverage and implementation while taking into account the
implementation restrictions. In that case, no changes should be made
in the control architecture, the controller implementation, or even the
optimization problem formulation and solution. Furthermore, this ap-
proach could be easily extended to alternative topologies by redefining
the optimization formulation.
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Fig. A.14. Example of a decision tree obtained for 𝑣𝑑1 > 0, 𝑣𝑑2 > 0, 𝑣𝑑3 > 0 with the output shown in bold.
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