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Abstract 

In this paper, we present two methods for the synthetic generation of 1-min Direct Normal solar 

Irradiance (DNI) data from hourly means that can be applied globally without any local 

adaptation, which are based in the modelling of the stochastic component of DNI, and in the 

adimensionalization of the daily profiles. The similitude between measured and generated DNI 

distributions has been evaluated through the Kolmogorov-Smirnov test Integral (KSI), and its 

performance on the thermal power produced by a parabolic trough (PT) plant has been 

calculated using the daily normalized root mean square deviations (NRMSD) with respect to site 

measurements. The generation methods provides, for an annual 1-min synthetic data set, KSI 

values of ~3.3 W/m2 and ~12.9 W/m2 (depending on the generation method used), and daily 

NRMSD of ~0.9% and 3.4%, respectively. Sites selected for validating these methods are located 

at different climates and latitudes, suggesting their global applicability. 
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1 Introduction  

Developers and operators of concentrated solar thermal (CST) plants require Direct Normal 

Irradiance (DNI) data with high resolution for the detailed performance simulations (Gall et al., 

2010). However, high resolution DNI data are often limited in duration and location, and typically 

historical solar resource data are available at hourly scale (Fernández-Peruchena et al., 2010). 

DNI series can be calculated at 15-min time intervals from currently operating satellites, but 

even this resolution may not be sufficient when evaluating a CST system performance (Beyer et 

al., 2010). Moreover, satellite-derived long time historic DNI series often does not maintain the 

frequency distribution of the ground measured data (Hammer et al., 2009). 
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There have been attempts to generate high resolution solar irradiance data. An early example is 

given by Skartveit and Olseth, (1992) where the probability distribution of short-term irradiance 

data, normalized by transformation to clear sky index data together with the knowledge of the 

autocorrelation coefficient of these sets forms the bases for a scheme of data synthetization. 

Beyer et al. (2010) generated high frequency DNI series from their cumulative distribution 

functions. Morf (2013) generated sequences of instantaneous Global Horizontal solar Irradiance 

(GHI) values dividing the solar radiation into a deterministic and a stochastic component. The 

deterministic component was related to the Ångström–Prescott regression, while the stochastic 

component was derived from the cloud cover index.  Polo et al. (2011) developed a model to 

generate synthetic 10-min DNI and GHI data by adding the deterministic contribution of the 

hourly mean values to the stochastic fluctuation from the mean. This model was improved by 

Larrañeta et al. (2015) for a more accurate DNI generation, and modified by Grantham et al. 

(2017) for generating matched pairs of 5-min GHI and DNI values from hourly means. Grantham 

et al. (2013) previously proposed the use of bootstrapping techniques for generating synthetic 

5-min DNI series from hourly means. Ngoko et al. (2014) presented a second-order Markov 

Transition Matrix (MTM) to generate 1-min synthetic GHI from the daily clearness index. Bright 

et al. (2015) also used MTM to stochastically determine cloud cover to subsequently generate 

1-min DNI, GHI and diffuse irradiance. However, the model requires other meteorological 

information such as cloud base height, wind speed or sea level pressure. The model was 

improved including the spatial dimension variation in the synthetic generation without the need 

of input irradiance data (Bright et al., 2017). Fernández-Peruchena proposed the generation of 

1-minute resolution DNI series from the daily (Fernandez-Peruchena et al., 2014), 3-h 

(Fernández-Peruchena et al., 2017) and hourly (Fernández-Peruchena et al., 2015) DNI means. 

The method is based on the generation of a dimensionless high frequency database of daily DNI 

curves. The same concept was used by Fernández-Peruchena et al. (2016) to generate synthetic 

1-min GHI from hourly means. 

It is worth highlighting that these earlier procedures require high-frequency ground 

measurements for characterizing in the location under study for generating high-frequency solar 

irradiance series. The models presented in this work use measurements from one location to 

characterize the cloud transients and generate synthetic 1-min DNI data in any location where 

hourly DNI data is available, without any local adaptation. Also, they require different degrees 

of accuracy in the knowledge of local hourly DNI data, thereby facilitating their application: 

 The SA (Stochastic Adaptation) method requires high-quality site hourly DNI series and 

consists on dividing the solar radiation into a deterministic and stochastic component 

(i.e., the contribution from the hourly mean and stochastic the fluctuation from the 

mean depending on the sky condition). This method is based on Polo et al. (2011) and 

Larrañeta et al. (2015). 

 The ND (Non-Dimensional) method only requires the site intra-daily characterization of 

DNI variability and distribution, and thus does not require exact hour-to-hour local DNI 

series. This method is based on the adimensionalization of high frequency daily DNI 

profiles by a clear-sky envelope approach, and is based on Fernández-Peruchena et al. 

(2015). 
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The models have been applied in three locations with different climatic conditions. The paper is 

presented as follows: Section 2 presents measured database used in the work; Section 3 

describes the methodologies proposed for generating 1-min DNI data from hourly means. 

Section 4 shows the results found and in Section 5 discussion, conclusions and future work are 

drawn. 

2 Meteorological database 

In this work, an extensive database is used for training the methods proposed (Table 1). This 

database is composed of 1-min averages values of DNI recorded during 14 consecutive years 

(2002–2015) for the location of Seville (Spain). The measurements were taken with a sampling 

and storage frequency of 0.2 Hz. A first class Eppley NIP pyrheliometer mounted on a sun tracker 

Kipp & Zonen 2AP measured the DNI. The devices are located at the meteorological station of 

the Group of Thermodynamics and Renewable Energy of the University of Seville and have been 

periodically calibrated, at least once every two years. 

Table 1. Location selected for the training the methods. 

  
Latitude 

(°N) 
Longitude 

(°W) 
Altitude (m) Climate Period 

Seville 37.4 6.0 12 Mediterranean 2002-2015 

 

In addition, the models have been validated in three other locations belonging to different 

climates and latitudes (Table 2). We have selected these locations as a compromise solution 

between climate representativeness and availability of high quality 1-min DNI measured data. 

DNI data of Payerne (Vuilleumier et al., 2014) measured with a first class pyrheliometer Kipp & 

Zonen CHP1 pyrheliometer, and have been provided by the Baseline Surface Radiation Network 

(BSRN) (Ohmura et al., 1998); DNI data from Pretoria has been accessed from the Southern 

African Universities Radiometric Network (SAURAN) (Brooks et al., 2015), and have been 

measured with a Kipp & Zonen CHP1 pyrheliometer; DNI data from Almeria belongs to CIEMAT 

and DLR meteorological station at the Plataforma Solar de Almeria (PSA), and have been 

measured with a Kipp & Zonen CHP1 pyrheliometer. Data used in this work have been subjected 

to quality-control procedures following the BSRN recommendations (McArthur, 2004). 

 Table 2. Locations selected for validating the methods. 

  Latitude Longitude 
Altitude 

(m) 
Climate Period 

Radiometric 
Network 

Almería 37.1 °N 2.3 °E 500 Semi-arid 2013 CIEMAT-DLR 

Pretoria -25.7 °N 28.2 °W 1410  Sub-Tropical 2016 SAURAN 

Payerne 46.8 °N 6.9 °W 491 Continental 2014 BSRN 

data in the 1-min 

3 Methodology 

In the next sections, we briefly describe the two methodologies implemented for the synthetic 

generation of high frequency synthetic DNI data from hourly means. 
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3.1 Stochastic adaptation (SA) model 

The most recent scheme of this model is based on a methodology proposed by Larraneta et al. 

(2015) which in turn improved the model proposed by Polo et al. (2011). In this model, the DNI 

is divided into a deterministic and stochastic component: 

- The deterministic component is generated by the cubic interpolation of the hourly 

means calculated every 4 hours in the high-resolution time scale (𝐼𝑏𝑛𝑖3
𝑖 ). 

- The stochastic component (𝐼𝑏𝑛𝑠𝑡𝑜𝑐
𝑖 ) is dynamically reproduced by using random 

numbers from the beta distribution curve whose characteristic parameters were fitted 

for each sky condition, introducing a random sign for the fluctuation. 

The synthetic data for the instant i (𝐼𝑏𝑛𝑠𝑦𝑛𝑡ℎ
𝑖 ) is calculated as the combination of the 

deterministic plus the stochastic component (Eq. 1): 

𝐼𝑏𝑛𝑠𝑦𝑛𝑡ℎ
𝑖 = 𝐼𝑏𝑛𝑖3

𝑖 + 𝐼𝑏𝑛𝑠𝑡𝑜𝑐
𝑖                                                                                                                     (1) 

We aim to generate synthetic data at 1-min resolution for facilitating detailed modelling of 

Concentrating Solar Power (CSP) performance (Ramirez et al., 2017) , even if the original model 

was designed to generate synthetic 10-min data. This decision implies a new DNI fluctuation 

characterization and the reassessment of the dynamics of the stochastic component 

reproduction. 

3.1.1 Fluctuations in clear sky equivalent DNI hours. 

In the previous model (Larraneta et al., 2015), the decision of whether or not to include 

fluctuations in the synthetic data was led by a daily index. In many cases, we added fluctuations 

in clear sky periods because a daily index may not be appropriate to characterize the intra-daily 

performance of the solar radiation. To solve this weakness, we implemented an algorithm to 

identify clear sky equivalent DNI periods from hourly DNI means (Larrañeta et al., 2017 (a)). The 

approach is performed comparing the differences between the means, the slopes and the 

lengths of the measured and theoretical clear sky curves. In periods identified as clear, we would 

not add fluctuations (𝐼𝑏𝑛𝑠𝑡𝑜𝑐
𝑖

 = 0 W/m2).  Fig. 1 shows a daily shape of the measured DNI 

(𝐼𝑏𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, dotted blue line) and the periods identified as clear sky equivalent DNI 

(𝐼𝑏𝑛𝑐𝑙𝑒𝑎𝑟−𝑒𝑞, black line) with the mentioned algorithm. 

 

Figure 1. Daily example of the clear sky equivalent DNI identification algorithm output. 

Measured DNI (a), and clear sky equivalent DNI periods identified by the algorithm (b). 
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3.1.2 Characterization of the Fluctuations 

The fluctuations of the instantaneous solar irradiance from their hourly means were randomly 

reproduced in the previous model from beta distributions fitted to different sky conditions. Each 

sky condition was defined as an interval of 0.1 points of the direct fraction index, 𝑘𝑏 (Skartveit 

and Olseth, 1992). 

𝑘𝑏 = 𝐼𝑏𝑛/𝐼𝑏𝑛𝑐𝑠
         ,              (2) 

Where, Ibn is the observed direct normal irradiance and 𝐼𝑏𝑛𝑐𝑠
is the clear-sky DNI. 

Each group of data should represent the behaviour of the instantaneous DNI under different sky 

conditions. However, we found that different sky condition situations were lumped together in 

the same group. A group defined solely by means of an interval 0.1 points of the direct fraction 

index and even more in an hourly basis would include situations with different types of passing 

clouds; therefore, it may not be enough to characterize the fluctuations of the instantaneous 

solar irradiance. In Figure 2, we show two images of the sky with similar direct fraction index 

while the passing clouds are different. The left picture shows cirrostratus and the right picture 

shows broken clouds.  

 

 

Figure 2. Sky camera images taken with similar hourly direct fraction index. (a) 𝑘𝑏= 0.44 

obtained with a cirrostratus. (b) 𝑘𝑏= 0.40 obtained with a set of broken clouds. 

For a more accurate generation procedure, we apply a Machine Learning based classification 

method to perform a greater discretization of the 14-years database used for training the model. 

The aim of a clustering algorithm based on a partitioning method is to classify a set of data with 

the same features into groups or clusters. In this work, we use the k-Medoid algorithm (Han and 

Kamber, 2001) since it is the most appropriate algorithm for this type of data (Al-Shammari et 

al., 2016). The k-medoid algorithm estimates a reference point or “medoid” which is the most 

centrally located object or point in the cluster and then minimizes the sum of the metric distance 

between every object of a group and its medoid. The k-medoid requires input information to 

classify each hour h. Based on Perez et al. (2011), we calculate two statistics intending to define 

the sky condition by characterizing the DNI instant fluctuations from the mean. 

(a) (b) 
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1. The standard deviation of the differences between the 1-min DNI data to the cubic 

interpolation of the hourly values in the 1-min scale (σ1−𝑚𝑖𝑛
ℎ ).  

2. The maximum value of the differences between the 1-min DNI data to the cubic 

interpolation of the hourly values in the 1-min scale (max1−𝑚𝑖𝑛
ℎ ). 

The first metric provides a measure of the distribution of the 1-min data within an hourly 

interval, while the second metric quantifies the highest fluctuation to be expected within an 

hour. The algorithm requires the specification of the number of clusters. We use three clusters 

for each interval of 𝑘𝑏 in order to have enough data within each of them to be capable to define 

the cloud transients. This number of clusters is also justified by the average silhouette value of 

0.72, which is indicative of a strong structure (Kaufman and Rousseeuw, 1990). The silhouette 

index (Rousseeuw, 1987) qualifies every point by considering its position with respect to the 

other points of the cluster to which it belongs and its position with respect to points from other 

clusters.  

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖),𝑏(𝑖)}
          (3) 

a(i) is the average dissimilarity between observation i and all other points of the cluster to which 

i belongs, while b(i) is the mean dissimilarity between i and its neighbouring cluster, i.e. the 

nearest one to which i does not belong. Observations with large s(i) are well clustered. The 

average silhouette value can be used to evaluate the quality of the classification.  

In Fig. 3 we present the silhouette plot and the cluster groups together with their centroids of 

the interval 0.4 < 𝑘𝑏 ≤ 0.5, respectively. In the silhouette plot, we present the silhouette value 

of each point. We also present the average silhouette value and the number of points of each 

cluster, and for the entire set.  

  

Figure 3. (a) Silhouette plot of the classification obtained for the interval 0.4 < 𝑘𝑏 ≤ 0.5. (b) 

Clusters and centroids for the interval 0.4 < 𝑘𝑏 ≤ 0.5. 

Twenty-four groups are constructed using this cluster methodology: Three for each 𝑘𝑏 bins of 

width 0.1. Table 3 shows the centroids obtained for each 𝑘𝑏 interval. In addition, we present the 

probability of occurrence of each cluster within each 𝑘𝑏 interval in the 14 years of 

measurements for the location of Seville (Spain). 
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Table 3. σ1−𝑚𝑖𝑛
ℎ  and max1−𝑚𝑖𝑛

ℎ  of the centroids obtained for each label and 𝑘𝑏 interval and 
probability of occurrence of each cluster. 
 

Interval Label σ1−𝑚𝑖𝑛
ℎ  (W/m2) max1−𝑚𝑖𝑛

ℎ  (W/m2) Probability 

0 < kb ≤ 0.1 

1 6 23 0.68 

2 44 174 0.25 

3 85 397 0.07 

0.1 < kb ≤ 0.2 

1 72 301 0.37 

2 30 116 0.39 

3 120 523 0.24 

0.2 < kb ≤ 0.3 

1 127 520 0.26 

2 77 303 0.4 

3 27 106 0.34 

0.3 < kb ≤ 0.4 

1 76 292 0.41 

2 124 477 0.29 

3 23 89 0.31 

0.4 < kb ≤ 0.5 

1 122 456 0.35 

2 20 83 0.28 

3 73 289 0.37 

0.5 < kb ≤ 0.6 

1 74 302 0.34 

2 20 79 0.34 

3 124 495 0.31 

0.6 < kb ≤ 0.7 

1 124 538 0.27 

2 15 59 0.41 

3 67 280 0.32 

kb > 0.7 

1 133 599 0.23 

2 67 291 0.29 

3 18 70 0.48 

 

3.1.3 Stochastic component reproduction 

In the previous model (Larraneta et al., 2015), the stochastic component was reproduced by 

means of beta distributions fitted to the normalized standard deviations of the instant values to 

the hourly means, being the sign of the fluctuation randomly added from a normal distribution. 

We found that, in some cases, we might reproduce values that never happened because of the 

combination of the beta fit and the assumption of a normal distribution of the fluctuation sign. 

To solve this weakness, we calculate the stochastic component based on the common practice 

for the dynamic generation of synthetic data from Markov models (Ngoko et al, 2014). To this 

end, we calculate the Empirical Cumulative Distribution Function (ECDF) of the differences 

between the 1-min DNI data to the cubic interpolation of the hourly values in the 1-min scale 

(𝑑𝑖𝑓1−𝑚𝑖𝑛) of each cluster. The procedure that has been already used for the synthetic 

generation of hourly DNI datasets (Larrañeta et al., 2017 (b)), is described below: 

i. Calculate the ECDF of the  𝑑𝑖𝑓1−𝑚𝑖𝑛 for each cluster (Section 3.1.2). 
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ii. Select the group from which fluctuations are going to be reproduced: To this end, we 

generate a random number Y from a uniform distribution between 0 and 1 for each hour 

h, and locate the cluster whose probability of occurrence is the same as the generated 

with the random number in the training dataset. 

iii. Estimate the stochastic component of the 1-min synthetic data: We generate random 

numbers R from a uniform distribution between 0 and 1 for each instant i, and locate 

the value, within the previously selected cluster (step ii), whose cumulative probability 

is the same as the generated with the random number R obtaining thus the stochastic 

component (𝐼𝑏𝑛𝑠𝑡𝑜𝑐
𝑖 ). Fig. 4 shows a graphical explanation of the step iii.  

 
Figure 4. Graphical reproduction of step iii of the stochastic component. For a randomly 

generated probability of 0.79 we obtain a stochastic component of -120 W/m2. 

In the new scheme of the model used in this work, the ECDFs of 14 years of measured data 

already include positive and negative fluctuations of the instant data from the mean, and thus 

it is not necessary to generate a random sign for the fluctuation. 

As most of the cloud transients at 1-min time resolution are gradual (Larrañeta et al., 2017 (c)), 

we have limited the random number R from the uniform distribution curve (step iii) of two 

consecutive instants to a maximum difference of ±0.3. 

3.2 Non.Dimensional (ND) model 

The original method consists in the adimensionalization of the daily DNI curve by the clear-sky 

envelope approach, creating daily Dynamic Paths from observed hourly DNI data (Fernández-

Peruchena et al., 2015). The method transforms each daily 1-min DNI curve into a dimensionless 

curve where the time scale and the DNI scale go from 0 to 1. In Fig. 5, we show the dimensionless 

daily shape for the same curve as presented in Fig. 1. For the synthetic generation of 1-min data, 

days were generated following the next steps: 

1. Calculate the clear sky DNI envelopes. To this end, they adjust the two parameters 

defining the ASHRAE exponential model (MacPhee, 1972) for each day. 
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2. Generate a database of dimensionless daily curves of the location under study. 

Normalize the measured data in terms of time and energy. At least one year of 1-min 

measured solar radiation data was required. 

3. Generation of synthetic 1-min DNI series on a given day. Combine envelopes and 

dimensionless daily DNI curves until the closest Euclidean distance between the daily 

and hourly means of the synthetic and measured series is found.  

 

Fig 5. Dimensionless daily shape example of the same curve as presented in Fig. 1. 

We found that the third step demands a high computational cost and requires a high-resolution 

solar radiation database, of at least one year, in the location under study. The modifications 

proposed here have been implemented in order to speed up the generation procedure. We 

propose a simpler clear sky envelope method and the use of dimensionless curves of the 

database of Seville, to generate synthetic high temporal resolution DNI data in any location. 

3.2.1 Clear sky envelope 

For the calculation of the nondimensionlized daily data packs, we use the envelope clear sky 

concept (Gómez Camacho and Blanco Muriel, 1990) to determine the maximum daily envelope 

clear sky irradiance (Ibncs
). We implement the clear sky A-B model (Larrañeta et al. 2017 (a))  

Ibncs
= Isc ∙ E0 ∙

A

1 + B ∙ mR
 ,                                                                                                                   (3) 

where mR is the relative air mass determined according to the expression of Kasten and Young 

(1989),  𝐼𝑠𝑐  is the solar constant, 𝐸0 the correction due to Earth-Sun distance and A and B are 

empirical parameters intended to model the turbidity of the atmosphere.  

We intend to characterize a unique set of parameters (A, B) for each year in a given location. 

These parameters are annually estimated by adjusting them to the maximum observed values 

of the relation 𝐼𝑏𝑛 𝐸0⁄  for every value of solar elevation higher than 5°.  We use the relationship 

𝐼𝑏𝑛 𝐸0⁄  to become A and B parameters independent of the day of the year.  
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A daily clear sky curve in the hourly resolution is lower than in the 1-min resolution as it is shown 

in Fig. 6 because the hourly resolution trends to smooth the amplitude of the cloud transients. 

In Table 4, we present the annual A-B parameters in the 1-min and the hourly resolution for the 

14 years used for the training of the model in Seville. 

 

Fig 6. Daily clear sky curve fitted to measured 1-min and hourly DNI data. 

Table 4. Annual 1-min and hourly A-B clear sky parameters for the years 2002-2016 at Seville. 

 1-min resolution 1-h resolution 

Year A B A B 

2002 0.829 0.119 0.864 0.178 

2003 0.812 0.109 0.825 0.145 

2004 0.837 0.113 0.859 0.165 

2005 0.848 0.115 0.865 0.155 

2006 0.844 0.115 0.843 0.155 

2007 0.836 0.129 0.839 0.157 

2008 0.851 0.130 0.860 0.166 

2009 0.835 0.121 0.849 0.164 

2010 0.830 0.104 0.861 0.164 

2011 0.838 0.143 0.847 0.178 

2012 0.824 0.117 0.835 0.144 

2013 0.822 0.109 0.833 0.135 

2014 0.814 0.116 0.857 0.168 

2015 0.848 0.130 0.848 0.155 

 

To generate a given day, we use a random iterative procedure that modifies the A and B 

parameters until the cumulative value of the available 1-h annual set and the synthetically 

generated 1-min annual set differ in less than 0.2%. The iterative process requires an initial A-B 

pair of values. We calculate them using the envelope clear sky method for the 1-h annual dataset 

used as input of the model. 
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3.2.2 Most similar day selection 

In the original model (Fernández-Peruchena et al., 2015), the most similar day selection was 

carried out taking into account the similarity of the cumulative values between a given day and 

the database used for the training. Based on Moreno et al. (2017), we characterize the daily DNI 

curve shapes by means of the energy, variability and distribution. We use the daily direct fraction 

index to characterize the daily energy of a given day following next equation: 

𝑘𝑏 =
𝐻𝑏𝑛

𝑑

𝐻𝑐𝑠
𝑑

  ,                                                                                                                                                  (4) 

where 𝐻𝑏𝑛
𝑑  is the daily DNI and 𝐻𝑐𝑠

𝑑  is the daily DNI under clear sky conditions. For the 

characterization of the variability, we use the Variability Index (𝑉𝐼) (Stein et al., 2012) defined 

as the ratio between the length of the DNI curve and the length of the maximum enveloping 

clear day curve calculated in Section 3.2.1. 

𝑉𝐼 =
∑ √(𝐼𝑏𝑛𝑘

− 𝐼𝑏𝑛𝑘−1)
2

+ ∆𝑡2𝑛
𝑘=2

∑ √(𝐼𝑐𝑠𝑘
− 𝐼𝑐𝑠𝑘−1)

2
+ ∆𝑡2𝑛

𝑘=2

                                                                                                (5) 

𝐼𝑐𝑠 is the hourly enveloping clear sky direct normal irradiance, Δt refers to an interval of one 

hour, and n is the number of 1-hour intervals of the considered day. For the characterization of 

the temporal distribution, we use the morning fraction index 𝐹𝑚 defined as the ratio between 

the accumulated DNI in the first half of the day and the accumulated DNI for the whole day. 

𝐹𝑚 =
𝐻𝑏𝑛_𝑚

𝑑

𝐻𝑏𝑛
𝑑                                                                                                                                                 (6)  

𝐻𝑏𝑛_𝑚
𝑑  is the DNI recorded from the sunshine to the solar noon and 𝐻𝑏𝑛

𝑑  is the daily DNI. 

For the selection of the most similar day, we use the K Nearest Neighbour (kNN) classification 

algorithm of a supervised Learning Machine (Fix and Hodges, 1951).  kNN categorizes objects 

based on the classes of their nearest neighbours in the dataset. kNN predictions assume that 

objects near each other are similar. We train the algorithm with the database of Seville. We use 

the daily triples of  𝑘𝑏 , 𝑉𝐼 and 𝐹𝑚 as predictors with the same weight and we assign one class 

label to each day. In a second step, we calculate these daily triples of indexes for each curve of 

the input dataset and then we predict the most similar day with the trained learning machine. 

The output of the algorithm would be the class label found to be the most similar day of the 

database of Seville to the input day.  

3.3 Statistical indicators 

To evaluate the distribution we calculate the KSI (Kolmogorov-Smirnov test integral) index that 

is defined as the integrated differences between the CDFs of the two data sets (Espinar et al., 

2009). The unit of this index is the same for the corresponding magnitude 

𝐾𝑆𝐼 = ∫ 𝐷𝑛𝑑𝑥
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

,                                                                                                                                (7) 
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where, 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛are the extreme values of the independent variable, and 𝐷𝑛 are the 

differences between the CDFs of the measured and synthetic datasets. 

The 𝐾𝑆𝐼 in W/m2 shows comparable results regardless of the time resolution of the synthetic 

data. The higher the KSI values, the worse the model fit. 

It is a common practice to evaluate a relative value of KSI (%), obtained by normalizing the KSI 

(W/m2) to the critical area 𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. 

𝐾𝑆𝐼(%) = 100 ∙
∫ 𝐷𝑛𝑑𝑥

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
                                                                                                                 (8) 

𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝑉𝑐 ∙ (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)                                                                                                                (9) 

The critical value 𝑉𝑐  depends on the population size 𝑁 and is calculated for a 99% level of 

confidence as:  

𝑉𝑐 = 1.63
√𝑁

⁄     𝑁 ≥ 35                                                                                                                         (10) 

This relative metric should be used with care: When evaluating long time high-resolution 

datasets, the KSI (%) will result in high values even for the same model performance. The more 

extensive the population size, the lower the critical area (in inverse proportion to √𝑁) and 

consequently the greater the KSI (%) for the same model performance. Therefore, the KSI (%) 

should only be used to compare datasets of the same length and resolution. 

The KSI statistic evaluates the differences of the CDFs of solar radiation measured and synthetic 

datasets since these differences are assumed to have an impact in plant production. It means 

that the interest in the DNI high temporal resolution synthetic generation and therefore the 

simulation of the cloud transients relies not only on the DNI itself, but also mainly on its impact 

on plant production. In this paper, we propose to compare the synthetic data to the measured 

data also in terms of thermal power produced in a field of a Parabolic Trough (PT) plant. To this 

end, we have simulated in NREL´s SAM software (version 2017.1.17) (Blair et al., 2014) a PT plant 

with a similar configuration to the plant of Andasol 3 (NREL, 2013) currently in operation. The 

main characteristics are summarized in Table 5.  

Table 5. Main technical data used in SAM to model a plant configuration similar to ANDASOL 3. 

Parameter Andasol 3 

Net output at design (MWe) 50 
Number of loops 156 
Collectors per loop 4 
Solar field aperture area (m2) 510,120 
HTF Therminol VP-1 
Storage capacity (hours) 7.5 

 

We evaluate the deviations between the modelled thermal power produced in the field with 

measured and synthetic data using the 𝑁𝑅𝑀𝑆𝐷 defined as: 

𝑁𝑅𝑀𝑆𝐷 (%) = 100 ∙ (𝑅𝑀𝑆𝐷
𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

⁄ ),                                                     (11) 
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where 𝑃𝑚𝑎𝑥 and 𝑃𝑚𝑖𝑛 are the maximum and minimum power production values of the observed 

dataset, respectively and RMSD is the Root Mean Squared Deviation. 

RMSD = √
1

𝑁
∑ (𝑃𝑚

𝑖 − 𝑃𝑠
𝑖)

2𝑁
𝑖=1  ,                                                                                                            (12) 

where N is the number of data pairs, 𝑃𝑚
𝑖  is the power produced when using the measured DNI 

as input and 𝑃𝑠
𝑖  is the produced when using the synthetic DNI as input in SAM. The evaluation is 

performed in the hourly and daily resolution. Only daylight hours are considered in this analysis. 

For the evaluation of the autocorrelation, we calculate the ramp rates (RRs) as the difference 
between successive data points over one minute using the eq. 9: 
 

𝑅𝑅 =
((𝐼𝑏𝑛𝑘

− 𝐼𝑏𝑛𝑘−1) − (𝐼𝑐𝑠𝑘
− 𝐼𝑐𝑠𝑘−1))

∆𝑡
⁄  ,                             (13) 

where Δt refers to an interval of one minute. The units will be given in W/m2∙min. We calculate 

the absolute RRs values for the annual datasets taking into account only daytime observations 

for solar elevations above 5°. 

The synthetic data generated with the SA model is expected to follow the shape of the measured 

data hour by hour, but the fluctuations of the solar radiation due to the cloud transients are 

synthetically reproduced. On the other hand, the ND model would reproduce fluctuations that 

have been measured but may not follow the hourly distribution of the measured data. 

4 Results  

Some examples of the daily profiles are presented in Fig. 7 where the goodness of the methods 

in reproducing the daily shapes of the 1-min DNI is qualitatively illustrated. We show four 

consecutive days measured at the location of Almeria (blue line) together with the 

corresponding synthetic data generated by each methodology: SA modelled (left side of Fig. 7, 

red dotted lines), and ND modelled data (right side of Fig. 7, green dotted line). 
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Figure 7. Illustrative examples of the results of the synthetic generation with the stochastic 

adaptation model (Ibns-SA) and adimensionalization model (Ibns-ND) compared to the measured 

dataset (Ibnm). 

To assess the performance of the models, we evaluate the mean, distribution and 

autocorrelation of the generated time series in comparison to the measured ones with modelled 

ones in each location. 
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The models maintain the mean by definition. The SA model includes an iterative procedure 

where the daily synthetic series are recalculated until both cumulative daily values, measured 

and synthetic, differ in less than 2%. The ND model uses an iterative procedure until the 

cumulative value of the available 1-h annual set and the synthetically generated 1-min annual 

set differ in less than 0.2%.  Fig. 8 shows, the ECDFs of the measured (blue line) and synthetic 

datasets generated with each model (red and green dotted line) in one-year dataset for the 

three locations under study.  

 

 

 

Figure 8. ECDFs of the measured (Ibnm) and synthetic DNI datasets generated with the 

stochastic adaptation model (Ibns-SA) and the adimensionalization model (Ibns-ND). 
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Table 6 shows the KSI value of each model in the selected locations. 

Table 6. KSI of the implemented models for the measured and synthetic DNI annual sets for each 

location  

Parameter Station (year) SA Model ND Model 

KSI (W/m2) 

Almería (2013) 12.7 2.8 

Pretoria (2016) 15.4 3.4 

Payerne (2014) 10.6 3.6 

 

Fig. 9 and Fig. 10 show a bar plot of the the monthly KSI (W/m2) and KSI (%) of the DNI time 

series for the three locations under evaluation.   

 

Figure 9. KSI (W/m2) values obtained in the comparison of 1-min synthetic DNI data compared 

to the measured data for the locations of Almería, Pretoria and Payerne with the SA model (a) 

and the ND Model (b). 

 
Figure 10. KSI (%) values obtained in the comparison of 1-min synthetic DNI data compared to 

the measured data for the locations of Almería, Pretoria and Payerne with the SA model (a) 

and the ND Model (b). 

The SA method provides average monthly KSI values of 11.2 W/m2 in Payerne, 16.0 W/m2 in 

Pretoria and a maximum value of 29.6 W/m2 in Pretoria. The ND model provides average 

monthly KSI values of 6.2 W/m2 in Almería, 9.0 W/m2 in Payerne and a maximum value of 16.5 

W/m2 in Pretoria.  

The greater KSI values are found in those months having a large number of high variability days, 

suggesting that in the case of the ND model, the characterization of the intra-daily variability 
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through the 𝑉𝐼 index may not be sufficient. Moreover, the use of hourly values in the calculation 

of the variability index entails a loss of information. This is also the case of the SA model: the 

grater the intra-daily DNI variability, the worse the model performance. The stochastic 

component reproduction (section 3.1.3) may not be accurate enough since it is independent of 

the intra-daily variability. Future improvements of this method should focus on this issue.  

Future works will model the relation of the variability index on different time resolutions and 

would characterize the variability of the solar radiation from two indexes, one giving information 

about the number of fluctuations and the other giving information about the amplitude of the 

fluctuations.  

 The results for the NRMSD of the thermal power produced in the three analysed locations are 

presented in Table 7. 

Table 7. 𝑁𝑅𝑀𝑆𝐷 of the modelled thermal power produced with the measured and synthetic 

datasets in the proposed PT plant. 

Parameter Station (year) SA Model ND Model 

NRMSDhourly (%) 

Almería (2013) 2.3 12.4 

Pretoria (2016) 2.7 12.8 

Payerne (2014) 2.3 14.7 

NRMSDdaily (%) 

Almería (2013) 0.8 3.0 

Pretoria (2016) 1.2 3.1 

Payerne (2014) 0.8 4.1 

 

The ND model synthetic data presents the best results in terms of frequency distribution for the 

location of Almería, while the SA model presents a higher KSI in all the locations. In Fig. 8, we 

can observe that the greatest differences are found for low levels of irradiance. When evaluating 

the NRMSD of the thermal energy produced in a PT plant with a common configuration, we 

observe that the SA model shows better performance. This occurs because it synthetizes the 

data hour by hour intending to follow the daily shape of the DNI while the ND model uses daily 

parameters to select the day to be generated. The hourly NRMSD is greater in the ND model 

than in the SA model in days with an uncoupled synthetic and measured variability, which leads 

to greater differences in plant performance.  

Fig. 11 shows the ECDFs of the measured and synthetic absolute RR values generated with each 

model (left) and their differences (right) in one complete year for each location. Fig. 12 shows a 

bar plot of the the monthly KSI values for the absolute RR time series of each model in the 

selected locations. Both modelled 1-min DNI datasets show ECDFs similar to the measured one. 

For high RRs (> 300 W/m2min), the differences in the measured and synthetic ECDFs values are 

almost negligible. The differences found at low RR indicate a lower variability of the measured 

dataset with respect to both modelled datasets. 
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Figure 11. ECDFs of the measured (RRm) and synthetic absolute RR datasets generated with the 

stochastic adaptation model (RRs-SA) and adimensionalization model (RRs-ND) (left) and their 

differences (right). 

  

Fig 12. Monthly KSI values for the absolute RR time series of each model in the selected 

locations obtained with the SA model (a) and the ND Model (b). 
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5 Conclusions 

In this paper, we present two methodologies for generating synthetic DNI data at 1-min time 

resolution in the absence of local high-frequency measured DNI series. Their global applicability 

is assured taken into account the flexibility of inputs: from accurate hourly DNI series (the SA 

method), to intra-daily characterization of DNI variability and distribution (the ND method), 

where exact hour-to-hour local DNI evolution is not required. 

These methodologies are based on previous works (Larrañeta et al., 2015; Fernández-Peruchena 

et al., 2015)), where some modifications have been applied in order to speed up its application. 

Larrañeta et al. (2015) methodology modifications are focused on the characterization and 

reproduction of the stochastic component of the solar radiation (SA model); Fernández-

Peruchena et al. (2015) methodology modifications are focused on the characterization of the 

daily profiles in terms of energy, variability and distribution (ND model). 

SA and ND have been trained with 14 years of measured 1-min DNI data for the location of 

Seville (Spain), and require no previous knowledge of the high-frequency patterns of solar 

irradiance at these sites (i.e., no local measurements of high-frequency solar irradiance are 

required to apply them). To address their performance, we compare the outputs of the 

proposed methodologies in three locations with diverse climatic conditions. The comparison of 

the frequency distribution of the synthetic DNI data compared to the measured ones reveals 

that the ND methodology shows a better performance (KSI ~3.3 W/m2) compared with the SA 

methodology (KSI ~12.9 W/m2). We also propose a comparison in terms of the thermal power 

produced in a field of a PT plant with a common configuration. In this case, we observe that the 

SA methodology provides a lower hourly NRMSD (~0.9 %) compared with the ND methodology 

(~3.4 %). Consequently, we may not assume that a closer distribution of the synthetic solar 

radiation dataset in comparison with the measured dataset brings more accurate results in 

terms of the power produced by a CSP plant. These results suggest that the high-frequency DNI 

generation procedure should have into consideration the hourly time series at the site. 

This article shows, for the first time, the generation of 1-min DNI series in different locations 

without any local adaptation or calibration. Sites selected for this generation are located at 

different climates and latitudes, suggesting a global applicability of the methodologies. Future 

works would include the extension of the methodologies for generating coupled pairs of both 

GHI and DNI components, to fully characterize the high-frequency solar resource at a given site 

and would perform a deeper characterization of the daily variability of the solar radiation.  
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