
A Hybrid Intelligent Multiagent System for the Remote
Control of Solar Farms
M.D. Hernández , M.C. Romero-Ternero , F. Sivianes , A. Carrasco ,
and J. Ropero

Department of Electronic Technology, Universidad de Sevilla, Sevilla, Spain

ABSTRACT
This paper describes a multiagent architecture integrated sys-
tem designed to supervise infrastructures in solar farms. The
system enables monitoring the environment by means of sen-
sor networks that are in charge of collecting data. It is
designed using a hybrid model composed of an inference
engine and an ontology. The former makes the system intelli-
gent, while the latter structures knowledge. We have also
developed a tool to configure and use the multiagent system
in a simple and intuitive way.

Introduction

The progressive extension of solar farms in recent years shows the current
importance of the research in the photovoltaic field (Allane et Saari 2006;
Benitez, Pacheco-Ramirez, and Pitalua-Diaz 2014; Jonban, Akbarimajd, and
Javidan 2015; Torriti, Hassan, and Leach 2009; Yang et al. 2017; Zagouras,
Inman, and Coimbra 2014).

The interruption of the electricity supply service results in a great
economic loss and reduction in quality of service. Thus, making super-
vision tasks easier becomes crucial. Even though the multiagent technol-
ogy has been applied successfully in the energy management field
(Azevedo et Feijo 2005; Huang et al. 2016; Khalgui et Hanisch 2011;
McArthur et Davidson 2006; Raju, Milton, and Mahadevan 2017;
Rehtanz 2003), there are not many applications in solar energy
(Rahman et al. 2015).

Thus, this paper proposes a multiagent architecture that supports a classi-
cal telecontrol system for the management and maintenance of solar farms.
Our multiagent system (MAS) includes a hybrid model comprising intelli-
gence by means of an inference engine, together with a structured knowlegde
by means of an ontology. We also have developed a laboratory prototype for
the management and use of the system.

CONTACT J. Ropero jropero@dte.us.es Department of Electronic Technology, Universidad de Sevilla, Av.
Reina Mercedes s/n 41012, Spain
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uaai.

APPLIED ARTIFICIAL INTELLIGENCE
2019, VOL. 33, NO. 2, 124–136
https://doi.org/10.1080/08839514.2018.1530854

© 2018 Taylor & Francis



After this introduction, Section 2 summarizes the advantages of applying
an MAS to solar farms and Section 3 describes our proposal of MAS. For that
purpose, it is necessary: an inference engine as well as the definition of an
ontology. Then, Section 4 analyzes the rules that must be used in the
inference engine and Section 5 deals with the ontology. Section 6 presents
the developed tool for the configuration and management of the system and
finally, Section 7 states conclusions and future lines of our research.

Multiagent Systems

Nowadays, Multiagent Systems (MAS) are used in many fields (Carrasco
et al. 2014). They consist of a number of agents that interact with the aim of
accomplishing an objective, cooperating by means of either coordination or
negotiation. The main advantages of using MAS are (Romero-Ternero 2008):
modularity, a more structured programming is possible since complexity is
reduced when working with smaller units; efficiency, reached due to the fact
that distributed programming allows dividing tasks among different agents;
reliability, a more secure system is reliable by replicating critical agents,
therefore if an agent stops functioning, other agents may continue with the
tasks; and flexibility, achieved because agents may be added or released
dinamically.

Thus, a problem can be solved using MAS when one of these criteria is
achieved: capability of solving problems out of the automation field, because
of the difficulty of the task, cost, or lack of time; and capability of solving
problems with existing solutions, but in a more efficient, natural, cheap, or
simple way.

As the number of electricity distribution companies that are working with
solar energy has increased lately, it has become necessary to research into
different technologies to integrate solar energy production to the distribution
network. This way, we need to optimize the generation of solar energy, while
minimizing its environmental impact. We achieve this goal by means of the
use of sensors and actuators which are distributed among the various com-
ponents that can be found in a solar farm. This fact involves the application
of multiagent technology to manage the distributed knowledge acquired by
these components.

In traditional SCADA (Supervisory Control and Data Acquisition) sys-
tems, telecontrol operators can face a vast amount of information that must
be rapidly processed. This is due to the possibility of registering critical
failures in the supply of electricity (Pourbeik et al. 2006). Therefore, an
operator must have specific experience and skills to manage such failures.
The application of distributed intelligence at several points of the electric
network constitutes a significant help to the operator in terms of decision
making and daily network operation.

APPLIED ARTIFICIAL INTELLIGENCE 125



System Architecture

This section describes the development of an MAS for photovoltaic facilities.
We have designed a cooperative MAS with hybrid architecture. The system is
able to supervise a distributed sensor network in order to provide automatic
intelligence to telecontrol. Figure 1 shows a general scheme of the system
architecture. A sensor network is in charge of collecting information about
the system. The MAS is based on a pyramidal model, which is explained below.
Furthermore, human users can introduce basic behavior rules. Then, the system
defines some rules using a knowledge engine, named Drools. The functioning
of this knowledge engine is described in Section 4. Moreover, an ontology was
defined in order to structure knowledge. It is described in Section 5.

The hierarchical structure of the MAS is shown in Figure 2. Different types
of agents are defined, based on their functions, and the information they are
managing: sensor devices, operators, coordinators, and a teleoperator.

– Sensor Device Agents (SDA): they are deployed with the aim of survey-
ing and monitorizing the environment. There are different types of
sensors: temperature sensors, humidity sensors, brightness sensors,
and radiation sensors. When a possible failure is detected, sensors may
act inmediately using an action protocol, or else send a report/alarm to
one or some of the operators.

– Operator Agents (OA): they are in charge of guarding sensor devices,
and they regularly ask them for some report. They also act if they receive

Figure 1. System architecture.

126 M. D. HERNÁNDEZ ET AL.



some alarm from a sensor device, checking their acting protocols in case
any action must be taken.

– Coordinator Agents (CA): they serve as intermediaries between opera-
tors and the teleoperator. They monitorize the alarms, or contact the
teleoperator if a technician must act.

– Teleoperator Agent (TA): it is in charge of starting the system, by
creating containers and agents. It also constitutes the interface
machine-human with the technician.

Once the agents and their functions are defined, it is necessary to also
define the protocols and interactions between them. Figure 3 shows the main
interactions between agents. SDA read data from sensors and use an infer-
ence engine, in order to decide the actions to be executed. The possible
actions include maintenance tasks or a report to their supervisors, if there is
any problem with a sensor. A protocol named KnowledgeSpread is in charge
of spreading rules troughout the system. Eventually, the OA must periodi-
cally ask the SDA to send them the last read data.

Intelligence in MAS: Inference Engine

As mentioned in Section 3, it is necessary to build an intelligent system. The
agents interact by rules of behavior. They coordinate by mutually adjusting

Figure 2. Hierarchical structure.

APPLIED ARTIFICIAL INTELLIGENCE 127



their solutions. This way, we decided to use a rule-based system, named
Drools (Drools 2017). Drools is a business rule management system, founded
on an inference rule-based engine (Park, Lee, and Lee 2013). It consists on a
series of tools that ease rule creation with execution fluxes, web editors, or
even rule planners. One of the most important features of Drools for our
work is the possibility of reading the rules every time they are executed. This
way, a rule can be modified in real time. Rules may be written in a similar
way to natural language. A file called an expander is in charge of translating
natural language to Java, which is the real language understood by Drools.
Thus, rules WHEN-THEN are translated into Java. An example of a real
translation in our MAS is shown in Table 1.

Thanks to the inference engine, the agents have a certain degree of
autonomy, and they can decide whether to take an action or inform their
supervisor/s. Every agent has a set of associated rules. This set of rules may be
modified using a Rule Editor, described in Section 6. Some of the conditions
and consequences are predefined, in order to have the chance of creating
rules in a simple and intuitive way. Predefined conditions and consequences
are shown in Table 2, while rules are a combination of them using a WHEN-
THEN scheme.

TA CA

Sensor Report

Sensor Report

KnowledgeSpread

SensorDataAnalysis

GlobalKnowledgeManagement

GlobalKnowledgeManagement

GlobalKnowledgeManagement

Sensor Report

SensorRequest

Sends SensorReading

Sensor Reading

OA SDA

DROOLS

DROOLS

DROOLS

Figure 3. Main interactions in the MAS.

128 M. D. HERNÁNDEZ ET AL.



Rules are propagated hierarchically from technicians to all the agents in
the system.

Ontology

Apart from the intelligent behavior supplied by the inference engine
described in Section 4, it is necessary to structure knowlegde, and thus
organize it into an ontology. An ontology is a common frame or a conceptual
automatic and consensual structure that helps retrieve the required informa-
tion (Ropero et al. 2012). As Figure 4 shows, the ontology is organized into
three categories: concepts, predicates and actions.

Subsections 5.1, 5.2, and 5.3 will present the different concepts, predicates,
and actions that are defined in the ontology, with their corresponding attributes.

Table 1. Rule translation in the inference engine.
Natural language Java

rule “Humidity is higher than {percentage}%
when
Humidity is higher than {percentage}
then
Report Event 2: “turn off the solar panel”
Turn off the solar panel
end

[condition] [] Humidity is higher than
{percentage}% =
sensordata:
SensorData(Humidity≥{percentage} &&
oldHumidity >{percentage}
[consequence][] Turn off the solar panel =
(new
Actions(ds.getAgent())).TurnOffPanel(ds.getPanel());

Table 2. Predefined conditions and consequences in the inference
engine.
Conditions
Room temperature above {degrees} ºC
Room temperature below {degrees} ºC
Humidity is above {percentage} %
Humidity is below {percentage} %
Brightness is above {nits} nt
Brightness is below {nits} nt
Radiation is above {sieverts} Sv
Radiation is below {sieverts} Sv
Consequences
Reports an urgent event to the Teleoperator Agent
Reports an urgent event to the Supervisor Agent
Reports an urgent event to the Teleoperator Agent
Reports an urgent event to the Supervisor Agent
Switches off solar panel supply
Turns off solar panel
Starts solar panel refrigerator
Starts solar panel emergency refrigerator
Starts solar panel heater
Starts solar panel emergency heater

APPLIED ARTIFICIAL INTELLIGENCE 129



Concepts

The ontology comprises six different concepts: Sensor, Agent, Container,
SensorData, Message, and Rule. We will define all of them below.

Sensor
It deals with the information regarding a sensor in the system. It includes the
attributes Identifier, SensorType, State, Configuration, and
Associated_Agent.

– Identifier: it consists of the String plus the Identifying number.
– Sensor Type: there are different types of sensors, according to the

collected parameter. Data can be gathered either from the sensor database
or from the Tristar charge controller. There are different possibilities as
follows:

● Temperature_DB: it collects the temperature data from the database.
● Brightness_DB: it collects the brightness data from the database.

Sensor

Concepts Predicates Actions

Ontology

SensorReadData ReadSensorData

ReadSensor
Periodically

CancelAgent

MoveAgent

ConfigureSensor

DeactivateSensor

ActivateSensor

RequestState

DefineRange

AssignSDA

DeactivateAlarm

RequestComplete
Report

AgentInformation

SensorInformation

HostInformation

ResponseTo
Request

Alarm

SensorReport

ErrorReport

Revision

AreaRevision

Knowledge

GlobalKnowledge

NoKnowledge
AboutAlarm

NoKnowledge
AboutReport

AddsGlobal
Knowledge

RemovesGlobal
Knowledge

Agent

Container

SensorData

Message

Rules

Figure 4. Ontology diagram.

130 M. D. HERNÁNDEZ ET AL.



● Humidity_DB: it collects the humidity data from the database.
● Tristar_Battery_Temperature: it collects the temperature data from the
Tristar battery.

● Tristar_Heaksink_Temperature: it collects the Tristar cooler
temperature.

● Tristar_Battery_Voltage: it collects the voltage data from the Tristar
battery.

● Tristar_Other: it collects other specified parameters from Tristar.

– State: current state. It is a function of the concept “Message” that will be
defined later.

– Configuration: the device is configured by means of a XML or TXT file,
for the correct functioning of the SDA that controls the sensor.

– Associated_agent: it refers to the agent responsible for the sensor.

Agent
It concerns the information regarding the agents of the MAS:

– Identifier.
– Agent type: Teleoperator (TA), Coordinator (CA), Operator (OA), or

Sensor Device (SDA)
– Container: it refers to the container including the agent.

Container
It deals with the information related to the containers that are controlled by
the MAS. The attributes for this concept are: name, IP address, and network
port.

SensorData
– Type of data: Temperature_DB, Brightness_DB, Humidity_DB,
Tristar_Battery_Temperature, Tristar_Heaksink_Temperature, or
Tristar_Other.
– Value: int, float, or string.

Message
It is a concept for the general communication management (errors, alarms,
recommendations or reports, among others) in the MAS. It includes identi-
fier, and associated text. Some of the possible messages are “Non available
sensor”, “Busy agent”, “Non-valid configuration”, or “Activated alarm”, for
instance.

Rules
It includes all the rules that infere knowledge to all the agents in the MAS.
This concept contains the attributes listed below:

APPLIED ARTIFICIAL INTELLIGENCE 131



– Rule name.
– Conditions: they refer to the string array that stores all the true condi-

tions for a rule trigger.
– Consequences: they deal with the string array that stores all conse-

quences after a rule trigger.

Predicates

Predicates comprise either the expressions that establish relationships among
the concepts priorly mentioned in subsection 5.1 or the expressions that
communicate any important information. They are defined in Table 3.

Actions

Subsequently, we will describe the different actions that can be carried out by
an agent and thus, the actions that can be requested by another agent. These
actions are displayed in Table 4.

To summarize, the agents must make decisions related to the different
concepts, according to the rules defined in the inference engine. Different

Table 3. Predicates of the ontology.
Predicates Concepts & Attributes Descriptions

SensorReadData Sensor, SensorData Data obtained by a sensor
AgentInformation Agent Set of Agent attributes
SensorInformation Sensor Set of Sensor attributes
HostInformation Host Set of Host attributes
ResponseToRequest Message Possible response messages
Alarm AlarmID, Sensor,

SensorData, Agent,
Message

Alarm indication. Includes sensor information, cause of
the alarm, source agent and associated message

SensorReport ReportID, Sensor,
SensorData, Agent,
Message

Sensor information. Includes data, and maybe a message

ErrorReport ReportID, Sensor,
SensorData, Agent,
Message

Detected error. Includes agent information, device
identifier, and an associated message

Revision Agent, DeviceID,
Message

Some element of the system needs revision (battery
functioning or panel cleaning, among others)

AreaRevision List of Agents, Message Some area of the solar farm needs revision
Knowledge Rule, Agent Informs an agent of new rules or modification of rules
GlobalKnowledge Rule Global report about new rules or modification of rules
NoKnowledge
AboutAlarm

AlarmID An agent informs about its impossibility of processing an
alarm

NoKnowledge
AboutReport

ReportID An agent informs of its impossibility of processing a
report

AddsGlobal
Knowledge

Type of Agent, Rule It spreads a rule. Just a type of agents add the rule to
their set of rules

RemovesGlobal
Knowledge

Type of Agent, Rule It spreads a rule. Just a type of agents remove the rule
from their set of rules

132 M. D. HERNÁNDEZ ET AL.



actions are executed depending on the consequences derived from the rules,
and the predicates that establish the relationships among concepts.

User Interface: XML Editor

To conclude, it is necessary to create a tool to configure and manage the
system in a simple and intuitive way. The MAS needs to read distributed
sensors continuously. Thus, we could think that C programming lan-
guage is a good option (Kernighan et Ritchie 1988). However, the MAS
should be used in very varied platforms. In light of this, Java is finally
utilized. Next, we need to choose an IDE (Integrated Devolopment
Environment). There are two main IDEs for Java: Eclipse and NetBeans
(Gomanyuk 2008). We choose NetBeans, because its applications can be
used in any platform with a Java virtual machine installed. Finally, JADE
is selected as the development platform, since it deals with the FIPA
(Foundation for Intelligent Physical Agents) protocol, has a LGPL (Lesser
General Public License) license, and it is well received by the develop-
ment community.

Once the editor is executed, the values of the last used platform are loaded.
The XML editor, shown in Figure 5, allows changing the system
configuration.

The XML editor includes the following functions:

– Creating and removing agents.
– Configuring parameters for containers and the system boot.
– Verifying a visual real-time system.
– Launching and closing the MAS system.
– Editing rules.

Table 4. Possible actions in the MAS.
Actions Parameters Descriptions

ReadSensorData Sensor A supervisor agent asks a determined SDA for reading the data
and sending it to the supervisor.

ReadSensor
Periodically

Sensor, Interval,
Times

It is similar to ReadSensorData, but reading is periodical.

CancelAgent Agent It cancels an agent.
MoveAgent Agent, Host An agent moves from a host in the system to another host.
ConfigureSensor Sensor, ConfigFile A sensor is reconfigured by means of a configuration file.
DeactivateSensor Sensor A SDA is requested to deactivate an associated sensor
ActivateSensor Sensor A SDA is requested to activate an associated sensor
RequestState Agent, Sensor, Host An agent requests for the state of a component of the system
DefineRange Destination Agent,

List of agents
It reconfigures the list of agents that can communicate with
another agent

AssignSDA OA, SDA It associates an SDA with an OA
DeactivateAlarm Alarm It deactivates the sending of an alarm
RequestComplete
Report

Agent, Sensor, Host It requests a report from a component of the system

APPLIED ARTIFICIAL INTELLIGENCE 133



As an example, Figure 6 shows some events captured by the system.

Conclusions

Even though multiagent technology has been applied successfully to the energy
management field, we cannot find many applications related to solar energy.

In this paper, we propose a cooperative MAS with hybrid architecture.
That system enables supervising a distributed sensor network in order to
provide automatic intelligence to telecontrol. Different types of agents are
defined, based on their function, and the information they are managing
(sensor devices, operators, coordinators and a teleoperator), as well as the
protocols and the interactions among them.

The intelligence of the system is founded on an inference rule-based engine.
Thanks to that engine, the agents have a certain degree of autonomy, and they can
make a decision on whether to take an action or inform their supervisor.

An ontology is also necessary to structure knowledge and it is organized into
three categories: concepts, predicates and actions. The agentsmustmake decisions
concerning different concepts, following the rules defined in the inference engine.
Different actions are carried out depending on the consequences derived from the
rules, and the predicates establishing the relationship among concepts.

Figure 5. XML editor.

134 M. D. HERNÁNDEZ ET AL.



Finally, we create a tool to configure and manage the system in a simple
and intuitive way. An XML editor is designed with different possible func-
tions, such as creating and removing agents, configuring system parameters,
editing rules or verifyng the MAS functioning in real time.

ORCID

M.D. Hernández http://orcid.org/0000-0003-2597-1156
M.C. Romero-Ternero http://orcid.org/0000-0001-6965-9485
F. Sivianes http://orcid.org/0000-0002-2879-4207
A. Carrasco http://orcid.org/0000-0001-9474-3929
J. Ropero http://orcid.org/0000-0001-5445-0646

References

Allane, K., and A. Saari. 2006. Distributed energy generation and sustainable development.
Renewable and Sustainable Energy Reviews 10 (6):539–58. doi:10.1016/j.rser.2004.11.004.

Azevedo, G., and B. Feijo. 2005. Agents in power systems control centers. IEEE Power
Engineering Society General Meeting 2:1040–41.

Benitez, V. H., J. Pacheco-Ramirez, and N. Pitalua-Diaz. 2014. Developing a mini-heliostat
array for a solar central tower plant: A practical experience. Intelligent Automation and Soft
Computing 20 (2):263–77. doi:10.1080/10798587.2013.861967.

Carrasco, A., M. D. Hernández, M. C. Romero-Ternero, F. Sivianes, D. Oviedo, and J. I.
Escudero. 2014. PeMMAS: A tool for studying the performance of multiagent systems
developed in JADE. IEEE Transactions on Human-Machine Systems 44 (2):180–89.
doi:10.1109/THMS.2014.2302993.

Figure 6. Rule editor.

APPLIED ARTIFICIAL INTELLIGENCE 135


