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Abstract. In this paper we study the influence of including snapshots that approach the velocity
time derivative in the numerical approximation of the incompressible Navier–Stokes equations by
means of proper orthogonal decomposition (POD) methods. Our set of snapshots includes the
velocity approximation at the initial time from a full order mixed finite element method (FOM)
together with approximations to the time derivative at different times. The approximation at the
initial velocity can be replaced by the mean value of the velocities at the different times so that
implementing the method to the fluctuations, as done mostly in practice, only approximations to the
time derivatives are included in the set of snapshots. For the POD method we study the differences

between projecting onto L
2

and H
1
. In both cases, pointwise in time error bounds are proved.

Including grad-div stabilization both in the FOM and POD methods, error bounds with constants
independent of inverse powers of the viscosity are obtained.
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1. Introduction. It is well known that the computational cost of direct nu-
merical simulations, also called full order methods (FOMs), can be reduced by using
reduced order models (ROMs). In this paper, we study ROMs based on proper or-
thogonal decomposition (POD) methods, so-called POD-ROMs. The computation of
the reduced basis uses solutions of a FOM, so-called snapshots.

We study incompressible flow problems that are modeled by means of the incom-
pressible Navier–Stokes equations

(1.1)
ut − ν∆u+ (u · ∇)u+∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω,

in a bounded domain Ω ⊂ Rd, d ∈ {2, 3}, with initial condition u(0) = u0. In (1.1), u
is the velocity field, p the kinematic pressure, ν > 0 the kinematic viscosity coefficient,
and f represents the accelerations due to external body forces acting on the fluid. The
Navier–Stokes equations (1.1) have to be complemented with boundary conditions.
For simplicity, we only consider homogeneous Dirichlet boundary conditions u = 0
on [0, T ]× ∂Ω.

This paper studies the impact of including approximations of the temporal deriv-
ative of the velocity in the set of snapshots. The idea consists in taking, in addition to
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the mixed finite element approximation to the velocity at the initial time, {uh(t0)},
the time derivatives of the mixed finite element approximations,

{
uh,t(tj)

}
. These

temporal derivatives can be easily computed using the right-hand side of the mixed
finite element Galerkin equation (see Remark 2.1 below). In the present paper we
follow an idea presented in the recent paper [25] in which it is shown that there is
no need to include in the set of snapshots other than one approximation to the ve-

locity at a fixed time, instead of the full set
{
uh(tj)

}M
j=0

as it is usually done in the

literature. The numerical analysis in [25] is carried out for the heat equation and
with difference quotients,

{
(uh(tj)− uh(tj−1)/(tj − tj−1)

}
, approaching the time de-

rivative. In the present paper we consider instead the Galerkin time derivatives al-
though the analysis for the difference quotients case is essentially the same (or even
simpler). Actually, in practice, any approximation to the time derivative can work
equally well. We also prove that the snapshot at the initial value can be replaced
by the mean value uh = (M + 1)−1∑M

j=0 uh(tj), which can be more efficient in the
numerical simulations. It is standard to apply the POD method to the fluctuations{
yh(tj)

}M
j=0

=
{
uh(tj)− uh

}M
j=0

that have vanishing mean by definition. Then, with

the method we propose only approximations to the derivatives are needed in this case.
Several works in the literature have already studied the subject of increasing

the set of snapshots with approximations to the time derivatives. However, apart
from [25], all of them include as snapshots the set of the approximations at different
times, instead of only one snapshot. Also, starting with the pioneering paper [23],
most of these papers include a different type of approximation than considered in this
paper, namely difference quotients. In particular, to the best of our knowledge, this
is the first paper that studies the inclusion of the temporal derivatives of the mixed
finite element velocity approximations in order to generate the reduced order basis for
the incompressible Navier–Stokes equations. With this more general setting we can
deduce that in practice any approximation to the time derivative produces essentially
the same results.

The initial motivation for investigating a different approximation than difference
quotients in the set of snapshots is that the results for difference quotients are am-
bivalent. On the one hand, from the theoretical point of view, the inclusion of the
difference quotients possesses some advantages. First of all, it allows to prove optimal
error bounds for the POD-ROM when the POD basis functions are based on the pro-
jection onto the Hilbert space X = H1

0 (Ω)
d, see [23, 17, 30]. In this way, the standard

finite element error analysis is mimicked, in which the Ritz or Stokes projection is
used to split the error in a projection error and a discrete remainder. It was observed
that if the POD basis functions are based on the projection onto the Hilbert space
X = L2(Ω)d, the difference quotients are not needed to prove optimal error bounds
in certain norms, see [4, 17, 30, 26]. However, as pointed out in [21], even in this case,
the inclusion of the difference quotients allows to get pointwise estimates in time that
generally cannot be proved if there are no difference quotients in the set of snapshots.
On the other hand, from the numerical point of view, it is not clear that the difference
quotients should be included in the actual simulations with the POD-ROM. In fact, it
is reported in [20, 19] that the POD-ROM without the difference quotients performs
considerably better than with the difference quotients.

Trying to keep the theoretical advantages of including approximations of the tem-
poral derivative of the velocity in the set of snapshots but relaxing their drawbacks
in practical simulations, we study in this paper, both theoretically and numerically,
the inclusion of time derivatives of the discrete velocity. As in [25], our approach has
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half the number of snapshots as in the standard POD finite quotient approach. Also,
as in the difference quotient case, we are able to get pointwise in time estimates using
as projecting space X = H1

0 (Ω)
d and L2(Ω)d. To this end, we follow [25, Lemma 3.3]

(see also [21, Lemma 3.6]) to prove that the X-norm of a function at any point in
time (let’s say tj) is bounded in terms of the X-norm of the value at t0 plus the mean
values of its time derivative taken in a time interval (let’s say {t0, t1, . . . , tM}, up to an
error that tends to zero with the length of the time step. From the numerical point
of view, including the snapshots of the time derivatives avoids the potential prob-
lem of performing badly conditioned operations in the computation of the snapshots
like

{
(uh(tj)− uh(tj−1))/(tj − tj−1)

}
because both numerator and denominator may

suffer from numerical cancellation. Finally, we mimic model reduction ideas coming
from dynamical systems, where using snapshots from the time derivative is a more
common approach, see for example [22].

For the error analysis in the present paper, instead of considering a concrete fully
discrete scheme from which the values

{
uh(tj)

}
are taken, we consider a continuous-

in-time method, which has some advantages. In practice, one always computes the
snapshots with a fully discrete method but the error analysis based on the continuous-
in-time method holds for any time integrator used in the FOM.With this approach one
can use different time steps for the FOM, which produces the snapshots, and for the
POD-ROM method. Our error analysis takes into account the temporal error coming
from the POD-ROM. The error analysis of the present paper can be easily adapted to
include the case in which the snapshots are computed with a fully discrete method.
Errors with respect the fully discrete approximations can be expressed in terms of
errors with respect the continuous-in-time approximation (estimated in the present
paper) and further terms depending on the error of the fully discrete approximation
with respect to the continuous-in-time one, for which there are already estimates in
the literature.

Finally, following [26], we analyze the case in which stabilized approximations
are computed both for the FOM and the POD-ROM. More precisely, the considered
finite element method is based on a Galerkin discretization plus grad-div stabilization
with pairs of inf-sup stable elements, and, as in references [26, 13], for the POD-ROM
we also use grad-div stabilization. In this way, the constants in the error bounds for
the snapshots do not depend explicitly on inverse powers of the viscosity, i.e., they
do not blow up for small viscosity coefficients, see [9]. Adapting the results from
[26], the same holds for the error bounds of the POD-ROM. The importance of such
so-called robust methods is stated in the survey [12]: In the case of small viscosity
coefficients and coarse grids, only robust estimates provide useful information about
the behavior of a numerical method on coarse grids if the analytic solution is smooth.
In reference [13] a POD scheme with data assimilation was analyzed. In the method
of [13], grad-div stabilization was added to the POD method, but the plain Galerkin
method was used for the FOM so that the final error bounds depend on inverse powers
of the viscosity. As opposed to the present paper, neither in reference [26] nor in [13],
snapshots approaching the time derivative are included and no pointwise estimates
are proved.

In the numerical studies, we compare the different approaches obtained by taking
X = H1

0 (Ω)
d and X = L2(Ω)d in combination with one of the following sets: the set

of snapshots at different times, the set of difference quotients, and the set of Galerkin
time derivatives. We cannot deduce from these studies that any of the approaches is
much better than the other ones and the necessary comprehensive numerical studies
are outside the scope of this paper, which is a rigorous numerical analysis from which
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interesting properties and sharp bounds for the different methods can be deduced.
The paper is organized as follows. In Section 2 we state some preliminaries and

notations. The POD method and some a priori bounds for the projection of the FOM
approximation onto the POD space are shown in Section 3. The analysis of the POD
method is included in Section 4 with a first subsection for the case X = H1

0 (Ω)
d and

a second one for the case X = L2(Ω)d. As stated above, Section 5 is devoted to study
the performance of the methods with some numerical experiments. Finally, we have
included an appendix in which we get robust bounds for the second time derivative
of the FOM approximation in some norms, since this time derivative appears in our
bounds in the a priori error analysis.

2. Preliminaries and notations. Standard symbols will be used for Lebesgue
and Sobolev spaces, with the usual convention that W s,2(Ω) = Hs(Ω), s ≥ 1. The

inner product in L2(Ω)d, d ≥ 1, is denoted by (·, ·), and the corresponding norm by
∥ · ∥0.

The following Sobolev imbeddings [1] will be used in the analysis: For q ∈ [1,∞),
there exists a constant C = C(Ω, q) such that

(2.1) ∥v∥
L

q
′ ≤ C∥v∥W s,q ,

1

q′
≥ 1

q
− s

d
> 0, q < ∞, v ∈ W s,q(Ω)d.

We will denote by Cp the constant in the Poincaré inequality

(2.2) ∥v∥0 ≤ Cp∥∇v∥0, v ∈ H1
0 (Ω)

d.

The following inequality can be found in [18, Remark 3.35]

(2.3) ∥∇ · v∥0 ≤ ∥∇v∥0, v ∈ H1
0 (Ω)

d.

Let us denote by V = H1
0 (Ω)

d and Q = L2
0(Ω) = {q ∈ L2(Ω) | (q, 1) = 0}.

Let Th = (σh
j , ϕ

h
j )j∈Jh

, h > 0, be a family of partitions of Ω, where h denotes

the maximum diameter of the mesh cells σh
j ∈ Th, and ϕh

j are the mappings from

the reference simplex σ0 onto σh
j . We shall assume that the family of partitions is

shape-regular and quasi-uniform. On these partitions, we define the following finite
element spaces

Y l
h =

{
vh ∈ C0(Ω) | vh|K ∈ Pl(K), ∀ K ∈ Th

}
, l ≥ 1, Y l

h =
(
Y l
h

)d
,

X l
h = Y l

h ∩H1
0 (Ω)

d, Ql
h = Y l

h ∩ L2
0(Ω),

V l
h = X l

h ∩
{
vh ∈ H1

0 (Ω)
d | (qh,∇ · vh) = 0 ∀ qh ∈ Ql−1

h

}
, l ≥ 2.(2.4)

The space V l
h is the space of discretely divergence-free functions.

Since the family of partitions is quasi-uniform, the following inverse inequality
holds for each vh ∈ Y l

h, e.g., see [7, Theorem 3.2.6],

(2.5) |vh|Wm,p
(K) ≤ cinvh

n−m−d( 1
q−

1
p )

K |vh|Wn,q
(K),

where 0 ≤ n ≤ m ≤ 1, 1 ≤ q ≤ p ≤ ∞, and hK is the diameter of K ∈ Th.
The analysis uses a modified Stokes projection smh : V → V l

h that was introduced
in [8] and that is defined by

(2.6) (∇smh ,∇φh) = (∇u,∇φh), ∀ φh ∈ V l
h.
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This projection satisfies the following error bound, see [8],

(2.7) ∥u− smh ∥0 + h∥u− smh ∥1 ≤ C∥u∥jh
j , 1 ≤ j ≤ l + 1.

From [5], we also have

(2.8) ∥∇smh ∥∞ ≤ C∥∇u∥∞,

and from [14, Lemma 3.8]

∥smh ∥∞ ≤ C(∥u∥d−2∥u∥2)
1/2,(2.9)

∥∇smh ∥
L

2d/(d−1) ≤ C
(
∥u∥1∥u∥2

)1/2
,(2.10)

where all constants C in (2.8) – (2.10) are independent of ν. In the sequel, for
simplicity, we will denote by C(u, p) a generic constant depending on some norms of
the true velocity and pressure.

We consider the mixed finite element pair known as Hood–Taylor elements [2, 31]

(X l
h, Q

l−1
h ), l ≥ 2. For these elements a uniform inf-sup condition is satisfied (see

[2]), that is, there exists a constant βis > 0 independent of the mesh size h such that

(2.11) inf
qh∈Q

l−1
h

sup
vh∈X

l
h

(qh,∇ · vh)

∥∇vh∥0∥qh∥0
≥ βis.

As a direct method, or full order method, we consider a Galerkin method with
grad-div stabilization. The semi-discrete method reads as follows: Find (uh, ph) ∈
X l

h ×Ql−1
h such that(
uh,t,vh

)
+ ν(∇uh,∇vh) + bh(uh,uh,vh)(2.12)

−(ph,∇ · vh) + µ(∇ · uh,∇ · vh) = (f ,vh) ∀ vh ∈ X l
h,

(∇ · uh, qh) = 0 ∀ qh ∈ Ql−1
h ,

where µ is the positive grad-div stabilization parameter (independent of h) and

bh(uh,vh,wh) = ((uh · ∇)vh,wh) +
1

2
((∇ · uh)vh,wh) ∀ uh,vh,wh ∈ X l

h.

It is well-known that considering the discretely divergence-free space V l
h, we can

remove the pressure from (2.12) since uh ∈ V l
h satisfies

(2.13)(
uh,t,vh

)
+ν(∇uh,∇vh)+ bh(uh,uh,vh)+µ(∇·uh,∇·vh) = (f ,vh), ∀ vh ∈ V l

h.

For this method the following bound holds, see [9],

(2.14) ∥u(·, t)− uh(·, t)∥0 + h∥u(·, t)− uh(·, t)∥1 ≤ C(u, p, l + 1)hl, t ∈ (0, T ],

where the constant C(u, p, l+1) does not explicitly depend on inverse powers of ν. As
detailed in [9] C(u, p, l+1) depends both on µ and µ−1. However, assuming as in [9]
the grad-div parameter is independent of the mesh size, we can omit the dependence
of the constant on µ. Actually, only the first term on the left-hand side of (2.14) is
considered in [9] but the estimate for the second term follows then from (2.7) and the
inverse inequality (2.5). Numerical studies presented in [12] show that the estimate
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from [9] is sharp. From the error analysis performed in [9], it can be seen that an

optimal order for the error of the velocity gradient, in L2(0, T ;L2(Ω)d), is obtained
with a constant that depends on ν−1, i.e., this estimate is not robust.

Finally we will use the standard notation Hs(0, T ;X) (see e.g. [10, Section 5.9.2])
for X being a Banach space.

Remark 2.1. We briefly comment on the computation of the time derivatives
from the Galerkin equations. Equipping X l

h and Ql
h with a standard basis, the solu-

tion of (2.12) can be represented with coefficient vectors uh(t) and p
h
(t), respectively.

In terms of these vectors, equations (2.12) become

(2.15) Mh

d

dt
uh −BT

h ph = Fh(uh), Bhuh = 0,

where Mh is the mass matrix formed by the velocity basis functions and Bh is the
discrete divergence matrix, (see e.g., [18, § 7.1]). We notice that (2.15) is a system
of differential-algebraic equations (DAE) where approximation to its solution (once a
compatible initial condition is specified) can be obtained at certain time levels (see
e.g., [11] for details). Once the vectors of nodal values uh and p

h
are obtained for a

given time level, the corresponding vector of nodal values of the time derivative duh/dt

can be obtained by finding the solution x of the linear system Mhx = Fh(uh)+BT
h ph.

□

3. Proper orthogonal decomposition. We consider a POD method. Let us
fix T > 0 and M > 0 and take ∆t = T/M . For N = M + 1 we define the following
space

U = span
{
y1
h,y

2
h, . . . ,y

N
h

}
,

with

y1
h =

√
Nu0

h, yj
h = τuj+1

h,t , j = 2, . . . , N,

so that

U = span
{√

Nu0
h, τu

1
h,t, . . . , τu

M
h,t

}
,

where we use the notation uj
h = uh(·, tj) for the approximations at time instance

tj = j∆t and uj
h,t = uh,t(·, tj) are the snapshots of the temporal derivatives. The

factor τ in front of the temporal derivatives is a time scale and it makes the snapshots
dimensionally correct, i.e., all members of the set that defines U are of the same
physical quantity (here, velocities). The factor τ may also be used to alter the size
of the time derivatives relative to the initial velocity, which has an impact on the
eigenvalues of the correlation matrix and on the POD basis. We have not explored
this possibility in the numerical experiments of Section 5 and have chosen τ = T for
simplicity. In the sequel, dv denotes the dimension of U .

The correlation matrix corresponding to the snapshots is given by Kv = ((kvi,j)) ∈
RN×N , with the entries

kvi,j =
1

N

(
yi
h,y

j
h

)
X
, i, j = 1, . . . , N,

and (·, ·)X is the inner product in X, which is either L2(Ω)d or H1
0 (Ω)

d. Following
[23], we denote by λ1 ≥ λ2, . . . ≥ λdv

> 0 the positive eigenvalues of Kv and by
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v1, . . . ,vdv
∈ RN associated eigenvectors of Euclidean norm 1. Then, the (orthonor-

mal) POD basis functions of U are given by

(3.1) φk =
1√
N

1√
λk

N∑
j=1

vjky
j
h,

where vjk is the j-th component of the eigenvector vk. The following error estimate is
known from [23, Proposition 1]

1

N

N∑
j=1

∥∥∥∥∥yj
h −

r∑
k=1

(yj
h,φk)Xφk

∥∥∥∥∥
2

X

=

dv∑
k=r+1

λk,(3.2)

from which one can deduce
(3.3)∥∥∥∥∥u0

h −
r∑

k=1

(u0
h,φk)Xφk

∥∥∥∥∥
2

X

+
τ2

M + 1

M∑
j=1

∥∥∥∥∥uj
h,t −

r∑
k=1

(uj
h,t,φk)Xφk

∥∥∥∥∥
2

X

=

dv∑
k=r+1

λk.

In the sequel, we will denote by U r = span{φ1,φ2, . . . ,φr}, 1 ≤ r ≤ dv, and by

P v
r : X l

h → U r, the X-orthogonal projection onto U r. Then (3.2) can be written as

1

N

N∑
j=1

∥∥∥yj
h − P v

r y
j
h

∥∥∥2
X

=

dv∑
k=r+1

λk.

A generalization of the above equality can be found in [21, Lemma 2.2]. Let W be
a Hilbert space with U ⊂ W and Rv

r : W → W be a bounded linear projection onto
U r then

1

N

N∑
j=1

∥∥∥yj
h −Rv

ry
j
h

∥∥∥2
W

=

dv∑
k=r+1

λk∥φk −Rv
rφk∥

2
W .(3.4)

We observe that (3.2) is (3.4) in the case Rv
r = P v

r and W = X.

We will denote the mass matrix of the POD basis by Mv = ((mv
i,j)) ∈ Rdv×dv ,

where mv
i,j = (φj ,φi)X . In the case X = H1

0 (Ω)
d, for any v ∈ U , the following

inverse inequality holds, see [23, Lemma 2],

(3.5) ∥∇v∥0 ≤
√
∥(Mv)−1∥2∥v∥0.

The stiffness matrix of the POD basis is given by Sv = ((svi,j)) ∈ Rdv×dv , with

the entries svi,j = (∇φj ,∇φi)X . If X = L2(Ω)d, the following inequality holds for all
v ∈ U , see [23, Lemma 2],

(3.6) ∥∇v∥0 ≤
√
∥Sv∥2∥v∥0.

The following lemma will be the basis for proving pointwise in time estimates.
We follow [25, Lemma 3.3] (see also [21, Lemma 3.6]).
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Lemma 3.1. Let T > 0, ∆t = T/M , tn = n∆t, n = 0, 1, . . .M , let X be a Banach
space, z ∈ H2(0, T ;X). Then, the following estimate holds

(3.7) max
0≤k≤M

∥zk∥2X ≤ 3∥z0∥2X +
3T 2

M

M∑
n=1

∥zn
t ∥

2
X +

4T

3
(∆t)2

∫ T

0

∥ztt(s)∥
2
X ds,

where zn = z(tn), z
n
t = zt(tn).

Proof. For each k we have

(3.8) zk = z0 +

∫ tk

t0

zt ds.

Adding and subtracting terms leads to

(3.9) zk = z0 +

∫ tk

t0

zt ds = z0 +

k∑
n=1

∆tzn
t +

k∑
n=1

∫ tn

tn−1

(zt(s)− zt(tn)) ds.

To bound the last term on the right-hand side, we first notice that for s ∈ [tn−1, tn]

zt(tn)− zt(s) =

∫ tn

s

ztt(σ) dσ.

With the Cauchy–Schwarz inequality, it follows that∥∥∥∥∥
∫ tn

tn−1

(zt(s)− zt(tn)) ds

∥∥∥∥∥
X

≤
∫ tn

tn−1

∥zt(tn)− zt(s)∥X ds

≤
∫ tn

tn−1

(tn − s)
1/2

(∫ tn

s

∥ztt(σ)∥
2
X dσ

)1/2

ds

≤ 2

3
(∆t)3/2

(∫ tn

tn−1

∥ztt(s)∥
2
X ds

)1/2

.

Consequently, for the last term on the right-hand side of (3.9), we obtain, using the
Cauchy–Schwarz inequality for sums,∥∥∥∥∥

k∑
n=1

(∫ tn

tn−1

(zt(s)− zt(tn)) ds

)∥∥∥∥∥
X

≤
k∑

n=1

∥∥∥∥∥
∫ tn

tn−1

(zt(s)− zt(tn)) ds

∥∥∥∥∥
X

≤ 2

3

k∑
n=1

(∆t)3/2
(∫ tn

tn−1

∥ztt(s)∥
2
X ds

)1/2


≤ 2

3

(
k∑

n=1

(∆t)3
)1/2(∫ tk

t0

∥ztt(t)∥
2
X ds

)1/2

≤ 2

3
T 1/2∆t

(∫ tk

t0

∥ztt(t)∥
2
X ds

)1/2

.

Taking norms in (3.9) gives the estimate

∥zk∥X ≤ ∥z0∥X +

k∑
n=1

∆t∥zn
t ∥X +

2

3
T 1/2∆t

(∫ tk

t0

∥ztt(t)∥
2
X ds

)1/2
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≤ ∥z0∥X + T 1/2(∆t)1/2
(

M∑
n=1

∥zn
t ∥

2
X

)1/2

+
2

3
T 1/2∆t

(∫ T

0

∥ztt(t)∥
2
X ds

)1/2

,(3.10)

from which we conclude (3.7).

The above lemma also holds true changing the initial value by the mean value.

Lemma 3.2. With the assumptions of Lemma 3.1, it holds

(3.11) max
0≤k≤N

∥zk∥2X ≤ 3∥z∥2X +
12T 2

M

M∑
n=1

∥zn
t ∥

2
X +

16T

3
(∆t)2

∫ T

0

∥ztt(s)∥
2
X ds,

where z = 1
M+1

∑M
j=0 z

j.

Proof. We first observe that (3.8) gives

z =
1

M + 1

M∑
j=0

(
z0 +

∫ tj

t0

zt ds

)
.

Then

z = z0 +
1

M + 1

{∫ t1

t0

zt ds+

∫ t2

t0

zt ds+ . . .+

∫ tM

t0

zt ds

}
,

so that

∥z0∥X ≤ ∥z∥X +
1

M + 1

M∑
j=1

∥∥∥∥∫ tj

t0

zt ds

∥∥∥∥
X

.

Since, in the argument from (3.9) to (3.10) in the proof of Lemma 3.1, we have
obtained
(3.12)∥∥∥∥∫ tj

t0

zt

∥∥∥∥
X

≤ T 1/2(∆t)1/2
(

M∑
n=1

∥zn
t ∥

2
X

)1/2

+
2

3
T 1/2∆t

(∫ T

0

∥ztt(t)∥
2
X ds

)1/2

,

it follows that
(3.13)

∥z0∥X ≤ ∥z∥X + T 1/2(∆t)1/2
(

M∑
n=1

∥zn
t ∥

2
X

)1/2

+
2

3
T 1/2∆t

(∫ T

0

∥ztt(t)∥
2
X ds

)1/2

.

Now, taking into account (3.8), (3.12), and (3.13), we obtain for any k

∥zk∥X ≤ ∥z∥X + 2T 1/2(∆t)1/2
(

M∑
n=1

∥zn
t ∥

2
X

)1/2

+
4

3
T 1/2∆t

(∫ T

0

∥ztt(t)∥
2
X ds

)1/2

,

from which we conclude (3.11).

Remark 3.3. In the sequel we will apply Lemma 3.1 and assume that we have
in the set of snapshots y1

h =
√
Nu0

h. However, applying Lemma 3.2 instead of
Lemma 3.1, we can substitute the first snapshot by y1

h =
√
Nuh, where uh is the

mean value uh = 1
M+1

∑M
j=0 u

j
h, to obtain the same results. The set of snapshots in

this case is

U = span
{
y1
h,y

2
h, . . . ,y

N
h

}
= span

{√
Nuh, τu

1
h,t, . . . , τu

M
h,t

}
.

9



It is standard in numerical simulations to subtract the mean and apply the POD
method to the fluctuations, see [3], which by definition have zero mean. Then, the
new approach we propose, in which the first snapshot is a weighted mean and the rest
are weighted time derivatives, has the advantage that applying the POD method to
the fluctuations only includes snapshots for the approximations to the time derivatives
(since the mean is zero). This procedure was applied in our numerical studies. □

Lemma 3.4. The following bounds hold
(3.14)

max
0≤n≤M

∥P v
r u

n
h−un

h∥
2
X ≤ C2

X :=

(
3 + 6

T 2

τ2

)
dv∑

k=r+1

λk+
16T

3
(∆t)2

∫ T

0

∥uh,tt(s)∥
2
X ds

and

(3.15)
1

M

M∑
j=1

∥∥∥∥∥uj
h −

r∑
k=1

(uj
h,φk)Xφk

∥∥∥∥∥
2

X

≤ C2
X .

Proof. Taking z = P v
r uh − uh in (3.7) and applying (3.3) (taking into account

that (M + 1)/M ≤ 2) yields

max
0≤n≤M

∥P v
r u

n
h − un

h∥
2
X ≤

(
3 + 6

T 2

τ2

)
dv∑

k=r+1

λk

+
4T

3
(∆t)2

∫ T

0

∥P v
r uh,tt(s)− uh,tt(s)∥

2
X ds.

Let us bound the second term on the right-hand side above. Using the triangle
inequality and taking into account that ∥P v

r w∥2X ≤ ∥w∥2X , we conclude that

∥P v
r uh,tt(s)− uh,tt(s)∥

2
X ≤ 2∥P v

r uh,tt(s)∥
2
X + 2∥uh,tt(s)∥

2
X ≤ 4∥uh,tt(s)∥

2
X ,

Finally, from (3.14) we obtain (3.15).

The integral term in (3.14) and (3.15) is bounded in the appendix. In case one uses
difference quotients instead of Galerkin time derivatives in the set of snapshots this
term does not appear.

3.1. A priori bounds for the projections P v
r u

j
h. This subsection is devoted

to proving a priori bounds for the orthogonal projections P v
r u

j
h, j = 0, . . . ,M . These

bounds are obtained from a priori bounds for the Galerkin approximation uj
h, j =

0, · · · ,M . We argue as in [26]. Then, we start getting a priori bounds for the stabilized
approximation un

h. We follow the same arguments we introduced in [13] with the
difference that since we now compare with the continuous-in-time approximation uj

h

the bounds are independent of the time step discretization.
We start with the L∞ norm. Using (2.5), (2.9), (2.14) and (2.7), we get

max
0≤j≤M

∥uj
h∥∞ ≤ ∥uj

h − smh (·, tj)∥∞ + ∥smh (·, tj)∥∞

≤ Ch−d/2∥uj
h − smh (·, tj)∥0 + C(∥uj∥d−2∥u

j∥2)
1/2

≤ Ch−d/2C(u, p, 3)h2 + C(∥uj∥d−2∥u
j∥2)

1/2(3.16)

≤ Cu,inf := C

(
C(u, p, 3) +

(
∥u∥

L
∞

(H
d−2

)
∥u∥

L
∞

(H
2
)

)1/2)
,

10



where in the third line we have bounded ∥uj
h−smh (·, tj)∥0 ≤ ∥uj

h−u(·, tj)∥0+∥u(·, tj)−
smh (·, tj)∥0. The L∞ norm of the gradient is bounded in a similar way. Using (2.5),
(2.8), (2.14), and (2.7), we obtain

max
0≤j≤M

∥∇uj
h∥∞ ≤ ∥∇uj

h −∇smh (·, tj)∥∞ + ∥∇smh (·, tj)∥∞

≤ Ch−d/2∥uj
h − smh (·, tj)∥1 + C∥∇uj∥∞

≤ Ch−d/2C(u, p, d+ 1)hd−1 + C∥∇uj∥∞
≤ Cu,1,inf := C

(
C(u, p, d+ 1) + ∥∇u∥L∞

(L
∞

)

)
,(3.17)

where the same argument as before has been applied to bound ∥uj
h−smh (·, tj)∥1. Note

that the estimate for d = 3 requires the use of cubic elements for the velocity. Finally,

applying (2.5), (2.10), (2.14), and (2.7) leads to the following bound of the L2d/(d−1)

norm of the velocity gradient

max
0≤j≤M

∥∇uj
h∥L2d/(d−1) ≤ ∥∇(uj

h − smh (·, tj))∥L2d/(d−1) + ∥∇smh (·, tj)∥L2d/(d−1)

≤ Ch−1/2∥uj
h − smh (·, tj)∥1 + C

(
∥u∥1∥u∥2

)1/2
≤ Ch−1/2C(u, p, 3)h+ C

(
∥uj∥1∥u

j∥2
)1/2

(3.18)

≤ Cu,ld := C

(
C(u, p, 3) +

(
∥u∥

L
∞

(H
1
)
∥u∥

L
∞

(H
2
)

)1/2)
.

Now, we prove a priori bounds in the same norms for

P v
r u

j
h = (P v

r u
j
h − uj

h) + uj
h.

Since we have already proved error bounds for the second term on the right-hand side,
we only need to bound the first one. First, we consider the case X = L2(Ω)d. From
(3.14) in Lemma 3.4 we get for j = 0, . . . ,M ,

∥uj
h − P v

r u
j
h∥0 ≤ C

L
2 .(3.19)

Applying the inverse inequality (2.5) gives

∥P v
r u

j
h∥∞ ≤ ∥uj

h∥∞ + cinvh
−d/2∥uj

h − P v
r u

j
h∥0.

Utilizing (3.16) and (3.19) yields

Cinf := max
0≤j≤M

∥P v
r u

j
h∥∞ ≤ Cu,inf + cinvh

−d/2C
L

2 ,(3.20)

so that

(3.21) Kinf := ∆t

M∑
j=0

∥P v
r u

j
h∥

2
∞ ≤ TC2

inf .

Now, we observe that from (3.6) and (3.19), we get

(3.22) ∥∇(uj
h − P v

r u
j
h)∥0 ≤ ∥Sv∥1/22 C

L
2 .

In Remark 3.6 below we state assumptions that imply the boundedness of the right-
hand side of (3.22). Alternatively, we can argue as in Lemma 3.4 but applying

11



Lemma 3.1 with X = H1
0 (Ω)

d together with (3.4) with Rv
r = P v

r and W = H1
0 (Ω)

d to
get

max
0≤n≤M

∥∇(P v
r u

n
h − un

h)∥
2
0 ≤

(
3 + 6

T 2

τ2

)
dv∑

k=r+1

λk∥∇φk∥0

+
4T

3
(∆t)2

∫ T

0

∥∇(P v
r uh,tt(s)− uh,tt(s))∥

2
0 ds.

However, after having used

∥∇(P v
r uh,tt(s)− uh,tt(s))∥

2
0 ≤ 2∥∇P v

r uh,tt(s)∥
2
0 + 2∥∇uh,tt(s)∥

2
0,

we apply (3.6) to bound the first term as follows

∥∇P v
r uh,tt(s)∥

2
0 ≤ ∥Sv∥2∥P

v
r uh,tt(s)∥

2
0 ≤ ∥Sv∥2∥uh,tt(s)∥

2
0.

Thus, we do not avoid with this alternative procedure the appearance of the factor

∥Sv∥1/22 as on the right-hand side of (3.22).
Applying inequality (3.22) together with the inverse inequality (2.5) and (3.17),

we obtain

(3.23) C1,inf := max
0≤j≤M

∥∇P v
r u

j
h∥∞ ≤ Cu,1,inf + cinvh

−d/2∥Sv∥1/22 C
L

2 ,

and then, as before,

K1,inf := ∆t

M∑
j=0

∥∇P v
r u

j
h∥∞ ≤ TC1,inf .(3.24)

Finally, arguing in the same way but applying (3.18) instead of (3.17), we find

(3.25) Cld := max
0≤j≤M

∥∇P v
r u

j∥
L

2d/(d−1) ≤ Cu,ld + cinvh
−1/2∥Sv∥1/22 C

L
2 .

The case X = H1
0 (Ω)

d is simpler. As before, from (3.14), we get for j = 0, . . . ,M ,

∥∇(uj
h − P v

r u
j
h)∥0 ≤ C

H
1 .

Applying Poincaré’s inequality yields

∥uj
h − P v

r u
j
h∥0 ≤ CpCH

1 .

Arguing as before, we obtain

Cinf := max
0≤j≤M

∥P v
r u

j
h∥∞ ≤ Cu,inf + cinvCph

−d/2C
H

1 ,(3.26)

C1,inf := max
0≤j≤M

∥∇P v
r u

j
h∥∞ ≤ Cu,1,inf + cinvh

−d/2C
H

1 ,(3.27)

Cld := max
0≤j≤M

∥∇P v
r u

j∥
L

2d/(d−1) ≤ Cu,ld + cinvh
−1/2C

H
1 .(3.28)

From (3.26), it follows that

(3.29) Kinf := ∆t

M∑
j=0

∥P v
r u

j
h∥

2
∞ ≤ TC2

inf

12



and from (3.27) that

K1,inf := ∆t

M∑
j=0

∥∇P v
r u

j
h∥∞ ≤ TC1,inf .(3.30)

Remark 3.5. Let us observe that the factor ∥Sv∥1/22 appearing in (3.23), (3.24),
and (3.25) does not appear in (3.27), (3.28), and (3.30). Hence, for a comparable
value of

√
λr+1 in the first and the second bounds, the second bounds, i.e., those

corresponding to the case X = H1
0 (Ω)

d, are smaller. □

Remark 3.6. In the error analysis of the paper we need the constants in (3.20),
(3.23) and (3.25) to be bounded, for which it is enough to assume that

h−d/2∥Sv∥1/22 C
L

2

is bounded. To this end, in view of (3.14), we need to assume there exists a constant
C such that

h−d/2∥Sv∥1/22

(
dv∑

k=r+1

λk

)1/2

≤ C, h−d/2∥Sv∥1/22 ∆t ≤ C.(3.31)

Based on the inverse inequality (2.5), a simple calculation shows that ∥Sv∥1/22 behaves

at worst as O(h−1) (although in our numerical experience the behavior is much better),
so that (3.31) holds true in case

h−d/2−1

(
dv∑

k=r+1

λk

)1/2

≤ C, h−d/2−1∆t ≤ C.(3.32)

Now we observe that for any h fixed (which means we have selected the set of snap-
shots) we can always find r0 and (∆t)0 so that (3.32) holds for r ≥ r0 and ∆t ≤ (∆t)0.
Let us also note that in case one uses a second order method instead of the Euler

scheme for time integration, the assumption h−d/2−1∆t ≤ C in (3.32) can be weak-

ened to h−d/2−1(∆t)2 ≤ C.
Analogously, we will require the constants in (3.26), (3.27) and (3.28) to be

bounded which is satisfied whenever

h−d/2C
H

1 ≤ C

for which analogous comments hold.
Then, in the sequel, we will assume that r is bigger than a fixed quantity and ∆t

is smaller than a fixed quantity so that, as explained above, all the constants in the a
priori bounds for P v

r u
j
h remain bounded. □

4. The POD-ROM method.

4.1. The case X = H1
0 (Ω)

d. We now consider the grad-div POD-ROM model.
For the sake of simplifying the error analysis, we use the implicit Euler method as
time integrator: For n ≥ 1, find un

r ∈ U r such that for all φ ∈ U r

(4.1)

(
un
r − un−1

r

∆t
,φ

)
+ ν(∇un

r ,∇φ)+ bh(u
n
r ,u

n
r ,φ)+µ(∇ ·un

r ,∇ ·φ) = (fn,φ).
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Taking t = tj in (2.12) and considering the second equation we get uj
h ∈ V l

h.
Differentiating the second equation in (2.12) with respect to t and taking again t = tj ,

we also obtain uj
h,t ∈ V l

h. As a consequence, we observe that U r ⊂ V l
h so that un

r

belongs to the space V l
h of discretely divergence-free functions.

Choosing t = tn in (2.13) yields for all vh ∈ V h,l

(4.2)
(
un
h,t,vh

)
+ ν(∇un

h,∇vh) + bh(u
n
h,u

n
h,vh) + µ(∇ · un

h,∇ · vh) = (fn,vh).

Using the notation ηn
h = P v

r u
n
h − un

h, a straightforward calculation gives(
P v
r u

n
h − P v

r u
n−1
h

∆t
,φ

)
+ ν(∇P v

r u
n
h,∇φ) + bh(P

v
r u

n
h, P

v
r u

n
h,φ) + µ(∇ · P v

r u
n
h,∇ ·φ)

= (fn,φ) +

(
P v
r u

n
h − P v

r u
n−1
h

∆t
− un

h,t,φ

)
+ µ(∇ · ηn

h,∇ ·φ)(4.3)

+bh(P
v
r u

n
h, P

v
r u

n
h,φ)− bh(u

n
h,u

n
h,φ) ∀ φ ∈ U r.

Theorem 4.1. Let (u, p) be the solution of the Navier–Stokes equations (1.1),
which is assumed to be sufficiently regular, let ur be the grad-div POD stabilized
approximation defined in (4.1) and assume that the time step restriction (4.19) holds.
Then, the following bound is valid

n∑
j=1

∆t∥uj
r − uj∥20

≤ 3Te2Cu

[
∥e0r∥

2
0 +

(
2T (µ+ C2

mT )(3 + 6(T/τ)2) + 4C2
p(T/τ)

2
) dv∑

k=r+1

λk

+

(
CC2

pT + 2T (µ+ C2
mT )

16T

3
+

16T 2

3
C2

p

)
(∆t)2

∫ T

0

∥∇(uh,tt)∥
2
0 ds

]
(4.4)

+3TC(u, p, l)2h2l + 3TC2
p

(
3 + 6(T/τ)2

) dv∑
k=r+1

λk,

where the constants Cm and Cu are defined in (4.11) and (4.20), respectively.

Proof. Subtracting (4.3) from (4.1) and denoting by enr = un
r −P v

r u
n
h ∈ U r leads

to (
enr − en−1

r

∆t
,φ

)
+ ν(∇enr ,∇φ) + µ(∇ · enr ,∇ ·φ)

+bh(u
n
r ,u

n
r ,φ)− bh(P

v
r u

n
h, P

v
r u

n
h,φ)

=

(
un
h,t −

P v
r u

n
h − P v

r u
n−1
h

∆t
,φ

)
− µ(∇ · ηn

h,∇ ·φ)

+bh(u
n
h,u

n
h,φ)− bh(P

v
r u

n
r , P

v
r u

n
r ,φ), ∀ φ ∈ U r.(4.5)

Taking now φ = enr yields

1

2∆t

(
∥enr ∥

2
0 − ∥en−1

r ∥20
)
+ ν∥∇enr ∥

2
0 + µ∥∇ · enr ∥

2
0
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≤

(
un
h,t −

P v
r u

n
h − P v

r u
n−1
h

∆t
, enr

)
+
(
bh(P

v
r u

n
h, P

v
r u

n
h, e

n
r )− bh(u

n
r ,u

n
r , e

n
r )
)

−µ(∇ · ηn
h,∇ · enr ) +

(
bh(u

n
h,u

n
h, e

n
r )− bh(P

v
r u

n
r , P

v
r u

n
r , e

n
r )
)

= I + II + III + IV.(4.6)

The first term on the right-hand side of (4.6) is estimated by using the Cauchy–
Schwarz and Young inequalities

|I| ≤ T

2

∥∥∥∥∥un
h,t −

P v
r u

n
h − P v

r u
n−1
h

∆t

∥∥∥∥∥
2

0

+
1

2T
∥enr ∥

2
0.(4.7)

To bound the second term on the right-hand side of (4.6), we use, following [26,
Eq. (45)], the skew-symmetry of the trilinear term, Hölder’s inequality, (3.26), (3.27),
and Young’s inequality to obtain

|II| = |bh(e
n
r , P

v
r u

n
h, e

n
r )| ≤ ∥∇P v

r u
n
h∥∞∥enr ∥

2
0 +

1

2
∥∇ · enr ∥0∥P

v
r u

n
h∥∞∥enr ∥0

≤

(
∥∇P v

r u
n
h∥∞ +

∥P v
r u

n
h∥

2
∞

4µ

)
∥enr ∥

2
0 +

µ

4
∥∇ · enr ∥

2
0.(4.8)

For the third term, the application of the Cauchy–Schwarz and Young inequalities
leads to

|III| ≤ µ∥∇ηn
h∥

2
0 +

µ

4
∥∇ · enr ∥

2
0.(4.9)

For estimating the fourth term, we follow [26, Eq. (50)]. Using Hölder’s inequality,
(3.16), (3.18), the Sobolev imbedding (2.1) with s = 1 and q = 2, (2.3), and Young’s
inequality leads to

|IV | ≤ |bh(P
v
r u

n
h,η

n
h, e

n
r )|+ |bh(η

n
h,u

n
h, e

n
r )|

≤ ∥P v
r u

n
h∥∞∥∇ηn

h∥0∥e
n
r ∥0 +

1

2
∥∇ · P v

r u
n
h∥L2d/(d−1)∥ηn

h∥L2d∥enr ∥0

+∥ηn
h∥L2d∥∇un

h∥L2d/(d−1)∥enr ∥0 +
1

2
∥∇ · ηn

h∥0∥u
n
h∥∞∥enr ∥0

≤ Cinf∥∇ηn
h∥0∥e

n
r ∥0 + CCld∥∇ηn

h∥0∥e
n
r ∥0

+C∥∇ηn
h∥0Cu,ld∥e

n
r ∥0 +

1

2
∥∇ηn

h∥0Cu,inf∥e
n
r ∥0

≤ C2
mT∥∇ηn

h∥
2
0 +

1

2T
∥enr ∥

2
0,(4.10)

where

(4.11) Cm = C(Cinf + Cu,inf + Cld + Cu,ld).

Inserting (4.7), (4.8), (4.9), and (4.10) into (4.6) and adding over the time instances,
we get

∥enr ∥
2
0 + 2ν

n∑
j=1

∆t∥∇ejr∥
2
0 + µ

n∑
j=1

∆t∥∇ · ejr∥
2
0
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≤ ∥e0r∥
2
0 +

n∑
j=1

∆t

(
2∥∇P v

r u
n
h∥∞ +

∥P v
r u

n
h∥

2
∞

2µ
+

2

T

)
∥ejr∥

2
0

+2(µ+ C2
mT )

n∑
j=1

∆t∥∇ηj
h∥

2
0 + T

n∑
j=1

∆t

∥∥∥∥∥uj
h,t −

P v
r u

j
h − P v

r u
j−1
h

∆t

∥∥∥∥∥
2

0

.(4.12)

Adding ±P v
r u

j
h,t for bounding the last term on the right-hand side of (4.12) gives

(4.13) uj
h,t −

P v
r u

j
h − P v

r u
j−1
h

∆t
= (uj

h,t − P v
r u

j
h,t) +

(
P v
r u

j
h,t −

P v
r u

j
h − P v

r u
j−1
h

∆t

)
,

from what follows

n∑
j=1

∆t

∥∥∥∥∥uj
h,t −

P v
r u

j
h − P v

r u
j−1
h

∆t

∥∥∥∥∥
2

0

(4.14)

≤ 2

n∑
j=1

∆t
∥∥∥P v

r u
j
h,t − uj

h,t

∥∥∥2
0
+ 2

n∑
j=1

∆t

∥∥∥∥∥P v
r

(
uj
h,t −

uj
h − uj−1

h

∆t

)∥∥∥∥∥
2

0

.

To bound the first term on the right-hand side of (4.14), we apply Poincaré’s inequality
(2.2) and (3.3), taking into account that (M + 1)/M ≤ 2, to get
(4.15)

n∑
j=1

∆t
∥∥∥P v

r u
j
h,t − uj

h,t

∥∥∥2
0
≤ C2

p

n∑
j=1

∆t
∥∥∥∇(P v

r u
j
h,t − uj

h,t

)∥∥∥2
0
≤

2C2
pT

τ2

dv∑
k=r+1

λk.

For the second one, we also use Poincaré’s inequality (2.2) and then notice that,
utilizing a property of a projection in Hilbert spaces, ∥∇P v

r w∥20 ≤ ∥∇w∥20 for every

w ∈ H1
0 (Ω)

d, so that
(4.16)

n∑
j=1

∆t

∥∥∥∥∥P v
r

(
uj
h,t −

uj
h − uj−1

h

∆t

)∥∥∥∥∥
2

0

≤ C2
p

n∑
j=1

∆t

∥∥∥∥∥∇
(
uj
h,t −

uj
h − uj−1

h

∆t

)∥∥∥∥∥
2

0

.

Inserting (4.15) and (4.16) into (4.14), we obtain

n∑
j=1

∆t

∥∥∥∥∥uj
h,t −

P v
r u

j
h − P v

r u
j−1
h

∆t

∥∥∥∥∥
2

0

≤
2C2

pT

τ2

dv∑
k=r+1

λk + C2
p

n∑
j=1

∆t

∥∥∥∥∥∇
(
uj
h,t −

uj
h − uj−1

h

∆t

)∥∥∥∥∥
2

0

.(4.17)

For the second term on the right-hand side of (4.17), a standard argument gives (e.g.,
see [9, (81)])

(4.18) C2
p

n∑
j=1

∆t

∥∥∥∥∥∇
(
uj
h,t −

uj
h − uj−1

h

∆t

)∥∥∥∥∥
2

0

≤ CC2
p(∆t)2

∫ T

0

∥∇(uh,tt)∥
2
0 ds.
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Assuming that

(4.19) ∆t

(
2C1,inf +

C2
inf

2µ
+

2

T

)
≤ 1

2
,

denoting by

(4.20) Cu = 2K1,inf +
K2

inf

2µ
+ 2,

applying Gronwall’s Lemma [16, Lemma 5.1], (3.15), and taking into account again
that (M + 1)/M ≤ 2, we obtain from (4.12)

∥enr ∥
2
0 + 2ν

n∑
j=1

∆t∥∇ejr∥
2
0 + µ

n∑
j=1

∆t∥∇ · ejr∥
2
0(4.21)

≤ e2Cu

(
∥e0r∥

2
0 +

(
2T (µ+ C2

mT )(3 + 6(T/τ)2) + 4C2
p(T/τ)

2
) dv∑

k=r+1

λk

+

(
CC2

pT + 2T (µ+ C2
mT )

16T

3

)
(∆t)2

∫ T

0

∥∇(uh,tt)∥
2
0 ds

)
.

We have
∑n

j=1 ∆t∥ejr∥
2
0 ≤ T max1≤j≤n ∥e

j
r∥

2
0 and

n∑
j=1

∆t∥uj
r − uj∥20 ≤ 3

 n∑
j=1

∆t∥ejr∥
2
0 +

n∑
j=1

∆t∥P v
r u

j
h − uj

h∥
2
0 +

n∑
j=1

∆t∥uj
h − uj∥20

 .

Inserting the estimates (4.21), (3.15), and (2.14) leads directly to (4.4).

Remark 4.2. Arguing as in [16, Proposition 3.2], one can get an a priori bound
for

(4.22)

∫ T

0

∥∇(uh,tt)∥
2
0

in (4.4). However, the error analysis in [16] is not valid for high Reynolds numbers.
In the appendix we get an error bound for this term with constants independent of
inverse powers of the viscosity. A robust estimate for (4.22), in the case l ≥ 3, is
derived. Hence, for l ≥ 3, there is no explicit appearance of inverse powers of the
viscosity coefficient in the error bound (4.4). The technical reason for not obtaining
a robust estimate for l = 2 with the technique from the appendix is the gradient in
front of uh,tt. This gradient was introduced with the transition from the L2(Ω)d norm
to the corresponding norm of the gradient in (4.16) in order to be able to apply the
Hilbert space argument. Note that, with the approach presented in the appendix,
boundedness can be shown also for l = 2, but not the robustness of the bound. □

Remark 4.3. In view of Remark 3.6 and assuming the solution is regular enough,
assumption (4.19) only requires a step size smaller than a given constant whose size
depends on the constants C1,inf , Cinf , µ and T . □

Remark 4.4. With the error decomposition in the proof of Theorem 4.1 and
applying (3.5) or the inverse inequality (2.5) to (4.21), one can also prove a robust
error bound for

∑n
j=1 ∆t∥∇(uj

r − uj)∥20. □
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We can apply Lemma 3.1 to get pointwise estimates with respect to time both
in L2(Ω) and H1(Ω). Let us prove pointwise estimates in L2(Ω), the argument for
proving bounds in H1(Ω) is the same. Since

∥un
r − un∥20 ≤ 3∥enr ∥

2
0 + 3∥P v

r u
n
h − un

h∥
2
0 + 3∥un

h − un∥20,

we can utilize (4.21) and (2.14) to bound the first and third term on the right-hand
side. For bounding the second term, (3.14) is utilized. More precisely, taking into

account that the case X = H1
0 (Ω)

d is analyzed, we apply Poincaré’s inequality (2.2)
to bound ∥P v

r u
n
h − un

h∥
2
0 ≤ C2

p∥∇(P v
r u

n
h − un

h)∥
2
0 and then (3.14). Collecting the

estimates (4.21), (3.14), (2.14) proves the following theorem.

Theorem 4.5. Let the assumptions of Theorem 4.1 be satisfied, then the following
bound is valid

max
0≤n≤M

∥un
r − un∥20

≤ 3e2Cu

[
∥e0r∥

2
0 +

(
2T (µ+ C2

mT )(3 + 6(T/τ)2) + 4C2
p(T/τ)

2
) dv∑

k=r+1

λk

+

(
CC2

pT + 2T (µ+ C2
mT )

16T

3
+

16T

3
C2

p

)
(∆t)2

∫ T

0

∥∇(uh,tt)∥
2
0 ds

]

+3C2
p(3 + 6(T/τ)2)

dv∑
k=r+1

λk + C(u, p, l + 1)2h2l,

where the constants for l ≥ 3 do not blow up for small viscosity coefficients since
(4.22) is bounded.

4.2. The case X = L2(Ω)d. For the sake of brevity, in the proof of the following
theorem, we are going to mention only the differences with respect to the analysis for
the case X = H1

0 (Ω)
d.

Theorem 4.6. Assume that the solution (u, p) of the Navier–Stokes equations
(1.1) is sufficiently regular, that the time step restriction (4.19) is satisfied, and let
ur be the grad-div POD stabilized approximation defined in (4.1). Then, the following
bound holds.

n∑
j=1

∆t∥uj
r − uj∥20

≤ 3Te2Cu

[
∥e0r∥

2
0 + 2T (ν + µ+ C2

mT )∥Sv∥2(3 + 6(T/τ)2)

dv∑
k=r+1

λk

+ (∆t)2
(
CT + 2T (ν + µ+ C2

mT )∥Sv∥2(16T
2)/3 + (16T 2)/3

)∫ T

0

∥uh,tt∥
2
0 ds

]

+3TC(u, p, l + 1)2h2l + 3T
(
3 + 6(T/τ)2

) dv∑
k=r+1

λk.

Proof. Observing that the orthogonality property of P v
r affects now the term with

the approximation of the temporal derivative (instead of the viscous term) we obtain,
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instead of (4.5), the following error equation(
enr − en−1

r

∆t
,φ

)
+ ν(∇enr ,∇φ) + µ(∇ · enr ,∇ ·φ)

+bh(u
n
r ,u

n
r ,φ)− bh(P

v
r u

n
h, P

v
r u

n
h,φ)

=

(
un
h,t −

un
h − un−1

h

∆t
,φ

)
− ν(∇ηn

h,∇φ)− µ(∇ · ηn
h,∇ ·φ)

+bh(u
n
h,u

n
h,φ)− bh(P

v
r u

n
h, P

v
r u

n
h,φ) ∀ φ ∈ U r.(4.23)

Using the same techniques as for the other case, we infer, instead of (4.12), that

∥enr ∥
2
0 + 2ν

n∑
j=1

∆t∥∇ejr∥
2
0 + µ

n∑
j=1

∆t∥∇ · ejr∥
2
0

≤ ∥e0r∥
2
0 +

n∑
j=1

∆t

(
2∥∇P v

r u
n
h∥∞ +

∥P v
r u

n
h∥

2
∞

2µ
+

2

T

)
∥ejr∥

2
0

+2(ν + µ+ C2
mT )

n∑
j=1

∆t∥∇ηj
h∥

2
0 + CT (∆t)2

∫ T

0

∥uh,tt(s)∥
2
0 ds.(4.24)

From (4.24) we continue as before, compare [26, Theorem 5.3], and take into account
that applying (3.6) and (3.15), it is

n∑
j=1

∆t∥∇ηj
h∥

2
0 ≤ T∥Sv∥2

(
(3 + 6(T/τ)2)

dv∑
k=r+1

λk +
16T 2

3
(∆t)2

∫ T

0

∥uh,tt(s)∥
2
0 ds

)
.

Then, instead of (4.21), we conclude

∥enr ∥
2
0 + 2ν

n∑
j=1

∆t∥∇ejr∥
2
0 + µ

n∑
j=1

∆t∥∇ · ejr∥
2
0

≤ e2Cu

(
∥e0r∥

2
0 + 2T (ν + µ+ C2

mT )∥Sv∥2(3 + 6(T/τ)2)

dv∑
k=r+1

λk

+ (∆t)2
(
CT + 2T (ν + µ+ C2

mT )∥Sv∥2(16T
2)/3

)∫ T

0

∥uh,tt(s)∥
2
0 ds

)
.(4.25)

Remark 4.7. A robust estimate for the following term and l ≥ 2 is proved in the
appendix

(4.26)

∫ T

0

∥uh,tt∥
2
0 ds.

In [26, Section 5], there is an error analysis for the case in which a fully discrete
Galerkin method with the same implicit Euler method is utilized for the FOM. □

Remark 4.8. For the proof of Theorem 4.6 one can compare un
r with the Ritz

projection Rv
ru

n
h defined by

(∇Rv
ru

n
h,∇φi) = (∇un

h,∇φi), i = 1, . . . , r,
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instead of the L2 projection P v
r u

n
h, as suggested in [21, Lemma 4.3]. However, unlike

[21, Lemma 4.3], in which optimal bounds are obtained for the heat equation, the
comparison with the Ritz projection does not allow to improve the error bounds for
the Navier–Stokes equations. On the one hand, although comparing with Rv

ru
n
h the

error term ν∥∇(Rv
ru

n
h −un

h)∥0 disappears (this term is ν∥∇ηn
h∥0 in Theorem 4.6), we

cannot get rid of the term µ∥∇·(Rv
ru

n
h−un

h)∥0 (this term is µ∥∇·ηn
h∥0 in Theorem 4.6).

On the other hand, there is also a term involving ∥∇(Rv
ru

n
h −un

h)∥0 coming from the
nonlinear term (∥∇ηn

h∥0 in Theorem 4.6) that does not disappear either. Thus, the

H1
0 (Ω)

d norm of the error in the Ritz projection has to be estimated anyway. □

Remark 4.9. Let us observe that at this point it seems that the snapshots from
the time derivative are not helpful in the L2(Ω)d case. However, it turns out that
these snapshots are needed for obtaining pointwise estimates in time. In fact, we can
repeat the arguments of the previous section to get such estimates for the L2(Ω)d

error, and also for the H1(Ω)d error applying the inverse inequality (3.6), that cannot
be obtained, at least with the same arguments, without adding those snapshots. □

Remark 4.10. As observed already in [23, 24], comparing the L2(Ω)d and the

H1
0 (Ω)

d cases, we can observe that in the L2(Ω)d case the eigenvalues are multiplied
by ∥Sv∥2 in the error bound (4.25), which increases the size of this term, compared

with (4.21). In addition, the factor ∥Sv∥1/22 appears in the definition (4.20) of Cu,
which gives a bigger constant in the exponential term of the error bound, and also in
the assumption for the time steps (4.19), i.e., the condition for applying Gronwall’s
lemma leads to a severe time step restriction if ∥Sv∥2 is very large. On the other

hand, using L2(Ω)d as projection space leads to an integral term in the error bound,
(4.26), that can be bounded in a robust way for l ≥ 2, whereas l ≥ 3 is necessary if

the projection space is H1
0 (Ω)

d, to bound the term (4.22), at least with the approach
from the appendix. Thus, both approaches possess advantages with respect to certain
aspects of the error analysis. □

Remark 4.11. A popular pair of finite element spaces that leads to weakly diver-
gence-free discrete velocity fields is the Scott–Vogelius pair (X l

h, Q
l−1
h,disc). It is inf-sup

stable for l ≥ d on so-called barycentric-refined grids [32]. A favorable feature of the
Scott–Vogelius pair is that it leads to so-called pressure-robust velocity estimates, i.e.,
the velocity error bounds do not depend on the pressure. In particular, an estimate
of form (2.14) was derived in [29] with C(u, l+1). In estimating the integral term as
performed in the appendix, the term (σ2,∇ ·φh) vanishes if φh is weakly divergence-
free, such that the bound of the integral term does not contain the pressure. Finally,
the snapshots are only from the velocity field, which can be (formally) computed by
solving an equation of type (2.13), which does not contain the pressure. Hence all
terms in estimates (3.15) and (3.3) are independent of the pressure. Applying the
same analysis as for the Taylor–Hood pair of spaces, even with some simplifications,
gives for the Scott–Vogelius pair pressure-robust error bounds of the same type, under
the conditions on the inf-sup stability mentioned above. □

5. Numerical studies. We now present some results for the well-known bench-
mark problem defined in [28]. The domain is given by

Ω = (0, 2.2)× (0, 0.41)/
{
(x, y) | (x− 0.2)2 + (y − 0.2)2 ≤ 0.0025

}
.
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Fig. 1. Snapshot errors in the L
2
norm (left) and in the H

1
0 norm (right).

On the inflow boundary, x = 0, the velocity is prescribed by

u(0, y) =
6

0.412
sin

(
πt

8

)(
y(0.41− y)

0

)
and on the outflow boundary x = 2.2 we set the so-called “do nothing” boundary
condition. On the rest of the boundary the velocity is set u = 0. It is well known
that for f = 0 and ν = 0.001 there is a stable periodic orbit.

We use piecewise quadratic and linear elements for velocity and pressure, respec-
tively, on the same mesh as in [11], resulting in 27168 degrees of freedom for the
velocity and 3480 for the pressure. We call this grid here the main grid. The grid ob-
tained from this one by regular refinement (107328 degrees of freedom for the velocity
and 13584 for the pressure), called refined grid henceforth, was used only to compute
a reference solution and the errors of the snapshots. As in [11], the value of the
grad-div parameter was set to µ = 0.01. For the time integration of the semidiscrete
FOM (2.12) we used a variable step size second order backward differentiation formula
(BDF2) described in [11]. On both grids we computed the periodic orbit (see [6], [18,
Example D.8]) by finding the fixed point of the return map to a Poincaré section
(e.g., see [27]). This fixed point was used as the initial condition in the experiments
we show here. Notice that any other point in the periodic orbit could have been used
as the initial condition, and the results would have been those of the present paper
displaced in time by the corresponding time gap. The periods, computed with a rela-
tive error below 10−6 were T = 0.331761 and Tr = 0.331338 on the main and refined
grid, respectively. We computed snapshots over one period with a spacing of T/1024
and Tr/1024. Notice that velocity, acceleration and pressure at these equally-spaced
time levels were computed by interpolation, since they do not necessarily coincide
with the steps taken by the variable step size BDF2 code; in fact, for the snapshots
on the main grid, the BDF2 code took 5553 steps, the step sizes selected as explained
in [11], when the tolerances for the absolute and relative values of the local errors
were set to 10−10 and 10−7, respectively (see [11] for details). Taking as exact the
results on the refined grid, the relative errors of the snapshots are shown in Fig. 1,
both in velocity and in acceleration, and both in the L2 and H1

0 norms. It can be
seen that the errors in velocity are around 0.003 in the L2 norm and around 0.03 in
the H1

0 norm, and that the acceleration errors are, approximately, eight times larger
than those of the velocity in the L2 norm, and four times larger in the H1

0 norm.
Fig. 2 shows the first 256 singular values σk =

√
λk relative to their Euclidean

norm, that is,

(5.1) σk/

(
N∑
j=1

σ2
k

)1/2

,

where N is the number of snapshots, both when the inner product is that of L2 and
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Fig. 2. First 256 singular values of data set relative to their Euclidean norm (5.1), for the L
2

inner product (left) and the H
1
0 inner product (right).
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Fig. 3. Snapshot projection errors (5.2) for the correlation matrix based on L
2
product (left)

and H
1
0 products (right). Results for data sets y

j
h = u

j
h − uh (blue, continuous line), y

j
h = Tu

j
u,t

(magenta, discontinuous line), and y
j
h = Tδtu

j
h = T (u

j
h −u

j−1
h )/∆t (black, dotted line). Note that

several lines are on top of each other.

H1
0 , in the cases where the elements in the data sets are yj

h = uj
h − uh, y

j
h = Tuj

u,t,

and yj
h = Tδtu

j
h = T (uj

h − uj−1
h )/∆t. We see that with both inner products, the

singular values are slightly larger when the data set is the time derivatives or their
approximation, but already for k = 50 their value is considerable smaller than the
approximation errors in Fig. 1. In fact, for the singular values corresponding to the
data set given by the fluctuations uj

h −uh (blue line), there are only 16 values above

10−3 in Fig. 2 (left) and 14 above 10−2 in the right plot. Note that 10−3 and 10−2

are about one third of the average errors in Fig. 1 for the L2 and the H1
0 norm, so it

reasonable to use a POD basis with no more elements, since although with a larger
basis we may better approximate the elements in the data set, these have already
larger approximation errors. Consequently, in the sequel, we use a POD basis with 16
elements if the L2 inner product is utilized and 14 in case of the H1

0 inner product.
Next we present in Fig. 3 the projection errors of the snapshots,

(5.2)
∥∥∥uj

h − P v
r u

j
h

∥∥∥
i

/∥∥∥uj
h

∥∥∥
i
, j = 1, . . . , N, i ∈ {0, 1},

for data sets yj
h = uj

h − uh, y
j
h = Tuj

u,t, and yj
h = Tδtu

j
h = T (uj

h − uj−1
h )/∆t, when

r = 16 and r = 14 for POD basis based on L2 and H1
0 inner products, respectively.

We notice that the results on the left plot are quite independent of the data set used,
whereas those on the right plot show some advantage for the data set based on the
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Fig. 4. POD-ROM errors (5.3) for correlation matrix based on L
2

product (left) and H
1
0

products (right). Results for data sets y
j
h = u

j
h−uh (blue, continuous line), y

j
h = Tu

j
u,t (magenta,

discontinuous line) and y
j
h = Tδtu

j
h = T (u

j
h − u

j−1
h )/∆t (black, dotted line).
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Fig. 5. Drag (left) and lift (right) coefficients for the reference solution (black, dotted line), the

FOM (magenta, continuous line), and the POD-ROM approximation with snapshots u
j
h as data set

and L
2
inner product (blue, discontinuous line).

fluctuations, yj
h = uj

h −uh, although in all cases the projection errors are well below
the quantity (5.1) that we used to select the size of the POD bases, which, recall, are
0.001 and 0.01 for POD basis based on L2 and H1

0 , respectively.
Fig. 4 depicts the POD-ROM errors

(5.3)
∥∥∥uj

r − uj
h

∥∥∥
i

/∥∥∥uj
h

∥∥∥
i
, j = 1, . . . , N, i ∈ {0, 1},

with the same color convention as in Fig. 3. For the time integration, instead of
the backward Euler method in (4.1), we used the two step BDF formula with fixed
step size ∆t = T/N , N = 1024, except for the first step, where the backward Euler
method was applied. The parameter for the grad-div term was as in the computation
of the snapshots µ = 0.01. We see that the results are very independent of the data
set used, for both inner products, and that the POD-ROM errors are slightly larger
than the corresponding projection errors, except for data sets based on snapshots,
yj
h = uj

h − uh (blue line) and POD basis based on H1
0 inner products (right plot)

which are approximately twice the size of the corresponding errors in Fig. 3.
Finally, lift and drag coefficients are studied. For the FOM, they were computed

as indicated in [18] (see also [11]). For the POD-ROM method they were computed as
in [13]. In Fig. 5 we see the evolution of the drag and lift coefficients along 12 periods
for the reference solution (computed on the refined grid), the FOM, and the POD-
ROM approximation with the fluctuations uj

h −uh of the snapshots computed in the

first period as data set with the L2 inner product (all other POD-ROM approximations
gave similar results). At first sight, the agreement is excellent. Fig. 6 compares the
first and twelfth periods. There is a phase difference between the black dotted line
and the other two lines, since, as commented above, the “exact” solution computed on
the refined grid has a slightly different period than that computed on the main grid.
We notice however, that the difference between the other two lines is hardly altered
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and L
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from the first period to the last one. In addition, the results for the lift coefficient
corresponding to the FOM and the POD-ROM approximation are on top of each
other (in fact the maximum relative error of this coefficient with respect to that of
the FOM in the 12 periods is below 1.7× 10−4). Some differences can be seen in the
drag coefficient. However, the maximum relative error with respect the coefficient
computed with the FOM is below 0.0011.

The summary of the results is that there are no significant differences in the POD-
ROM approximation, i.e., they are quite independent of the data set used. Only some
minor differences, namely that the projection errors depend on the data set when the
H1

0 inner product is used, could be observed in the computation of the POD basis.

6. Conclusions. We analyzed reduced order models for the incompressible Na-
vier–Stokes equations based on proper orthogonal decomposition methods. The in-
fluence of including approximations to the time derivative in the set of snapshots was
studied. Our set of snapshots is constituted by the approximation to the velocity at
the initial time together with approximations to the time derivative at different times.
The approximation to the velocity at the initial time can be replaced by the mean
value and then only approximations to the time derivatives are required for applying
the POD method to the fluctuations. The Galerkin time derivative can be replaced
by any other approximation as the standard difference quotient.

We studied the differences between projecting onto L2 and H1
0 . We proved that

including the Galerkin time derivatives (or the difference quotients) leads to pointwise
estimates for both projections. In the L2 case, error bounds can be proved in the no-
time-derivatives case (with only snapshots for the velocity) as shown in the literature,
e.g., see [26]. However, the time derivatives approach is useful also in this case to
get pointwise estimates. In the numerical analysis, we utilized the projection of the
continuous-in-time Galerkin approximation since this allows to use in practice any
time integrator for computing the snapshots. It is easy to include the corresponding
error in time in the bounds of the present paper. Also, different times can be con-
sidered to compute the set of snapshots and the fully discrete POD approximations.
Finally, as in one of the methods in [26], we added grad-div stabilization to the ap-
proximations computed with the FOM and POD methods to be able to prove error
bounds in which the constants do not depend on inverse powers of the viscosity.

In the numerical studies, we compared three different sets of snapshots, for both
inner products, where the elements in the data sets were yj

h = uj
h − uh, y

j
h = Tuj

u,t,

and yj
h = Tδtu

j
h = T (uj

h − uj−1
h )/∆t. While the snapshots were computed using

only one period, we showed that very good approximations are obtained to the lift
and drag coefficients in a time interval of 12 periods. In our numerical studies there
were no significant differences between the different procedures. More comprehensive
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studies have to further investigate this topic.
Altogether, we think that the rigorous numerical analysis presented in this pa-

per shows interesting properties and sharp bounds for the different methods. It also
supports the idea of the recent paper [25] which shows that in the case of the heat
equation there is no need to include in the set of snapshots other than one approxi-
mation to the solution at a fixed time. We prove that for the approximation to the
incompressible Navier–Stokes equations the same situation holds. Moreover, in case
of applying the POD method to fluctuations, as it is standard, only snapshots of the
time derivative are needed.

Appendix A. Robust bounds for the terms with the second temporal
derivative. In this section we derive bounds for the terms (4.26) and (4.22). As a
consequence, the terms on the right-hand sides of (4.4) and (4.25) that contain (4.22)
and (4.26), respectively, are bounded.

The constants in the bounds below do not blow up as ν → 0. It will be assumed
that all functions are sufficiently smooth such that the performed operations are well
defined.

Lemma A.1. Let uh be the Galerkin approximation defined in (2.13) and let smh
be the modified Stokes projection defined in (2.6). Let us denote by eh = uh − smh .
Assume for simplicity uh(0) = smh (0). Then, the following bounds hold∫ t

0

∥eh,t(s)∥
2
0 ds ≤ Ch2(l−1),(A.1) ∫ t

0

∥eh,tt(s)∥
2
0 ds ≤ Ch2(l−2),(A.2) ∫ t

0

∥∇(eh,tt)(s)∥
2
0 ds ≤ Ch2(l−3),(A.3)

where the constant C is independent of inverse powers of ν.

Proof. We bound

(A.4) ∥uh,tt∥0 ≤ ∥uh,tt − smh,tt∥0 + ∥utt∥0 + ∥smh,tt − utt∥0,

and likewise for the norm of the gradient. Below, the first term on the right-hand
side will be shown to be bounded. The second term is bounded because the solution
is sufficiently smooth, and then the last term can be bounded with (2.7), where the
notation smh,tt has to be understood that the modified Stokes projection is applied to
utt.

The error equation for (2.13) is given by(
eh,t,φh

)
+ ν(∇eh,∇φh) + bh(uh,uh,φh)− bh(u,u,φh) + µ(∇ · eh,∇ ·φh)

= (σ1,φh) + (σ2,∇ ·φh) ∀ φh ∈ V l
h,(A.5)

with σ1 = ut − smh,t, σ2 = (p − PQh
p) + µ(∇ · (u − smh ), and PQh

p is the best

approximation of p in Ql
h. Note that if a (discrete) velocity function is in V (or V l

h),
then also the temporal derivatives of this function are in the same space. Hence,
taking φh = eh,t ∈ V l

h in (A.5) and using the inverse inequality (2.5) yields

∥eh,t∥
2
0 +

d

dt

1

2
ν∥∇eh∥

2
0 +

d

dt

1

2
µ∥∇ · eh∥

2
0 ≤ |bh(uh − u,u, eh,t)|

25



+|bh(uh,uh − u, eh,t)|+ ∥σ1∥0∥eh,t∥0 + cinv∥σ2∥0h
−1∥eh,t∥0.(A.6)

The first term on the right-hand side is estimated with Hölder’s inequality, (2.14),
and Young’s inequality

|bh(uh − u,u, eh,t)| ≤ ∥uh − u∥0∥∇u∥∞∥eh,t∥0 +
1

2
∥∇ · (uh − u)∥0∥u∥∞∥eh,t∥0

≤ Ch2(l−1) +
1

8
∥eh,t∥

2
0.

For the second term, in addition the following estimate from [18, Lemma 6.11]

((u · ∇)v,w) ≤ C∥u∥1∥∇v∥0∥w∥1, u,v,w ∈ H1(Ω)d,

the inverse inequality (2.5), and the condition l ≥ 2 are utilized

|bh(uh,uh − u, eh,t)| ≤ |bh(uh − u,uh − u, eh,t)|+ |bh(u,uh − u, eh,t)|
≤ C∥uh − u∥21∥eh,t∥1 + ∥u∥∞∥∇(uh − u)∥0∥eh,t∥0
≤ C∥uh − u∥21cinvh

−1∥eh,t∥0 + C∥uh − u∥1∥eh,t∥0

≤ C
(
h4l−6 + h2l−2

)
+

1

8
∥eh,t∥

2
0 ≤ Ch2(l−1) +

1

8
∥eh,t∥

2
0.

For the last two terms, we obtain, with (2.7), the L2(Ω) best approximation error for
the pressure, and Young’s inequality, the following bound

∥σ1∥0∥eh,t∥0 + cinv∥σ2∥0h
−1∥eh,t∥0 ≤ 2∥σ1∥

2
0 + c2inv∥σ2∥

2
0h

−2 +
1

4
∥eh,t∥

2
0

≤ Ch2(l−1) +
1

4
∥eh,t∥

2
0.

Absorbing terms in the left-hand side of (A.6) and collecting the other terms on the
right-hand side leads to

(A.7)
1

2

(
∥eh,t∥

2
0 +

d

dt
ν∥∇eh∥

2
0 +

d

dt
µ∥∇ · eh∥

2
0

)
≤ Ch2(l−1),

from which, taking into account eh(0) = 0, we derive the estimate∫ t

0

∥eh,t(s)∥
2
0 ds+ ν∥∇eh(t)∥

2
0 + µ∥∇ · eh(t)∥

2
0 ≤ Ch2(l−1).

so that (A.1) holds.
Considering t → 0 in (A.5), the viscous term and the grad-div stabilization term

vanish, since eh(0) = 0. Following [15] the initial pressure p(0) is the solution of the
problem

∆p(0) = ∇ · f(0)−∇ · ((u0 · ∇)u0) in Ω,

∂p(0)

∂n
= (ν∆u0 + f(0)− (u0 · ∇)u0) · n on ∂Ω,

where n is the outward pointing unit normal vector. The above problem defines a
unique pressure up to a constant. Then, one can repeat the same analysis as above at
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time t = 0 starting from (A.6) (with only the term ∥eh,t(0)∥
2
0 on the left-hand side)

and obtains, instead of (A.7),

1

2
∥eh,t(0)∥

2
0 ≤ Ch2(l−1).

Applying the inverse inequality yields

(A.8) ∥(∇eh,t)(0)∥
2
0 ≤ Ch2(l−2), ∥(∇ · eh,t)(0)∥

2
0 ≤ Ch2(l−2),

such that the norms on the left-hand sides are bounded for l ≥ 2.
Taking the time derivative of (A.5) gives(

eh,tt,φh

)
+ ν(∇eh,t,∇φh) + bh(uh,t,uh,φh)− bh(ut,u,φh)

+bh(uh,uh,t,φh)− bh(u,ut,φh) + µ(∇ · eh,t,∇ ·φh)(A.9)

= (σ1,t,φh) + (σ2,t,∇ ·φh) ∀ φh ∈ V l
h,

Choosing φh = eh,tt and arguing as before leads to

∥eh,tt∥
2
0 +

d

dt

1

2
ν∥∇eh,t∥

2
0 +

d

dt

1

2
µ∥∇ · eh,t∥

2
0

≤ ∥σ1,t∥
2
0 + c2invh

−2∥σ2,t∥
2
0 +

1

4
∥eh,tt∥

2
0 + |bh(uh,t − ut,u, eh,tt)|

+|bh(uh,t,u− uh, eh,tt)|+ |bh(uh − u,ut, eh,tt)|+ |bh(uh,ut − uh,t, eh,tt)|.(A.10)

Let us observe that the bounds for ∥σ1,t∥0 and ∥σ2,t∥0 depend on the regularity of
ut, utt, and pt, but all are bounded if the solution is sufficiently regular. For the
nonlinear terms, the same arguments as above are used. For the first term, we obtain

|bh(uh,t − ut,u, eh,tt)|

≤ ∥uh,t − ut∥0∥∇u∥∞∥eh,tt∥0 +
1

2
∥∇ · (uh,t − ut)∥0∥u∥∞∥eh,tt∥0

≤ C∥ut − uh,t∥
2
1 +

1

16
∥eh,tt∥

2
0.(A.11)

It follows from (2.7), (A.1), and the inverse inequality (2.5) that∫ t

0

∥ut − uh,t∥
2
1 ≤ Ch2(l−2),

so that absorbing the second term on the right-hand side of (A.11) in the left-hand
side of (A.10) and integrating in time, the corresponding first term on the right-hand
side of (A.11) is bounded. For the second nonlinear term on the right-hand side of
(A.10), we obtain

|bh(uh,t,u− uh, eh,tt)| ≤ C∥uh,t∥1∥u− uh∥1cinvh
−1∥eh,tt∥0

≤ Ch2(l−2)∥uh,t∥
2
1 +

1

16
∥eh,tt∥

2
0.

Again, the last term on the right-hand side can be absorbed in the left-hand side of
(A.10) and the integral with respect to time of the first term is bounded. For the
third nonlinear term we argue as for the second one to get

|bh(uh − u,ut, eh,tt)| ≤ ∥uh − u∥1∥ut∥1∥eh,tt∥1 ≤ Ch2(l−2)∥ut∥
2
1 +

1

16
∥eh,tt∥

2
0.
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Using for the fourth nonlinear term the inverse inequality (2.5) and (2.7) gives

|bh(uh,ut − uh,t, eh,tt)| ≤ ∥uh∥∞∥ut − uh,t∥1∥eh,tt∥0

+
1

2
∥∇ · (uh − sh)∥∞∥ut − uh,t∥0∥eh,tt∥0 +

1

2
∥∇ · sh∥∞∥ut − uh,t∥0∥eh,tt∥0

≤ C
(
∥ut − uh,t∥

2
1 + c2invh

−dh2(l−1)∥ut − uh,t∥
2
0

)
+

1

16
∥eh,tt∥

2
0.

Again, the last term on the right-hand side above is absorbed into the left-hand side
of (A.10), the integral of the first term is bounded, and the integral for the second is

c2invh
−dh2(l−1)

∫ t

0

∥ut − uh,t(s)∥
2
0 ds ≤ Ch4l−4−d,

which is bounded since l ≥ 2. Collecting all error bounds and taking (A.8) into
account, we conclude (A.2) where the constant does not depend explicitly on inverse
powers of ν. The inverse inequality gives (A.3).

Estimate (A.2) can be applied, in combination with (A.4), in (4.25). To bound
(4.22), which is the term appearing in (4.4), we apply (A.3) such that a robust estimate
is proved only for pairs of finite element spaces with l ≥ 3.

REFERENCES

[1] R. A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich,
Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65.

[2] F. Brezzi and R. S. Falk, Stability of higher-order Hood-Taylor methods, SIAM J. Numer.
Anal., 28 (1991), pp. 581–590, https://doi.org/10.1137/0728032.

[3] A. Caiazzo, T. Iliescu, V. John, and S. Schyschlowa, A numerical investigation of velocity-
pressure reduced order models for incompressible flows, J. Comput. Phys., 259 (2014),
pp. 598–616, https://doi.org/10.1016/j.jcp.2013.12.004.

[4] D. Chapelle, A. Gariah, and J. Sainte-Marie, Galerkin approximation with proper orthog-
onal decomposition: new error estimates and illustrative examples, ESAIM Math. Model.
Numer. Anal., 46 (2012), pp. 731–757, https://doi.org/10.1051/m2an/2011053.

[5] H. Chen, Pointwise error estimates for finite element solutions of the Stokes problem, SIAM
J. Numer. Anal., 44 (2006), pp. 1–28, https://doi.org/10.1137/S0036142903438100.

[6] J.-H. Chen, W. G. Pritchard, and S. J. Tavener, Bifurcation for flow past a cylinder
between parallel planes, J. Fluid Mech., 284 (1995), pp. 23–41, https://doi.org/10.1017/
S0022112095000255, https://doi.org/10.1017/S0022112095000255.

[7] P. G. Ciarlet, The finite element method for elliptic problems, vol. 40 of Classics in Ap-
plied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2002, https://doi.org/10.1137/1.9780898719208. Reprint of the 1978 original [North-
Holland, Amsterdam].
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[12] B. Garćıa-Archilla, V. John, and J. Novo, On the convergence order of the finite element
error in the kinetic energy for high Reynolds number incompressible flows, Comput. Meth-
ods Appl. Mech. Engrg., 385 (2021), pp. Paper No. 114032, 54, https://doi.org/10.1016/j.
cma.2021.114032.

28

https://doi.org/10.1137/0728032
https://doi.org/10.1016/j.jcp.2013.12.004
https://doi.org/10.1051/m2an/2011053
https://doi.org/10.1137/S0036142903438100
https://doi.org/10.1017/S0022112095000255
https://doi.org/10.1017/S0022112095000255
https://doi.org/10.1017/S0022112095000255
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1007/s10915-015-0052-1
https://doi.org/10.1007/s10444-017-9540-1
https://doi.org/10.1090/gsm/019
https://doi.org/10.1090/gsm/019
https://doi.org/10.1090/gsm/019
https://doi.org/10.1093/imanum/drac058
https://doi.org/10.1016/j.cma.2021.114032
https://doi.org/10.1016/j.cma.2021.114032
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periodic orbits for Navier-Stokes flows, J. Comput. Phys., 201 (2004), pp. 13–33, https:
//doi.org/10.1016/j.jcp.2004.04.018.

[28] M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher, Benchmark Computations
of Laminar Flow Around a Cylinder, Vieweg+Teubner Verlag, Wiesbaden, 1996, pp. 547–
566, https://doi.org/10.1007/978-3-322-89849-4 39.

[29] P. W. Schroeder and G. Lube, Pressure-robust analysis of divergence-free and conforming
FEM for evolutionary incompressible Navier-Stokes flows, J. Numer. Math., 25 (2017),
pp. 249–276, https://doi.org/10.1515/jnma-2016-1101.

[30] J. R. Singler, New POD error expressions, error bounds, and asymptotic results for reduced
order models of parabolic PDEs, SIAM J. Numer. Anal., 52 (2014), pp. 852–876, https:
//doi.org/10.1137/120886947.

[31] C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite
element technique, Internat. J. Comput. & Fluids, 1 (1973), pp. 73–100, https://doi.org/
10.1016/0045-7930(73)90027-3.

[32] S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math.
Comp., 74 (2005), pp. 543–554, http://dx.doi.org/10.1090/S0025-5718-04-01711-9.

29

https://doi.org/10.1016/j.cam.2022.114246
https://doi.org/10.1016/j.cam.2022.114246
https://doi.org/10.1137/19M1246845
https://doi.org/10.1137/19M1246845
http://dx.doi.org/10.1137/0719018
http://dx.doi.org/10.1137/0719018
https://doi.org/10.1137/0727022
https://doi.org/10.1137/130925141
https://doi.org/10.1137/130925141
https://doi.org/10.1007/978-3-319-45750-5
https://doi.org/10.1007/978-3-319-45750-5
https://doi.org/10.1016/j.camwa.2022.07.017
https://doi.org/10.1016/j.camwa.2022.07.017
https://doi.org/10.1016/j.camwa.2022.07.017
https://doi.org/10.1137/19M128702X
https://doi.org/10.1137/20M1371798
https://doi.org/10.1016/j.cam.2017.09.001
https://doi.org/10.1007/s002110100282
https://doi.org/10.1137/S0036142900382612
https://doi.org/10.1137/S0036142900382612
https://doi.org/10.1137/S0036142900382612
https://doi.org/10.1137/20M1341866
https://doi.org/10.1137/20M1341866
https://doi.org/10.1016/j.jcp.2004.04.018
https://doi.org/10.1016/j.jcp.2004.04.018
https://doi.org/10.1007/978-3-322-89849-4_39
https://doi.org/10.1515/jnma-2016-1101
https://doi.org/10.1137/120886947
https://doi.org/10.1137/120886947
https://doi.org/10.1016/0045-7930(73)90027-3
https://doi.org/10.1016/0045-7930(73)90027-3
http://dx.doi.org/10.1090/S0025-5718-04-01711-9

	Introduction
	Preliminaries and notations
	Proper orthogonal decomposition
	A priori bounds for the projections Prv bold0mu mumu uusubsectionuuuuhj

	The POD-ROM method
	The case X=H01()d
	The case X=L2()d

	Numerical studies
	Conclusions
	Appendix A. Robust bounds for the terms with the second temporal derivative
	References

