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Abstract 
This paper addresses the problem of reducing the number of values required to 

characterize an electricity demand profile, which is usually known as its dimensionality. 

This reduction may have a significant impact on the computational efforts and storage 

capacities required to analyze and process high volumes of electricity load curves. Also, 

the reduction to 2 or even 1 component enables its graphic representation. Specifically, 

this work is mainly focused on profiles defined by their monthly demand values, and 

where the clients are aggregated by locations and/or economic activities. This approach 

is of great interest for marketing analysis and decision-making of electricity retailers. In 

this sense, the use of dimensionality reduction techniques based on knowledge (calendar 

and temperature) along with the application of data-driven procedures (Principal 

Component Analysis and autoencoders), are explored in the paper. The results of this 

research show that autoencoders clearly outperform the other techniques, yielding errors 

in the reduction process between 15% to 40% lower and preserving distances between 

profiles in the low-dimensional spaces, with a correlation of 0.93 with the distances in 

high dimensional space. Additionally, the bidimensional graphical representation of a 

profile can easily be interpreted in a polar way, where the angle denotes the shape of the 

profile, and the radius reveals its scale. To reach these results, a very large dataset has 

been employed, with about half a million aggregated profiles corresponding to the 

electricity consumption during 3 years of more than 27 million clients in Spain. 

Highlights 

• Autoencoders are the best option to reduce the dimensionality of demand profiles. 

• Data-driven techniques outperform knowledge-based models by reducing 

components. 

• Low-dimensional characterization preserves the relative distances between profiles. 

• The graphic representation of bidimensional profiles admits a polar interpretation. 
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1. Introduction. 
During the last decades, most open economies have liberalized their electricity markets. 

This liberalization has provoked competition among different companies, with the goal 

of obtaining greater efficiency, that is, the ability to provide higher and better (cleaner, 

safer, resilient) electricity energy at lower costs (Khan et al., 2022). Also, the issue of 

electric energy involves not only costs, but also the policies of green development and 

carbon emissions that must be carefully addressed (Tian et al., 2022). 

 

The different actors in these markets are mainly those that are focusing on: generation; 

high voltage transmission (transmission system operator, TSO); medium and low 

voltage distribution (distribution system operator, DSO); and electricity retailing that 

carry out marketing, invoicing, maintenance and client attention services. Usually, very 

few companies are involved in generation, transmission, and distribution; therefore, 

they operate with an oligopoly structure. However, a relatively high number of 

electricity retailers may compete in a certain territory. For example, Spain had 257 

nationwide active retailers (2019 data), becoming the European country with the high 

number of them and which had experienced the highest increase in this number within 

the European Union (ACER, 2021). 

 

This greater competition in the electricity retail has led to the development of different 

marketing strategies, many of them taking into account the client demand profile (Gong 

et al., 2019). These marketing strategies may consider hourly (Yang et al., 2019) and/or 

the monthly demand profiles (Lee et al., 2014). Therefore, robust demand profiling is an 

essential tool not only for retailers, but also for suppliers, DSOs, aggregators and energy 

service companies (Panapakidis et al., 2015). 

 

For marketing purposes, it is very convenient to cluster the whole customer base into 

groups with similar characteristics where the location (Shaffer, 2019) and the economic 

sector of the client may play a key role (Guerrero et al., 2018) in companies’ strategies. 

These two factors are so important that some retailers base their marketing decision on 

the demand profiles for a certain economic activity at a certain location (Luque et al., 

2021). 

 

Electricity demand profiles, both hourly and monthly, are defined using high-

dimensional descriptions (for example, with 24 or 12 values). This relatively high 

number of components hinders both their automatic treatment and their interpretation by 

those who must design marketing strategies. Therefore, reducing the dimensionality of 



these profiles has undoubted advantages in both the efficiency and the explainability of 

data analysis algorithms (Morán et al., 2013). 

 

Especially useful is the two-dimensional representation of the profiles whereby a certain 

profile (e.g. 24 or 12 values) is represented by a point on a two-dimensional map (Yi 

Wang et al., 2016). On the other hand, reducing the profile to a single dimension allows 

it to be characterized by a single continuous value. This may be an advantage over 

classic profile segmentation techniques (either individual or aggregated) in which the 

output is a label that, if it is numerical, is discrete (instead of continuous) and does not 

necessarily imply an ordering of the profiles (Chhikara et al., 2022). 

 

In this paper, the monthly demand profiles of a set of electricity consumers sharing the 

same location and economic activity are considered. Then, their mean profile is 

obtained and featured using 12 values, where each value measures the consumed energy 

by the customer throughout each one of the twelve months. In this sense, the main aim 

of this proposed paper is to represent these profiles with a lower number of values, 

exploring the relationship between the resulting number of components and the errors 

induced by this dimensionality reduction.  As will be shown later, this reduction is a 

powerful tool for getting a significant reduction in storage needs, which could be critical 

due to the high number of handled profiles. Therefore, a reduction in the number of 

components required would significantly reduce the size of required memory. 

 

Throughout the paper, the objective of lowering the error inherent to the process of 

dimensionality reduction will be combined with the aim of an easy interpretation of the 

low-dimensional profiles. So, the focus is not mainly on comparing dozens of 

dimensionality reduction techniques and selecting the best one, or even in proposing 

new methods, but in assuring that the results obtained using state of the art techniques 

can be adequately interpreted in the context of electricity demand.  

 

Additionally, a diversity of analysis has been carried out. Specifically, special attention 

has been paid to reduce the profiles to just 2 components, allowing their graphic 

representation on a plane. The relationship between the position of a profile in the 2D 

plane and its high-dimensional representation will be extensively explored. The extreme 

particular case in which the original profile is reduced to a single component will also 

be addressed. 

  

It is important to highlight among the novelties of the current work, the large number of 

profiles used (approximately half a million), the grouping of these profiles by economic 

activity and location, the introduction of reduction techniques based on models, the 

analysis of the recovery errors and preservation of distances, and finally, the 

interpretation of the representations in low-dimensional spaces. Thanks to all these 

analyses and their results, it is possible to say that the reduction in dimensionality 

through the proposed techniques is suitable, and that despite losing information, this 

loss is compensated by the reduction of storage requirements by reducing the number of 



necessary components and, more importantly, by the easier representation and 

interpretation of the low-dimensional profiles. The main limitation of this research is 

derived by the fact that the customers’ economic activity is omitted in the datasets for 

approximately half of them. 

 

The remaining of the paper is organized as follows: first, some related works are 

described in section II; second, the used dataset and the employed methodology are 

formalized in section III; later, up to four different dimensionality reduction techniques 

are detailed in section IV; then, the main results obtained applying these techniques are 

summarized in section V; and finally, these results are discussed in section VI, 

presenting the main conclusions in section VII.  

2. Related works. 
There is a long tradition in the use of data analysis techniques in the different stages of 

the power electricity chain: generation, trading, transmission, distribution, and 

consumption (Scheidt et al., 2020). In the last decade, deep learning approaches have 

aroused huge attention in diverse research areas with applications to advanced 

forecasting support, power quality monitoring, microgrid energy administration, electric 

vehicle management, and many others (Mishra et al., 2020). Also, some methodologies 

based on fuzzy systems have been suggested for energy analysis for industrial processes 

(Tian et al., 2011) or for real-time control of complex systems (Xie et al., 2018). 

 

Specifically, in the retailer arena, data-based decision making has gained increasing 

interest in methods for long-term load forecasting, energy procurement strategies, 

pricing schemes, and risk management in the retail market (Liu et al., 2020; Yang et al., 

2018). Some authors have done some related works on the long-term evolution of 

electric demand (Fallahpour et al., 2021; Sánchez-Durán et al., 2019b) and the solar 

production (Sánchez-Durán et al., 2019a), and also in featuring electricity demand using 

spectral analysis (Luque et al., 2020). 

 

The characterization of load curves has highly exploited the developments in the data 

mining of time series, with techniques generally categorized into representation and 

indexing, similarity measure, segmentation, visualization, and mining (Fu, 2011). 

 

Although many related works consider the evolution of the electricity demand with a 

period of one hour, some other authors have focused their interest in load curves with a 

higher resolution, such as 1 second (Tjaden et al., 2015) or 15 minute (Kiesel and 

Paraschiv, 2017), while others take lower resolutions, such as one day (Zhou et al., 

2017) or one month (Pełka and Dudek. Grzegorz, 2020).  

 

The characterization of the electricity demand profiles is usually performed applying 

clustering techniques whose state-of-the-art has been summarized by different 

researchers (Ezugwu et al., 2022). Featuring and clustering load profiles have also been 



described as the basis for establishing an annual framework for optimal price offering 

by a retailer (Mahmoudi-Kohan et al., 2010). 

 

On the other hand, dimensionality reduction techniques have been extensively used in 

many areas, in particular in the electricity sector (Williams and Short, 2020). As an 

example of these applications, the reduction and 2D visual representation of a very 

small simulated network (IEEE 30-bus system) is analyzed in (Arechiga et al., 2017). 

Additionally, 15-minute daily demand profiles for 317 real consumers are reduced to 4 

dimension and then clustered in (Shi et al., 2020). Another example is the 

dimensionality reduction and 3D visual representation of frequency measurements in 

the European Network of Transmission System Operators for Electricity (ENTSO-E) 

analyzed in (Sevilla et al., 2019). 

 

In this sense and as it will be seen in the following sections, this paper proposes a 

detailed comparative analysis between different dimensionality reduction techniques 

and exhibits their results (in effectiveness terms) when them are applied to the consumer 

profiling problems. 

 

 
Fig. 1. Overall process for low-dimensional representation of electricity demand profiles. 

 

3. Methodology. 
The overall research ideas of the article are summarized in Fig. 1. Firstly, the monthly 

electricity demand of all the customers with the same economic activity sector at a 

certain location (for instance, hotels in the city of Alicante) are jointly characterized by 

a 12-valued profile. Then, several dimensionality reduction techniques are employed to 

shrink the number of values characterizing every profile. Next, the obtained low-



dimensional demand profiles are assessed analyzing the error introduced and to what 

extent is the topology preserved (distance analysis) during the dimensionality reduction 

process. 

 

The paper pays special attention to very low dimensional profiles. By reducing the 

original profile to just 2 values, a bidimensional representation of the profiles can be 

obtained (map of profiles). The extreme case of shrinking the original profile to a single 

value is some sort of labelling them. The interpretation of the maps and labels is also of 

great interest for their use in actual engineering applications. These general ideas are 

developed and detailed in the following sections.  

3.1. Energy demand profiles. 

To improve services and reduce prices in the electricity market, many governments 

have forced electric companies to share their data on the monthly electricity demand for 

every customer. Although this information is usually anonymized before sharing, it still 

preserves some statistical data, such as, among others, the location and economic 

activity of the customer, identified by the NACE code (European Classification of 

Economic Activities, in French). In the case of the electricity market in Spain, 1011 

different NACE codes are used, and 8203 locations are recorded. Taking all customers 

identified by the 𝑘-th NACE-location pair, a monthly electricity demand profile can be 

defined by the row-vector 𝒑(𝑘) = [𝑝1
(𝑘) 𝑝2

(𝑘) ⋯ 𝑝12
(𝑘)], where 𝑝𝑗

(𝑘)
 is the median 

electricity demand in the 𝑗-th month of all the customers belonging to the 𝑘-th NACE-

location pair. The description to obtain the profile’s dataset is detailed in (Luque et al., 

2021). 

 

Based on this previous analysis, a total of 8,293,233 (1011 x 8203) demand profiles 

could be registered. However, many of them do not contain any customers or they show 

null demand, as small or medium-size locations do not include all the economic 

activities. After these pairs are removed, 491,604 profiles remain. Additionally, as the 

process of dimensionality reduction may be affected by extreme profiles, they are also 

eliminated. These profiles are considered outliers and mainly correspond to a single 

customer with abnormal behavior. Formally, a 𝒑(𝑘) profile is considered an outlier if 

∃𝑗: 𝑝𝑗
(𝑘) ∉ [𝜋𝑗,2.5, 𝜋𝑗,97.5], where 𝜋𝑗,2.5 and 𝜋𝑗,97.5 are the 2.5-th and 97.5-th percentiles 

of 𝑃𝑗 = {𝑝𝑗
(𝑘)}, ∀𝑘. By definition of percentile, the probability that 𝑝𝑗

(𝑘) < 𝜋𝑗,97.5 is 

97.5%, and the probability that 𝑝𝑗
(𝑘) < 𝜋𝑗,2.5 is 2.5%. Then the probability that 𝑝𝑗

(𝑘)
 is in 

the range 𝜋𝑗,2.5 < 𝑝𝑗
(𝑘) < 𝜋𝑗,97.5 is 97.5% − 2.5% = 95%. This magnitude is called the 

confidence interval, 𝐶𝐼, being the use of 𝐶𝐼 = 95% a common practice in statistics. 

Finally, there are a total of 400,630 valid profiles, while 90% of them (360,567 profiles) 

are used to train the dimensionality reduction models (training dataset), and 10% 

(40,063 profiles) are employed to assess the models (testing dataset). 

 



3.2. Profile transformations. 

The process of reducing the dimensionality of an electricity demand profile can be seen 

as a transformation 𝑇[𝑝𝑞] operating on a 12-dimensional 𝒑(𝑘) profile, corresponding to 

the 𝑘-th NACE-location pair, to obtain a 𝑑-dimensional 𝒒(𝑘) profile, where 𝑑 < 12, that 

is, 𝒑(𝑘)
𝑇[𝑝𝑞]

→  𝒒(𝑘). This transformation is usually made up of several steps. In this 

research, up to four stages have been considered. 

 

1) Normalization. Many dimensionality reduction techniques require or perform 

better if the values of the features are on the same scale (Obaid et al., 2019). So, 

in this work, where necessary, the first preprocessing step is the normalization of 

the profiles in such a way that 𝒑(𝑘)
𝑇[𝑝𝑛]

→   𝒏(𝑘), where 𝒏(𝑘)is a 12-dimensional 

profile and the value for its 𝑗-th month, 𝑛𝑗
(𝑘)

, is derived using the z-score given 

by 

𝑛𝑗
(𝑘) =

𝑝𝑗
(𝑘) − 𝜇𝑃𝑗

𝜎𝑃𝑗
, (1) 

where 𝜇𝑃𝑗 and 𝜎𝑃𝑗 are the mean and standard deviation of the demand profile of 

every NACE-location pair at the 𝑗-th month. In matrix notation, 𝒑(𝑘) = 𝝈𝑃 ∘

𝒏(𝑘) + 𝝁𝑃, where the symbol ∘ represents the element-wise multiplication 

(Hadamard product), 𝝁𝑃 = [𝜇𝑃1 𝜇𝑃2 ⋯ 𝜇𝑃12], and 𝝈𝑃 =

[𝜎𝑃1 𝜎𝑃2 ⋯ 𝜎𝑃12] . If no normalization is applied, then 𝒑(𝑘) = 𝒏(𝑘). 

 

2) Dimensionality reduction. A normalized 12-dimensional profile 𝒏(𝑘) is then 

transformed into a lower dimensional vector 𝒏(𝑘)
𝑇[𝑛𝑙]

→  𝒍(𝑘). The algorithms to 

perform this task will be described in Section 4. 

 

3) Inverting axis. An effective low-dimensional representation of a profile should 

not only reduce 𝑑 (to a number less than 12), but also give to each component an 

approximated physical interpretation. For this purpose, some values of the low-

dimensional 𝒍(𝑘) profile can be inverted obtaining a mirrored low-dimensional 

profile, such that 𝒍(𝑘)
𝑇[𝑙𝑚]

→   𝒎(𝑘).  

 

4) Scaling axis. Physical interpretation of a low-dimensional profile 𝒎(𝑘) could be 

further improved if it is scaled and shifted on one or several of its 𝑑-axis. To 

perform this task, a new transformation 𝒎(𝑘)
𝑇[𝑚𝑞]

→   𝒒(𝑘) is applied. 

 

The overall transformation is then 𝒑(𝑘)
𝑇[𝑝𝑛]

→   𝒏(𝑘)
𝑇[𝑛𝑙]

→  𝒍(𝑘)
𝑇[𝑙𝑚]

→   𝒎(𝑘)
𝑇[𝑚𝑞]

→   𝒒(𝑘). The mean 

value of the profiles is transformed as 𝝁𝑃
𝑇[𝑝𝑛]

→   𝝁𝑁
𝑇[𝑛𝑙]

→  𝝁𝐿
𝑇[𝑙𝑚]

→   𝝁𝑀
𝑇[𝑚𝑞]

→   𝝁𝑄. This process 

follows the flowchart depicted in Fig. 2. 



 

 
Fig. 2. Flowchart representing the process of obtaining and assessing low-dimensional electricity demand 

profiles. 

 

 

3.3. Low dimensional representation. 

In the 4-step previously described process, the normalization (𝑇[𝑝𝑛]) plays an 

instrumental role, while axis inversion (𝑇[𝑙𝑚]) and scaling (𝑇[𝑚𝑞]) have mainly a 

cosmetic purpose (enhancing low-dimensional interpretation). None of these steps 

yields a change in the number of components of the profile. Then, the kernel ingredient 

for the pursued objective is the dimensionality reduction step, 𝒏(𝑘)
𝑇[𝑛𝑙]

→  𝒍(𝑘), which 

transforms a 12-component normalized profile 𝒏(𝑘) into a 𝑑-dimensional vector 𝒍(𝑘) =

[𝑙1
(𝑘) 𝑙2

(𝑘) ⋯ 𝑙𝑑
(𝑘)], where 𝑙𝑐

(𝑘)
 is its 𝑐-th component and 𝑐 ∈ [1, 𝑑]. 

 

Some dimensionality reduction techniques use a linear transformation to obtain 𝑙𝑐
(𝑘)

, that 

is, 𝑙𝑐
(𝑘) = 𝑇𝑐

[𝑛𝑙](𝒏(𝑘)) = 𝒏(𝑘)𝜶𝑐
𝑇 + 𝛽𝑐, where 𝜶𝑐 = [𝛼𝑐1 𝛼𝑐2 ⋯ 𝛼𝑐12]  is a row 

vector of constant factors, interpreted as the sensitivity vector of the 𝑐-th component. 

Besides, 𝛽𝑐 is a constant scalar representing the bias of the transformation. Grouping the 

𝑑 sensitivity vectors in a 12 × 𝑑 sensitivity matrix 𝑺 = [𝜶1
𝑇 𝜶2

𝑇 ⋯ 𝜶𝑑
𝑇
], and the 𝑑 

bias constants in a 1 × 𝑑 bias vector 𝜷 = [𝛽1 𝛽2 ⋯ 𝛽𝑑], the low-dimensional 

complete representation will be 𝒍(𝑘) = 𝒏(𝑘)𝑺 + 𝜷. 

 



It can be seen that 𝜶𝑐 = [
𝜕𝑙𝑐
(𝑘)

𝜕𝑛1
(𝑘)

𝜕𝑙𝑐
(𝑘)

𝜕𝑛2
(𝑘) ⋯

𝜕𝑙𝑐
(𝑘)

𝜕𝑛12
(𝑘)] = 𝛁𝒍𝒄

(𝒌)
. Then, the sensitivity matrix 

𝑺 can be interpreted as the Jacobian of the 𝑇[𝑛𝑙] transformation of 𝒏(𝑘), defined as 𝑺 =

𝑱𝑇[𝑛𝑙] = [𝛁𝒍𝟏
(𝒌)𝑻 𝛁𝒍𝟐

(𝒌)𝑻 ⋯ 𝛁𝒍𝒅
(𝒌)𝑻]. Due to the linearity of the transformation, this 

expression is valid for any profile, that is, ∀𝑘. Each 𝛼𝑐𝑗 element of the sensitivity matrix 

can be thought as the influence of the 𝑗-th month normalized value on the construction 

of the 𝑐-th component of the low-dimensional demand profile. 

 

The linear dimensionality reduction transformation 𝑇𝑐
[𝑛𝑙]

 defined as 𝒍(𝑘) = 𝒏(𝑘)𝑺 + 𝜷 is 

valid for any value of 𝑘, that is, for any NACE-location pair. In particular, it is valid for 

the transformation of the normalized mean demand profile 𝝁𝐿 = 𝑇
[𝑛𝑙](𝝁𝑁) = 𝝁𝑁𝑺 + 𝜷. 

For this expression, the value of 𝜷 can be derived as 𝜷 = 𝝁𝐿 − 𝝁𝑁𝑺. Therefore, the 

linear transformation can be expressed as 

 

𝒍(𝑘) = (𝒏(𝑘) − 𝝁𝑁)𝑺 + 𝝁𝐿 . (2) 

 

To reverse this process, the sensitivity matrix, 𝑺−1, will be required. But 𝑺 is not a 

square matrix and, therefore, it is not invertible. An approximate solution can be found 

using the Moore-Penrose pseudo-inverse matrix (Golan, 2012), 𝑺+. Then, the inverse 

transformation, 𝒍(𝑘)
𝑇[𝑙𝑛]

→  �̃�(𝑘), can be expressed as �̃�(𝑘) = (𝒍(𝑘) − 𝝁𝐿)𝑺
+ + 𝝁𝑁, 

obtaining a 12-element row vector that estimates the normalized demand profile.  

 

The 𝑺+ matrix has dimension 𝑑 × 12 and is also known as the explanation matrix 𝑬 =

𝑺+ = [𝒆1 𝒆2 ⋯ 𝒆12], where  𝒆𝑗 = [𝑒1𝑗 𝑒2𝑗 ⋯ 𝑒𝑑𝑗]𝑇, and each 𝑒𝑐𝑗 =
𝜕�̃�𝑗

(𝑘)

𝜕𝑙𝑐
(𝑘)  can 

be thought as the influence of the 𝑐-th component of the low-dimensional profile on the 

estimation of the 𝑗-th month normalized demand. The explanation matrix 𝑬 can also be 

denoted as the Jacobian of the 𝑇[𝑙𝑛] reverse transformation of 𝒍(𝑘), defined as 𝑬 =

𝑱𝑇[𝑙𝑛] = [∇ �̃�1
(𝑘) ∇�̃�2

(𝑘) ⋯ ∇�̃�12
(𝑘)], where ∇�̃�𝑗

(𝑘) = 𝒆𝑗 . The inverse transformation is 

then written as  

 

�̃�(𝑘) = (𝒍(𝑘) − 𝝁𝐿)𝑬 + 𝝁𝑁 . (3) 

 

If 𝑇[𝑛𝑙] is a linear transformation, the sensitivity is the same for every profile, that is, it 

does not depend on 𝑘. This is not the case for non-linear transformations where the 

Jacobian is different at every point in the space. Then, for an easy interpretation of the 

low-dimensional profiles, the 𝑇[𝑛𝑙] transformation is approximated by a linear one. 

 

For that purpose, the expression to obtain the 𝑐-th component from the normalized 

demand (the 𝑇[𝑛𝑙] transformation), 𝑙𝑐
(𝑘) = 𝑇𝑐

[𝑛𝑙](𝒏(𝑘)), is expanded in its Taylor series at 

the point 𝒏(∗) = 𝝁𝑁 and, later, only the two first terms are preserved: 



 

𝑙𝑐
(𝑘) ≈ 𝑇𝑐

[𝑛𝑙](𝝁𝑁) +∑[
𝜕𝑙𝑐
(𝑘)

𝜕𝑛𝑗
(𝑘)
]

𝝁𝑁

(𝑛𝑗
(𝑘) − 𝜇𝑁𝑗)

12

𝑗=1

, (4) 

 

that is, 𝑙𝑐
(𝑘) ≈ 𝑇𝑐

[𝑛𝑙](𝝁𝑁) + (𝒏
(𝑘) − 𝝁𝑁)[𝛁𝒍𝒄

(𝒌)]
𝝁𝑃

𝑇

. Recalling that 𝝁𝐿 is the low-

dimensional representation of the mean profile, that is 𝝁𝐿 = 𝑇𝑐
[𝑛𝑙](𝝁𝑁), and defining 𝒔𝑐 

as the sensitivity vector of the transformation at the point 𝝁𝑁, that is, 𝒔𝑐 = [∇𝑙𝑐
(𝑘)]

𝝁𝑁
, it 

can be written that 𝑙𝑐
(𝑘)
≈ 𝝁𝐿 + (𝒏

(𝑘) − 𝝁𝑁)𝒔𝑐
𝑇 = 𝝁𝐿 − 𝝁𝑁𝒔𝑐

𝑇 + 𝒏(𝑘)𝒔𝑐
𝑇. Extending this 

result to the 𝑑 components of 𝒍(𝑘), it can be written as 𝒍(𝑘) ≈ 𝝁𝐿 − 𝝁𝑁𝑺 + 𝒏
(𝑘)𝑺, or 

𝒍(𝑘) ≈ (𝒏(𝑘) − 𝝁𝑁)𝑺 + 𝝁𝐿, which is the same result obtained for the linear 

transformation. The inverse process also has the same expression as in the linear case, 

that is, �̃�(𝑘) = (𝒍(𝑘) − 𝝁𝐿)𝑬 + 𝝁𝑁, where 𝑬 = 𝐒+. 

 

3.4. Low-dimensional interpretation. 

To enhance the physical interpretation of the low-dimensional profile, it can be further 

transformed, mirroring some axis 𝒍(𝑘)
𝑇[𝑙𝑚]

→   𝒎(𝑘). In matrix notation, 𝒎(𝑘) = 𝜸 ∘ 𝒍(𝑘), 

where 𝜸 = [𝛾1 𝛾2 ⋯ 𝛾𝑑] whose 𝑐-th component is 𝛾𝑐 = −1 if it has been 

previously inverted; otherwise, 𝛾𝑐 = 1. 

 

Additionally, a scaling and shifting transformation, 𝒎(𝑘)
𝑇[𝑚𝑞]

→   𝒒(𝑘), usually enhances 

the low-dimensional profile meaning. In matrix notation this transformation can be 

expressed as, 𝒒(𝑘) = 𝝀 ∘𝒎(𝑘) + 𝜼, where 𝝀 = [𝜆1 𝜆2 ⋯ 𝜆𝑑] is a 𝑑-dimesional 

scaling row vector, and 𝜼 = [𝜂1 𝜂2 ⋯ 𝜂𝑑] is the corresponding shifting vector. 

The expression for the 𝑐-th component of the result will be 𝑞𝑐
(𝑘) = 𝜆𝑐𝑚𝑐

(𝑘) + 𝜂𝑐. 

 

To determine the 𝑐-th scaling factor, 𝜆𝑐, the physical interpretation of the 𝑐 axis must be 

considered. Let us assume that the 𝑐-th component explains the demand profile at a 

certain set of months, 𝐴𝑐. For example, consider a certain 2D representation of the 

profiles where the horizontal axis (𝑐 = 1) mainly explains the demand in July and 

August (summer demand), while the vertical axis (𝑐 = 2) explains the demand in 

January and February (winter demand). Then, 𝐴1 = {7,8}, and 𝐴2 = {1,2}. 

 

For the sake of low-dimension profiles interpretation, all the transformations are 

considered linear, or they are substituted by their linear approximations. Then, the 

inverse transformation of the 𝑐-th component profile 𝑞𝑐
(𝑘)

 can be approximated by its 

Taylor expansion at the point 𝑞𝑐 = 𝜇𝑄𝑐, where 𝜇𝑄𝑐 is the 𝑐-th component of 𝝁𝑄. The 𝑗-

th month demand explained by this 𝑐-th component is, 𝑝𝑗𝑐
(𝑘) = 𝑇[𝑞𝑝](𝜇𝑄𝑐) +



[
𝜕�̃�𝒋

𝜕𝑞𝑐
]
𝑞𝑐=𝜇𝑄𝑐

(𝑞𝑐
(𝑘) − 𝜇𝑄𝑐). Calling 𝜇�̃�𝑗 to the 𝑗-th month mean estimated demand, it can 

be written that 𝑝𝑗𝑐
(𝑘) = 𝜇�̃�𝑗 + [

𝜕�̃�𝒋

𝜕𝑞𝑐
]
𝑞𝑐=𝜇𝑄𝑐

(𝑞𝑐
(𝑘) − 𝜇𝑄𝑐) which is a straight line with a 

slope of value [
𝜕�̃�𝒋

𝜕𝑞𝑐
]
𝑞𝑐=𝜇𝑄𝑐

. To explain 𝑝𝑗𝑐
(𝑘)

 in terms of the value of 𝑞𝑐
(𝑘)

, the slope 

should be approximate 1. Then it can be written that [
𝜕�̃�𝒋

𝜕𝑞𝑐
]
𝑞𝑐=𝜇𝑄𝑐

= [
𝜕�̃�𝒋

𝜕𝑚𝑐

𝜕𝑚𝑐

𝜕𝑞𝑐
]
𝑞𝑐=𝜇𝑄𝑐

=

[
𝜕�̃�𝒋

𝜕𝑚𝑐

𝜕𝑚𝑐

𝜕𝑞𝑐
]
𝑚𝑐=𝜇𝑀𝑐

= [
𝜕�̃�𝒋

𝜕𝑚𝑐
]
𝑚𝑐=𝜇𝑀𝑐

[
𝜕𝑞𝑐

𝜕𝑚𝑐
]
𝑚𝑐=𝜇𝑀𝑐

−1

≈ 1.  

 

But 
𝜕𝑞𝑐

𝜕𝑚𝑐
= 𝜆𝑐 at any point, so [

𝜕�̃�𝒋

𝜕𝑚𝑐
]
𝑚𝑐=𝜇𝑀𝑐

𝜆𝑐
−1 ≈ 1 and, finally, 𝜆𝑐 ≈ [

𝜕�̃�𝒋

𝜕𝑚𝑐
]
𝑚𝑐=𝜇𝑀𝑐

=

𝜆𝑐𝑗. If there are several months that are explained by the 𝑐-th component, the scaling 

factor is computed as the mean of those corresponding to each month, that is 𝜆𝑐 ≈

�̅�𝑐𝑗, ∀𝑗 ∈ 𝐴𝑐, that is, 

 

𝜆𝑐 ≈ mean
𝑗∈𝐴𝑐

[
𝜕𝑝𝒋

𝜕𝑚𝑐
]
𝑚𝑐=𝜇𝑀𝑐

. (5) 

 

 

To obtain the values of the shifting vector, we will first consider that the 𝑐-th 

component should explain the 𝑗-th month demand, that is, 𝑝𝑗𝑐
(𝑘) ≈ 𝑞𝑐

(𝑘)
. This equation is 

true for any point, in particular for the mean demand profile 𝜇�̃�𝑗 ≈ 𝜇𝑄𝑐. But 𝜇𝑄𝑐 =

𝜆𝑐𝜇𝑀𝑐 + 𝜂𝑐, so 𝜂𝑐 ≈ 𝜇�̃�𝑗 − 𝜆𝑐𝜇𝑀𝑐 = 𝜂𝑐𝑗 . If there are several months in 𝐴𝑐, then, 

 

𝜂𝑐 ≈ mean
𝑗∈𝐴𝑐

(𝜇�̃�𝑗 − 𝜆𝑐𝜇𝑀𝑐). (6) 

 

An alternative interpretation of the low-dimensional profile is in terms of over-demand 

(demand over the mean). In this case, the 𝑐-th component should explain the 𝑗-th month 

over-demand, that is, 𝑞𝑐
(𝑘) ≈ 𝑝𝑗𝑐

(𝑘) − 𝜇𝑃𝑗. This equation is true for any point, in particular 

for the mean demand profile 𝜇𝑄𝑐 ≈ 𝜇�̃�𝑗 − 𝜇𝑃𝑗 ≈ 0. But 𝜇𝑄𝑐 = 𝜆𝑐𝜇𝑀𝑐 + 𝜂𝑐, so 𝜂𝑐 ≈

−𝜆𝑐𝜇𝑀𝑐 = 𝜂𝑐𝑗. If there are several months in 𝐴𝑐, then, 

 

𝜂𝑐 ≈ mean
𝑗∈𝐴𝑐

(−𝜆𝑐𝜇𝑀𝑐). (7) 

 

3.5. Mapping profiles in 2D. 

A very common application of dimensionality reduction is the representation of a 

multidimensional point in a 2D plane. In the case of the monthly energy demand profile, 

it is a particular case, for 𝑑 = 2, of the procedure described in the previous section. In 

this application, the 12 × 𝑑 sensitivity matrix 𝑺, has a dimension 12 × 2, where each 



row is called a biplot vector. The 𝑗-th biplot is defined as 𝒃𝑗 = [𝑠𝑗𝑥 𝑠𝑗𝑦] and can be 

considered a vector in the 2D plane. Alternatively, each of the 2 columns of the 

sensitivity matrix 𝑺 is called an axis-construction vector and, for the 𝑐-th column (𝑐-th 

axis in the 2D plane) it is defined as 𝒂𝑐 = [𝑠1𝑐 𝑠2𝑐 ⋯ 𝑠12𝑐], 𝑐 ∈ {𝑥, 𝑦}. 

 

Analogously, in this application the 𝑑 × 12 explanation matrix 𝑬 has a dimension of 

2 × 12, where each column is called a reverse biplot vector. The 𝑗-th reverse biplot is 

defined as 𝒃𝑗
𝑟 = [𝑒𝑗𝑥 𝑒𝑗𝑦] and can be considered a vector in the 2D plane. 

Alternatively, each of the 2 rows of the explanation matrix 𝑬 is called a reverse axis-

construction vector and, for the 𝑐-th row (𝑐-th axis in the 2D plane), it is defined as 

𝒂𝑐
𝑟 = [𝑒1𝑐 𝑒2𝑐 ⋯ 𝑒12𝑐], 𝑐 ∈ {𝑥, 𝑦}. 

 

Direct and reverse biplot vectors are usually depicted as a set of 12 vectors in a 2D 

plane. Moreover, direct and reverse axis-construction vectors are usually drawn as a set 

of two 12-valued lines. Some examples of these plots will be shown in Section 4. 

 

3.6. Labelling profiles (1D). 

Another interesting application of dimensionality reduction is to shrink the entire 12-

valued profile to a single number, that is, the target space has dimension 𝑑 = 1. In this 

case, the single component of the target profile can be used to label the profile. Now, 

the sensitivity matrix 𝑺, has a dimension 12 × 1, where each row is called, by analogy, 

a uniplot vector. The 𝑗-th uniplot is defined as 𝒖𝑗 = [𝑠𝑗𝑥] and can be considered a vector 

in the 1D space (line). Alternatively, the only column of the sensitivity matrix 𝑺 is 

called the axis-construction vector and it is defined as 𝒂 = [𝑠1𝑥 𝑠2𝑥 ⋯ 𝑠12𝑥]. 

 

Analogously, in this application the explanation matrix 𝑬 has a dimension of 1 × 12, 

where each row is called a reverse uniplot vector. The 𝑗-th reverse uniplot is defined as 

𝒖𝑗
𝑟 = [𝑒𝑗𝑥] and can be considered a vector in the 1D space (line). Alternatively, the only 

row of the explanation matrix 𝑬 is called the reverse axis-construction vector and it is 

defined as 𝒂𝑟 = [𝑒1𝑥 𝑒2𝑥 ⋯ 𝑒12𝑥]. 

 

The direct and reverse axis-construction vectors are usually drawn as a set of two 12-

valued lines. Uniplot vectors are not commonly represented graphically. 

4. Dimensionality reduction techniques. 
Once the steps and the usefulness of dimensionality reduction have been defined in the 

previous sections, this section will focus on how to implement the main stage of this 

transformation, 𝒏(𝑘)
𝑇[𝑛𝑙]

→  𝒍(𝑘). In particular, for this kernel phase, two approaches have 

been tried. 

 



In the first approach, the transformation is obtained based on some engineering 

knowledge of the energy demand (Aoi and Pillow, 2018). This knowledge will be 

obtained by two techniques: relating the energy demand to the calendar (month of the 

year) (Li et al., 2019), or relating this energy with its temperature dependence (Apadula 

et al., 2012; Hor et al., 2005). 

 

In the second approach, the transformation 𝑇[𝑛𝑙] is obtained with no prior knowledge 

about energy demand, but directly based on a bunch of actual consumer’s demand 

profiles (training dataset). There are many dimensionality reduction data-driven 

techniques. They can be divided into two categories: feature selection, which selects 

some attributes while discarding the others (Cai et al., 2018); and feature extraction 

which combine the original attributes to obtain a lower number of components (Huang 

et al., 2019). 

 

The results obtained using feature selection can be straightforwardly interpreted, as the 

resulting attributes are a subset of the original ones. However, they commonly show a 

significant higher error during the reduction process. For this reason, this paper is 

focused on feature extraction techniques which, can additionally be categorized into 

linear and non-linear methods (Ayesha et al., 2020). Among them, some of the most 

significant representantives of each category have been selected: Principal Component 

Analysis (PCA) as a linear transformation, and Autoencoders exemplifying the non-

linear methods.  

 

Therefore, four dimensionality reduction techniques will be described in the following 

paragraphs. Thus, the reduction and recovery processes (in blue), their interaction with 

the proposed two approaches (in red) are depicted in Fig. 3. 

 
Fig. 3. Scheme of knowledge-based and data-driven dimensionality reduction techniques. 

 

4.1. Month-Based Transformation. 

A simple and intuitive way to represent profiles in two-dimensions is one that uses the 

month of the year to determine the interpretation of the horizontal and vertical axes. 

Thus, for example, the horizontal axis can be designated as "demand on summer" and 



the vertical one as "demand in winter". This transformation includes a previous z-score 

normalization step. 

 

This approach, which will be called “Month-Based Transformation” (MBT), can be 

characterized by a 12 × 2  explanation matrix 𝑬 = {𝑒𝑗𝑐}, with its horizontal element 

defined by 𝑒𝑗1 =
1

2
[1 − cos (2𝜋

𝑗−1

12
)], while the vertical one is defined by 𝑒𝑗2 =

1

2
[1 + cos (2𝜋

𝑗−1

12
)]. 

 

The reverse axis-construction vectors for this explanation matrix, 𝒂𝑐
𝑟 , 𝑐 ∈ {1,2}, are 

depicted in Fig. 4. They can be thought as the level of summerness (horizontal axis) and 

winterness (vertical axis) of each month.  

 

 
Fig. 4. Reverse axis-construction vectors of the Month-Based Transformation. 

 

Instead of using 2 vectors of 12 elements, this information can alternatively be 

represented using 12 biplot vectors, 𝒃𝑗
𝑟 , 𝑗 ∈ [1,12], as it is shown in Fig. 5. There, each 

vector corresponds to a month, from January (1) to December (12). 

 

 
Fig. 5. Reverse biplot vectors of the Month-Based Transformation. 

 



The horizontal/vertical component of the 𝑗-th vector represents to what extent the 

horizontal/vertical component of a bidimensional representation defines the electricity 

demand of the 𝑗-month. More formally, 𝒃𝑗
𝑟 is a bidimensional vector, corresponding to 

the 𝑗-month, with a horizontal component 𝑏𝑗𝑥
𝑟  and a vertical component 𝑏𝑗𝑦

𝑟 . The 

normalized demand of the 𝑘-th NACE-location pair during the 𝑗-th month is 𝑛𝑗
(𝑘)

. Its 

bidimensional transformation, 𝒏(𝑘)
𝑇[𝑛𝑙]

→  𝒍(𝑘), obtains a vector 𝒍(𝑘) = (𝑙𝑥
(𝑘), 𝑙𝑦

(𝑘)) of 

dimension 2. Then, 𝑛𝑗
(𝑘) ≈ �̃�𝑗

(𝑘) = 𝑏𝑗𝑥
𝑟 𝑙𝑥
(𝑘) + 𝑏𝑗𝑦

𝑟 𝑙𝑦
(𝑘). 

 

For the 𝑘-th normalized demand profile, represented as a 12-element row vector 𝒏(𝑘), 

the MBT transformation, 𝒏(𝑘)
𝑇[𝑛𝑙]

→  𝒍(𝑘), can be expressed, recalling the Eq. (2), as 𝒍(𝑘) =

(𝒏(𝑘) − 𝝁𝑁)𝑺 + 𝝁𝐿, obtaining a 2-element row vector. This transformation is preceded 

by a z-score normalization, so 𝝁𝑁 = 𝟎. Furthermore, the bias vector for this 

transformation is chosen as 𝜷 = 𝟎, then 𝝁𝐿 = 𝟎. So, MBT can finally be expressed as 

𝒍(𝑘) = 𝒏(𝑘)𝑺. The inverse transformation, 𝒍(𝑘)
𝑇[𝑛𝑙]

→  �̃�(𝑘), can be expressed as �̃�(𝑘) =

𝒍(𝑘)𝑺+ = 𝒍(𝑘)𝑬, obtaining a 12-element row vector that estimates the normalized 

demand profile.  

 

In this technique, the qualitative interpretation of the low-dimensional axis is 

straightforward, and therefore, it does not require axis inversion: the horizontal and 

vertical axis represent, respectively, the summer and the winter demand. Then, 𝒎(𝑘) =

𝒍(𝑘).  

 

For the scaling and shifting transformation, the results obtained in Section 3.4 are 

applied, considering that the set of months that are explained by each axis are, 

respectively, 𝐴𝑥 = {7} and 𝐴𝑦 = {1}. The corresponding constants are derived using 

Eq. (5) and Eq. (6).  

 

As it was commented above, the Month-Based Transformation can be also adapted for 

the representation of profiles in just one-dimension. The one-dimensional MBT can be 

characterized by a 12 × 1  explanation matrix 𝑬 = {𝑒𝑗}, with its elements defined by 

𝑒𝑗 =
1

2
[1 − cos (2𝜋

𝑗−1

12
)]. The corresponding reverse axis-construction vector is the 

same that the horizontal component depicted in Fig. 4. The values in this single-axis can 

be thought as the level of summerness of each month, and it is equivalent to the 

horizontal axis of the 2D representation. 

 

The qualitative interpretation of the only axis is straightforward and does not require 

axis inversion: 𝒎(𝑘) = 𝒍(𝑘). And, as in the previous description of the 2D case, the 

constants associated with the scaling and shifting of the only axis are derived for  𝐴𝑥 =



{7} using Eq. (5) and Eq. (7). All the constants associated with these transformations are 

summarized in Table 1. 

 

Table 1. Interpretation of the MBT and its related constants. 

Dimensions Axis 𝜸 𝑨 𝝀 𝜼 Meaning 

2 
Horizontal 1 {7} 0.264 1.069 Demand on summer 

Vertical 1 {1} 0.266 1.115 Demand on winter 

1 Single-axis 1 {7} 0.264 1.069 Demand on summer 

 

The MBT algorithm can be extended to reductions in dimensionality where the number 

of the resulting components is greater than 2, 𝑑 > 2. For this purpose, the cosine 

function used to model this transformation is modified assigning a frequency 𝑓𝑐 and 

phase 𝜑𝑐 to the each 𝑐-th component. More formally, 

 

𝑒𝑗𝑐 =
1

2
{1 − cos [𝑓𝑐 (2𝜋

𝑗 − 1

12
+ 𝜑𝑐)]} , ∀𝑐 ∈ [1, 𝑑], 𝑗 ∈ [1,12]. (8) 

 

where 𝜑𝑐 = 2𝜋
𝑐−1

𝑑
, and 𝑓𝑐 = ⌊

𝑐−1

2
⌋ + 1, while ⌊·⌋ represents the function “floor”. An 

example of this generalization for 𝑑 = 5 is shown in Fig. 6. 

 

 
Fig. 6. Reverse axis-construction vectors of the Month-Based Transformation for a reduction to 5 

components (𝑑 = 5). 

 

4.2. Cooling-Heating Degree Days Transformation. 

In the Month-Based Transformation, the values of the explanation matrix are derived 

from the month of the year. This makes sense because the electricity demand depends, 

among other factors, on the temperature and its variations throughout the year. It is a 

well-known fact that the demand grows in summer for cooling needs and in winter for 

heating requirements. Then, instead of the indirect association of the demand with the 

months, a more direct relationship with the temperature can be explored. This 

transformation includes a previous z-score normalization step. 

 

For a formal description of these ideas, it is typical to use the concepts of "Heating 

Degree Day" (HDD) and "Cooling Degree Day" (CDD) (D’Amico et al., 2019). The 𝑖-

th day of the 𝑗-th month is said to require heating (it is a heating day) if its mean 



temperature, 𝑇𝑚
(𝑖)[𝑗]

, is lower than a certain threshold temperature (𝑇ℎ). Analogously, 

this day is to be a cooling day if 𝑇𝑚
(𝑖)[𝑗]

> 𝑇ℎ. The threshold temperature in Spain has 

been set to 15º𝐶 (UNE, 1988). The Heating Degree Day of the 𝑗-th month is defined as 

 

{
  
 

  
 
𝐻𝐷𝐷𝑗 =∑(𝑇ℎ − 𝑇𝑚

(𝑖)[𝑗]
)

𝑑𝑗

𝑖=1

    ∀𝑖, 𝑇𝑚
(𝑖)[𝑗]

< 𝑇ℎ

𝐶𝐷𝐷𝑗 =∑(𝑇𝑚
(𝑖)[𝑗]

− 𝑇ℎ)

𝑑𝑗

𝑖=1

    ∀𝑖, 𝑇𝑚
(𝑖)[𝑗]

> 𝑇ℎ

, (9) 

 

where 𝑑𝑗 is the number of days of the 𝑗-th month. 

 

Averaging the 3-year meteorological data of the four main cities in Spain (Madrid, 

Barcelona, Valencia and Seville) (BizEE Software, 2022), the distribution of the HDD 

and CDD for each month is represented in Fig. 7.  

 

 
Fig. 7. Heating and Cooling Degree days in Spain. 

 

This graph shows a relationship between the months and the electricity demand which 

can be used to measure summerness and winterness in a more precise way that the 

formula used in MBT. Following this idea, it is proposed a Cooling-Heating Degree 

Days Transformation (CHDDT) which is characterized by the explanation matrix 𝑬 =

{𝑒𝑗𝑐}, with its elements horizontal component is defined as 𝑒𝑗1 = range01(𝐶𝐷𝐷𝑗), and 

the vertical one as 𝑒𝑗2 = range01(𝐻𝐷𝐷𝑗). The function range01(·) scale the values of 

the argument to the [0,1] range. 

 

The reverse axis-construction vectors corresponding to this explanation matrix are 

depicted in Fig. 8. They can be thought of as the level of cooling-related (horizontal 

axis) and heating-related (vertical axis) demand of each month. 



 

 
Fig. 8. Reverse axis-construction vectors of the Cooling-Heating Degree Days Transformation. 

 

The 𝑘-th normalized demand profile is reduced to 2 dimensions using the expression 

𝒍(𝑘) = 𝒏(𝑘)𝑺, where 𝑺 is the sensitivity matrix which can be obtained as the 

pseudoinverse of the explanation matrix, 𝑺 = 𝑬+.  

 

Given the previous definitions, the qualitative interpretation of the low-dimensional axis 

is straightforward, and does not require axis inversion: The horizontal and vertical axis 

represent the summer and the winter demand respectively. Then, 𝒎(𝑘) = 𝒍(𝑘).  

 

For the scaling and shifting transformation, the results obtained in Section 3.4 are 

applied, considering that the set of months that are explained by each axis are, 

respectively, 𝐴𝑥 = {7,8} and 𝐴𝑦 = {1,2,12}. The corresponding constants are derived 

using Eq. (5) and Eq. (6).  

 

The adaptation of the CHDDT to obtain one-dimensional profiles is made using a 

12 × 1 explanation matrix, 𝑬 = {𝑒𝑗}, with its elements defined by the expression 𝑒𝑗 =

range01(𝐶𝐷𝐷𝑗 − 𝐻𝐷𝐷𝑗). The corresponding reverse axis-construction vector is 

depicted in Fig. 8. The values in this axis can be thought as the level of electricity over-

demand related to cooling/heating, where higher values represent cooling over-demand 

and lower values mean heating over-demand. 

 

The qualitative interpretation of the axis is straightforward and does not require axis 

inversion: 𝒎(𝑘) = 𝒍(𝑘). And, as in the previous description of the 2D case, the constants 

associated with the scaling and shifting of the only axis are derived for 𝐴𝑥 = {7,8} 

using Eq. (5) and Eq. (7). All the constants associated with this transformation are 

summarized in Table 2. 

 

Table 2. Interpretation of the CHDDT and its related constants. 

Dimensions Axis 𝜸 𝑨 𝝀 𝜼 Meaning 

2 

Horizontal 1 {7,8} 0.285 1.063 
Demand related to 

cooling 

Vertical 1 {1,2,12} 0.215 1.098 
Demand related to 

heating 

1 Single-axis 1 {7,8} 0.286 1.063 
Demand related to 

cooling(↑) or heating(↓) 



 

The CHDDT algorithm can also be extended to reductions in dimensionality where 𝑑 >

2. For this purpose, the cosine function used to model this transformation is modified 

assigning a frequency 𝑓𝑐 and phase 𝜑𝑐 to the each 𝑐-th component. More formally, 

 

𝑒𝑗𝑐 = chdd{⌊𝑓𝑐(𝑗 − 1) − 𝜑𝑐⌋mod12} , ∀𝑐 ∈ [1, 𝑑], 𝑗 ∈ [1,12]. (10) 

 

where 𝜑𝑐 = ⌊12
𝑐

𝑑
+ 4⌋, and 𝑓𝑐 = ⌊

𝑐

2
⌋ + 1, while ⌊·⌋ represents the function “floor”, and 

the function chdd(𝑘) = range01(𝐶𝐷𝐷𝑘 − 𝐻𝐷𝐷𝑘) . An example of this generalization 

for d = 5 is shown in Fig. 9. 

 

 
Fig. 9. Reverse axis-construction vectors of the Cooling-Heating Degree Day Transformation (CHDDT) 

for a reduction to 5 components (𝑑 = 5). 

 

4.3. Principal Component Analysis. 

The dimensionality reduction methods described above have the advantage that they 

allow for an easy explanation of the results obtained, either as a function of the month 

or the temperature, mainly for 2D and 1D representations. However, if the 

explainability requirement is relaxed (at least in a first step), it is possible to use other 

data-driven dimensionality reduction techniques, which will show better performance. 

Among these techniques, Principal Component Analysis (PCA) is one of the most 

widely used (Vidal et al., 2016). Briefly, PCA transforms the 12 dimensions of a z-score 

normalized electricity demand profile into another profile of 12 dimensions (orthogonal 

to each other), called components. These components are then ordered from their 

highest to lowest contribution (usually called explained variance) to recreate the original 

profile. Finally, only the 𝑑 first components are retained, thus, reducing the profile 

dimensionality. 

 

The result of applying the PCA to the profiles in the training dataset is shown in Fig. 10, 

where, the explained variance of each component is represented by a set of blue bars 

and the accumulated variance is drawn using a red line (Luque et al., 2021). As can be 

seen, using just two components (out of 12, 17% of them), up to 63% of the variance is 

explained, while using only one component (an 8% of them) a 50% is explained. 

 



 
Fig. 10. PCA explained variance of electricity demand profiles. 

 

The PCA transformation 𝒏(𝑘)
𝑇[𝑛𝑙]

→  𝒍(𝑘) is modeled using a 12 × 12 square matrix 𝑾 =

{𝑤𝑢𝑣}, 𝑢, 𝑣 ∈ [1,12], where only the 𝑑 first rows are retained. The resulting 𝑑 × 12 

matrix, 𝑾𝒅 = {𝑤𝑢𝑣}, 𝑢 ∈ [1,12], 𝑣 ∈ [1, 𝑑], plays the role of the explanation matrix, 

that is, 𝑬 = 𝑾𝒅. It can be written that 𝒏(𝑘) = 𝒍(𝑘) 𝑬 = 𝒍(𝑘)𝑾𝒅. The reverse axis-

construction vectors corresponding to this explanation matrix for the case 𝑑 = 2 are 

depicted in Fig. 11.  

 

 
Fig. 11. Reverse axis-construction vectors of the PCA transformation. 

 

As it can be seen in this figure, the horizontal component can be thought of as the 

winter-related (normalized) demand because it indicates an over-demand in winter and 

an infra-demand in summer. To follow the same convention as in the MBT and 

CHDDT, the horizontal axis is inverted to show positive values for summer and 

negative ones for winter.  

 

Analogously, the vertical component shows the maximum positive values in spring 

while the most negative values are in summer and winter. As the electricity demand 

usually increases in summer and winter due to the cooling and heating requirements, the 

vertical axis is also inverted, now having the meaning of a cooling/heating-related 

(normalized) demand. 



 

With these inversions, 𝒎(𝑘) = −𝒍(𝑘). For the scaling and shifting transformation, the 

results obtained in Section 3.4 are applied, considering that the set of months that are 

explained by each axis are, respectively, 𝐴𝑥 = {6,7,8,9} and 𝐴𝑦 = {1,7,8,12}. The 

corresponding constants are derived using Eq. (5) and Eq. (6).  

 

The reverse axis-construction vector for the one-dimensional case corresponds to the 

horizontal axis, as it is shown in Fig. 11. The values in this single dimension can be 

thought of as the winter-related (normalized) demand, as it indicates an over-demand in 

winter and an infra-demand in summer. To follow the same convention as in MBT and 

CHDDT, the horizontal axis is inverted to show positive values for summer and 

negative ones for winter, 𝒎(𝑘) = −𝒍(𝑘). 

 

As in the previous description of the 2D case, the constants associated with the scaling 

and shifting of the only axis are derived for 𝐴𝑥 = {6,7,8,9} using Eq. (5) and Eq. (7). 

All the constants associated with this transformation are summarized in Table 3. 

 

Table 3. Interpretation of the PCA transformation and its related constants. 

Dimensions Axis 𝜸 𝑨 𝝀 𝜼 Meaning 

2 

Horizontal −1 {6,7,8,9} 0.072 1.027 
Demand related to 

summer 

Vertical −1 {1,7,8,12} 0.055 1.082 
Demand related to 

cooling/heating 

1 Single-axis 1 {6,7,8,9} 0.072 1.027 
Demand related to 

summer(+) or winter(-) 

 

4.4. Autoencoders. 

The three previous techniques for dimensionality reduction are based on a sequence of 

linear transformations. To test whether a nonlinear approach could enhance the 

performance of the dimensionality reduction, an autoencoder has also been tested. An 

autoencoder is a sequence of two neural networks, an encoder followed by a decoder 

(Yasi Wang et al., 2016). The encoder section accepts a vector of 12 values, 𝒑(𝑘), (the 

monthly demand profile) and converts it into a vector of dimension 𝑑 < 12, 𝒍(𝑘), its 

low-dimensional representation. The decoder section accepts a vector of 𝑑 values, 𝒍(𝑘) 

(the low-dimensional representation of the demand profile) and converts it into the 

corresponding vector of dimension 12, �̃�(𝑘). The 2 neural networks are trained to 

minimize the mean error between 𝒑(𝑘) and �̃�(𝑘). Then, once trained, the decoder section 

is discarded, and the coder section is used to reduce dimensionality. The typical 

architecture of an autoencoder is depicted in Fig. 12. 

 

An autoencoder may have many possible architectures varying, among other 

considerations, the number of hidden layers and the number of neurons at each layer. 

Then, to properly choose these hyperparameters, the training dataset (containing 

360,567 profiles) is split in a more reduced training dataset (320,504 profiles, an 80% of 



the total valid ones), and a validation dataset (40,063 profiles, a 10% of the total). The 

training dataset is used to train the different neural network architectures, while the 

validation dataset is employed to select the best architecture (and other related 

hyperparameters). 

 
Fig. 12. Typical architecture of an autoencoder neural network. 

 

Different architectures have been tried, from 1 to 5 hidden layers in each section, and 

from 8 to 512 neurons per layer, performing a grid search for 2 or less hidden layers and 

a random search for 3 or more. The effect of the z-score normalization as a 

preprocessing step has also been tested. The resulting architecture has been a single 

hidden layer with 128 neurons and no normalization preprocessing. 

 

The reverse axis-construction vectors corresponding to the trained autoencoder for the 

2D case, 𝑑 = 2, are shown in Fig. 13.  

 
Fig. 13. Reverse axis-construction vectors of the autoencoder transformation. 

 



As it can be seen in this figure, and in a similar way as it happened in the transformation 

based on PCA, the horizontal component can be thought as the winter-related demand 

because it indicates an over-demand in winter and an infra-demand in summer. To 

follow the same convention as in the MBT and CHDDT, the horizontal axis is inverted 

to show positive values for summer and negative ones for winter.  

 

Analogously, for this transformation, the vertical component shows the maximum 

positive values in summer and winter. In this sense, as the electricity demand usually 

increases in summer and winter due to the cooling and heating requirements, the vertical 

axis is not inverted in this case, having the meaning of a cooling/heating-related 

demand.  

 

With these inversions, 𝒎(𝑘) = 𝜸 ∘ 𝒍(𝑘), where 𝜸 = [−1 1]. In this sense, on the one 

hand, the reverse axis-construction vectors are very connected to the concepts of CDD 

and HDD. The horizontal axis highly resembles the evolution of CDD by months. On 

the other hand, the vertical axis has high values in the months that require cooling or 

heating. So, it should resemble the CDD+HDD evolution. These evolutions are 

depicted in the Fig. 14 where, for comparison, all the values have been converted to the 

[0,1] range. 
 

 
Fig. 14. The reverse axis-construction vectors of the autoencoder and their similarity to the CDD 

(horizontal component) and the summation of the CDD and HDD (vertical component). 

 

For the scaling and shifting transformation, the results obtained in Section 3.4 are 

applied, considering that the set of months that are explained by each axis are, 

respectively, 𝐴𝑥 = {8} and 𝐴𝑦 = {1,8,12}. The corresponding constants are derived 

using Eq. (5) and Eq. (6).  

 

The reverse axis-construction vector for the one-dimensional case is depicted in Fig. 13. 

The values on this axis can be thought of as the level of electricity demand related to 

summer/winter, where positive values represent heating demand and negative values 



mean cooling demand. This is the opposite convention used in the previous 

transformation, so an inversion of the single axis is advised. Then 𝒎(𝑘) = −𝒍(𝑘). 

 

As in the previous description of the 2D case, the constants associated with the scaling 

and shifting of the single axis are derived for 𝐴𝑥 = {7,8} using Eq. (5) and Eq. (7). All 

the constants associated with this transformation are summarized in Table 4. 

 

Table 4. Interpretation of the autoencoder transformation and its related constants. 

Dimensions Axis 𝜸 𝑨 𝝀 𝜼 Meaning 

2 

Horizontal −1 {8} 0.843 1.002 
Demand related to 

summer 

Vertical −1 {1,8,12} 0.751 0.108 
Demand related to 

cooling/heating 

1 Single-axis 1 {7,8} 0.405 1.916 
Demand related to 

summer(+) or winter(-) 

5. Results. 
The process described in the methodology Section and depicted in Fig. 1 has been fully 

implemented using a desktop computer with a processor based on an Intel® Core™ i7-

11700 @ 2.50GHz processor, with 64 GB of RAM and a Solid State Disk (SSD) of 

2TB. It has been developed in Python 3.9 under a Windows 11 operating system. For 

PCA analysis the scikit-learn 1.0 library has been used, while the development of 

autoencoders relies on routines defined in TensorFlow 2.10. 

 

As for the profile transformation, each of the four dimensionality reduction techniques 

described in the previous section has been applied to a set of six actual profiles. These 

profiles have been selected as representative cases (with different illustrative shapes) 

which depict several types of electricity demand and each of them corresponds to a 

certain NACE-location pair: 

A. Sewerage activities (NACE: E37) in the city of Águilas, Murcia. It has a single 

maximum demand in summer. 

B. Retail sale of medical and orthopedic goods in specialized stores (NACE: 

G4774) in the city of Riola, Valencia. It has a maximum demand in summer and 

a lower relative maximum demand in winter. 

C. Other manufacturing not elsewhere classified (NACE: C3299) in the city of 

Carmena, Toledo. It has a maximum demand in winter and a lower relative 

maximum demand in summer. 

D. Development of building projects (NACE: F411) in the city of Andoain, 

Guipúzcoa. It has a single minimum demand in summer. 

E. Manufacture of lime and plaster (NACE: C2352) in the city of Bilbao, Vizcaya. 

It has a minimum demand in summer and a lower relative minimum demand in 

winter. 

F. Restaurants and mobile food service activities (NACE: I561) in the city of 

Aduna, Guipúzcoa. It has a minimum demand in winter and a lower relative 

minimum demand in summer. 



 

These profiles are summarized in Table 5 and depicted in Fig. 15.  

 

Table 5. Summary of the profiles used as examples. 

Profile NACE Location 
Demand on 

Shape 
Summer Winter Spring Autumn 

A E37 
Águilas 

Murcia 
Max Min - - Summit 

B G4774 
Riola 

Valencia 
Max 

Relative 

max 
Min Min Mexican hat 

C C3299 
Carmena 

Toledo 

Relative 

max 
Max Min Min W-shaped 

D F411 
Andoain 

Guipúzcoa 
Min Max - - V-shaped 

E C2352 
Bilbao 

Vizcaya 
Min 

Relative 

min 
Max Max Seagull 

F I561 
Aduna 

Guipúzcoa 

Relative 

min 
Min Max Max M-shaped 

 

 

 
Fig. 15. Examples of electricity demand profiles. 

 

As it can be seen, profiles A and D show approximately one cycle per year, while the 

remaining profiles have two cycles per year. Moreover, profiles D, E, and F (dashed 

lines in the figure), have an approximately inverse shape than profiles A, B, and C, 

respectively (continuous lines). 

 

Each of these profiles has been reduced to two-dimensions (2D) using every 

dimensionality reduction technique. The result is depicted in the upper part of Fig. 16 

where the example profiles are coded by colors, and the reduction technique is 

identified by different symbols. The reduction to a single dimension (1D) is also 

depicted in the lower part of the figure. 

 



 
Fig. 16. Representing the examples of electricity demand profiles in two dimensions (upper graph) and 

one single dimension (lower graph). 

 

The interpretation of the axis is summarized in Table 6. In 2D representations, the 

horizontal axis always means demand in summer, while the vertical axis may represent 

demand in winter (for MBT and CHDDT) or the combined demand in summer and 

winter (for PCA and AE). In the 1D representations, the single component increases its 

value according to the demand in summer, and decreases it in relation to the demand in 

winter. 

 

The 2D representation of profile A (blue markers) has horizontal values over the mean 

(high demand in summer), vertical values below the mean for MBT and CHDDT (lower 

demand in winter), and vertical values on the mean for PCA and AE (combined demand 

in summer and winter). The 1D representation of profile A (blue markers in the lower 

part of the figure) has horizontal values over the mean (high demand in summer 

combined with low demand in winter). The symmetric behavior is observed in the 2D 

and 1D representations of profile D (red markers). Analogous interpretations can be 

derived for the remaining profiles. 

 

Table 6. Interpretation of the axis in low-dimensional representation of demand profiles. 

 Technique 

MBT/CHDDT PCA/AE 

Axis 

Horizontal Demand in summer 

Vertical Demand in winter Demand in summer and winter 

Single-axis Demand in summer(↑) and winter(↓) 

 

Extending the results of reducing profiles to 2D, a heatmap showing the density of 

profiles in each region of the plane is depicted in Fig. 17. As it can be observed in this 



figure, MBT and CHDDT have a high concentration of profiles in the anti-diagonal 

direction, meaning that high demands in summer correlates with low demands in winter 

and vice versa (negative correlation). Conversely, PCA and AE density maps are more 

regular-shaped, resembling some kind of ellipse, with a greater variance in the 

horizontal axis (demand in summer) than in the vertical one (combined demand in 

summer and winter). 

 

 
Fig. 17. Density of profiles in the 2D representation according to each dimensionality reduction 

technique. 

 

The equivalent information after reducing profiles to 1D is shown in Fig. 18, where the 

probability density functions (pdf) for each technique are plotted in log scale. As it can 

be seen, all four methods have very similar pdf as they share the same interpretation of 

the single component. However, MBT and CHDDT reach higher values, while PCA 

may have slightly lower values. 

 

 
Fig. 18. Probability density functions of the 1D representation of profiles, according to each 

dimensionality reduction technique. 



6. Discussion. 

6.1. Error analysis. 

Due to the process of reducing dimensionality, some information is inevitably lost. So, 

the complete round-trip process, 𝒑(𝑘)
𝑇[𝑝𝑞]

→  𝒒(𝑘)
𝑇[𝑞𝑝]

→  �̃�(𝑘), does not recover the original 

profile 𝒑(𝑘), but an estimation of it,  �̃�(𝑘), that is, �̃�(𝑘) ≈ 𝒑(𝑘). Information lost in the 

dimensionality reduction process can be measured by the error of the round-trip 

transformation, that is, by the difference 𝒆(𝑘) = 𝒑(𝑘) − �̃�(𝑘), which is a 12-valued 

vector.  

 

That is, the performance of a dimensionality reduction technique is revealed by 

comparing the low-dimensionality profiles, �̃�(𝑘), with the original 12-dimensional 

profile 𝒑(𝑘) (without dimensionality reduction). The analysis of that comparison (the 

analysis of the error 𝒆(𝑘) = 𝒑(𝑘) − �̃�(𝑘)) is carried out in detail in this subsection. 

 

Specifically, the error vectors corresponding to the example profiles (analyzed in 

previous section) are depicted in Fig. 19. 

 

 
Fig. 19. Error of reducing the example monthly profiles to 2D. The mean error for each technique is also 

shown. 

 

A single metric for the recovery process of the 𝑘-th pair, can be obtained using the Root 

Mean Square Error (RMSE) defined as 

 



𝑅𝑀𝑆𝐸(𝑘) = √
1

12
∑(𝑒𝑗

(𝑘))
2

12

𝑗=1

= √
1

12
∑(𝑝𝑗

(𝑘) − 𝑝𝑗
(𝑘))

2
12

𝑗=1

 (11) 

 

This metric can be extended to the entire testing dataset using the expression 

 

𝑅𝑀𝑆𝐸 = √
1

12 𝑛
∑∑(𝑒𝑗

(𝑘))
2

12

𝑗=1

𝑛

𝑘=1

. (12) 

 

The values of this metric for dimensionality reduction to 1D and 2D, are distributed 

according to the boxplots depicted in Fig. 20. As it can be seen in this figure, the 

reduction to 2D offers better results than to 1D, which is a logical result as more 

information is kept in 2D. Comparing the boxplots in the figure, it can also be derived 

that autoencoders offer the most efficient reduction technique, while the MBT obtains 

the worst results. 

 

 
Fig. 20. Error (RMSE) of applying 1D and 2D dimensionality reduction techniques to the profiles in the 

testing dataset. 

 

To have a clearer insight about the significance of these errors, they will be compared to 

those errors obtained in the cases where the recovered profiles are, either randomly 

generated, or estimated in a naïve way. 

 

For the random generation of a profile, the value of the energy demand corresponding to 

the 𝑗-th month, 𝑝𝑗
(𝑘)

, is obtained by a random sampling which considers the statistical 

distribution of the demands in this month. The probability density function 

corresponding to several months is depicted in Fig. 22. Applying this random 

generation of the profiles, the error is characterized by a value of the 𝑅𝑀𝑆𝐸 = 2.511. 



 

 
Fig. 21. Probability density functions of the energy demand corresponding to several months. 

 

Also, in the naïve approach, the recovered profile is estimated to be equal to the mean 

demand, �̃�(𝑘) = 𝝁𝑃, regardless of the value of 𝒑(𝑘). In this case the error is 

characterized by a value of the 𝑅𝑀𝑆𝐸 = 0.581, a value which is also depicted in the 

Fig. 20. 

 

As it can be seen, any of the four dimensionality reduction techniques explored in the 

research clearly outperforms the random and naïve approaches. The best results are 

obtained using an autoencoder, showing a recovery error for the two-components case 

of 𝑅𝑀𝑆𝐸 = 0.278. As the electricity demand profiles are normalized, its mean value is 

1, so the absolute and relative values of 𝑅𝑀𝑆𝐸 are the same. 

 

 
Fig. 22. Error (RMSE) of applying dimensionality reduction techniques to the profiles in the testing 

dataset for different number of components in the target space. 

 



This error analysis can be extended to dimensionality reduction techniques with other 

number of target components (not just 1D or 2D). The results of this extension are 

shown in Fig. 22 where cases based on autoencoders clearly outperform the other 

techniques, except for the degenerate case where 𝑑 = 12. Additionally, it can be 

observed that PCA is also better (or equal) than the more intuitive MBT and CHDDT 

techniques. 

 

To assess the robustness of the previous error analysis, a bootstrap technique (Zoubir 

and Iskandler, 2007) has been applied to the values of the RMSE. Up to 1000 testing 

datasets are generated from the original testing datasets by a random sampling with 

replacement process. The RMSE values for each testing dataset are then statistically 

distributed. Its probability density function is depicted in Fig. 23 for different 

techniques and number of components. As it can be seen, in all cases, the RMSE values 

are distributed in a narrow region, which is mainly due to the high number of profiles in 

the testing datasets (40,063 profiles). 

 

 
Fig. 23. Bootstrap analysis of the recovery error: probability density function of the RMSE after applying 

dimensionality reduction techniques to the profiles in the testing dataset. 

 

From these distributions, the confidence intervals (CI) for the values of the RMSE can 

be derived (DiCiccio and Science, 1996). The results for a 95% confidence level are 

shown in Fig. 24, where the values of the CI are expressed in relation to the RMSE, that 

is, as a relative value of the CI in %. For example, the recovery error of an autoencoder 

using a 2D target space is 𝑅𝑀𝑆𝐸 = 0.278 ± 0.7%. 

 

A different approach to assess the confidence of the conclusions obtained in the error 

analysis is to apply an analysis of variance (ANOVA) technique (Tabachnick and 

Fidell, 2007). For every value of the number of components in the target space (𝑑), and 

for every pair of dimensionality reduction technique, an ANOVA test is performed. 

Each case tests if the results obtained for a certain pair of techniques have been 

generated by the same statistical distribution (null-hypothesis, 𝐻0). Then the probability 



of 𝐻0 (𝑝𝐻0) is computed and the null-hypothesis is rejected if this probability is lower 

than a certain significance level, 𝛼, usually chosen as 𝛼 = 5%. The results of the 

ANOVA tests show that the null hypothesis can be rejected in all cases except for the 

pair MBT-CHDDT with one component (𝑝𝐻0 = 62%), and the pair CHDDT-PCA with 

two components (𝑝𝐻0 = 31%) and with three components (𝑝𝐻0 = 49%). This result is 

consistent with the non-distinguishable points in Fig. 22. 

 

 

 
Fig. 24. Confidence interval of the RMSE (in % of the RMSE) for a confidence level of 95%. 

 

6.2. Distance analysis. 

A different approach to assess the dimensionality reduction process is to measure its 

ability to preserve relative distances (Yang, 2011). The intuitive idea is that points that 

are close in the original 12D space should also be close in the low-dimensional space, 

while points that are originally distant should be kept apart in the target space. 

 

Let us consider two points (profiles), 𝒑(𝐴) and 𝒑(𝐵), in the original space which are 

transformed in the corresponding low-dimensional points 𝒒(𝐴) and 𝒒(𝐵). The distance 

between the original points can be measured by the Euclidean norm of their difference, 

that is, δ𝑝
(𝐴,𝐵) = ‖𝒑(𝐴) − 𝒑(𝐵)‖

2
. Analogously, the distance between these two points in 

the target space is defined as δ𝑞
(𝐴,𝐵) = ‖𝒒(𝐴) − 𝒒(𝐵)‖

2
. 

 

Let us now apply these definitions to the case of reducing dimensionality to two 

components using an autoencoder. Then, for every pair of points (𝐴, 𝐵), their distances 

in the original and target spaces are obtained and located in a plane with 𝛿𝑝 in the 

horizontal axis and 𝛿𝑞 in the vertical one. Finally, the density of pairs in each region of 

the (𝛿𝑝, 𝛿𝑞) plane is shown as a heatmap in Fig. 25. As it can be seen in this figure, the 

densest regions are approximately around a straight line, indicating that, in most cases, 



relative distances are preserved. This visual correlation among distances can be 

formalized using, for example, the Pearson’s correlation coefficient (Edelmann et al., 

2021) which, in this case, has a value 𝜌 = 0.934, a high value that confirms that the 

relative distances are mostly preserved. 

 

 
Fig. 25. Density of profiles pairs in the distances plane. A reduction in dimensionality to two components 

is performed using an autoencoder. 

 

The previously defined correlation among distances can be extended to other techniques 

using a different number of components in the low-dimensional space. The results are 

shown in Fig. 26 where the correlation among distances increases with the number of 

components for PCA and AE techniques, which was an expected result.  

 

 
Fig. 26. Correlation between distances in the high and low-dimensional spaces. 

 

However, the correlation for the MBT and CHDDT does not show a monotonous 

increasing behavior. This means that, for instance, in the case of CHDDT, although 

reducing profiles to eight components obtains smaller errors than the 1D or 2D 



reductions (see Fig. 22), the distances are worse preserved. This, somehow disturbing 

result, could probably be explained because the MBT and CHDDT have an intuitive 

meaning for one- and two-dimensional reductions, while the reduction to a higher 

number of components have been obtained through a non-intuitive (artificial) extension. 

 

6.3. Interpretation of maps and labels. 

By reducing dimensionality to just two components, the resulting profiles can be drawn 

in a 2D plane (map of profiles). Also, reducing profiles to a one component permits 

assigning them a single figure (labelling profiles). Then, the meaning of these maps and 

labels must be elucidated. This interpretation will be focused on autoencoders as they 

have clearly outperformed the remaining techniques. For that reason, the shapes of the 

profiles corresponding to several points in the 2D maps and 1D labels obtained using 

autoencoders are depicted in Fig. 27. 

 

 
Fig. 27. Energy demand profiles corresponding to different positions in the 2D maps and 1D labels. 

 

The maps of profiles show a noteworthy polar interpretation centered around the 2D 

representation of the mean profile. Indeed, the radius defines the scale of the profile, 

while the polar angle determines its shape. Up to six different angular sectors can be 

identified: 

• Sector I (first quadrant), with a maximum demand in summer and a lower 

relative maximum demand in winter (similar to profile B in Table 5). The profile 

resembles the shape of a Mexican hat. 



• Sector II.a (right part of the second quadrant), with a maximum demand in 

winter and a lower relative maximum demand in summer (similar to profile C in 

Table 5). The profile has the shape of a “W”. 

• Sector II.b (left part of the second quadrant), with a single minimum demand in 

summer (similar to profile D in Table 5). The profile has the shape of a “V”. 

• Sector III (third quadrant), with a minimum demand in summer and a lower 

relative minimum demand in winter (similar to profile E in Table 5). The profile 

resembles the shape of a seagull. 

• Sector III.a (left part of the fourth quadrant), with a minimum demand in winter 

and a lower relative minimum demand in summer (similar to profile C in Table 

5). The profile has the shape of an “M”. 

• Sector III.b (right part of the fourth quadrant), with a single maximum demand 

in summer (similar to profile A in Table 5). The profile resembles the shape of a 

summit. 

For a clearer interpretation of the map of profiles (2D), a video animation can be found 

in the supplementary material of this paper. 

 

Besides, the single-dimensional representation of profiles shows an approximate 

symmetric behavior with respect to the 1D representation of the mean profile. The left 

part (values below the mean) corresponds to V-shaped profiles, while the right part 

(values above the mean) drives to summit-shaped profiles. 

 

6.4. Assessing results. 

In comparison with other state-of-art works referenced previously, the research 

described in this paper presents several novelties and strengths. In the first place, the 

large number of profiles that have been used (approximately half a million) 

corresponding to the actual demand during 3 years of a very high number of customers 

(more than 27 millions) must be mentioned. Most of the previous works are based either 

on synthetic profiles or in much more limited datasets. 

 

Additionally, other authors have focused mostly on 24 hour load curves while the 

current research is centered in 12 months demand profiles, permitting a medium to long 

term insight in the demand characterization. 

 

One of the most defining characteristics of our proposal is probably the fact that the 

profiles do not correspond to a single customer but to a cluster of them sharing the same 

location and/or economic activity. Then, although the available public datasets are 

anonymized, customers are still indirectly reachable by their NACE and location. In the 

increasingly competitive electricity retailer arena, it is easier to define marketing 

strategies with this grouped demand profiles than using load curves of a single but 

unknown customer. 

 



In our research, two novel model-based dimensionality techniques have been proposed: 

MBT and CHDDT. While they have lower performance than state-of-art off-the-shelf 

reduction techniques (like PCA and autoencoders), their results are more easily 

explained, either in terms of the demand associated to certain months, or to certain 

temperatures. In the case of reducing profiles to 2D (map of profiles), CHDDT shows 

similar performance than state-of-art PCA (although lower than autoencoder). 

 

Another novelty of the current research is the study of distances in the original and 

target spaces, usually omitted in previous works. Finally, a great effort, uncommon in 

the related literature, has been dedicated to interpreting the engineering meaning, in 

terms of electricity demand profile, of the 2D maps and 1D labels obtained using the 

proposed methodology. 

 

As for the applications of the described methodology, it can be noted that reducing the 

dimensionality of electricity demand profiles can be directly used, in the first place, as a 

pre-processing step that improves the performance of forecasting, classification or 

clustering algorithms.  

 

Additionally, as the proposed technique has paid special attention to the explainability 

of the low-dimensional profiles, 2D maps can be applied to visualize the electricity 

demand of a customer (or set of customers with the same NACE-location) as a simple 

point in a diagram, where its position reveals its profile. Several demand profiles can be 

simultaneously plotted in the 2D graphs using a dot for each profile. As the 

dimensionality reduction process preserves distances, the proximity of dots on the 2D 

maps indicates similarity in the demand profiles. 

 

Also, 1D labelling can be applied to assign a continuously valued score to demand 

profiles. Recalling that classical clustering techniques group profiles in a non-ordered 

discrete number of categories, it is clear that 1D labelling can improve the interpretation 

of the tag assigned to a profile and, therefore, it can enlighten the characterization of 

customers. A practical example of the application of these labels can be found in (Luque 

et al., 2021). 

 

The current research also has some limitations. Firstly, the analysis can be extended to 

other data-driven dimensionality reduction techniques. However, since autoencoders are 

among the most efficient algorithms in this kind of applications, no remarkable 

improvement should be expected. Also, there are limitations due to some lack of 

information in the dataset. Although the Spanish authorities have fostered competition 

by making the demand profiles public, they have declared the NACE field as optional, 

which means that retailers are not forced to share this information. So, only 55% of 

records contain those values, reducing the extent of the research. 



7. Conclusions. 
As for the dimensionality reduction techniques, the main conclusions reached in the 

research are: 

• A small number of low-dimensional components yields a decrease in the 

reduction efficiency, that is, higher recovery errors. 

• The relationship between number of components and recovery errors is 

approximately linear for all the techniques examined in the paper. 

• These techniques have shown a high capacity to preserve profile information. 

Even for the most extreme reduction (keeping just one component) the methods 

employed exhibit an 80% (for MBT) to 86% (for autoencoder) decreasing in the 

recovery error compared to the random estimation and a 10% (for MBT) to 40% 

(for autoencoder) reduction over the naïve prediction. 

• Data-driven techniques (PCA and autoencoder) clearly outperform model-based 

transformations, either the ones based on calendar (MBT) or those relying on 

temperature (CHDDT), with about a 15% lower recovery error. 

• The explored techniques also have good behavior preserving the distances after 

the transformation. That is, profiles that are close in the high-dimensional space 

are also mostly close in the low-dimensional representation.  

• Distance preservation has been measured using the correlation between 

distances before and after the transformation, and the figures obtained are about 

85% correlation in 1D and 90% in 2D. 

• Among the techniques explored, a properly trained autoencoder has clearly 

outperformed any other algorithm for any dimensionality of the target profile. In 

this technique, the 2D representation, which discards 83% of the components 

(10 out of 12) has a mean recovery error of 28%.  

• Analogously, the 1D representation exhibits a mean error of 34%, while it 

discards 92% of the components. 

• Finally, the 2D representation of a profile enables a polar interpretation 

according to its position in any of the four quadrants of the plane (with two 

additional sub-quadrants), where its angular position determines the shape of the 

high-dimensional profile, while the radius indicates its scale. 
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