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Abstract
This paper analyses the impact of altruism on the individual country goverments’ 
incentives to reduce global polluting emissions. The game theory perspective pro-
vides insights into the strategic decision-making processes of the governments 
regarding the problem of climate change. We propose a model of strategic interac-
tions among countries in which each government is concerned with its own benefit, 
as well as with the benefits of all the other countries.The model is a vector-valued 
non-cooperative game that permits the representation of situations in which the 
preferences of the governments are incomplete and there is imprecision about the 
degrees of altruism. The focus is on the identification of the potential equilibria that 
will eventually be reached when the governments show different attitudes towards 
other countries or groups of countries. As a result, we show that the incorporation of 
altruism into the model produces equilibria with a positive effect on the reduction of 
emissions.

Keywords Non-cooperative emission games · Altruistic preferences · Vector-valued 
games · Partial information · Equilibria

JEL Classification C61 · C72 · Q5

1 Introduction

Emissions of pollutant gases from countries around the world have sharply risen 
over the past decades. Since these emissions are considered a significant determi-
nant in global warming and climate change, multiple efforts have been made to 
analyse the possibility of reducing them. Governments of countries from different 
parts of the world have expressed their concern and responsibility with respect to the 
mitigation of climate change, especially regarding the reduction of pollutant gases 
emitted into the atmosphere. However, the mitigation of global climate change is a 
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particularly difficult challenge to address, as it requires the concerted action from a 
large number of countries, which hinders an effective response due to strong free-
riding incentives. Hence, the results of the international treaties to control climate 
change have so far been rather disappointing.

Most of the economic models developed so far to represent the strategic behav-
ior of the country governments rely on the assumption that, when the governments 
decide their level of emissions, they are solely motivated by self-interest. However, 
some behavioral studies have tested that agents are often willing to mitigate emis-
sions guided by an altruistic attitude. The aim of our paper is to propose a frame-
work where to explore the effects of altruistic behavior of governments of countries 
in their strategic decisions.

Strategic aspects are particularly important in international pollution control, 
since there is no world government that could enforce the agreements. The analysis 
of emisions control as a game was originally introduced by Mäller (1989). He pro-
posed the acid rain game as a non-cooperative game and provided different coop-
erative solutions to reach an agreement on emissions reductions involving European 
countries. Interesting reviews on the application of cooperative and non-coopera-
tive game models to the International Environmental Agreements are Finus (2008), 
Wood (2011) and Finus and Caparrós (2015). A more general overview of the appli-
cation possibilities of game theory to climate change is Kutasi (2012).

To understand why cooperation fails, these collective-action problems can be 
addressed from the perspective of social dilemmas, which represent cases of impor-
tant conflict between individual self-interest and collective interest. In this respect, 
DeCanio and Fremstad (2013), after an exhaustive examination of climate-relevant 
dilemma games, concluded that emission reductions predicted by these models 
depend on several aspects, such as the payoff structure of the game, the solution 
concept considered, the power assigned to the countries, and their preferences over 
their payoffs. Madani (2013) pointed out some limitations of the models analysed by 
DeCanio and Fremstad, and he discussed alternative assumptions and solution meth-
ods in order to provide useful policy advice.

Other game theory models have also been used to explore the countries strate-
gic behavior with respect to the process of mitigating gas emissions. Verma and 
Kauskal (2016) presented cooperative and non-cooperative approaches to analyse 
the economics of climate change. They showed that a reduction in the emission 
of gases is possible only when all countries work together under incentives. More 
recently, Molina et al. (2020) proposed a matching-commitment agreement in which 
countries can change each other’s incentives by committing to conditional emissions 
reductions, before countries decide on their unconditional reductions. They establish 
that this type of agreement can result in increased abatement and welfare for the 
countries involved.

In addition, governments can show altruistic behaviors with respect other coun-
tries given that certain global problems, such as climate change, require shared 
responsibility and collective action to address. There are several reasons that sup-
port these attitudes. For instance, interconnectedness since environmental issues 
have transboundary effects that require focusing on the coordinated effort of govern-
ments. Promoting global stability is another argument that can encourage non-selfish 
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behavior, because by working towards environmental sustainability, governments 
can help favour peace and stability both within and between nations. Furthermore, 
to take into account environmental issues in other countries can also bring strate-
gic benefits, such as improving diplomatic relations, enhancing national security, 
and encouraging economic development. In general, an altruistic interest to envi-
ronmental issues can benefit not only other countries but also the global commu-
nity as a whole. As a consequence, altruistic behavior of governments can demon-
strate a commitment to working together with other nations to find solutions to these 
challenges.

Moreover, there is another issue that may influence the actions that governments 
may take in response to climate change: the individual perception of the country’s 
citizens. In order to determine the reasons that motivate individual pro-environmen-
tal behavior, Fleiß et al. (2020) carried out a laboratory experiment to evaluate the 
degree to which people’s social value orientation is related to environmental con-
cerns. Their results showed that humanitarian and environmental value orientations 
are strongly interrelated, since the negative consequences of the global warming for 
humans are considered more important than the non-human consequences of cli-
mate change, that is, for the environment in general, flora and fauna. Likewise, some 
recent reports (see, for instance, Pew Research Center 2021 and Eurobarometer Sur-
vey 2021) show that citizens are increasingly sensitive to the problems derived from 
climate change, not only because of the consequences in their own country, but also 
because of the effects on a global level. This awareness of the population could lead 
the government to move away from a strictly self-maximizing behavior to the inclu-
sion of altruistic criteria.

The present paper proposes a static model that permits a theoretical analysis of 
possible non-self oriented behavior of the country governments. The global emis-
sion game (Finus 2001) is extended to a non-cooperative game with vector-valued 
utilities that permits the representation of altruistic attitudes. We assume that an 
altruistic government is one that cares about the others, and, therefore, takes into 
account not only its own payoff, but also the payoffs of the other countries. A related 
concept of altruism is considered in van der Pol et al. (2012). These authors modi-
fied a two-stage game for the analysis of the international environmental agreements 
to consider altruistic preferences in the decision of the countries. They assumed that, 
when government decides whether or not to participate in an international climate 
agreement, it exhibits a concern for other countries by considering the aggregated 
net benefits of other countries with a positive weight in its payoff function. They 
show that altruistic preferences play an important role on group formation and on its 
stability.

In the non-cooperative static game introduced in the present paper, which we 
name the altruistic emission game, the payoff function of each country is a vector-
valued function whose components are the net benefits obtained from emissions of 
all the countries. This general approach permits the representation of the incomplete 
preferences, and enables the analysis of situations in which the degree of altruism of 
the countries is imprecise.

Several types of countries are established by considering the attitude that their 
governments show regarding the benefits of the other countries. In particular, 
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according to the classification provided by Mármol et  al. (2020), we distinguish 
between pro-self countries, who care at least as much about their own net benefit as 
they do about the net benefits of the others, and pro-social countries, that consider 
the net benefits of other countries at least as important as their own benefits. We 
characterize the subsets of equilibria which are likely to be attained depending on 
the types of countries involved. This allows us to analyse interesting cases as, for 
instance, a scenario where the countries are gathered into groups that mutually con-
sider the net benefit of the countries within the same group, but not the net benefit of 
the countries belonging to other groups.

Thus, the theoretical model developed in this paper provides an appropriate 
framework to analyse the strategic decisions of the country governments on gas 
emissions when they deviate from their own profit-maximizing behavior and are 
heterogenous regarding the attitude adopted towards other countries. The differenti-
ated feature with respect to existing models is that the vector-valued generalisation 
permits the introduction of imprecise information on the degrees of altruism of the 
countries, enabling the identification of the set of foreseeable equilibria as a result 
of the different attitudes of the countries. A conclusion is that, even when all the 
governments show a pro-self attitude, there is still a range of potential equilibria in 
which the aggregated global emissions are less than when they are self-interested.

The rest of the paper is organized as follows. In Sect. 2, we describe the standard 
emission game, we set up our model of altruistic game and derive its set of equilib-
ria. Section 3 is devoted to the analysis of the weighted emission games obtained 
when the preferences of the agents are represented by additive value functions. The 
effect of the different attitudes of the countries on the set of foreseeable equilibria 
is studied in Sect.  4. Finally, concluding remarks of this research are included in 
Sect. 5 and the Appendix contains the proofs.

2  Emission games

We study situations in which two or more countries emit polluting gases to the envi-
ronment, such that the damages from the pollutant on each country depend on the 
total amount of pollution emitted by all of them. These decision-making problems 
are analysed as strategic games with a continuous strategy space in which each 
player chooses how much pollution to emit, rather than whether to pollute or not.

We consider a set of n agents (country governments), N = {1,… , n} , and Ei 
the set of strategies that agent i ∈ N can adopt. The strategy profile, denoted by 
e = (e1,… , en) with ei ∈ Ei , can be written as e = (ei, e−i) , where ei represents the 
quantity of gases emitted by country i, as a consequence of its production capacity 
and e−i = (e1,… , ei−1, ei+1,… , en) stands for the strategy combination of all coun-
tries except for country i. An upper bound for the emissions of each country exists, 
e0
i
 , and therefore Ei = [0, e0

i
] . We can assume that the upper bound for each country 

consists of a sufficiently high quantity of emissions that does not limit the results of 
interaction.

The net benefit function of country i is modeled as:
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where �i is the benefit derived from the own emission and �i represents the dam-
age for country i derived from the aggregated emissions. We assume that both func-
tions are continuous with ��

i
(ei) ≥ 0 , ���

i
(ei) ≤ 0 , for all ei ∈ Ei , and ��

i
(
∑n

j=1
ej) ≥ 0 , 

𝜙��
i
(
∑n

j=1
ej) > 0 , for all 

∑n

j=1
ej ≥ 0 . Under these assumptions, the benefit of country 

i, �i , increases at a strictly decreasing rate, and the damage for country i derived 
from the global emission, �i , increases at an increasing rate. Moreover, since 
𝛽��
i
(ei) < 𝜙��

i
(
∑n

j=1
ej) for ei ∈ Ei , �i is strictly concave in its own action.

2.1  The standard emission game

The standard emission game in normal-form, as described in Finus (2001), 
is denoted as SG = {(Ei,�i)i∈N} . This game models a situation in which, when 
choosing their strategies, each country only cares about its net benefit function.

We denote by ri the best response correspondence of country i to the strategies 
of all remaining countries. The best response function of country i is determined 
by the first-order optimality conditions, that is, for a given e−i:

Note that for those e−i , such that the equation ��
i
(ei) − ��

i
(
∑n

j=1
ej) = 0 determines a 

negative value of ei , ri(e−i) = 0 . As a consequence, the best response of a country is 
a continuous piecewise function. It is also differentiable except at the points where 
the function first reaches value zero.

The features of the profiles of strategies that are stable in a non-cooperative 
game are captured by the concept of Nash equilibrium (Nash 1951).

A strategy profile e∗ is a Nash equilibrium of the game SG = {(Ei,�i)i∈N} if for 
all ei ∈ Ei , �i(ei, e∗−i) ≤ �i(e

∗
i
, e∗

−i
).

It follows from the first-order optimality conditions that in an interior equi-
librium ( e∗

i
> 0 for all i ∈ N ), marginal benefits from emissions equal marginal 

damages in each country. For extreme equilibria this condition may hold for some 
countries while the emissions of other countries are null.

Under the above assumptions on the benefit and damage functions, and on the 
sets of strategies of the countries, the existence and uniqueness of a Nash equi-
librium in this model is guaranteed (see, for instance, Rosen 1965). The equilib-
rium of this standard model is denoted by eNE and the aggregated emissions of the 
countries at the equilibrium is 

∑
i∈N eNE

i
.

Example 2.1 (adapted from Finus 2001) Consider n countries with the following net 
benefit functions:

�i(e) = �i(ei) − �i

(
n∑
j=1

ej

)
,∀i ∈ N

ei ≥ 0, ei

(
��
i
(ei) − ��

i

(
n∑
j=1

ej

))
= 0, and ��

i
(ei) ≤ ��

i

(
n∑
j=1

ej

)
.



 A. Zapata et al.

1 3

where bi, ci, d > 0.
With this functional form, the ratio bi

ci
 represents the benefit-damage ratio of the 

emissions for country i. The net benefit function, �i , is strictly concave since 
𝛽��
i
(ei) < 𝜙��

i
(
∑n

j=1
ej) , and consequently, the uniqueness of the optimum with respect 

to the own action is assured.
Moreover, the best response correspondence for country i is

In order to describe the Nash equilibrium of this game, consider the quantities at 
equilibria obtained when the non-negativity constraint is relaxed:

Denote by N′ the set of countries for which êi > 0 . The components of the corre-

sponding Nash equilibrium are eNE
i

=

�
1 −

�N��
bi

ci
(1+

∑
j∈N�

cj

bj
)

�
d , for i ∈ N�,1 and eNE

i
= 0 

for i ∉ N� .   ◻

2.2  The emission game with altruistic preferences

We now propose an extension of the standard emission game that is adequate to 
model the strategic interaction among countries that do not only care about their 
own payoff function but also about the payoff function of all the other countries. 
We assume that the preferences of the governments are altruistic in the sense that 
they prefer (or weakly prefer) greater net benefits for all the countries. That is, given 
two profiles of strategies e, ē ∈ ×i∈NEi , such that 𝜋j(ē) ≥ 𝜋j(e) for all j ∈ N , ē would 
be at least as preferred as e by all the countries, and if in addition 𝜋k(ē) > 𝜋k(e) for 
some k ∈ N , then all the countries would strictly prefer ē to e.

These situations can be modeled as a vector-valued game, G = {(Ei,�)i∈N} , where 
the components of vector-valued function � ∶ ×i∈NEi → ℝ

n , � ∶= (�1,… ,�n) , rep-
resent the payoff functions for all the agents. That is, every governments consid-
ers its own net benefit, together with the net benefits of the other countries with 

�i(e) = bi

(
dei −

1

2
e2
i

)
−

ci

2

(
n∑
j=1

ej

)2

,

ri(e−i) = max

�
0,

bid − ci
∑

j≠i ej

bi + ci

�
.

êi =

⎛⎜⎜⎜⎝
1 −

n

bi

ci

�
1 +

∑
j∈N

cj

bj

�
⎞⎟⎟⎟⎠
d.

1 For a set A, |A| is the cardinal number of A.
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monotonous preferences as described above. We call this vector-valued game the 
altruistic emission game.

In this setting the well-known extensions of the notion of Nash equilibrium are2:

Definition 2.2 A strategy profile e∗ is an equilibrium for the vector-valued game 
G = {(Ei,�)i∈N} if ∕∃ i ∈ N with ei ∈ Ei such that �(ei, e∗−i) ≥ �(e∗

i
, e∗

−i
).

The set of equilibria of G is denoted as E(G).

Definition 2.3 A strategy profile e∗ is a weak equilibrium for the vector-valued game 
G = {(Ei,�)i∈N} if ∕∃ i ∈ N with ei ∈ Ei such that 𝜋(ei, e∗−i) > 𝜋(e∗

i
, e∗

−i
).

The set of weak equilibria of G is denoted as Ẽ(G).

The set of equilibria and the set of weak equilibria in a vector-valued game often 
do not differ significantly. In fact, under our original assumptions on the benefit and 
damage functions both sets coincide, and under certain concavity assumptions, the 
whole set of equilibria for a vector-valued game can be characterized in terms of 
the best response of the agents in relation to the components of the vector-valued 
function:

Theorem  2.4 (Mármol et  al. 2017) Let G = {(Ei, ui)i∈N} be a game with vector-
valued utilities, where for all i ∈ N , Ei ⊂ ℝ is non-empty convex and compact, 
ui ∶ ×i∈NEi → ℝ

Ji , ui ∶= (u
j

i
)j∈Ji , and uj

i
 is strictly concave in its own action for each 

j ∈ Ji . The set of equilibria of the game G is

where r
i
(e−i) = minj∈Ji r

j

i
(e−i) , r̄i(e−i) = maxj∈Ji r

j

i
(e−i) , and rj

i
 stands for the best 

response correspondence of agent i to the strategies of all remaining agents for uj
i
.

In this result, the hypothesis of strict concavity of the functions uj
i
 can be relaxed 

to concavity, providing a similar result which characterizes the set of weak equilibria 
in terms of the minimum and of the maximum values of the best responses, for those 
r
i
(e−i) and r̄i(e−i) that are not singletons.
In our model, the altruistic preferences of the agents are incorporated into their 

utility functions leading to a vector-valued utility game. In this respect, the method-
ology applied in this paper differs from those usually employed to analyse the emis-
sion games. Therefore, the components of the vector-utility of each country corre-
spond to the net benefits of all the countries, and since for each i ∈ N , �i and �j are 
strictly concave in ei then the assumptions in Theorem 2.4 hold. Since �j is decreas-
ing on the action ei for all j ≠ i , the maximum of �j(ei) is attained when ei = 0 , 
hence ri

j
(e−i) = 0 for all j ≠ i , and therefore r

i
(e−i) = 0 . In addition, 

E(G) = {(e1,… , en) ∈ ×i∈NEi ∶ r
i
(e−i) ≤ ei ≤ r̄i(e−i), i ∈ N},

2 For x, y ∈ ℝ
n, x ≥ y means that xi ≥ yi for all i = 1,… , n , with at least one strict inequality and x > y 

means that xi > yi for all i = 1,… , n.



 A. Zapata et al.

1 3

r̄i(e−i) = ri
i
(e−i) = ri(e−i) . Thus, the whole set of equilibria for the emission game 

with altruistic preferences is described in the following result.

Proposition 2.5 The set of equilibria of the altruistic emission game 
G = {(Ei,�)i∈N} , is

In this game, since the emissions of each country affect other countries only in 
the form of costs, the altruistic preferences of the countries create incentives for 
less emissions. Therefore, a first consequence is that the aggregated emissions at 
any equilibria of the vector-valued game is less than the aggregated emissions at the 
Nash equilibrium of the standard game.

Example 2.6 The altruistic emission game for the example is G = {(Ei,�)i∈N} , with

Since �i is continuous and strictly concave in ej for each j ∈ N , the whole set of 
equilibria for this game is

To clearly illustrate this result, in Fig. 1 we show a graphical representation of the 
particular case of two countries with identical net benefit functions.   ◻

3  Weighted emission games

The literature on vector-valued games has mainly focused on the case where the 
preferences of the agents are represented by additive value functions. In this section, 
we follow this approach and assume that the preferences of the governments can be 
represented by a weighted sum of the individual net benefit functions. This assump-
tion entails that the countries consider that trade-off rates exist such that the net ben-
efits of the different countries could be compensable.

Formally, let �i ∈ Δn = {�i ∈ ℝ
n ∶

∑n

j=1
�i
j
= 1, �i

j
≥ 0} be a vector of weights 

corresponding to country i. For �i ∈ Δn , the preference of agent i is given by

E(G) = {(e1,… , en) ∈ ×i∈NEi ∶ 0 ≤ ei ≤ ri(e−i), i ∈ N}.

�i(e) = bi(dei −
1

2
e2
i
) −

ci

2

(
n∑
j=1

ej

)2

.

E(G) =

�
(e1,… , en) ∈ ×n

i=1
Ei ∶ 0 ≤ ei ≤ max

�
0,

bid − ci
∑

j≠i ej

bi + ci

��
.

v�i(e) = �i ⋅ �t(e) =

n∑
j=1

�i
j
�j(e) =

n∑
j=1

�i
j

(
�j(ej) − �j

(
n∑

k=1

ek

))
,
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where �t is the transpose of � , �i = (�i
j
)j∈N , and �i

j
 represents the relative importance 

that agent i assigns to the net benefit of the agent j.
For � ∈ Δ = ×n

i=1
Δn , we consider the scalar weighted game G� = {(Ei, v�i )i∈N} . 

Let E(G�) denote the set of equilibria of G�.
The links between the equilibria of a vector-valued game and the equilibria of 

the corresponding weighted games have already been established in the literature. 
Shapley (1959) characterized the set of equilibria and the set of weak equilibria, for 
two-player zero-sum vector games, in terms of the Nash equilibrium of scalar games 
with weighted-sum payoffs. Subsequently, for convex sets of strategies and concave 
payoff functions, Bade (2005) established the relationship between the set of equi-
libria of a vector-valued game and the set of equilibria of weighted games with posi-
tive weights and with non-negative weights showing that:

where Δ+ = {𝜆 ∈ Δ ∶ 𝜆i
j
> 0, for i, j ∈ N}.

In Mármol et  al. (2017) it is proven that the equilibria of weighted games 
with non-negative weights are weak equilibria of vector-valued games, that is, 
∪{E(G𝜆) ∶ 𝜆 ∈ Δ} ⊆ Ẽ(G) . Moreover, under concavity assumptions (the sets 
of strategies of each agent are nonempty convex subsets of a finite dimensional 
space and for each agent the components of the vector-valued utilities are concave 

∪{E(G𝜆) ∶ 𝜆 ∈ Δ+} ⊆ E(G) ⊆ ∪{E(G𝜆) ∶ 𝜆 ∈ Δ}.

Fig. 1  Nash equilibrium of the standard game and the set of equilibria of the altruistic game



 A. Zapata et al.

1 3

in its own action), both sets coincide: ∪{E(G𝜆) ∶ 𝜆 ∈ Δ} = Ẽ(G) . In addition, 
when the components of the vector-valued utilities are strictly concave, the set of 
weak equilibria coincides with the set of equilibria.

In our model each net benefit function is strictly concave in the action of any 
of the countries. Therefore, the whole set of equilibria can be identified as the 
union of the equilibria of the weighted games, that is:

In order to determine the equilibria of the scalar weighted game, G� , we establish 
the best response correspondence of each country. Denote by r�i the best response 
correspondence of country i to the strategies of the other countries in the weighted 
game G� . Since the value function of the weighted games inherit the concavity prop-
erties of the original net benefit functions, the best response of country i is obtained 
from the first-order conditions:

It should be pointed out that if �i
i
= 1 , then �i

j
= 0 for all j ≠ i and the best response 

is the response in the standard game, ri , and if �i
i
= 0, then r�i(e−i) = 0 for all e−i 

since the weighted function considered, 
∑

j≠i �
i
j
�j(e) = −

∑
j≠i �

i
j
�j(

∑n

k=1
ek), is 

decreasing with respect to ei.
In addition, it follows that for all �i ∈ Δn , r�i(e−i) ≤ ri(e−i) holds. Therefore, 

since the standard game has a unique Nash equilibrium, the uniqueness of the 
equilibria for all the weighted games is assured.

A special case is when all the agents attach the same weight to the net ben-
efit functions of the other agents, including its own net benefit. In this case the 
weights for all countries are �i = (

1

n
,… ,

1

n
) . This weighted game has a unique 

Nash equilibrium which coincides with the social optimum that is, the equilib-
rium when the joint net benefit is maximized. This profile of strategies can be 
regarded as the level of emissions recommended by an external arbitrator who 
seeks to maximize the aggregated net benefit. For the best responses in this case, 
denoted as rS

i
 , rS

i
(e−i) ≤ ri(e−i) also holds.

Now consider the case in which a government is only concerned about the net 
benefits of a subset of countries H ⊆ N attaching the same weight to all of them and 
ignoring the rest of the agents. The corresponding vector of weights is then �i

j
=

1

|H| 
for j ∈ H , and �i

j
= 0 for j ∉ H . The value function of the scalar weighted game is 

∑
j∈H �j(e)

�H�  , and we denote by rSH
i

 the corresponding best response. We show that when 
a country takes into account additional countries, then its level of emissions at its 
best response does not increase.

Proposition 3.1 For all e−i ∈ ×j≠iEj and for all H, I ⊆ N such that i ∈ H ⊆ I, 
r
SI
i
(e−i) ≤ r

SH
i
(e−i) holds.

E(G) = ∪{E(G�) ∶ � ∈ Δ}.

ei ≥ 0, ei

(
�i
i
��
i
(ei) −

n∑
j=1

�i
j
��
j

(
n∑

k=1

ek

))
= 0, and �i

i
��
i
(ei) ≤

n∑
j=1

�i
j
��
j

(
n∑

k=1

ek

)
.
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In particular, the level of emissions at the best response in the standard emission 
game is not lower than the level of emissions at the best response when considering 
the sum of the net benefits of some countries including the own net benefit, that is, 
r
SI
i
(e−i) ≤ ri(e−i), for all I such that i ∈ I ⊆ N. Moreover, rS

i
(e−i) ≤ r

SI
i
(e−i), for all 

I ⊆ N.

Example 3.2 (continued) For the emission game considered in the previous example, 
the additive value function is

with �i the vector of weights that country i assigns to its own net benefit ( �i
i
 ) and to 

the other countries’ net benefit ( �i
j
, j ≠ i).

The best response correspondence for the weighted game G� = {(Ei, v�i )i∈N} is

where �i =
�i
i
bi∑n

k=1
�i
k
ck

 . The quantity �i represents the evaluation of the benefit-damage 
ratio with the weights provided by country i. The Nash equilibrium of the corre-
sponding weighted game can be obtained analogously as for the standard game. By 
computing the quantities

the components of the Nash equilibrium of the weighted game are 
(eNE

�
)i = (1 −

�N��
�i(1+

∑
j∈N�

1

�j
)
)d , for i ∈ N� and (eNE

�
)i = 0 for i ∉ N� , where N′ denotes 

the set of countries for which (ê𝜆)i > 0.
Note that at equilibrium the level of emissions of each country depends not only on 

its evaluation of the benefit-damage ratio but also on the other countries’ evaluation of 
their ratio. The level of emissions of country i increases with �i and decreases with �j 
for j ≠ i.

To illustrate the variation of the best response correspondence of country i in the 
weighted game G� for different vector of weights, we consider the particular case of 
two countries with identical net benefit functions:

v�i (e) =

n�
j=1

�i
j
�j(e) =

n�
j=1

�i
j

⎛
⎜⎜⎝
bj

�
dej −

1

2
e2
j

�
−

cj

2

�
n�

k=1

ek

�2⎞
⎟⎟⎠
,

r�i (e−i) = max

�
0,

�id −
∑

j≠i ej

�i + 1

�
,

(ê𝜆)i =

⎛⎜⎜⎜⎝
1 −

n

𝜌i

�
1 +

∑n

j=1
1

𝜌j

�
⎞⎟⎟⎟⎠
d,
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for i = 1, 2 where b, c, d > 0.
Given � ∈ Δ , the best response correspondences of country i in the weighted game 

G� is

Figure 2 shows the best responses for different vector of weights �1 ( �1
1
= 0,

1

3
,
1

2
,
2

3
 

and 1). The value of the best response of country 1 is increasing with respect to the 
value of �1

1
 . In particular rS

1
(e2) ≤ r1(e2).  ◻

�i(e) = b
(
dei −

1

2
e2
i

)
−

c

2

(
n∑
j=1

ej

)2

,

r�i(ej) = max

{
0,

�i
i
bd − cej

�i
i
b + c

}

Fig. 2  Best responses, r�1 , for different values of �1
1
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4  Attitudes of the country governments in the altruistic emission 
game

In what follows we present an analysis of the equilibria of the altruistic emis-
sion game in terms of the attitudes of the different country governments towards 
the others. The attitude of a government can be represented by the weights that 
it attaches to its own net benefit function and to the other countries net benefits, 
and will finally determine its behavior in the strategic game. When the attitudes 
of all the country governments are completely determined, their vector of weights 
are fixed and the predicted result is the equilibria of the corresponding weighted 
game. On the other hand, if no information about the attitudes is available, then 
any vector of weights is considered admissible for each country and the predic-
tion of the model consists of the whole set of equilibria of the vector-valued 
game. However, the information about the governments’ attitudes is usually in-
between these two extreme situations in a way that there is imprecision on the 
weights that the countries will be willing to adopt, but they can still establish that 
the weights belong to a certain subset of admissible weights.

An easily understandable way to represent imprecision about importance 
weights is to provide a subset of admissible weights described by linear rela-
tions. For i = 1,… , n , consider the polyhedron of admissible weights of agent i, 
Γi ⊆ Δn . Let pi denote the number of its extreme points and let Bi be the pi × n 
matrix whose rows are the extreme points of Γi . For each i ∈ N , define a function, 
vΓi , with values in ℝpi , given by vΓi = Bi ⋅ �t. This function has pi components, 
each of them is a weighted sum of the original payoff functions. Let Γ = ×n

i=1
Γi.

The result in Theorem 3.3 proved by Mármol et al. (2017) provides a proce-
dure to incorporate preference information in a vector-valued game and permits 
the identification of the equilibria that are compatible with the information pro-
vided as the equilibria of a transformed game. For the model in the current paper, 
this result can be written as follows:

Proposition 4.1 Let G = {(Ei,�)i∈N} be an altruistic emission game such that each 
Ei is a nonempty convex subset of ℝ, and for each i ∈ N, �i is strictly concave in ei. 
The set of equilibria of the game with preference information Γ coincides with the 
set of equilibria of the transformed vector-valued game GΓ = {(Ei, vΓi)i∈N}.

We will first address the case in which the set of countries is split into separate 
groups, so that the countries belonging to a group take into account the utili-
ties of all its members, although possibly with imprecise intensity. We assume 
that, within a group, each government considers the utility of any other coun-
try at most as important as its own, but still the corresponding weights are not 
completely determined. In addition, the attitude of the members of a group with 
respect to the countries outside the group is a selfish attitude and they do not take 
their utilities into account. It is worth noting that in this setting we are not mod-
eling attitudes of countries that seek to harm others, they simply do not take their 
interests into account.
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Given a group of countries, C ⊂ N , the set of information weights for any country 
i ∈ C is:

We next analyse the effect of these attitudes on the foreseeable equilibria of the 
game. Note that the transformed games, as defined in Proposition  4.1, inherit the 
concavity properties of the original vector-valued game, and therefore, the result in 
Theorem 2.4 can be applied to the transformed game in order to identify its equilib-
ria in terms of the maximum and of the minimum of the best responses in the cor-
responding transformed game.

The following result provides the description of the sets of equilibria of the altru-
istic emission game in the situation in which the set of countries is split into separate 
groups, that is, N = ∪k=1,…,rCk with Cj ∩ Ch = � , when j ≠ h.

Let r
SCk
i

 be the best response of government i ∈ Ck to the action of the other coun-
tries, when this government attaches the same importance to the utilities of all the 
countries in the group, that is, the scalar weighted game considered by i consists of 
the aggregated utilities of the countries belonging to the group, 

∑
j∈Ck

�j(e).

Proposition 4.2 Let G = {(Ei,�)i∈N} be an altruistic emission game. N = ∪k=1,…,rCk 
with Cj ∩ Ch = �, when j ≠ h. For k = 1,… , r and for each i ∈ Ck , 
Γi = {�i ∈ Δn ∶ �i

i
≥ �i

j
for j ≠ i, j ∈ Ck, �

i
j
= 0, for j ∉ Ck} . The set of equilibria 

of the game with preference information Γ = ×i∈NΓ
i is

Example 4.3 Consider the emission game in the previous example when 
N = C1 ∪ C2 , with C1 ∩ C2 = � , that is, each country belongs to one of two groups 
C1 or C2 . Hence the set of equilibria of the game with this preference information 
Γ = ×i∈NΓi is the following

  ◻

In a more general setting, we can consider that a given government, i, can exhibit 
a different attitude towards the utilities of other countries, classifying them into four 
categories: those whose utilities are considered at most as important as its own, Mi ; 

Γi = {�i ∈ Δn ∶ �i
i
≥ �i

j
for j ∈ C, j ≠ i, �i

j
= 0, for j ∉ C}.

EΓ(G) = {e ∈ ×i∈NEi ∶ r
SCk
i

(e−i) ≤ ei ≤ ri(e−i) for all i ∈ Ck, k = 1,… , r}.

EΓ(G) =

⎧
⎪⎨⎪⎩
e ∈ ×i∈NEi ∶ max

⎧
⎪⎨⎪⎩
0,

bid −
�∑

j∈Ck
cj

�∑
j≠i ej

bi +
∑

j∈Ck
cj

⎫
⎪⎬⎪⎭
≤ ei

≤max

�
0,

bid − ci
∑

j≠i ej

bi + ci

�
for i ∈ Ck, k = 1, 2

�
.
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those whose utilities are considered at least as important as its own, Ki ; those that 
are considered of equal importance, Ri , and those whose utilities are not taken into 
account, Ti.

Formally, the set of weights for country i ∈ N is described as

Note that the case previously analysed in which each country belongs to a unique 
group is a particular case of this more general setting, where for each i ∈ Ck , Ki = � , 
Ri = � , Mi = Ck⧵i , and Ti = N⧵Ck.

With an analogous reasoning to that of Proposition 4.2, the set of equilibria when 
the attitudes of the governments can be represented by these sets of weights, is iden-
tified in terms of the maximum and of the minimum of the best responses in the 
transformed game. Denote by r̂j

i
 j = 1,… , pi , the best response correspondences 

of country i to the strategies of the other countries in the transformed game corre-
sponding to the sets of weights Γi . The identification of the equilibria for this more 
general case (established in Proposition 4.5) relies on the following Lemma.

Lemma 4.4 Let G = {(Ei,�)i∈N} be an altruistic emission game. For the set of infor-
mation weights, Γi = {�i ∈ Δn ∶ �i

i
≥ �i

j
for j ∈ Mi, �i

i
≤ �i

j
for j ∈ Ki, �i

j
= �i

i

for j ∈ Ri, �i
j
= 0, for j ∈ Ti},

Proposition 4.5 Let G = {(Ei,�)i∈N} be an altruistic emission game. For i ∈ N , 
Γi = {�i ∈ Δn ∶ �i

i
≥ �i

j
for j ∈ Mi, �i

i
≤ �i

j
for j ∈ Ki, �i

j
= �i

i
for j ∈ Ri, �i

j
= 0,

for j ∈ Ti}. The set of equilibria of the game with preference information Γ = ×i∈NΓ
i 

is

Example 4.6 Consider the case of two countries with identical net benefit functions 
in the emission game of the previous example. In addition to an egoistic or to an 
equanimous behavior, countries can show a pro-self or a pro-social behavior towards 
the rest of the countries. We say that a country is pro-self if the weights of impor-
tance that it attaches to its own net benefit is not less than the weight of importance 
that it attaches to the net benefits of the others. A country is pro-social if it consid-
ers that the net benefit of the other countries are at least as important as its own net 
benefit.

Γi ={�i ∈ Δn ∶ �i
i
≥ �i

j
for j ∈ Mi, �i

i
≤ �i

j
for j ∈ Ki, �i

j
= �i

i

for j ∈ Ri, �i
j
= 0, for j ∈ Ti}.

minj=1,…,pi
r̂i
j
(e−i) =

{
0 if Ki ≠ �

r
SN⧵Ti

i
(e−i) if Ki = �,

maxj=1,…,pi
r̂i
j
(e−i) = r

SN⧵(Ti∪Mi)

i
(e−i).

EΓ(G) ={e ∈ ×i∈NEi ∶ 0 ≤ ei ≤ r
SN⧵(Ti∪Mi)

i
(e−i) for all i such that Ki ≠ �,

r
SN⧵Ti

i
(e−i) ≤ ei ≤ r

SN⧵(Ti∪Mi)

i
(e−i) for all i such that Ki = �}.
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If both countries are egoistic, that is, they only take into account their own net 
benefits, then the corresponding equilibrium is the Nash equilibrium of the standard 
emission game

with net benefits for each country �i(eNE) =
b3d2

2(b+2c)2
.

If the countries are equanimous in the altruistic game, then the equilibrium 
coincides with the social optimum:

with net benefits for each country �i(eS) =
b2d2

2(b+4c)
 . These benefits are above the ben-

efits in the case of egoistic countries, that is, eS
i
< eNE

i
 and 𝜋i(eS) > 𝜋i(e

NE).

An interesting situation is when the two countries behave symmetrically in 
the sense that the importance that both countries assign to their own net benefit 
coincides ( �1

1
= �2

2
= � ), and thus the importances that each country assign to the 

other country also coincides. In this case, the Nash equilibrium depends on the 
common weight attached to �:

Net benefits at this equilibrium for each agent i are �i(e∗�) =
�2b3d2+4�(1−�)b2cd2

2(�b+2c)2
.

Note that in this case, when both countries are pro-self, at the equilibria each 
country’s level of emissions is higher than that at the social optimum, and lower 
than the level of emissions at the egoistic case. On the other hand, if both coun-
tries are pro-social, the situation is the opposite: the emission for each country is 
lower than that of the social equilibrium. Moreover, the aggregated net benefit is 
always below the aggregated benefit at the equilibrium when countries are equan-
imous. In fact, since the derivative of the aggregated benefit ��

��
(e∗

�
) =

8−16�

2(�b+2c)3
 

equals 0 if and only if � =
1

2
 , and the second derivative is positive, a maximum is 

attained at � =
1

2
 (which coincides with the case in which the countries are 

equanimous).
In the general case for two countries, it is possible to establish a partition of 

the set of equilibria in terms of the pro-self or pro-social attitudes of each of the 
countries. This partition is shown in Fig.  3 for the values of the parameters 
b = 5, c = 1, d = 10.

The different sets of equilibria depending on the attitudes of the countries are 
described as:

• Both countries are pro-self:
  EΓself

(G) = {e ∈ E1 × E2 ∶ max{0,
50−2ej

7
} ≤ ei ≤ max{0,

50−ej

6
}}.

• Both countries are pro-social:

eNE =
(

bd

b + 2c
,

bd

b + 2c

)
,

eS =
(

bd

b + 4c
,

bd

b + 4c

)
,

e∗
�
=
(

�bd

�b + 2c
,

�bd

�b + 2c

)
.
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  EΓsoc
(G) = {e ∈ E1 × E2 ∶ 0 ≤ ei ≤ max{0,

50−2ej

7
}}.

• Country i is pro-social, country j is pro-self:
  EΓcro

(G) = E(GΓcro
) = {e ∈ E1 × E2 ∶ 0 ≤ ei ≤ max{0,

50−2ej

7
}, max{0,

50−2ei

7
}

≤ ej ≤ max{0,
50−ei

6
}}.

Fig. 3  Partition of the set of equilibria for b = 5, c = 1, d = 10

Table 1  Equilibria for different vectors of weights for b = 5, c = 1, d = 10

Agents Vectors of weights Equilibria Net benefit

Egoistic �1 = (1, 0), �2 = (0, 1) (
50

7
,
50

7
) �i =

6250

49
, i = 1, 2

Pro-self �1 = (
3

4
,
1

4
), �2 = (

1

4
,
3

4
) (

150

23
,
150

23
) �i =

71250

529
, i = 1, 2

Equanimous �1 = (
1

2
,
1

2
), �2 = (

1

2
,
1

2
) (

50

9
,
50

9
) �i =

1250

9
, i = 1, 2

Pro-social �1 = (
1

4
,
3

4
), �2 = (

3

4
,
1

4
) (

50

13
,
50

13
) �i =

21250

169
, i = 1, 2

Pro-self/Pro-social �1 = (
3

4
,
1

4
), �2 = (

3

4
,
1

4
) (

230

31
,
70

31
) �1 =

179250

961
,�2 =

51250

961

Pro-social/Pro-self �1 = (
1

5
,
4

5
), �2 = (

2

5
,
3

5
) (

10

7
,
50

7
) �1 =

1450

49
,�2 =

9450

49

Fully social �1 = (0, 1), �2 = (1, 0) (0, 0) �1 = 0,�2 = 0
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It is worth remarking that the situation illustrated here for two countries can be gen-
eralized to the case of n countries with different net benefit functions. That is to say, 
the whole set of equilibria can be partitioned into subsets, each one corresponding to 
different combined sets of weights, as described in Lemma 4.4.

In Table 1 we observe the influence of the weights assigned to the own net benefit 
function on the corresponding equilibria of the altruistic emission game. The first 
four cases correspond to countries that behave symmetrically. As can be observed, 
when �i

i
 starts to decrease from 1 (egoistic countries), net benefit increases up to its 

maximum, reached at the social equilibrium, i.e., when countries are equanimous. If 
�i
i
 continues to decrease, net benefits also decrease until they reach their minimum at 

zero when countries are fully social ( �i
i
=0).

5  Concluding remarks

In the current context of awareness about climate change, there may be relevant 
incentives for the governments to move away from strictly self-interest maximiz-
ing criteria, and include altruistic considerations in their strategic decisions regard-
ing the mitigation of gas emissions. In this respect, this paper provides a theoretical 
framework that permits an analysis of the implications derived from the inclusion of 
altruistic preferences in these strategic decisions.

A main issue is that very often there is no complete information about the atti-
tudes of the country governments with respect to the other countries, this hampers 
the prediction of the equilibria which countries will eventually attain. In this vein, 
we have provided results that permit us to deal with situations in which only impre-
cise information on these attitudes is available. In fact, the results obtained allow 
us to describe the sets of equilibria of the altruistic emission game for the various 
combinations of attitudes that the countries may show: cases in which each country 
shows a homogeneous attitude with respect to the others and/or situations where the 
attitude of the countries are heterogeneous with regard to the others. For instance, 
governments may show a more altruistic attitude towards politically and/or socially 
close countries, as compared to those who are perceived as distant in terms of politi-
cal or social affinity, or may show different attitudes depending on the level of devel-
opment of the countries involved.

An interesting conclusion is that, even when all the countries show a pro-self 
attitude, there is still a range of potential equilibria in which the aggregated global 
emissions are less than when the countries are self-interested. We also find that the 
whole set of the equilibria of the altruistic game is the union of the sets of equilibria 
obtained by the different combination of pro-self and pro-social attitudes that the 
countries can adopt.

The theoretical framework provided in this paper significantly contributes to the 
analysis of the strategic interactions of the countries with respect to the decisions on 
the greenhouse gas emissions. The approach may lead to more realistic predictions 
of the level of emissions at equilibria when different attitudes of the country govern-
ments are considered.
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Appendix

Proof Proposition 3.1 Consider H, I ⊆ N such that i ∈ H ⊆ I. For those e−i ∈ ×j≠iEj 

such that rSI
i
(e−i) = 0, the result follows.

For those e−i ∈ ×j≠iEj such that r
SI
i
(e−i) ≠ 0, denote ēI

i
= r

SI
i
(e−i) and 

ēH
i
= r

SH
i
(e−i). Note that 1

�I�𝛽
�
i
(ēI

i
) =

1

�I�
∑

j∈I 𝜙
�
j
(ēI

i
+ e−i) and 

1

�H�𝛽
�
i
(ēH

i
) ≤

1

�H�
∑

j∈H 𝜙�
j
(ēH

i
+ e−i) holds. Suppose, on the contrary, that ēI

i
> ēH

i
. 

Since 𝜙��
i
(
∑n

k=1
ek) > 0 for all e, then 𝛽�

i
(ēI

i
) =

∑
j∈I 𝜙

�
j
(ēI

i
+ e−i) =

∑
j∈H 𝜙�

j
(ēI

i
+ e−i)+

∑
j∈I�H 𝜙�

j
(ēI

i
+ e−i) ≥

∑
j∈H 𝜙�

j
(ēI

i
+ e−i) >

∑
j∈H 𝜙�

j
(ēH

i
+ e−i) and 

∑
j∈H 𝜙�

j
(ēH

i
+ e−i)

≥ 𝛽�
i
(ēH

i
). Thus, 𝛽�

i
(eI

i
) > 𝛽�

i
(eH

i
). This contradicts the fact that �′

i
 is decreasing 

(�′′
i
≤ 0), and the result follows.   ◻

Proof Proposition 4.2 Without loss of generality we assume that i = 1 and 
Ck⧵{1} = 2,… , |Ck|.

From Proposition 2 in Mármol et al. (2002), it follows that the polyhedron Γ1 has 
the extreme points:

• (1, 0,… , 0).

• (
1

2
, 0,… , 0,

1

2

j1)
, 0,… , 0) for all j1 = 2,… , |Ck|.

• (
1

3
, 0,… , 0,

1

3

j1)
, 0,… , 0,

1

3

j2)
, 0,… , 0) for all j1, j2 = 2,… , |Ck|.

  ...
• (

1

|Ck| ,… ,
1

|Ck| , 0,… , 0).

By applying Proposition 4.1, the equilibria of the altruistic game with this infor-
mation are obtained as the equilibria of the transformed game. The components 
of the transformed vector-valued function are:

The best responses of country 1 to the actions of the other countries are, respectively,

Since by Proposition 3.1,

for all I, such that 1 ∈ I ⊆ Ck, then the result follows.   ◻

�1;
�1 + �j1

2
, j1 = 2,… , �Ck�;

�1 + �j1 + �j2

3
j1, j2 = 2,… , �Ck�;… ;

∑
j∈Ck

�j

�Ck� .

r1, r
S{1,j1}

1
, j1 = 2,… , |Ck|, r

S{1,j1,j2}

1
, j1, j2 = 2,… , |Ck|, … , r

SCk
1

.

r
SCk
1

(e−1) ≤ r
SI
1
(e−1) ≤ r

S{1}

1
(e−1) = r1(e−1),
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Proof Lemma 4.4 Without loss of generality we assume i = 1 , R1 = 2,… , 1 + |R1| , 
and T1 = n − |T1|,… , n . Two cases can be considered: K1 = � and K1 ≠ ∅.

a) If K1 = � , from Proposition 2 in Mármol et al. (2002), it follows that the poly-
hedron Γ1 has the following extreme points:

• (
1

1+|R1| ,… ,
1

1+|R1| , 0,… , 0).

• (
1

2+|R1| ,… ,
1

2+|R1| , 0,… , 0,
1

2+|R1|
j1)
, 0,… , 0) for all j1 ∈ M1.

• (
1

3+|R1| ,… ,
1

3+|R1| , 0,… , 0,
1

3+|R1|
j1)
, 0,… , 0,

1

3+|R1|
j2)
, 0,… , 0) for all j1, j2 ∈ M1.

  ...
• (

1

1+|R1|+|M1| ,… ,
1

1+|R1|+|M1| , 0,… , 0).

With an analogous reasoning as in Proposition 4.2, by applying Proposition 4.1, 
the equilibria of the altruistic game with this information are obtained as the 
equilibria of the transformed game. The components of the transformed vector-
valued function are:

The corresponding best responses of country 1 to the actions of the other countries 
are, respectively,

Since by Proposition 3.1,

for all I, such that {1} ∪ R1 ⊂ I ⊆ {1} ∪M1 ∪ R1 , and {1} ∪M1 ∪ R1 = N⧵T1 and 
{1} ∪ R1 = N ⧵ (T1 ∪M1) , then the result follows.

b) If K1 ≠ ∅ , assume R1 = 2,… , 1 + |R1| , if K1 = 2 + |R1|,… , 1 + |R1| + |K1| , 
and T1 = n − |T1|,… , n . The extreme points of Γ1 are:

• (0,… , 0, 1j), 0,… , 0) for all j = 2 + |R1|,… , 1 + |R1| + |K1|.

�1 +
∑

j∈R1 �j

1 + �R1�
�1 +

∑
j∈R1 �j + �j1

2 + �R1� , j1 ∈ M1,

�1 +
∑

j∈R1 �j + �j1 + �j2

3 + �R1� , j1, j2 ∈ M1,

⋮∑
j∈{1}∪M1∪Ri �j

1 + �R1� + �M1� .

r
S{1}∪R1

1
, r

S{1,j1}∪R1

1
, j1 ∈ M1, r

S{1,j1,j2}∪R1

1
, j1, j2 ∈ M1,… , r

S{1}∪M1∪R1

1
.

r
S{1}∪M1∪R1

1
(e−1) ≤ r

SI
1
(e−1) ≤ r

S{1}∪R1

1
(e−1),
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• (
1

1+|R1|+|K1| ,… ,
1

1+|R1|+|K1| , 0,… , 0).

• (
1

2+|R1|+|K1| ,… ,
1

2+|R1|+|K1| , 0,… , 0,
1

2+|R1|+|K1|
j1)
, 0,… , 0) for all j1 ∈ M1.

• (
1

3+|R1|+|K1| ,… ,
1

3+|R1|+|K1| , 0,… , 0,
1

3+|R1|+|K1|
j1)
, 0,… , 0,

1

3+|R1|+|K1|
j2)
, 0,… , 0) 

for all j1, j2 ∈ M1.

  ⋮

• (
1

1+|R1|+|K1|+|M1| ,… ,
1

1+|R1|+|K1|+|M1| , 0,… , 0).

The components of the transformed vector-valued function are:

�2+|R1|,… ,�1+|R1|+|K1|,∑1+�R1�+�K1�
j=1

�j

1 + �R1� + �K1� ,

�j1 +
∑1+�R1�+�K1�

j=1
�j

2 + �R1� + �K1� , j1 ∈ M1,

�j1 + �j2 +
∑1+�R1�+�K1�

j=1
�j

3 + �R1� + �K1� , j1, j2 ∈ M1,

⋮ ∑1+�R1�+�K1�+�M1�
j=1

�j

1 + �R1� + �K1� + �M1� .

The corresponding best responses of country 1 to the actions of the other countries 
are, respectively,

Since rj
1
(e−1) = 0 for all j ≠ 1 , and by Proposition 3.1,

for all I, such that R1 ∪ K1 ∪ {1} ⊆ I ⊆ R1 ∪ K1 ∪ {1} ∪M1 , and 
R1 ∪ K1 ∪ {1} = N⧵(T1 ∪M1) , then the result follows.   ◻
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r
2+|R1|
1

,… , r
1+|R1|+|K1|
1

, r
S
R1∪K1∪{1}

1
, r

S
R1∪K1∪{1,j1}

1
, j1 ∈ M1

,

r
S
R1∪K1∪{1,j1,j2}

1
, j1, j2 ∈ M1

,… , r
SR1∪K1∪{1}∪M1

1
.

0 ≤ r
S
R1∪K1∪{1}∪M1

1
(e−1) ≤ r

SI
1
(e−1) ≤ r

S
R1∪K1∪{1}

1
(e−1),
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