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Novel non-resorbable polymeric-nanostructured scaffolds for guided bone regeneration.  

Abstract 

Objective The aim of this study was to evaluate the bone-regeneration efficiency of novel polymeric 

nanostructured membranes and the effect of zinc, calcium, titanium and bone morpho-protein loading on 

membranes, through an in vivo rabbit model.  

Material and Methods Nanostructured membranes of methylmethacrylate were loaded with zinc, calcium, 

TiO2 nanoparticles and bone-morphogenetic protein (BMP). These membranes covered the bone defects 

prepared on the skulls of six rabbits. Animals were sacrificed six weeks after surgery. Micro computed 

tomography was used to evaluate bone architecture through BoneJ pluging and ImageJ script. Three 

histological processing of samples, including von Kossa silver nitrate, toluidine blue and fluorescence by 

the deposition of calcein were utilized.  

Results Zn-Membranes (Zn-Ms) promoted the highest amount of new bone and higher bone perimeter than 

both unloaded and Ti-Membranes (Ti-Ms). Ca-Membranes (Ca-Ms) attained higher osteoid perimeter and 

bone perimeter than Zn-Ms. The skeleton analysis showed that Zn-Ms produced more branches and 

junctions at the trabecular bone than BMP-loaded membranes (BMP-Ms). Samples treated with Ti-Ms 

showed less bone formation and bony bridging processes. Both Zn-Ms and Ca-Ms achieved higher number 

of osteoblasts than the control group. BMP-Ms and Ca-Ms originated higher number of blood vessels than 

Ti-Ms and control group.  

Conclusions Zn incorporation in novel nanostructured membranes provided the highest regenerative 

efficiency for bone healing at the rabbit calvarial defects.   

Clinical relevance Zn-Ms promoted osteogenesis and enhanced biological activity, as mineralized and 

osteoid new bone with multiple interconnected ossified trabeculae appeared in close contact with the 

membrane. 

Key words: non-resorbable polymer, scaffold, bone regeneration, zinc. 
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Introduction 

The basic principle of guided bone regeneration involves the placement of mechanical barriers to 

protect blood clots and to isolate the bone defect from the surrounding connective tissue, thus providing 

bone-forming cells with access to a secluded space intended for bone regeneration. This procedure has, in 

many cases, an unpredictable clinical outcome and remains a challenge [1]. Four stages are used to 

successfully regenerate bone: I) primary closure of the wound to promote undisturbed and uninterrupted 

healing, II) angiogenesis to provide necessary blood supply and undifferentiated mesenchymal cells, III) 

space creation and maintenance to facilitate space for bone in-growth and IV) stability of the wound to 

induce blood clot formation and allow uneventful healing. Barrier membranes are used for guided bone 

regeneration procedures [1, 2].  

There are two types of membranes based on the characteristics of resorbability. The use of 

resorbable tissue-engineered matrices to induce bone formation, when additional support is needed, is not 

always successful. The main disadvantage of current resorbable membranes is the unpredictable resorption 

time and the degree of degradation, biocompatibility. The ability to maintain sufficient space to regenerate 

enough bone for long periods is questioned [1]. Non-resorption might result in shielding of the newly-

formed bone from physiological stresses necessary for further remodeling and maturation. Non-resorbable 

membranes include expanded, high-density and titanium-reinforced polytetrafluoruroethylene, and 

titanium mesh [1]. Polytetrafluoroethylene (PTFE), a non-resorbable synthetic polymer, still represents the 

gold standard for clinicians, due to its higher predictability if compared to resorbable membranes. One of 

the main disadvantages of PTFE are the low adhesiveness for cells and the total absence of the capability 

of connecting to the bone tissue to providing osseointegration [3]. It is a significant drawback that non-

resorbable membranes require of a second surgical intervention to remove the barrier which may injure or 

compromise the obtained regenerated tissue [1].  

Polymethylmethacrylate (PMMA) is a non-resorbable but biocompatible and biostable polymer, 

which has been widely used to clinically fix prostheses to bone or for vertebroplasty, orthopedic bone 

cements, skull defect reparation, and mandibular reconstruction, among others [4, 5]. A novel PMMA-

based polymeric blend has been designed combining two copolymers, and nanofibers membranes have 

been prepared by electrospinning. These membranes were shown to be bioactive, biocompatible and 

resemble bone nanomechanical properties and nanotopography [6].  
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Functionalization of the polymeric membranes through the incorporation of bioactive components 

may create a different chemical context, thus enhancing their osteoconductive properties [7]. Improved 

osteogenic ability [8] and increased osteoconductivity [9] have been associated with the use of calcium- 

and zinc-containing bioactive materials. Additional use of growth factors such as morphogenetic protein 2 

(BMP2) have been recommended [10] and recognized as a potent bone inducer for bone regeneration [11]. 

TiO2 nanoparticles might act as primer initiator for the synthesis of a mineral bone matrix, thus perhaps 

expending the repair and healing of bone defects [12].  

Large animal experimental models are important for the development of tissue-engineered 

constructs. Rabbit is a suitable intermediate model in which bone regeneration studies can be performed [5, 

7]. Micro-CT is a promising technique for the observation of microscopic bone structure and both 

qualification and quantification of bone formation inside and outside of bony defects. It also provides three-

dimensional imaging function [13]. Bone histomorphometry represents an essential and sensitive ex vivo 

tool to assess mineralization and cellular activity in the bone [14].  

The aim of this study was to examine the regenerative potential of novel nanostructured 

membranes loaded with zinc, calcium, titanium and bone morphogenetic protein in a non-critical sized 

calvarial bone defect model of rabbit. The null hypothesis to be tested was that the novel membranes and 

the bioactive agents do not facilitate bone regeneration.  

 

Materials and methods  

Preparation of membranes  

 Nanostructured membranes were fabricated through electrospinning, with a novel polymeric 

blend. It is composed of a mixture of two high molecular weight copolymers: methyl methacrylate-co-

hydroxyethyl methacrylate (average Mw 200 kDa, PDI<2.5), and methyl acrylate-co-hydroxyethyl acrylate 

(average Mw 2,000 kDa, PDI<1.5). After electrospinning, the matrix surfaces were reacted with a sodium 

carbonate buffer solution (333 mM; pH=12.5) for 2 h and gently washed with water. The rest of the 

technical profiles are described in Osorio et al. [6,15]. Membranes were loaded with calcium, zinc, TiO2 

nanoparticles and human recombinant bone-morphogenetic protein 2, suitable for cell culture with > 95% 

purity (Sigma Aldrich, Darmstadt, Germany). As the bioactivity of BMP-2 is damaged in the 

electrospinning process, it was physisorbed onto scaffolds. 1 μg of BMP-2/50μl phosphate buffered saline 

was dropped in two increments of 25 μl each onto the surface of the scaffold, representing 1 µg of protein 
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[16]. For zinc and calcium loading, materials underwent continuous shaking in aqueous solutions of ZnCl2 

or CaCl2 (containing zinc or calcium at 40 ppm) (pH: 6.5), in order to reach the adsorption equilibrium of 

metal ions. Then, the suspensions were centrifuged (60 min, 12,000 rpm, two cycles) and the matrices were 

separated from the supernatant. TiO2 nanoparticles (20-40 nm) were included in membranes by mixing with 

the polymers before starting the electrospinning process. A fifth group of unloaded membranes (OH-Ms) 

was also tested.  

 

Animal experimentation specimens 

Six white, New Zealand-breed experimentation rabbits with identical characteristics (age: 6 

months; weight: 3.5–4 kg) were selected for the study. Animals were adequately housed; food and water 

were provided daily ad libitum with rabbit-maintenance Harlan-Teckland Lab Animal Diets (2030). The 

experiment was developed in accordance with the guidelines of the US National Institute of Health (NIH 

for Care and Use of Laboratory Animals) and European Directive 86/609/EEC regarding the care and use 

of animals for experimentation. The study also complied with the European Directive 2010/63/EU about 

the protection of animals used for scientific purposes and with all local laws and regulations. The 

researchers obtained the approval of the Ethics Committee of the Institution (CCMI-Ref 028/16). As 

required by the legislative framework, the minimum number of animals was used for ethical reasons. 

Comparable models have been published concerning the histological and animal experimentation methods 

[7]. 

 

Surgical procedure 

Before starting the surgical procedure, vital signs were taken and then immobilisation of the rabbits 

was carried out. Midazolam (0.25 mg/kg) and propofol (5 mg/kg) were infiltrated intravenously as 

anaesthetics for induction and an inhalation of 2.8% inspired sevoflurane gas was also used. Analgesia was 

provided with ketorolac (1.5 mg/kg) and tramadol (3 mg/kg). When the animals were sedated and ready, 

with a No. 15 scalpel blade incisions were made between the bases of their ears and between their eyes. A 

surgical triangular field was done after connecting the two incisions with another one in the skull midline. 

With a Prichard periosteotome, the epithelial, connective, and muscular tissues were separated from the 

operation field and the skull surface was washed with a sterile saline solution. Six non-critical bone defects 

(diameter: 6 mm; depth: 3 mm) were created on the parietal bone, on each side of the skull midline, 3 mm 
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apart, using a trephine (Helmut-Zepf Medical Gmbh, Seitingen, Germany) mounted on an implant 

micromotor operating at 2000 rpm under saline irrigation. The trephine had an external diameter of 6 mm, 

a length of 30 mm, and teeth of 2.35 mm. Piezosurgery was used to remove the inner table and the medullary 

bone in every defect. The depth was controlled with a periodontal probe. A randomly assigned membrane 

was used to cover each of the five bone defects. The sixth bone defect was left uncovered (unloaded). The 

randomisation sequence was generated using specific software (Research Randomizer, V. 4.0, Urbaniak 

GC & Plous S, 2013). The membranes were fixed with the fibrin tissue adhesive Tissucol (Baxter, Hyland 

S.A. Immuno, Rochester, MI, USA), which was placed on the bone rims adjacent to the defects. Proper 

adhesion and limited mobility of the membranes were confirmed when the flaps were moved back to their 

initial positions. Sutures were made on the following planes using resorbable material: periosteal (4/0), sub-

epidermal (4/0) and skin (2/0). Simple stitches were used as close as possible to the edge. The wound was 

carefully cleaned with a sterile saline solution. Anti-inflammatory analgesia (buprenorphine 0.05 mg/kg 

and carprofen 1 mL/12.5 kg) was administered. The animals were sacrificed six weeks after surgery using 

an intravenous overdose of potassium chloride solution. The tissue samples were cut and marked 

individually [7].  

 

Micro computed tomography  

After the brain mass was separated and the skull was washed with a sterile saline solution, rabbit 

skulls were analyzed by Computerized Tomography (Micro-CT) using a Bruker Albira preclinical CT 

scanner.  Acquisitions were performed at the highest quality available; 1000 image 360º radiographic 

projection at 45 kV, and a 30 minute acquisition time.  Tomographic reconstructions were performed using 

Albira Suite software and standard reconstruction settings [17] generating 2D and 3D volumes with 8.3 

voxels/mm resolution.  Average bone density in Houndsfield Units (HU) was evaluated using PMOD 

software (PMOD technologies LLC), positioning 2 mm spherical volumes of interest (VOIs) in a rosette 

arrangement within each lesion. High resolution reconstructions of a 10 mm3 volume within each lesion 

were made using Albira Suite software, generating volumes with a 20 voxels/mm resolution.  Bone 

architecture was evaluated using BoneJ [18], a free plugin for ImageJ [19]. An ImageJ script was created 

to automatically perform the analysis on all subvolumes using the same HU density threshold and BoneJ 

settings using crop (total defect) and crop 150 (central defect) analysis system.  
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Histological Processing of Samples 

Samples were obtained from the skull of each rabbit, cutting them in an anatomical sagittal plane 

and undecalcified bone were fixed in a 5% buffered formaldehyde solution (pH 7.4). Blocks were retrieved 

from the regenerated bone defect using an oscillating autopsy saw (Exakt, Kulzer, Wehrheim, Germany). 

The dissected specimens were immediately immersed in a solution of 4% formaldehyde and 1% calcium 

embedded in acrylic resin and processed for ground sectioning. The von Kossa (VK) silver nitrate stain 

(Sigma–Aldrich Chemical Co., Poole, UKwas applied to visualise the mineralised bone (scale bar, 850 

µm). VK morphometric study of the bone was carried out by means of an Olympus SZ-CTV 

stereomicroscope (Olympus, Tokyo, Japan) with 1.2X lenses. Pictures were taken using a digital signal 

processor (DSP) 5050Zoom camera (Olympus, Tokyo, Japan). One image was taken from each bone defect. 

The following data were compiled: bone surface (BS), percentage of bone area [BS/total surface (TS)], 

osteoid surface (OS), percentage of osteoid surface (OS/TS) and bone perimeter (BPm), and bone thickness 

(BTh). For histological staining and rapid contrast tissue analysis (Merck Toluidine Blue-Merck, 

Darmstadt, Germany), a metachromatic dye was used. A 1% toluidine blue (TB) solution with a pH of 3.6 

was chosen and adjusted with HCl. The samples were exposed to the dye for 10 minutes at room 

temperature (23.0 + 1.0 ºC) with distilled water, and air-dried. Fluorescence images were also obtained to 

observe the deposition of calcein into the newly deposited bone matrix (scale bar, 500 µm). The toluidine 

and fluorescence morphometric studies of the bone were carried out by means of an Eclipse LV100 

microscope (Nikon, Tokyo, Japan) with 20X and 5X lenses, respectively. Pictures were taken using a DSP 

DS-Fi1 camera (Nikon, Tokyo, Japan) together with NIS-Elements BR 4.0 software (Nikon, Tokyo, Japan). 

Osteocytes, osteoblasts and blood vessels were analysed at TB images (scale bars, 50 and 100 µm); four 

images were taken and analysed in each bone defect. At fluorescence, one image was taken for defect and 

total surface (TS), osteoid area (OA), the percentage of the total area occupied by osteoid (OA/TS), 

perimeter of the osteoid (OP), the area occupied by mineralized bone (BA), its percentage respect to the 

total area of the defect (BA/TS), as well as its perimeter (BP) were recorded. The software ImageJ was 

employed for images analyses. 

 

Statistical Analysis 
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Means and standard deviations (SD) were obtained. Non-parametrical Friedman tests were 

employed for variance analysis and multiple post-hoc comparisons were performed. Level of significance 

was set at p ≤ 0.05. Analysis was undertaken by means of IBM SPSS Statistics v.20 software package. 

 

Results 

Representative 3D Micro-CT images of calvarial defect after treating with the different 

biomaterials are shown to observe the structures of interest (Fig 1SI). Representative 2D Micro-CT images 

from each group are observed in Fig 1. Micro computed tomography assessment of both the whole defect 

(crop) and the centre of the defect (crop 150) was able to distinguish differences (p<0.05) among some 

effects of biomaterials. Crop analysis showed that Zn-Ms produced higher isosurface or bone surface (BS) 

than the control group (Figs 1a, 1b) (Table 1A SI). The skeleton analysis also visualized higher number of 

branches and junctions of the trabecular formed bone, when Zn-Ms were used (Figs 1c, 1d) and compared 

with the control group and with samples treated with BMP-Ms (Figs 1g, 1h) (Table 1A SI). On the other 

hand, BMP-Ms attained significant higher maximum branch length (Max), than the unloaded membranes 

(Figs 1k, 1l) (Table 1A SI).  When Micro-CT analysis was performed at the centre of the defect (crop 150), 

Euler characteristics and the spatial connectivity of bone were higher in samples treated with Zn-Ms and 

BMP-Ms, when compared with the control group (Table 1B SI). The skeleton analysis by Micro-CT also 

permitted to visualize higher nodes and branch points when Zn-Ms and BMP-Ms were used in comparison 

to the control group (Figs 1d, 1h). Specimens treated with Zn-Ms achieved longer length of branch than 

Ca-Ms (Fig 1e, 1f) (Table 1B SI).  

The Von Kossa (VK) stain permitted to observe that all bone defects treated with membranes 

attained higher bone surface (BS) and bone thickness (BTh) than the control group (Tables 1A, 1B). Zn-

Ms (Fig 2a) produced the highest amount of new bone (ratio BS/TS), among groups. Zn-Ms also showed 

higher BTh (Fig 2d) than the unloaded membranes, and produced more osteoid surface (OS) (Fig 2e) than 

the control group (Tables 1A, 1B). The ratio OS/TS, which expresses the percentage of osteoid respect to 

the total surface, was similar in all groups. Zn-Ms achieved higher bone perimeter (BPm) (Fig 2c) than 

those produced by both OH-Ms and Ti-Ms (Table 1B). Intersticial connective tissue was visible in samples 

treated with Zn-Ms. Adipocyte-like surrounding tissues were also shown in the rest of the groups, especially 

in the control group. The bone defect in the control group was found to be filled with connective tissue and 

a few immature bone trabeculae (Fig 3a). Areas of trabecular bone formation could also be identified in the 
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defects treated with either type of the membrane (Figs. 2b, 3b, 3c, 3d, 3e). Bony bridging processes were 

observed in all groups, except after using Ti-Ms (Fig 3d). 

At the histological images of toluidine blue (TB), the newly-formed bone abutting the membranes 

showed viable bone and large osteocytes lacunae bridging up the greatest part of both Ca-Ms (Fig 4) and 

Zn-Ms (Fig 5a). Ca-Ms clearly promoted fusiform cells, osteoid formation and angiogenesis. Zn-Ms created 

actively new bone beneath the membrane and outside the membrane. At both sides of this membrane, few 

isles of newly formed bone with osteoblast seam and osteoid were observed, strongly extending from the 

boundaries of the defect. No signs of inflammation infiltrate could be observed (Fig 5a). The counting of 

osteocytes was similar among groups (Tables 2A, 2B). Both Zn-Ms and Ca-Ms (Figs 4, 5b) promoted 

higher number of osteoblasts than the control group. The number of osteoblasts was higher in subjects 

treated with Zn-loaded than with unloaded membranes (Table 2B). In some fields of all samples, osteoblasts 

were observed in the process of apposing bone directly on the membrane surface (Fig 5a, 5b). BMP-Ms 

and Ca-Ms did not produce greater number of osteoblasts than the rest of the membranes but originated 

higher number of blood vessels than Ti-Ms and the control group (Table 2B). Ca-Ms showed dense and 

neat collagen fibres, with multiple fusiform cells, that run parallel to the bone defect and the membrane 

(Fig 5c). A clear fat tissue, lymphocytes and mononuclear inflammatory cells were observed after using Ti-

Ms (Fig 5d). The control group promoted less angiogenesis than Ca-Ms, BMP-Ms and Ti-Ms. Similarly, 

all membranes produced higher vascularization than Ti-Ms (Table 2B). Many large vessels could be 

detected in samples treated with Zn-Ms and Ca-Ms (Figs 5a, 5b). Small blood vessels were shown in close 

proximity to the new bone and the Ca-loaded biomaterials (Fig 5c). Images obtained with TB also permitted 

to observe that apart from Zn-Ms and Ca-Ms, Ti-Ms promoted the formation of bone matrix (Fig 5a, 5b, 

5d) over the membrane, outside the surgical defect. No inflammatory cells or multinuclear giant cells were 

present at the interface with bone in animals treated with Zn-Ms (Fig 5a). Lymphocytes and mononuclear 

cells over the membrane (Fig 5d) were seen as sight of local inflammation when Ti-Ms were used.   

At the histological images obtained with fluorescence calcein, samples treated with unloaded 

membranes attained higher bone area (BA) than the control group (Tables 3A, 3B) (Figs 6a, 6b). Ca-Ms 

promoted higher osteoid perimeter (OP) and bone perimeter (BP) than Zn-loaded biomaterials (Tables 3A, 

3B) (Figs 6c, 6d). 

 

Discussion 
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In this experimental research, bone regeneration accounted in all groups, i.e, by the end of the 

study the size of the defects was smaller than its original size (Fig 1 SI). Zn-Ms regenerated significantly 

more bone within the defect than the other groups and attained higher new formed bone (BS/TS) in 

comparison to the rest of the groups (Tables 1A, 1B). Therefore, the null hypothesis must be rejected. The 

increase in structural indexes that was observed after Zn-Ms application (Table 1B) resulted in the 

replacement of older, overly mature bone with younger and more resilient bone [20]. Osteoid or bone matrix 

that will be, but not yet, mineralized [21] showed higher surface than in the control group when Zn-Ms 

were used, a sign of young bone formation [22]. The pattern of the tissue appeared composed by Zn-Ms in 

close contact with the newly-formed bone and with osteoid (Figs 2e, 5a). Osteoid is secreted by osteoblasts, 

which initiate its sequential mineralization [23]. The significantly increase of bone surface (BS), i.e, 

mineralized bone matrix excluding osteoid [21] and bone thickness (BTh) became associated with a 

generalized rise of osteoblasts promoted by all membranes when compared with the control group, 

especially when Zn-Ms were used (Tables 1, 2). Osteoblasts are induced as a priority at the early healing 

stage [24]. 

New bone, associated to  multiple interconnected ossified trabeculae (Figs 1d, 2a),  was observed 

directly in contact with the Zn-M surfaces in the regions displaying successful bone conduction [25] (Fig 

5a). Newly formed bone was continuous in some scan sections (Figs 1c, 1d) from the defect margin without 

any invasion of the soft tissue, forming bony bridging images (Figs 1c, 5a). In contrast, defects with no 

membranes (control group) showed higher blind osteons or end-points than samples treated with Zn-Ms 

(Table 1B SI). The changing osteonal morphology is likely related to maturation and maintenance of bone 

vasculature, which is a clear sign of remodeling, based on both nutrient supply and cell recruitment [23]. 

Osteogenesis is always preceded by angiogenesis [13]. Thereby, it is reasonably to suggest that 

incorporation of Zn provides higher regenerative efficiency for bone healing.  

Not only osteogenesis but enhanced biological activity was determined attending to the amount of 

osteoblasts when Zn-Ms and Ca-Ms were used (Table 2B). Polymer-based scaffold/membranes loaded with 

Zn have previously been shown to enhance cell proliferation/wound healing [26]. Zinc ion has also been 

recognized as a promising osteoimmunomodulator with actions on macrophage polarization and osteogenic 

cells differentiation [27]. Formation of new bone indicates that membranes can induce osteoblasts growth 

and differentiation to fill, or partially fill intracortical pores by nucleating clusters. These former mineral 

deposits induce their subsequent fusion to produce amorphous calcium phosphate and ultimately apatite 
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crystals [28],  thus reactivating bone-lining cells to bone-forming osteoblasts. Moreover, the pore 

connectivity described in these membranes [6] might influence the possibility that a greater number of 

osteoblasts can penetrate the porous structure [29].  In addition, an ingrowth of micro vessels was also 

found nearby the membrane when Zn-Ms were used (Fig 5a), contributing to the integration of the 

biomaterial in the tissue [30]. Following vessel extension, bone regeneration occurred alongside the newly 

formed vessels [13]. Furthermore, Zn has been demonstrated to protect both collagen from degradation and 

the seed crystallite sparce collagen for re-mineralization. Zn also influences signaling pathway and 

stimulates the metabolic effect for hard tissue mineralization [31]. 

When Ca-Ms were used, discontinuous bony regeneration was observed parallel to the membrane, 

trying to bridge both sides of the defect (Figs 1f, 3b). Small trabeculae were obtained after using Ca-Ms in 

comparison to those achieved by Zn-Ms, as bone perimeter (BP) and osteoid perimeter (OP) measurements 

showed significant higher values when Ca-Ms were used (Table 3B) (Figs 6c, 6d). This complied with the 

maximum branch length obtained at the center of the defect after using Ca-Ms (Table 1B SI). Ca-Ms did 

not exhibit the osteogenic potential that expected (Table 1B). The scarce angiogenesis that was observed, 

in comparison with that obtained by the other groups, played a crucial role in bone neogenesis and in all 

regenerative processes because sufficient nutritional support is essential [30]. Fibrous connective tissue, 

which prevents osteogenesis entirely or partially [32], was observed at the base of the Ca-Ms (Fig 5b). It is 

hypothesized that cells cannot perform matrix calcification due to the lack of bone-derived growth and 

differentiation factors in bone defects [33].  

Bone islands appeared not only at the margins of the defect, but scattered throughout the whole 

defect when BMP-Ms were used (Fig 3c). These findings became associated to higher maximum branch 

length and connectivity (Fig 1g) than those observed in specimens treated with unloaded membranes or 

control group, respectively (Table 1A SI). Slight radiopacity (Fig 1h) was also observed, and corresponded 

with lower new bone (BS/TS) than that attained by the Zn-Ms (Table 2B). Contrary to what it has been 

previously found [25], BMP-Ms did not induce significant osteoblasts differentiation when compared with 

the rest of the study groups (Table 2B). Probably, the use of these porcine-derived collagen resorbable 

membranes combined with rhBMP9 used by Fujioka-Kobayashi et al. [25] make comparison difficult 

respect to the BMP-PMMA/loaded membranes employed in the present study. The influence of the carrier 

system on the effective delivery of BMP on bone formation [25] poses a point to research on in future 

strategies.  
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Commonly, bone regenerated under stable conditions that are free from pressure and tension. 

Therefore, more regeneration should occur around the defect margin and less in the central region. A stiffer 

biomaterial, as Ti-Ms, would provide a more protected environment and more bone regeneration [5]. The 

bone tissues at the defect showed scarce regeneration within the region of interest, limited to the margins, 

where minor new bone formation was shown (Figs 1i, 3d). This data concurred with the lowest bone surface 

(BS) and bone perimeter (BPm) that Ti-loaded membranes attained among groups (Table 1A). However, 

formation of bone matrix [21] could be adverted, besides, over the membrane, outside the defect (Fig 5d). 

Ti-particle induced inhibition on osteogenic activity of mesenchymal-stem cells and hindered the 

expression of multiple signaling pathway compounds. As a result, Ti-particles inhibited bone formation 

[34]. The defect was also characterized by infiltration of fat tissue and lower vascularization, though several 

blood vessels were observed in the preset sample (Fig 5d). Insufficient bone vascularity results in decreased 

bone formation [13] and complied with the presence of lymphocytes, mononucleated cells, and a relatively 

low number of osteoblasts (Table 2A) (Fig 5d). Fibroblast bands near a scaffold may attract lymphocytes 

and allow for infiltration of inflammatory factors, thereby restricting osteoblast proliferation and 

differentiation and consequently inhibiting new bone formation close to the membrane [35].  

When the unloaded membranes were used, bone regeneration was observed throughout both the 

center and the edges of the defects, but bone formation occurred mainly from the periphery of the defect, 

leaving the center of the defect almost empty (Figs 1k, 1l, 3e). No significant bone formation and 

consolidation of the untreated defect was achieved and observed through histological and Micro-CT 

analysis. In the control group, bone regenerated only at the edge of the defect (Fig 3a), without evidence of 

bringing, and there was reduction in the defect area. The bone area (BA) was the smallest among groups 

but significantly different from samples treated with unloaded membranes (Table 3B) (Figs 6a, 6b). Some 

osteocytes, osteoblasts and blood vessels were observed at the defects, though areas of fibrous tissue nearby 

the trabeculae bone (Figs 1a, 1b) were also present, as it was reported by Oktay et al. [36]. At the end of 

the study, the defect was almost completely occupied with fibrous or adipose-like characteristic of 

immature tissue [7] and quite a few newly-formed, island-like bone (Fig 1b), as it was also found by Park 

et al. [37]. These islands could be the product of osteogenic activity from the surrounding periostium and 

dura mater [7]. Nevertheless, an almost occluded defect was also seen at some histological sections. 

Negatively charged carboxylated surfaces have been shown to produce smooth inflammatory reactions after 
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polymers implantation, diminishing macrophage-mediated inflammatory activity and promoting regulatory 

T cell phenotypes. This results in low thickness or no fibrotic capsule formation around the tissues [38].  

It should be taken into account that these novel membranes are fiber scaffolds. They may have 

promoted tissue integration by mimicking the architecture and the nanomechanical properties of the natural 

extracellular bone matrix [6].  Substrate stiffness and nanotopography have been reported to have a crucial 

effect on cell behavior and tissue integration [39, 40]. Immune cells are also sensitive to the microstructural 

and textural properties of materials. It seems that surface topography also plays an important role in 

stimulating the production of pro-inflammatory cytokines by macrophages which, in turn, regulates 

osteogenic or degradative processes around implanted biomaterials [41]. Further research is needed in these 

fields. 

The relatively small sample size is a limitation of the present research. More studies are required 

to understand the new bone formation patterns at different time points. Within the limits of the present 

investigation, the histological and histomorphometric analysis of the regenerated tissues might provide 

useful information regarding the nature and amount of newly formed bone of the five tested biomaterials. 

Zn-Ms were in close contact with newly formed bone and showed the same pattern of bone formation 

surrounding the membrane producing a bridge-like network between areas of new bone. A main strength 

of our study is that Zn-Ms in fact acts as bioactive modulator for signals communicated to the underlying 

defect. These results provide evidence that Zn-Ms may be useful for tissue engineering, but should be taken 

with caution until they are directly corroborated in human maxillary and mandible bone locations. 

 

Conclusions 

Novel non-resorbable PMMA-based and nanostructured membranes may be useful for guided 

bone regeneration. Zn incorporation in novel membranes provided the highest regenerative efficiency for 

bone healing at the rabbit calvarial defects.  Zn-Ms promoted osteogenesis and enhanced biological activity, 

as mineralized and osteoid new bone with multiple interconnected ossified trabeculae, but without soft 

tissue invasion, appeared in close contact with the membrane.  
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Figure captions 

Fig. 1 Representative peripheral micro-computed tomography (µ-CT) in 2-D dimensions of the bone defect 

in the control group (a, b); 2 scan planes (among 200) were selected: a, 96th; b, 175th. Zn-M treated group 

(c, d); 2 scan planes (among 200) were selected: c, 135th; d, 148th. Ca-M treated group (e, f); 2 scan planes 

(among 200) were selected: e, 84th scan plane; f, 150th scan plane. BMP-M treated group (g, h); 2 scan 

planes (among 200) were selected: g, 72th; h, 106th. Ti-M treated group (i, j); 2 scan planes (among 200) 

were selected: i, 114th; j, 131th. Unloaded membrane treated group (k, l); 2 scan planes (among 200) were 

selected: k, 114th; l, 129th. Arrow heads point out the edge defects. Single pointers correspond with soft 

tissue. Double pointers are membranes. Asterisks (*) are old trabecular bone. Island-like bone formations 

correspond with faced pointers. Single arrows are new bone. Interconnected ossified trabeculae and 

branches are signaled by double arrows. Bony bridging formations are identified with faced arrows 

Fig. 2 Bone histomorphometry obtained after zinc-loaded membrane, by coloration with von Kossa silver 

nitrate stain to visualize mineralized bone, at six weeks of follow up. a, histology section including the bone 

defect and the region of interest (ROI), showing a large formation of bone. b, total surface (TS) at ROI; 

asterisks (*) show the presence of interstitial connective tissue. Bony bridging (BB) images are observed. 

c, Binary image of trabecular bone area and Bone perimeter (BPm) at ROI. d, Bone thickness (BTh) with 

the traced measurements at ROI. e, Osteoid surface (OS), in yellow, at ROI 

Fig. 3 Bone histomorphometry obtained by coloration with von Kossa silver nitrate method to visualize 

mineralized bone, at six weeks of follow up, after using no membrane- control (a), Ca- (b), BMP- (c), Ti- 

(d), and unloaded membrane (e). Trabecular bone formation were observed along the margin of calvarial 

defect (arrow head), and within the defect. BB, Bony bridging; FT, fibrous tissue; Mbr, membrane; NB, 

new bone; OB, old bone. Pointers show scattered bone islands, in correspondence with new bone 

Fig. 4 Bone histology obtained after calcium-loaded membrane, by coloration with toluidine blue to 

visualize mineralized bone, at six weeks of healing time. Segments of trabecular new formed (NB) bone 

are observed. The single arrows indicate osteoblasts seams deposing new osteoid (Os). The double arrows 

indicate the presence of osteocytes. Double pointers indicate fusiform cells. Some blood vessels are 

identified by asterisks (*). A pronounced infiltration of mononuclear cells (pointers) is observed. 

Multinuclear giant cells are shown (faced arrows) 

Fig. 5 Bone histology obtained after using Zn- (a), Ca- (b, c) and Ti- (d)-loaded membranes by coloration 

with toluidine blue to visualize mineralized bone, at six weeks of healing time. Single arrows indicate the 
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presence of osteoblasts; double arrows indicate the presence of osteocytes; faced arrows mean blood 

vessels; pointers indicate fibrous connective tissue; double pointers indicate osteoclasts; asterisks (*) mean 

collagen fibers. BB, bony bridging; Fc, fusiform cells; FT, fat tissue; Lc, lymphocytes; Mc, macrophages; 

Mnc, mononuclear cells; NB, trabecular new bone; Os, osteoid  

Fig. 6 Bone histology obtained by fluorescence with calcein at the region of interest to visualize mineralized 

bone, at six weeks of healing time in the control group (a), after using unloaded-Ms (b), Zn-Ms (c) and Ca-

Ms (d). Arrows indicate the osteoid perimeter (OP) (partial limit). Pointers indicate bone perimeter (BP) 

(partial limit) 
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Table 1A: Histomorphometric data obtained within the new bone formed at the region of interest (Mean±SD). 6 

SD)  BS (mm2) BS/TS (%)  OS (mm2) OS/TS (%)  BPm (mm) BTh (mm) 

Ctr 1.63 ± 0.78 0.28 ± 0.07 0.31 ± 0.30 0.05 ± 0.05 46.09 ± 19.86 0.58 ± 0.22 

Zn 3.27 ± 1.15 0.39 ± 0.11 0.48 ± 0.24 0.06 ± 0.02 100.33 ± 18.60 1.64 ± 0.23 

Ca 2.70 ± 0.82 0.31 ± 0.07 0.46 ± 0.21 0.05 ± 0.02 82.56 ± 37.69 1.58 ± 0.47 

BMP 2.47 ± 0.91 0.28 ± 0.07 0.46 ± 0.30 0.05 ± 0.03 79.31 ± 16.32 1.38 ± 0.24 

Ti 2.45 ± 0.66 0.31 ± 0.09 0.44 ± 0.14 0.06 ± 0.03 65.15 ± 18.28 1.28 ± 0.31 

Unloaded 2.52 ± 0.67 0.29 ± 0.06 0.46 ± 0.20 0.06 ± 0.03 70.37 ± 7.39 1.14 ± 0.37 

 

Table 1B: Statistical results (P values). Bold numbers indicate significance at P < 0.05. 

 BS BS/TS OS OS/TS BPm BTh 

Ctr - Zn 0.04 0.04 0.03 0.90 0.41 0.000 

Ctr - Ca 0.04 0.17 0.27 0.80 0.31 0.007 

Ctr - BMP 0.01 0.18 0.45 1.00 0.94 0.006 

Ctr -Ti 0.03 0.7 0.11 0.73 0.76 0.01 

Ctr - Unloaded 0.03 0.23 0.18 0.63 0.37 0.02 

Zn - Ca 0.27 0.03 0.86 0.83 0.12 0.83 

Zn- BMP 0.16 0.07 0.61 0.93 0.50 0.09 

Zn - Ti 0.86 0.01 0.51 1.00 0.01 0.07 

Zn - Unloaded 0.23 0.04 0.79 0.87 0.03 0.01 

Abbreviations: BS: Bone Surface; OS: Osteoid Surface; BPm: 

Bone Perimeter; BTh: Bone Thickness; Ctr: control; Zn: zinc; 

Ca: calcium; BMP: Bone morphogenetic protein; Ti: titanium.  
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Table 2A: Bone cells and blood vessels detected within the new bone formed at the region of interest (Mean±SD). 

 Osteocytes/mm2 Osteoblasts/mm2 Blood Vessels/mm2 

Ctr 2934.74 ± 1231.68 154.97 ± 51.66 11.66 ± 2.95 

Zn 3359.91 ± 783.15 312.63 ± 92.41 14.77 ± 1.88 

Ca 3200.29 ± 1450.04 307.16 ± 96.23 16.31 ± 3.67 

BMP 3888.35 ± 1739.98 314.26 ± 164.03 16.35 ± 4.49 

Ti 3053.13 ± 924.84 264.76 ± 81.70 6.04 ± 2.62 

Unloaded 2796.25 ± 646.30 247.61 ± 66.36 16.58 ± 10.11 
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Table 2B: Statistical results (P values). Bold numbers indicate significance at P < 0.05. 

 Osteocytes Osteoblasts Blood vessels 

Ctr - Zn 0.33 0.00 0.28 

Ctr - Ca 0.45 0.02 0.03 

Ctr - BMP 0.22 0.04 0.04 

Ctr -Ti 0.55 0.01 0.01 

Ctr - Unloaded 0.61 0.11 0.36 

Ti- Ca 0.29 0.36 0.00 

Ti- Zn 0.52 0.15 0.00 

Ti- BMP 0.18 0.97 0.00 

Ti- COOH 0.66 0.59 0.01 

Zn- Ca 0.78 0.38 0.17 

Zn- BMP 0.44 0.15 0.47 

Zn- Ti 0.52 0.03 0.00 

Zn-Unloaded 0.24 0.02 1.00 

Abbreviations: Ctr: control; Zn: zinc; Ca: calcium; BMP: Bone morphogenetic protein; Ti: titanium.
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Table 3A: Histomorphometric data obtained by fluorescence with calcein, within the new bone formed at the region of interest (Mean±SD). 6 

SD)  OA (mm2) OA/TS (%)  OP (mm) BA (mm2) BA/TS (%)  BP (mm) 

Ctr 0.931 ± 0.593 0.405 ± 0.178 57.868 ± 28.779 1.249 ± 0.514 0.595 ± 0.178 60.716 ± 28.283 

Zn 1.018 ± 0.608 0.388 ± 0.223 58.453 ± 29.389 1.589 ± 0.753 0.612 ± 0.223 61.893 ± 28.266 

Ca 1.060 ± 0.460 0.426 ± 0.195 70.403 ± 26.119 1.555 ± 0.713  0.574 ± 0.195 72.668 ± 25.001 

BMP 1.090 ± 0.557 0.418 ± 0.212 71.024 ± 42.264 1.628 ± 0.779 0.582 ± 0.212 72.909 ± 41.767 

Ti 1.088 ± 0.751 0.387 ± 0.221 71.544 ± 39.316 1.588 ± 0.719 0.613 ± 0.221 71.069 ± 37.586 

Unloaded 1.159 ± 0.897 0.398 ± 0.271 60.472 ± 24.351 1.682 ± 0.797 0.602 ± 0.271 62.489 ± 25.857 

 

Table 3B: Statistical results (P values). Bold numbers indicate significance at p<0.05.  

  OP (mm) BA (mm2) BP (mm) 

Ctr-Unloaded 0.50 0.01 0.52 

Ca-Zn 0.03 0.86 0.03 

Abbreviations: TS: Total Surface; OA: Osteoid 

Area; OP: Osteoid Perimeter; BA: Bone Area; BP: 

Bone Perimeter; Ctr: control; Zn: zinc; Ca: calcium; 

BMP: Bone morphogenetic protein; Ti: titanium. 
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Table 1A: Histomorphometric data obtained within the new bone formed at the region of interest (Mean±SD). 6 

SD)  BS (mm2) BS/TS (%)  OS (mm2) OS/TS (%)  BPm (mm) BTh (mm) 

Ctr 1.63 ± 0.78 0.28 ± 0.07 0.31 ± 0.30 0.05 ± 0.05 46.09 ± 19.86 0.58 ± 0.22 

Zn 3.27 ± 1.15 0.39 ± 0.11 0.48 ± 0.24 0.06 ± 0.02 100.33 ± 18.60 1.64 ± 0.23 

Ca 2.70 ± 0.82 0.31 ± 0.07 0.46 ± 0.21 0.05 ± 0.02 82.56 ± 37.69 1.58 ± 0.47 

BMP 2.47 ± 0.91 0.28 ± 0.07 0.46 ± 0.30 0.05 ± 0.03 79.31 ± 16.32 1.38 ± 0.24 

Ti 2.45 ± 0.66 0.31 ± 0.09 0.44 ± 0.14 0.06 ± 0.03 65.15 ± 18.28 1.28 ± 0.31 

Unloaded 2.52 ± 0.67 0.29 ± 0.06 0.46 ± 0.20 0.06 ± 0.03 70.37 ± 7.39 1.14 ± 0.37 

 

Table 1B: Statistical results (P values). Bold numbers indicate significance at P < 0.05. 

 BS BS/TS OS OS/TS BPm BTh 

Ctr - Zn 0.04 0.04 0.03 0.90 0.41 0.000 

Ctr - Ca 0.04 0.17 0.27 0.80 0.31 0.007 

Ctr - BMP 0.01 0.18 0.45 1.00 0.94 0.006 

Ctr -Ti 0.03 0.7 0.11 0.73 0.76 0.01 

Ctr - Unloaded 0.03 0.23 0.18 0.63 0.37 0.02 

Zn - Ca 0.27 0.03 0.86 0.83 0.12 0.83 

Zn- BMP 0.16 0.07 0.61 0.93 0.50 0.09 

Zn - Ti 0.86 0.01 0.51 1.00 0.01 0.07 

Zn - Unloaded 0.23 0.04 0.79 0.87 0.03 0.01 

Abbreviations: BS: Bone Surface; OS: Osteoid Surface; BPm: 

Bone Perimeter; BTh: Bone Thickness; Ctr: control; Zn: zinc; 

Ca: calcium; BMP: Bone morphogenetic protein; Ti: titanium.  
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Table 2A: Bone cells and blood vessels detected within the new bone formed at the region of interest (Mean±SD). 

 Osteocytes/mm2 Osteoblasts/mm2 Blood Vessels/mm2 

Ctr 2934.74 ± 1231.68 154.97 ± 51.66 11.66 ± 2.95 

Zn 3359.91 ± 783.15 312.63 ± 92.41 14.77 ± 1.88 

Ca 3200.29 ± 1450.04 307.16 ± 96.23 16.31 ± 3.67 

BMP 3888.35 ± 1739.98 314.26 ± 164.03 16.35 ± 4.49 

Ti 3053.13 ± 924.84 264.76 ± 81.70 6.04 ± 2.62 

Unloaded 2796.25 ± 646.30 247.61 ± 66.36 16.58 ± 10.11 
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Table 2B: Statistical results (P values). Bold numbers indicate significance at P < 0.05. 

 Osteocytes Osteoblasts Blood vessels 

Ctr - Zn 0.33 0.00 0.28 

Ctr - Ca 0.45 0.02 0.03 

Ctr - BMP 0.22 0.04 0.04 

Ctr -Ti 0.55 0.01 0.01 

Ctr - Unloaded 0.61 0.11 0.36 

Ti- Ca 0.29 0.36 0.00 

Ti- Zn 0.52 0.15 0.00 

Ti- BMP 0.18 0.97 0.00 

Ti- COOH 0.66 0.59 0.01 

Zn- Ca 0.78 0.38 0.17 

Zn- BMP 0.44 0.15 0.47 

Zn- Ti 0.52 0.03 0.00 

Zn-Unloaded 0.24 0.02 1.00 

Abbreviations: Ctr: control; Zn: zinc; Ca: calcium; BMP: Bone morphogenetic protein; Ti: titanium. 



Table 3A: Histomorphometric data obtained by fluorescence with calcein, within the new bone formed at the region of interest (Mean±SD). 6 

SD)  OA (mm2) OA/TS (%)  OP (mm) BA (mm2) BA/TS (%)  BP (mm) 

Ctr 0.931 ± 0.593 0.405 ± 0.178 57.868 ± 28.779 1.249 ± 0.514 0.595 ± 0.178 60.716 ± 28.283 

Zn 1.018 ± 0.608 0.388 ± 0.223 58.453 ± 29.389 1.589 ± 0.753 0.612 ± 0.223 61.893 ± 28.266 

Ca 1.060 ± 0.460 0.426 ± 0.195 70.403 ± 26.119 1.555 ± 0.713  0.574 ± 0.195 72.668 ± 25.001 

BMP 1.090 ± 0.557 0.418 ± 0.212 71.024 ± 42.264 1.628 ± 0.779 0.582 ± 0.212 72.909 ± 41.767 

Ti 1.088 ± 0.751 0.387 ± 0.221 71.544 ± 39.316 1.588 ± 0.719 0.613 ± 0.221 71.069 ± 37.586 

Unloaded 1.159 ± 0.897 0.398 ± 0.271 60.472 ± 24.351 1.682 ± 0.797 0.602 ± 0.271 62.489 ± 25.857 

 

Table 3B: Statistical results (P values). Bold numbers indicate significance at p<0.05.  

  OP (mm) BA (mm2) BP (mm) 

Ctr-Unloaded 0.50 0.01 0.52 

Ca-Zn 0.03 0.86 0.03 

Abbreviations: TS: Total Surface; OA: Osteoid 

Area; OP: Osteoid Perimeter; BA: Bone Area; BP: 

Bone Perimeter; Ctr: control; Zn: zinc; Ca: calcium; 

BMP: Bone morphogenetic protein; Ti: titanium. 
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Figure 1 SI 

 

 

 
 

 

Fig. 1 SI 3D µ-CT image of calvarial defects.  Defects treated with unloaded (1), Ti-loaded (2), Zn-loaded 

(3), Ca-loaded (4), BMP-loaded (5) membranes and an empty control group (6) are observed at one of the 

rabbit skulls. Threshold at the whole defect (crop) is represented by pointers, and threshold at the centre 

of the defect (crop 150) is represented by arrows  

 

 

 

 



Table 1A SI: Data from the Micro-CT: P values from comparisons performed for variables at the whole defect (crop), after bone trabecular analysis using PMOD V4.3 FIJI 

and Bone J plus. Numbers in bold indicate significance at P < 0.05. 

 Isosurface Skeleton Analysis 

 BS Branch JJVV SV Triple P Max Sum 

Ctr - Zn 0.01 0.04 0.04 0.03 0.03 0.36 0.04 

Zn - BMP 0.62 0.07 0.07 0.22 0.08 0.81 0.07 

Unloaded - BMP 0.55 0.86 0.97 0.80 0.82 0.02 0.92 

Abbreviations: BS: Bone Surface; Zn: zinc; BMP: Bone morphogenetic protein; 

JJVV: number of junction voxels; SV: slab voxels; Triple P: triple points; Max: 

maximum branch length; Sum: total branch length or sum of all branch lengths.  

 

Table 1B SI: Data from the Micro-CT: P values from comparisons performed for variables at the centre of the defect (crop 150), after bone trabecular analysis using PMOD 

V4.3 FIJI and Bone J plus. Numbers in bold indicate significance at P < 0.05. 

 Euler and Connectivity Skeleton Analysis 

 Euler CA Vardes Connect connd Branch JJ End-points Juncvo Slabv Triple P Quadr P Max Sum 

Ctr - Zn 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.03 0.06 0.36 0.03 

Ctr - BMP 0.06 0.04 0.04 0.06 0.07 0.06 0.23 0.06 0.19 0.08 0.11 0.17 0.04 

Zn - BMP 0.43 0.34 0.34 0.34 0.31 0.35 0.04 0.35 0.39 0.37 0.44 0.36 0.38 

Zn-Ca 0.99 0.96 0.96 0.96 0.82 0.76 0.69 0.94 0.52 0.55 0.83 0.04 0.69 

Abbreviations: BS: Bone Surface; Zn: zinc; Ca: calcium; BMP: Bone morphogenetic protein; connect: connectivity; Branch: branches; JJ: 

junctions; Juncvo: junction voxes; Slabx: slab voxes; Triple P: triple points; Quadru P: quadruple points; Max: maximum branch length; Sum: 

total branch length or sum of all branch length. 
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