
Oxygen regulation of breathing is abolished in mitochondrial
complex III-deficient arterial chemoreceptors
Daniel Cabello-Riveraa,b,c,1 , Patricia Ortega-S�aenza,b,c,1,2 , Lin Gaoa,b,c , Ana M. Mu~noz-Cabelloa,b,c , Victoria Bonilla-Henaoa,b,c ,
Paul T. Schumackerd, and Jos�e L�opez-Barneoa,b,c,2

Edited by Bruce Bean, Harvard Medical School, Boston, MA; received February 7, 2022; accepted August 11, 2022

Acute oxygen (O2) sensing is essential for adaptation of organisms to hypoxic environ-
ments or medical conditions with restricted exchange of gases in the lung. The main acute
O2-sensing organ is the carotid body (CB), which contains neurosecretory chemoreceptor
(glomus) cells innervated by sensory fibers whose activation by hypoxia elicits hyperventi-
lation and increased cardiac output. Glomus cells have mitochondria with specialized
metabolic and electron transport chain (ETC) properties. Reduced mitochondrial com-
plex (MC) IV activity by hypoxia leads to production of signaling molecules (NADH and
reactive O2 species) in MCI and MCIII that modulate membrane ion channel activity.
We studied mice with conditional genetic ablation of MCIII that disrupts the ETC in
the CB and other catecholaminergic tissues. Glomus cells survived MCIII dysfunction
but showed selective abolition of responsiveness to hypoxia (increased [Ca2+] and trans-
mitter release) with normal responses to other stimuli. Mitochondrial hypoxic NADH
and reactive O2 species signals were also suppressed. MCIII-deficient mice exhibited
strong inhibition of the hypoxic ventilatory response and altered acclimatization to sus-
tained hypoxia. These data indicate that a functional ETC, with coupling between MCI
and MCIV, is required for acute O2 sensing. O2 regulation of breathing results from the
integrated action of mitochondrial ETC complexes in arterial chemoreceptors.

acute O2 sensing j hypoxia j carotid body glomus cell j mitochondrial O2 sensing and signaling j
mitochondrial complex III

Molecular oxygen (O2) is required for ATP synthesis by oxidative phosphorylation and
is therefore essential for the maintenance of most life forms, particularly mammals (1).
A reduction of arterial O2 tension (hypoxemia) triggers life-saving acute respiratory and
cardiocirculatory reflexes that minimize the deleterious effect of O2 deficiency (2). The
prototypical acute O2-sensing organ is the carotid body (CB), a highly perfused struc-
ture located in the carotid bifurcation that contains neuron-like chemoreceptor glomus
cells innervated by sensory fibers of the petrosal ganglion. Glomus cells are presynaptic-
like elements in which hypoxia induces depolarization, Ca2+ influx, and the release of
transmitters that stimulate afferent fibers impinging on the brainstem respiratory and
autonomic centers. CB activation elicits hyperventilation and increased cardiac output
to favor O2 uptake and its distribution to the tissues (3, 4).
Although the electrophysiology of glomus cells and their responses to hypoxia are

well known (3–6), the basic physiological mechanisms underlying acute O2 sensing
have remained elusive. While various hypotheses proposed to date have appeared
attractive (4, 7), none have received strong experimental support as the ablation of
genes coding relevant enzymes or receptors have resulted in mice lacking major altera-
tions in CB responsiveness to hypoxia (8–12). A potential role of the mitochondria in
CB O2 sensing was classically suggested in response to the potent sensitivity of glomus
cells to mitochondrial inhibitors (13) and the modulation of some mitochondrial
parameters by O2 tension (14, 15). In addition, rotenone, a mitochondrial complex
(MC) I inhibitor, was found to mimic and occlude any further effect of hypoxia (16).
However, the manner by which mitochondria sense hypoxia and transduce this signal
to affect membrane ion channels remained unresolved until recently, when glomus cell
gene-expression analyses (17, 18), as well as the study of new genetically modified
mouse models (19–21), led us to propose a “mitochondrial to membrane signaling”
(MMS) model of CB acute O2 sensing. This model, which integrates the membrane
and mitochondrial responses to hypoxia, suggests that glomus cells exhibit a highly
active mitochondrial metabolism and electron transport chain (ETC) combined with a
relatively low apparent affinity of cytochrome c oxidase for O2 arising from HIF2α-
dependent expression of specific mitochondrial enzymes and atypical MCIV subunit
isoforms (18, 21). In response to relatively mild levels of hypoxia, the decrease in cyto-
chrome c oxidase activity would cause a backup of electrons along the ETC, thereby
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resulting in a highly reduced MCIII, an increased ratio of qui-
nol (QH2) to quinone (Q) and a slowdown (or even reversal)
of MCI resulting in the accumulation of NADH and the pro-
duction of reactive oxygen species (ROS). The increased mito-
chondrial NADH and ROS are transmitted to the cytosol to
modulate the activity of ion channels responsible for cell depo-
larization (19–21).
A critical step toward a complete definition of the role of mito-

chondria in acute O2 sensing and signaling is the analysis of the
physiological responses to hypoxia of glomus cells in which MCI
and MCIV are functionally disconnected. In these mitochondria,
the redox status of the proximal mitochondrial ETC elements (MCI
and quinone pool) is dissociated from changes in O2-dependent
MCIV activity, thus making it possible to test whether MCI sig-
naling has intrinsic O2 sensitivity or requires coupling to MCIV
activity. To this end, we have studied a mouse model in which the
gene encoding the Rieske iron-sulfur protein (RISP), a key compo-
nent of MCIII necessary for the transfer of electrons from QH2 to
cytochrome c (22–25), is ablated in glomus cells and other cate-
cholaminergic tissues (tyrosine hydroxylase [TH]-RISP mouse).
Here, we show that TH-RISP mice exhibit a selective abolition of
the hypoxic ventilatory response (HVR) and of mitochondrial and
cellular responses to hypoxia in glomus cells. Responsiveness to
other stimuli remained normal. These data strongly suggest that an
integrated action of mitochondrial ETC complexes is required for
acute O2 sensing and signaling by arterial chemoreceptors.

Results

Generalized Catecholaminergic Neuronal Loss with Preservation
of Peripheral Chemoreceptor Cells in TH-RISP Mice. We gener-
ated TH-RISP mice by breeding mice carrying lox-P–flanked

exon 2 in the two Uqcrfs1 gene alleles encoding the RISP subu-
nit of MCIII (RISPflox/flox) (25) with mice expressing Cre
recombinase under the control of the TH promoter (TH-
IRES-Cre mice) (26) (Fig. 1A). Newborn TH-RISP mice had
a similar appearance to control (RISPflox/+) littermates; how-
ever, 3 to 4 wk postnatally (P) they started to show a severe
phenotype characterized by dwarfism, alterations in gait, and
extreme lordosis (Fig. 1 B and C). These mice showed a
decrease in serum levels of growth hormone (Fig. 1D). Because
most of the TH-RISP mice died between days P45 and P50,
experiments to evaluate systemic and cellular responsiveness to
hypoxia were performed at ∼P40, before the mice suddenly
underwent deterioration of their general state. CBs dissected
from TH-RISP mice had a marked and selective decrease in
Uqcrfs1 mRNA despite not all cells in the organ being TH+,
thus indicating a strong recombination induced by transgenic
Cre (Fig. 1E). Histological analyses of the carotid bifurcations
from TH-RISP mice showed CBs with a normal general struc-
ture and number of TH+ glomus cells clustered in glomeruli
(Fig. 1 F and G). In contrast, a clear atrophy of the neighbor-
ing superior cervical ganglion, with a marked decrease in the
volume and density of TH+ sympathetic neurons (Fig. 1 F
and H) was observed. Similar to other mouse models with
genetic disruption of genes encoding mitochondrial ETC
subunits (27–30), we also observed a decrease in the number
of TH+ neurons in ventromedial hypothalamic areas of
TH-RISP mice (possibly related to the observed mouse dwarf-
ism) as well as in the dopaminergic nigrostriatal pathway (SI
Appendix, Fig. S1). As the objective of this work was to study
acute O2 sensing by CB glomus cells, the potential neurode-
generative phenotype of the TH-RISP mice was not investi-
gated further.
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Fig. 1. General characteristics of TH-RISP mice. (A) Generation of the conditional TH-RISP mouse model. (B) Representative photograph of male control and
TH-RISP mice (P40). (C) Body weight of control and TH-RISP mice at ∼P40 (male: n = 9 to 15 mice per group; female: n = 10 to 16 mice per group). Data are
expressed as mean ± SEM. Values are: 21.6 ± 0.4 g (male, control), 14.7 ± 0.6 g (male, TH-RISP), 17.3 ± 0.7 g (female, control), and 11.7 ± 0.5 g (female,
TH-RISP). (D) Growth hormone (GH) levels in serum of control (n = 12) and TH-RISP (n = 10) mice (∼P40). Data are expressed as mean ± SEM. Values are:
18.1 ± 2.2 ng/mL (control); 11.2 ± 2.2 ng/mL (TH-RISP). (E) Uqcrfs1, Ndufs2, and Sdhd mRNA levels expressed relative to control mice in CBs of control and
TH-RISP mice (n = 4 to 5 mice per group). Data are expressed as mean ± SEM. From left to right values are: 1 ± 0.2; 0.3 ± 0.04; 1 ± 0.2; 0.7 ± 0.1; 1 ± 0.17;
1.1 ± 0.13). (F) Immunofluorescence detection of TH (red) in carotid artery bifurcations from control and TH-RISP mice. The white broken line delimits CB
perimeter. ICA, internal carotid artery; SCG, superior cervical ganglion. Nuclei were counterstained with DAPI (blue). (G) Quantification of the number of CB
TH+ cells of control (1,792 ± 280, n = 5) and TH-RISP (1,918 ± 214, n = 5) mice. (H) Total SCG volume measured in control (10.7 ± 1 × 107 μm3, n = 5) and
TH-RISP (2.01 ± 0.3 × 107 μm3, n = 5) mice. Data are expressed as mean ± SEM P values are indicated when data were significantly different (P < 0.05;
unpaired Student’s t test).
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Selective Abolition of Responsiveness to Hypoxia in RISP-
Deficient Glomus Cells. The preservation of CBs in TH-RISP
mice allowed us to study the responsiveness of single glomus
cells to hypoxia. Exocytotic catecholamine release from control
glomus cells in CB slices was monitored using an amperometric
carbon-fiber electrode (Fig. 2A) (16), with basal secretory levels
and responses to high K+ similar to those recorded in previous
studies in our laboratory (Fig. 2 B, D, and E) (19, 20). In this
set of experiments, all CB cells from control mice that were
activated by direct depolarization with K+ were also activated
by hypoxia, as well by other glomus cell stimuli such as hyper-
capnia and hypoglycemia (19) (Fig. 2 F and G). In contrast,
RISP-deficient glomus cells were practically insensitive to hyp-
oxia, although they showed normal, or even slightly potenti-
ated, responses to K+, hypercapnia, and hypoglycemia (Fig. 2
C–G). Only 1 of the 10 RISP-deficient cells studied that were
activated by high K+, hypercapnia, and hypoglycemia showed a
response to hypoxia, although with a secretion rate that was
below 50% of the average secretion rate measured in control
cells (Fig. 2 F and G). The selective abolition of acute respon-
siveness to hypoxia in RISP-deficient CBs was confirmed in
parallel microfluorimetric experiments performed with Fura-2–
loaded dispersed glomus cells to record the hypoxia-induced
changes in cytosolic [Ca2+] (19, 31). In agreement with the
amperometric data described above, RISP-deficient glomus
cells showed normal cytosolic Ca2+ responses to high K+ and
hypercapnia but were unresponsive to hypoxia (SI Appendix,
Fig. S2). These data demonstrate that CB chemoreceptor cells

can survive and adapt to impaired MCIII activity, maintaining
their excitability and basic secretory functions as well as their
responses to physiological stimuli, such as hypercapnia or hypo-
glycemia. However, MCIII-deficient glomus cells are insensitive
to acute changes in O2 tension.

Inhibition of Mitochondrial ETC-Dependent Hypoxic Signaling
in RISP-Deficient Glomus Cells. Given that reactions along the
mitochondrial ETC are reversible (with the exception of the
generation of H2O in MCIV) (32), it has been suggested that
decreases in glomus cell cytochrome c oxidase activity in hyp-
oxia causes a backup of electrons along the ETC. This results
in the accumulation of NADH and an increase in ROS pro-
duction due to an increase in the QH2/Q ratio and the slow
down or reversal of MCI, as well as the leak of electrons from a
highly reduced MCIII (Fig. 3A) (19–21). To confirm that the
ETC was actually interrupted in RISP-deficient mitochondria
(Fig. 3B), we tested the effect of cyanide, an inhibitor of cyto-
chrome c oxidase and potent CB glomus cell activator (16).
Cyanide produced a strong secretory response in glomus cells
from control mice (Fig. 3C); however, cells from TH-RISP
mice were insensitive to cyanide and hypoxia although they
showed a robust response to hypercapnia and hypoglycemia
(Fig. 3D). These results indicate that MCIV is functionally sep-
arated from proximal components (MCI and the quinone pool)
of the ETC in RISP-deficient glomus cells.

To further determine the impact of ETC interruption on
glomus cell acute O2 sensing and signaling, we monitored
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Fig. 2. Selective abolition of the secretory response to hypoxia in MCIII-deficient glomus cells. (A) Scheme illustrating the monitorization of quantal cate-
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(D and E) Quantification of the secretion rate of glomus cells in basal condition (D) and in response to 40 mM K (E). Data are expressed as mean ± SEM.
Values of basal secretion are: control (red) cells, 97.7 ± 42 fC/min, n = 9 cells/7 mice; RISP-deficient (blue) cells, 110.3 ± 42.1 fC/min, n = 10 cells/7 mice.
Values of high K-induced secretion are: control cells, 24 ± 7 pC/min, n = 9 cells/7 mice; RISP-deficient cells, 35.3 ± 8.4 pC/min, n = 10 cells/7 mice. P = 0.34;
unpaired Student’s t test. (F) Percentage of glomus cells with a secretory response to hypoxia (Hx), 0 mM glucose (0 Glu), and hypercapnia (CO2) in control
and TH-RISP mice. (G) Average secretion rate (pC/min) of glomus cells in response to hypoxia, hypercapnia and hypoglycemia. Data are expressed as
mean ± SEM. Values are: hypoxia control (2.4 ± 0.5, n = 9 cells/7 mice); hypoxia TH-RISP (1.2, n = 1 cell); hypercapnia control (2.4 ± 0.2, n = 4 cells/4 mice);
hypercapnia TH-RISP (3.1 ± 0.6, n = 10 cells/7 mice), P = 0.46; unpaired Student’s t test; 0Glu control (2.2 ± 0.2, 4 cells/3 mice); 0Glu TH-RISP (2.5 ± 0.3,
4 cells/3 mice), P = 0.47; unpaired Student’s t test.
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changes in NADH and mitochondrial ROS in response to hyp-
oxia, as these are signals that have been proposed to modulate
membrane ion channel activity leading to cell depolarization
and transmitter release (19, 20). Characteristic hypoxia-induced
reversible increases in NADH (14, 19) were recorded in almost
90% of wild-type glomus cells studied (Fig. 4 A and C–E). In
contrast, this response was practically abolished in RISP-
deficient glomus cells (Fig. 4 B and C–E). In the relatively few
responsive cells that were identified (less than 20%) (Fig. 4D),
the effect of hypoxia was much smaller than in controls
(Fig. 4E). In all wild-type (n = 14/4 mice) and hypoxia-
unresponsive RISP-null (n = 16/3 mice) cells tested, the appli-
cation of α-ketobutyrate (αKB), which is transported and
converted to nonmetabolizable α-hydroxybutyrate by NADH-
consuming dehydrogenases expressed in normal glomus cells
(20, 33, 34), produced a clear decrease in NADH autofluores-
cence (Fig. 4 A, B, and F). The decrease in intracellular NADH
induced by αKB resulted in selective and reversible abolition of
the secretory response induced by hypoxia (Fig. 4G). Notably,
basal levels of NADH in RISP-deficient glomus cells were
slightly decreased with respect to controls (Fig. 4C), suggesting
that these cells, although possessing a dysfunctional ETC, have

a conserved mitochondrial pool (SI Appendix, Fig. S3), with
repurposed metabolism to regenerate NAD+. In agreement
with this idea, rotenone (a selective blocker of MCI NADH
dehydrogenase activity) produced an increase in NADH
autofluorescence in both control and TH-RISP glomus cells
(Discussion and Fig. 4 H–K).

Hypoxia-induced mitochondrial ROS signals were moni-
tored with a redox-sensitive fluorescent protein probe (roGFP)
that was genetically targeted to the intermembrane space (IMS)
or the matrix (35). We have previously shown in CB slices
infected with adenoviral vectors containing roGFP that hypoxia
generates compartmentalized fast and reversible redox signals in
glomus cells (20) (SI Appendix). Hypoxia-induced increases in
IMS ROS were abolished in RISP-deficient glomus cells (Fig. 4
L–P), whereas hypoxia-induced decreases in matrix ROS
remained unaltered (SI Appendix, Fig. S4). These data strongly
support the concept that the reversible rise in IMS ROS is a
response associated with acute hypoxic signaling by glomus cells
and depends on the leak of electrons from reduced MCI and
MCIII (20, 21). The fact that the hypoxia-induced reversible
decrease in matrix ROS was maintained in RISP-deficient
glomus cell mitochondria indicates that, as previously suggested
(20), this signal is unrelated to acute hypoxia signaling; it may
simply reflect a nonspecific phenomenon secondary to the decrease
in O2 available for superoxide production by matrix dehydrogen-
ases (36, 37).

Abolition of the Ventilatory Response and Altered Acclimatization
to Hypoxia in TH-RISP Mice. As is the case in humans (38), the
HVR is practically abolished in mice without functional CBs
(19, 39). In agreement with the data from single chemoreceptor
cells, whole-body plethysmography experiments showed a com-
plete disappearance of the HVR in TH-RISP mice, while the
response to hypercapnia remained unchanged (Fig. 5 A–D). In
TH-RISP mice, hypoxia even produced a significant decrease
in breathing frequency (Fig. 5 A and C), a phenomenon that,
in the absence of CB activation, may represent the inhibition
of brainstem neurons by the reduction in blood O2 tension
(40). Basal breathing frequency under normoxic conditions was
also consistently reduced (∼15%) in TH-RISP mice compared
to wild-type mice (Fig. 5C), which is probably a consequence
of a decrease in the respiratory drive impinging on brain centers
in mice with O2-insenstive CBs. The lack of responsiveness to
hypoxia observed in TH-RISP mice resulted in an alteration of
systemic acclimatization to hypoxia. This was manifested by an
exaggerated increase in hematocrit in TH-RISP animals main-
tained under conditions of sustained hypoxia (10% O2 tension)
for 10 to 14 d (Fig. 6A). An increased extramedullary erythro-
poiesis in RISP-deficient mice was probably the reason why
they had a marked splenic enlargement in comparison with
controls (Fig. 6 B and C).

Discussion

We have shown in the present study that genetic ablation of the
gene coding for RISP, an essential subunit of MCIII (22–25), in
CB catecholaminergic chemoreceptor cells abolishes acute O2

sensing and acclimatization to hypoxia. Remarkably, CB glomus
cells survived and maintained their characteristic TH+ phenotype
in the absence of a functional MCIII, while other peripheral and
central catecholaminergic neurons were severely affected. Indeed,
TH-RISP mice died within the first 7 to 8 wk of postnatal life.
The analysis of biochemical adaptations occurring in MCIII-
deficient glomus cells is beyond the objective of the present work;
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however, it is relevant to stress that RISP deficiency completely
abolishes the transfer of electrons from QH2 to cytochrome c
(22–24). In agreement with these data, we showed that inhibition
of MCIV with cyanide, a powerful glomus cell stimulant (16),
does not activate RISP-null glomus cells, thus demonstrating
interruption of the chemical connection between MCI and
MCIV in their mitochondria. Therefore, it is possible that sur-
vival of RISP-deficient glomus cells, with MCI and MCII discon-
nected from MCIV, depends not only on the up-regulation of
glycolytic ATP synthesis (19, 30) but also on remodeling of the
mitochondrial ETC to utilize an electron acceptor alternative to
O2. In this regard, reversal of succinate dehydrogenase activity
and utilization of fumarate as an electron acceptor are metabolic
adaptations (41–43) that could support MCI activity in RISP-
null glomus cells (see next paragraphs).

In TH-RISP mice with MCIII-deficient CB cells, acute
effects of hypoxia on mitochondrial (NADH and ROS signals),
cellular (increased cytosolic Ca2+ and catecholamine release),
and systemic (increased breathing frequency) processes were
abolished selectively. However, the cellular and systemic actions
of other stimuli (high K+, hypercapnia, or hypoglycemia)
remained unaltered. These findings indicate that a functional
mitochondrial ETC is absolutely required for glomus cell
responsiveness to hypoxia and strongly support the view that,
as suggested by the MMS model (19, 21), the integrated action
of the various mitochondrial complexes is necessary for acute
O2 sensing and signaling. Indeed, genetic ablation of essential
MCI (19) and MCII (18) subunits also abolishes responsiveness
of glomus cells to hypoxia. Moreover, classic pharmacological
studies in anesthetized cats showed that inhibition of ETC with
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TH-RISP mice. (E) Increase in NADH (Δ NADH) elicited by hypoxia (Hx, O2 tension ∼15 mm Hg) in control (57 ± 6 a.u., n = 29 cells/7 mice) and RISP-deficient
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oligomycin (a mitochondrial poison that blocks ATP synthesis)
suppresses CB responsiveness to hypoxia without altering sensi-
tivity to hypercapnia (44). However, large doses of oligomycin

attenuated carotid body chemoreceptor response to CO2 as
well (44), suggesting that the effect on O2 sensing was not spe-
cific to the ATP production.

Our data further demonstrate that O2 and glucose, both
of which are metabolic compounds essential for glomus cell
homeostasis, are sensed by separate mechanisms (45). It is
of note that compartmentalized mitochondrial ROS signals
recorded during hypoxia (increase in the IMS and decrease in
the matrix) (20) were differentially affected by the MCIII defi-
ciency. While the IMS signal was abolished, the reversible
decrease in matrix ROS was maintained in MCIII-null glomus
cells. These results strongly suggest that the increase in IMS
ROS, generated in MCI and MCIII, is associated with hypoxia
signaling (20). Maintenance of the hypoxic matrix ROS signal
in RISP-deficient cells indicates that their mitochondria are
metabolically active even in the absence of MCIII. In support
of this idea, we recorded decreased levels of NADH in MCIII-
deficient cells in comparison with controls, while a marked
increase in basal NADH is typically seen in MCI-deficient glo-
mus cells (19). Moreover, rotenone (an MCI blocker) produced
an increase in NADH levels both in control and TH-RISP
cells. These findings suggest that MCIII-deficient glomus cell
mitochondria have a functional MCI, which provides NAD+

regenerative power, supplies QH2 to reversed succinate dehy-
drogenase, and contributes to the inner membrane electro-
chemical proton gradient.

Within the context of the present discussion, it is relevant to
indicate that hypoxia-induced compartmentalized ROS
changes, qualitatively similar to those observed in CB glomus
cells, have been described in O2-sensitive cultured pulmonary
arterial smooth muscle cells (PASMCs) (35), which mediate
hypoxic pulmonary vasoconstriction (2). In those cultured cells,
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ablation of the gene encoding RISP also selectively abolished
the production of ROS at the IMS and the increase in cytosolic
Ca2+ induced by hypoxia (25). Similar to CB glomus cells,
PASMCs contain O2-regulated ion channels, which seem to
participate in the activation of these cells by hypoxia (2). More-
over, atypical MCIV subunit isoforms that modulate sensitivity
to acute hypoxia are expressed in PASMCs (46, 47). Therefore,
the MMS model of acute O2 sensing proposed for CB glomus
cells shares many features with mitochondria-mediated acute
O2 sensing in PASMCs, a process that has received much
attention in recent times (2, 46, 48). However, whether
hypoxia increases or decreases mitochondrial ROS production
in PASMCs, and what might be the origin of the hypoxia-
induced rise in cytosolic Ca2+, have been matters of debate
(35, 47, 49). It is also possible that some of the mechanisms
underlying acute O2 sensing in PASMCs differ from those
operating in CB glomus cells. In this regard, it was shown that
NDUFS2, a core subunit that is essential for MCI assembly
and responsiveness of CB glomus cells to hypoxia (19, 20), is
also necessary for the hypoxic activation of PASMCs (50).
However, this last cited study reported that cysteine residues in
NDUFS2 become reduced during acute hypoxia, thereby sug-
gesting that structural changes in MCI may play a role in O2

sensing. This conclusion contrasts with our current data, which
indicate that although MCI seems to be active in MCIII-deficient
cells, the signaling of hypoxia (accumulation of NADH and IMS
ROS) requires a functional connection between MCI and
MCIV. These observations argue against any intrinsic O2 sensi-
tivity of MCI.
In summary, we have shown that MCIII-deficient cells lose

sensitivity to hypoxia while maintaining normal morphological
and immunocytochemical features and responsiveness to other
stimuli, such as high K+, hypercapnia, and hypoglycemia. Mice
with MCIII-deficient CB cells also exhibit a complete abolition
of the HVR. Our findings indicate that the functional connec-
tion between MCI and MCIV is necessary for acute O2 sensing
by glomus cells. The CB-mediated O2 regulation of breathing
depends on an integrated action of the various components of
the mitochondrial ETC and their ability to sense and signal
hypoxia. Given the importance of CB in the regulation of
breathing, mitochondrial ETC emerges as a potential therapeu-
tic target for the pharmacological treatment of respiratory
depression or CB overactivation (3, 51).

Materials and Methods

Mouse Models, Maintenance, and Treatments. Conditional MCIII knockout
mice (TH-RISP) were generated breeding mice carrying Uqcrfs1 floxed allele (25)
with mice expressing Cre recombinase under the control of the TH promoter
(26). TH-RISP mice and their control littermates were maintained in C57BL/6
genetic background. Mice were housed at a regulated temperature (22 ± 1 °C)
in a 12-h light/12-h dark cycle with ad libitum access to food and water. Unless
specified otherwise, both male and female mice of ∼40-d old were used in the
present study. For chronic hypoxic treatment, 25-d-old mice were exposed to
10% O2 for 10 to 14 d in a conventional hypoxic hermetic isobaric chamber with
continuous monitoring of O2, CO2, humidity, and temperature (Coy Laboratory
Products). Mice were killed with intraperitoneal administration of a lethal dose
of sodium thiopental (120 to 150 mg/kg) before tissue dissection for in vitro
functional, biochemical, or immunohistochemical analyses. Mice were main-
tained according to the European Community Council directives 86/609/EEC,
and 2010/63/EU for the Care and Use of Laboratory Animals. All procedures were
approved by the Ethics Committee of Animal Care and Use of Hospital Virgen del
Roc�ıo/Institute of Biomedicine of Seville (22-09-15-332; 07-04-2020-051).
Additional information on mice genotyping and other procedures are given in
SI Appendix, Materials and Methods.

Plethysmography. To study respiratory function, conscious unrestricted mice
were placed in a plethysmography chamber as previously described (52). Cham-
bers were perfused at 1 L/min of constant flow rate with normoxia (21% O2),
hypoxia (10% O2, maintained for 5 min once O2 percentage reached 10 oxygen),
or hypercapnia (5% CO2, maintained during 1 min when CO2 percentage
reached 5%). Data acquisition was performed using the Iox2 software from
EMKA Technologies. O2 and CO2 sensors located inside the hermetic chambers
allowed to monitor changes in gas composition in parallel with alterations in
respiratory frequency recorded by a pressure sensor during the experiment.

Measurement of Hematocrit and Growth Hormone. After killing, blood
was collected in some mice from an incision in the heart using a catheter. Details
of hematocrit and growth hormone measurements are given in SI Appendix,
Materials and Methods.

Preparation of CB Slices and Dispersed Glomus Cells. Mice were killed
and carotid bifurcations were removed and placed in cold PBS where CB were
dissected. Mouse CB slices and dispersed CB glomus cells were prepared as
described previously by our laboratory (53–55). Slices were maintained at 37 °C
in a 5% CO2 incubator for 24 to 48 h prior to use. Freshly dispersed cells were
plated on glass coverslips treated with poly-L-lysine (Sigma) and maintained at
37 °C in a 5% CO2 incubator for 24 h before use. Additional information on the
preparation and culture of CB dispersed cells and slices is given in SI Appendix,
Materials and Methods.

Quantitative PCR. Carotid bifurcations were removed from mice after killing
and placed in cold PBS where CBs were dissected. For RNA measurement, CBs
were flash-frozen in liquid N2 and stored at�80 °C until use. Total RNA was iso-
lated from the CB with RNeasy Micro Kit (Qiagen) following the manufacturer’s
instruction. Complementary RNA (cRNA) was then amplified from total RNA
using GeneChip WT Pico kit (Affymetrix). In total, 500 ng of cRNA was copied to
cDNA using QuantiTect Reverse Transcription Kit (Qiagen). Real-time quantitative
PCR reactions were performed in a 7500 Fast Real Time PCR System (Applied
Biosystem) using Taqman Gene Expression Assays (Thermo Fisher Scientific) for
each specific gene. Peptidylprolyl isomerase A (Ppia) was also estimated in each
sample to normalize the amount of cRNA input in order to perform relative
quantification.

Immunohistochemistry. Standard immunohistochemical analyses were done
on sections of the carotid bifurcation and the brain following the procedures
described in SI Appendix, Materials and Methods.

Amperometry. To record the secretory activity (catecholamine release) of
glomus cells in CB slices we used the amperometry technique, as described
previously in our laboratory (52, 53). Further details of this technique are given
in SI Appendix, Materials and Methods.

Microfluorimetry. Microfluorimetric measurements in single dispersed glo-
mus cells (Ca2+ and NADH) or cells in CB slices (mitochondrial ROS production)
was performed following methods previously described (19, 20, 55). Specific
details of these methodologies as used in this work are given in SI Appendix,
Materials and Methods.

Recording Solutions. For amperometric and microfluorimetric experiments,
CB slices or dispersed glomus cells were continuously perfused with a control
solution containing 125 mM NaCl, 4.5 mM KCl, 23 mM NaHCO3, 1 mM MgCl2,
2.5 mM CaCl2, 5 mM glucose, and 5 mM sucrose at∼35 °C. In 40 mM K+ solu-
tion, NaCl was replaced equimolarly with KCl. When 0 glucose solution was
used, glucose was replaced equimolarly with sucrose. The “normoxic” solution
was bubbled with a gas mixture of 20% O2, 5% CO2, and 75% N2 (O2 tension
∼145 mmHg). The “hypoxic” solution was bubbled with 5% CO2 and 95% N2
(O2 tension in the recording chamber of ∼10 to 15 mmHg). Osmolality of solu-
tions was∼300 mosmol/kg.

Statistical Analysis. Data are presented as mean ± SEM. A Shapiro–Wilk test
was used in order to verify that the dataset to be analyzed came from a normally
distributed population. An unpaired Student’s t test analysis was used for com-
parison between two datasets. Paired one-way ANOVA followed by the Tukey’s
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post hoc test were used when indicated. P < 0.05 was considered significant.
Statistical analyses were performed using Prism 6.0 (GraphPad Software).

Data, Materials, and Software Availability. Data generated or analyzed
over the course of this study are included within the main text or SI Appendix.
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