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Abstract
Repetitive elements can cause large-scale chromosomal rearrangements, for exam-
ple through ectopic recombination, potentially promoting reproductive isolation and 
speciation. Species with holocentric chromosomes, that lack a localized centromere, 
might be more likely to retain chromosomal rearrangements that lead to karyotype 
changes such as fusions and fissions. This is because chromosome segregation during 
cell division should be less affected than in organisms with a localized centromere. 
The relationships between repetitive elements and chromosomal rearrangements and 
how they may translate to patterns of speciation in holocentric organisms are though 
poorly understood. Here, we use a reference-free approach based on low-coverage 
short-read sequencing data to characterize the repeat landscape of two indepen-
dently evolved holocentric groups: Erebia butterflies and Carex sedges. We consider 
both micro- and macro-evolutionary scales to investigate the repeat landscape dif-
ferentiation between Erebia populations and the association between repeats and 
karyotype changes in a phylogenetic framework for both Erebia and Carex. At a micro-
evolutionary scale, we found population differentiation in repeat landscape that in-
creases with overall intraspecific genetic differentiation among four Erebia species. 
At a macro-evolutionary scale, we found indications for an association between re-
petitive elements and karyotype changes along both Erebia and Carex phylogenies. 
Altogether, our results suggest that repetitive elements are associated with the level 
of population differentiation and chromosomal rearrangements in holocentric clades 
and therefore likely play a role in adaptation and potentially species diversification.
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1  |  INTRODUC TION

Repetitive DNA elements (repeats) are major components of most 
eukaryotic genomes and are increasingly recognized as import-
ant drivers of adaptation and speciation (Biémont & Vieira,  2006). 
Transposable elements (TEs), for example, are mobile DNA se-
quences propagating within genomes, occasionally generating adap-
tive variation (Schrader & Schmitz, 2019). For instance, the industrial 
melanism of the peppered moth Biston betularia, a textbook example 
of adaptation, is caused by the insertion of a TE in the wing patterning 
gene, which resulted in its altered expression (Van't Hof et al., 2016). 
Repeats may also contribute to reproductive isolation between pop-
ulations and even promote speciation. This has been suggested for 
the adaptive radiation of Anolis lizards, where TEs accumulated in 
clusters of developmental genes may have facilitated morphological 
adaptations (Feiner, 2016). The insertion density of TEs is similarly 
correlated with speciation rates in mammals (Ricci et al., 2018).

Repetitive elements are also important drivers of genome evolu-
tion through chromosomal rearrangements, such as inversions, fusions 
and fissions of chromosomes (Fedoroff, 2012; Lönnig & Saedler, 2002). 
These large-scale rearrangements can be caused by ectopic recom-
bination, that is recombination events between repeat copies from 
different genomic regions (Cáceres et al., 1999; Delprat et al., 2009). 
Repeat-mediated chromosomal rearrangements could promote 
speciation through different processes. First, by reducing fitness 
of heterokaryotypes, that is hybrids that are heterozygous for chro-
mosomal rearrangements (Faria & Navarro,  2010; Rieseberg,  2001). 
However, this mode of chromosomal speciation suffers from the 
so-called ‘underdominance paradox’, whereby highly deleterious rear-
rangements resulting in unfit hybrids are unlikely to become fixed in 
a population (Spirito, 1998). Second, novel rearrangements could sup-
press recombination between rearranged parts of the genome (Faria 
& Navarro,  2010; Rieseberg,  2001) or change gene expression (Li 
et al., 2023). The suppressed recombination scenario relies on reduced 
gene flow in rearranged genomic regions and on linkage disequilibrium 
between genes involved in reproductive isolation (Rieseberg, 2001).

Chromosomal speciation research has primarily focussed on or-
ganisms with monocentric chromosomes that have a single localized 
centromere per chromosome (Coyne & Orr,  2004; White,  1978). 
However, the centromeric activity can be distributed along a large 
portion of the so-called holocentric chromosomes (Mandrioli & 
Manicardi, 2020). Holocentricity has evolved independently at least 
19 times in various clades across the tree of life including Lepidoptera 
(i.e. butterflies and moths), some Angiosperms (e.g. sedges includ-
ing the genus Carex) or nematodes (including the model species 
Caenorhabditis elegans) (Escudero, Márquez-Corro, & Hipp,  2016; 
Melters et al., 2012). Chromosomal rearrangements such as fusions and 
fissions are supposedly less deleterious in holocentric than in mono-
centric organisms (Lucek et al., 2022; Melters et al., 2012) and meiotic 
adaptations to holocentricity can further mitigate the underdomi-
nance of the chromosomal rearrangements (Lukhtanov et al., 2018). 
Interestingly, karyotype diversity is correlated with diversification 
rates in angiosperms (Carta & Escudero, 2023) and in butterflies (de 

Vos et al., 2020), especially in some clades such as Erebia (Augustijnen 
et al.,  2023) and Polyommatinae butterflies (Talavera et al.,  2013). 
Chromosomal rearrangements can act as partial reproductive barri-
ers in holocentric taxa as distant as butterflies (Lukhtanov et al., 2018; 
Mackintosh et al.,  2023) and sedges of the genus Carex (Escudero, 
Hahn, et al., 2016). This suggests that chromosomal rearrangements 
might commonly be involved in speciation of holocentric groups.

The genetic features and molecular mechanisms underlying fu-
sion and fission of holocentric chromosomes are mostly unknown, 
although different types of repeats have recently been implicated in 
Rhynchospora (Hofstatter et al., 2022) and Carex sedges (Escudero 
et al.,  2023), butterflies (Ahola et al.,  2014; Höök et al.,  2023), 
aphids (Mathers et al., 2021) and nematodes (Yoshida et al., 2023). 
Holocentric species constitute some of the most karyotypically 
diverse taxonomic groups, including several insect clades (e.g. 
Lepidoptera, n = 5–223; de Vos et al.,  2020) and plants (e.g. Carex 
sedges, n = 5–66; Hipp et al.,  2009; Márquez-Corro et al.,  2021). 
However, this diversity in chromosome numbers is not equally rep-
resented among holocentric clades, and the reasons for these dis-
parities are still unknown. For example, most butterfly genera have 
retained the putative ancestral chromosome number of n = 31 (de 
Vos et al., 2020), while others show increased karyotypic diversity 
(e.g. chromosomes numbers ranging from n = 7 to n = 52 in the genus 
Erebia; Augustijnen et al., 2023). An explanation to the unequal rep-
resentation of karyotypic diversity among holocentric clades could 
be that the karyotypically conserved clades lack the repeats in-
volved in chromosomal rearrangements.

Using a reference-free approach on low-coverage short-read se-
quencing data, we first aimed to uncover the diversity of repeats and 
test how these may differ among species with different degrees of 
intraspecific differentiation. This could inform us on the potential as-
sociation between repeats and population differentiation. For this, we 
compared individuals from different populations of four Erebia species 
and tested to which extent divergent populations also differ in their 
repeat landscape. We expected a positive correlation between the 
overall genetic differentiation among populations and level of differ-
entiation of their repeat landscape (Bourgeois & Boissinot, 2019). We 
then employed macro-evolutionary inferences at the genus level to de-
termine whether repeats could be associated with karyotype changes 
along the phylogeny of Erebia, with an emphasis on the most species-
rich and karyotypically variable subclade Tyndarus (Augustijnen 
et al., 2023). Finally, we performed the same phylogenetic analyses for 
a subset of Carex species to test whether similar macro-evolutionary 
patterns would occur in independently evolved holocentric groups.

2  |  MATERIAL S AND METHODS

2.1  |  Study species and sample collection

The main focus of our study was on the Palearctic genus Erebia, 
which comprises ~100 species of primarily alpine butterflies with 
closely related species often forming narrow contact zones in the 
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    |  3CORNET et al.

Alps (Augustijnen et al., 2022; Cupedo, 2014; Peña et al., 2015). 
For the species-level analyses of Erebia, we focussed on four spe-
cies that fall along a gradient of intraspecific genetic differentia-
tion: (i) E. cassioides colonized part of the Western Alps since the 
last glaciation, likely from a refugia in Southwestern Europe (Lucek 
et al.,  2020), and shows little genetic differentiation to popula-
tions from the Pyrenees or the French Massive Central (Schmitt 
et al., 2016); (ii) Erebia tyndarus is endemic to the central Alps and 
shows a higher population structure than E. cassioides in the Alps 
(Gratton et al., 2016; Schmitt et al., 2016), potentially because E. 
tyndarus is less affected by range expansion. For (iii) E. nivalis, we 
included samples from their disjunct populations in the Alps, that is 
from Switzerland and Austria, that are considered distinct subspe-
cies (Table S1; Figure S1; Schmitt et al., 2016; Sonderegger, 2005). 
Finally, for iv) E. pronoe, we included individuals of two nominal, 
ecologically differentiated subspecies, that is E. pronoe psathura 
(n = 6) and E. pronoe vergy (n = 5; Table S1; Figure S1). We wondered 
whether the levels of population differentiation in those four spe-
cies are also mirrored in the repeat landscape. Erebia cassioides, E. 
tyndarus and E. nivalis are sibling species and belong to the karyo-
typically diverse Tyndarus clade within Erebia. For each of these 
three species, we sampled 2-3 individuals from 4-7 sites (Table S1; 
Figure S1). Erebia cassioides and E. tyndarus form secondary con-
tact zones in populations GRW and GRF (Sonderegger,  2005), 
with very few F1 hybrids and almost no introgression (Augustijnen 
et al.,  2022; Lucek et al.,  2020). To ensure that this would not 
cause a bias in our analyses, we selected individuals as far away as 
possible from the point of secondary contact in those populations. 
For the Erebia genus-level (i.e. macro-evolutionary) analyses, we 
took advantage of a short-read re-sequencing data set (NCBI 
BioProject PRJNA1000734) that was used to establish a dated 
phylogeny of Erebia (Augustijnen et al.,  2023). We used species 
for which chromosome number information was available from the 
literature. As Erebia is one of the best karyotyped butterfly genera 
(de Vos et al., 2020; Robinson, 1971), this resulted in 47 species in 
total (Table S2).

Finally, to assess whether there could also be a macro-
evolutionary association between repeats and karyotype changes in 
an independently evolved holocentric clade with high karyotypic di-
versity, we extended our study to the plant genus Carex (Cyperaceae). 
The genus Carex with ca. 2000 species is the largest genus in the 
family Cyperaceae and one of the largest angiosperm genera, with 
the highest species richness in the temperate areas of the north-
ern hemisphere (Escudero et al.,  2012). For the Carex genus-level 
analyses, we included 25 samples from 14 species, two individuals 
per species (exceptionally only one individual for three of the spe-
cies; Table S3). These 14 species are distributed across the whole 
genus Carex, represent all major Carex lineages (with the exception 
of Carex subgenus Siderosticta; Global Carex Group et al., 2021) and 
differ in their karyotype (n = 17–42): eight species from Carex subge-
nus Carex representing six different sections (Phacocystis, Limosae, 
Spirostachyae, Ceratocystis, Aulocystis and Mitratae), five species 
from Carex subgenus Vignea representing four sections (Glareosae, 

Stellutae, Ovales and Foetida) and one species from Carex subgenus 
Eutyceras (sect. Capituligerae).

2.2  |  DNA extraction and sequencing

All Erebia butterflies for the population level analyses were collected 
between 2006 and 2022 (Table S1) using hand nets and stored at 
−20°C. We obtained DNA from the thorax of each individual using 
the standard protocol of the Qiagen Blood & Tissue Kit (Qiagen 
AG). We outsourced Illumina library preparation, which included a 
PCR amplification step, to the Department of Biosystems Science 
and Engineering (DBSSE) of ETH Zürich in Basel, where they carried 
out the subsequent paired-end whole-genome resequencing on an 
Illumina NovaSeq 6000 platform. The samples used for E. tyndarus 
and E. cassioides were previously used in Augustijnen et al.  (2022). 
Carex specimens were collected between 2005 and 2021 and stored 
in silica gel (Table S3). DNA was extracted using the Qiagen Dneasy 
Plant Pro Kit following the manufacturer's protocol. Sequencing 
was carried out at the same time and using the same protocol as the 
Erebia specimens.

2.3  |  Repetitive elements identification and 
quantification

To detect, identify and quantify repeats in both Erebia and Carex, we 
used the graph-based clustering software RepeatExplorer2 (Novák 
et al., 2010, 2020). Briefly, RepeatExplorer2 uses low-coverage raw 
short-read data to cluster sequences based on their similarities (i.e. 
an all-to-all sequence similarity search). Read clusters correspond 
mostly to repeat families, which are subsequently identified based 
on the graph structure and on the consensus sequence of each clus-
ter. The use of low-coverage data (<0.5X) ensures that sequences 
retained in the clusters are repeats rather than duplicated gene fami-
lies. This allows for repeat identification and comparison between 
different individuals of the same species or even across species, 
without the need for reference genomes. RepeatExplorer2 includes 
an implementation of TAREAN (TAndem REpeat ANalyzer), a graph-
based automated satellite DNA (satDNA) identification pipeline 
(Novák et al.,  2017). This approach has been used extensively to 
characterize the repeat landscape of various organisms, including 
plants (e.g. Macas et al., 2015) and insects (e.g. Silva et al., 2019).

We trimmed raw reads based on quality (per base quality 
score > 30) retaining only reads longer than 120 bp and removed 
adaptors and poly-G tails using fastp 0.22.0 (Chen et al., 2018). We 
then subsampled trimmed reads to obtain a coverage of 0.1X using 
seqtk 1.3 (https://github.com/lh3/seqtk) assuming genome sizes 
of 500 Mbps for all Erebia species (Lohse, Hayward, et al., 2022; 
Lohse, Lohse, et al., 2022) and using flow cytometry genome size 
estimates for Carex (Pellicer & Leitch, 2020; https://cvalu​es.scien​
ce.kew.org/; Table S3). We performed individual-based repeat de-
tection and classification for each individual in the species-level 
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4  |    CORNET et al.

analyses and for each species in the genus-level analyses, using 
the command line version of RepeatExplorer2 with default set-
tings and the built-in REXdb databases (METAZOA3.0 for Erebia 
and VIRIDIPLANTAE3.0 for Carex). We then used the comparative 
mode of RepeatExplorer2 to compare the repeat landscape of all in-
dividuals for each of the four Erebia species in the species-level 
analyses, and of all species for Erebia or Carex in the genus-level 
analyses. We then merged the top repeat clusters by annotation, 
corresponding to at least 0.01% of the analysed reads, excluding 
reads corresponding to organellar DNA sequences. We subse-
quently used the number of reads in each cluster as a proxy for 
repeat abundance of the respective genomes (Novák et al., 2010). 
For the comparative genus-level analysis of Erebia, comprising 47 
species, we were restricted to using 0.04X coverage per species 
due to computational limitations. Therefore, we ran the pipeline 
twice, on two different read subsamples, to ensure reliability and 
repeatability of the results. To ensure that an entirely automated 
annotation would not bias our results, we also performed manual 
curation following Goubert et al. (2022) on the 250 most abundant 
repeat clusters (corresponding to 89% of the analysed reads) for 
the comparative genus-level analysis of Erebia.

2.4  |  Species-level analyses

To compare the repeat patterns with individual genetic diversity 
and differentiation, we generated SNP data sets by aligning all raw 
reads of E. cassioides, E. tyndarus and E. nivalis against a reference 
assembly of E. cassioides (NCBI BioProject PRJNA941023) and for E. 
pronoe against the more closely related reference genome of E. ligea 
(Lohse, Hayward, et al.,  2022). Filtering and SNP calling followed 
Augustijnen et al. (2023) for each dataset.

To characterize the diversity and differentiation in repeats be-
tween individuals and populations, we employed established com-
munity ecology approaches implemented in the R package vegan 
2.6–4 (Oksanen et al.,  2022). For this, we considered distinct re-
peat annotations as ‘species’ and individual genomes as ‘sampling 
sites’ (Haley & Mueller, 2022; Venner et al., 2009). First, to estimate 
the overall differentiation in repeat landscape between individu-
als in each of the four Erebia species, we conducted principal co-
ordinate analyses (PCoA) using the R package ape 5.7–1 (Paradis & 
Schliep, 2019). The PCoA was performed on the Bray–Curtis dissim-
ilarity matrix based on the repeat clusters of each individual calcu-
lated in vegan. We similarly performed a PCoA based on Euclidean 
distances among individuals for each SNP dataset, calculated 
with adegenet 2.1.10 (Jombart,  2008) in R. Second, we performed 
Permutational Multivariate Analyses of Variance (PERMANOVAs) 
for each species, with the function adonis2 implemented in vegan and 
9′999 permutations, to test for differences between populations in 
terms of repeat landscape. While performing these analyses, we no-
ticed the presence of two pairs of putative half-siblings in our data 
sets (one in E. tyndarus and one in E. nivalis), confirmed by kinship 
coefficient analysis (0.29 and 0.31, respectively) in plink 1.9 (Chang 

et al., 2015; Table S4). Therefore, we randomly removed one individ-
ual per pair of half-siblings from all subsequent analyses.

We calculated Simpson's diversity index based on the abun-
dances of each repeat type for each individual with the function 
diversity in vegan, and assessed whether this diversity would be cor-
related with the level of genetic diversity. For the latter, we used 
mlrho 2.9 (Haubold et al.,  2010) which estimates individual-based 
expected zygosity (θ), using genome-wide SNP data. For mlrho, we 
only included sites with a minimum quality of 28, a maximum depth 
of 80X, and a minimum depth of 4X. We subsequently correlated 
θ and Simpson's diversity index for each of the four species with a 
Spearman correlation using the function cor.test in R.

For each species, we further compared the Bray–Curtis dissimi-
larity matrix based on repeat clusters of each individual against the 
matrix of individual-based pairwise Euclidean distances using the 
SNP data. The comparison between both distance matrices was per-
formed using a distance-based Redundancy Analysis (db-RDA) using 
the package vegan following Benestan et al. (2021). We performed all 
analyses in R 4.2.2 (R Core Team, 2022) using Rstudio 2023.3.0.386 
(Posit team, 2023).

2.5  |  Genus-level analyses

We performed the genus-level analyses within a phylogenetic 
framework to test for an association between the evolution of the 
repeat landscape in Erebia and Carex, respectively, and changes in 
karyotypes, used as a proxy for large-scale chromosomal rearrange-
ments (chromosomal fusions and fissions). The phylogeny of Erebia 
was taken from Augustijnen et al. (2023). In short, the Erebia species 
tree was established from 2′920 individual gene trees inferred with 
IQTREE (Nguyen et al., 2015) using a coalescent model implemented 
in ASTRAL (Zhang et al., 2018). For Carex, we used a dated phylog-
eny that represents the 70% of extant species and is based on three 
DNA regions (ITS, ETS and matK) and a HybSeq phylogeny backbone 
(Martín-Bravo et al., 2019). We pruned both phylogenies to the spe-
cies used in this study using the function drop.tip in the R package 
ape, resulting in 47 Erebia species and 14 Carex species.

To determine whether the overall differentiation in repeat 
landscape between species shows a phylogenetic signal, we con-
structed a Bray–Curtis dissimilarity matrix based on repeat clusters 
for each species, for Erebia and Carex separately in vegan (Oksanen 
et al., 2022). We then contrasted the dissimilarity matrix with the 
phylogeny of Erebia or Carex using the R package dendextend 1.17.1 
(Galili, 2015). To formally test for the presence of a phylogenetic sig-
nal in particular types of repeats, we used the R package phylosignal 
1.3 (Keck et al., 2016) to compute Pagel's λ (Pagel, 1999) along with 
its statistical significance. If λ equals zero, there is no phylogenetic 
signal, that is closely related species are not more similar than distant 
ones. If λ equals one, the phylogenetic signal observed corresponds 
to Brownian motion (Molina-Venegas & Rodríguez, 2017).

To assess whether there could be a macro-evolutionary impact 
of repeats on chromosome numbers and therefore on chromosomal 
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    |  5CORNET et al.

rearrangements, for both Erebia and Carex, we fitted phylogenetic 
generalized least square (PGLS) models with diploid chromosome 
number as a dependent variable and each repeat abundance as ex-
planatory variables, using the gls function in nlme 3.1–162 (Pinheiro 
et al., 2023). We used Pagel's λ coefficient, computed using the func-
tion corPagel in ape to take phylogenetic correlation into account. 
Because we had more information available for Carex, we fitted ad-
ditional models including the rate of chromosomal evolution (calcu-
lated with ChromoHiSSE, Tribble et al., in preparation) and number of 
different karyotypes per species (Table S3) as explanatory variables. 
As some Carex species show intraspecific variation in chromosome 
numbers (Hipp et al., 2009), we used the mean chromosome number 
for each species. No intraspecific chromosome number variation has 
been reported in Erebia (Augustijnen et al., 2023; Robinson, 1971).

We used a Bayesian reversible-jump multiregime Ornstein–
Uhlenbeck (OU) approach as implemented in the R package bayou 2.0 
(Uyeda & Harmon, 2014) to infer major shifts in chromosome number 
and abundance of each repeat type in Erebia. The OU model has two 
components: the stochastic and the deterministic components. The 
stochastic component is a Brownian Motion model with a single pa-
rameter, sigma, which quantifies the rate of stochastic evolution of a 
given trait. The deterministic component has two parameters: theta 
and alpha. Theta is the optimum towards which the trait evolves, and 
alpha is the rate of evolution towards the optimum. Using the bayou 
approach, we estimated the overall sigma, overall alpha, a theta for 
each inferred optimum shift and an additional theta value for the 
root of the phylogeny for each trait (the diploid chromosome num-
ber and abundance of each repeat type). Shifts were considered sig-
nificant if they showed a posterior probability (PP) higher than 0.30 
(Uyeda & Harmon, 2014). We set up the analyses following Larridon 
et al. (2021). Because bayou implements a Bayesian approach, we ran 
at least two independent Markov Chain Monte Carlo (MCMC) analy-
ses of 1–3 million generations for each of the variables (chromosome 
number and abundance of each repeat type) to test for convergence, 
with a burn-in of 25%–30% to consider parameters estimates only 
after reaching stationarity.

Finally, we used the slouch.fit function in the R package slouch 
2.1.4 (Kopperud et al., 2020) to test the effect of repeat landscape 
on chromosome number. In slouch, chromosome number is modelled 
as evolving towards an optimum following an OU process that is a 
linear function of the predictors (abundance of each repeat type). 
The predictors are modelled as evolving on the tree according to a 
Brownian Motion process (Hansen et al., 2008).

RepeatMasker identifies and masks repetitive elements in ge-
nomic DNA sequences. We ran RepeatMasker 4.0.7. (Smit et al., 2013) 
using the Illumina short-reads from all the species with the default 
settings and the ‘-a’ option to keep the alignment in order to quantify 
the divergence of repeats and to plot the overall repeat landscape. 
As custom library, we used a custom-made database combin-
ing three different datasets, coming from (i) RepBase2018, (ii) the 
Dfam 3.7 repeat libraries and (iii) RepeatExplorer2 contigs using the 
scripts id_rmasker_rexp.py and annot_to_rexp.py (https://github.com/
fjrui​zruan​o/ngs-proto​cols; accessed 10.04.2023). This combined 

database was used to improve the detection of novel and divergent 
repeat elements, and the RepeatExplorer2 database was included to 
improve the detection of lineage-specific and novel repeat elements 
(including satDNAs) that may not be present in the RepBase2018 
and Dfam 3.7 databases. Using the RepeatMasker output and the Perl 
script calcDivergenceFromAlign.pl, we calculated the divergence for 
each repeat type. Then, using a custom script in R and ggplot2 3.3.6 
(Wickham, 2016), we generated a repeat landscape for all the spe-
cies included in our study. The repeat landscape allowed us to visu-
alize the distribution and abundance of different repeat elements 
across the genomes of each species and infer the divergence for 
each repeat type.

3  |  RESULTS

3.1  |  Species-level analyses

The proportion of repeats in the individual genomes ranged be-
tween 26.4% and 28.6% for E. cassioides, 24.7% and 26.0% for E. 
tyndarus, and 21.8% and 25.9% for E. nivalis (Figure S2). The propor-
tion of repeats in E. pronoe was consistently higher in the subspecies 
vergy (25.7%–34.7%) than in the subspecies psathura (24.1%–25.3%). 
The most abundant repeats in all four species were LINE retrotrans-
posons (genome proportion ranging from 1.2% to 3.0%). Among 
the detected repetitive sequences, the proportion of unidentified 
repeats ranged between 18.7% and 32.7%. In all four species, some 
individuals showed an interestingly high amount of satDNA (e.g. 
PDM_2 in E. cassioides, GRO_2 in E. nivalis; Figure S2). Satellite DNA 
can accumulate on a nonrecombining female-specific W sex chro-
mosome (e.g. Cabral-de-Mello et al., 2021), but this is not the cause 
of the observed differences between individuals, as the only female 
in the data set is GRI_3 in E. nivalis (Table S1).

The PCoA revealed increasing levels of differentiation between 
populations in terms of repeat landscape, corresponding to the 
increasing genetic differentiation from E. cassioides populations 
to E. pronoe subspecies. Indeed, E. cassioides populations showed 
similar repeat landscapes (Figure 1a), although there were signifi-
cant differences between populations (PERMANOVA: F6,14 = 4.49, 
p < .001). Erebia tyndarus populations were more strongly sepa-
rated (PERMANOVA: F6,13 = 6.83, p < .001), especially along the 
first axis (i.e. the axis explaining most of the differences) but also 
along the second axis for population ARO (Figure 1b). Erebia nivalis 
populations appeared even more distinct (Figure 1c), even though 
this differentiation between populations in terms of repeat land-
scape was less significant (PERMANOVA: F3,6 = 3.38, p = .036). The 
two Austrian populations GRO and SAJ formed a distinct cluster to 
the Swiss populations, suggesting distinct repeat landscapes be-
tween these geographically isolated populations. Finally, E. pronoe 
subspecies differed greatly in repeat landscape (PERMANOVA: 
F1,9 = 8.75, p = .002; Figure 1d), such a pattern being likely due to 
the higher overall repeat density in E. pronoe vergy, especially in 
the two individuals VER_2 and VER_4 (Figure S2). This increase in 

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17100 by U
niversidad D

e Sevilla, W
iley O

nline L
ibrary on [20/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/fjruizruano/ngs-protocols
https://github.com/fjruizruano/ngs-protocols


6  |    CORNET et al.

the levels of differentiation in repeat landscape from E. cassioides 
populations to E. pronoe subspecies was also noticeable by the in-
creasing variation in repeat landscape accounted for by the two 
leading PCoA axes (46.7% and 9.1% for E. cassioides to 74.9% and 
17.2% for E. pronoe; Figure 1). PCoAs on the Euclidean distances 
between individuals based on the SNP data set recovered similar 
patterns of differentiation among individuals (Figure S3).

There was no significant correlation between individual-based 
estimates of genetic diversity θ and Simpson's diversity index in 
repeat landscape for E. cassioides, E. tyndarus and E. nivalis (p > .3; 
Figure 2a), when it was significant for E. pronoe (rho = 0.74, p = .013; 
Figure 2a). The RDA revealed a significant positive association be-
tween Euclidean genetic distance between individuals and Bray–
Curtis distance in repeat landscape for all four species (E. cassioides: 
F4,16 = 1.19, p = .002; E. tyndarus: F3,16 = 1.44, p < .001; E. nivalis: 
F1,8 = 1.99, p < .001; and E. pronoe: F1,9 = 2.63, p = .015; Figure 2b).

3.2  |  Genus-level analyses

The proportion of repeats in the genomes of Erebia species 
(Figure 3a) ranged between 18.3% (E. triarius) and 33.2% (E. pharte). 

Concordantly with the species level analyses of Erebia, the most 
abundant identified repeats were LINE retrotransposons in all 
species (genome proportion ranging from 0.7% to 5.2%). More 
generally, retrotransposons (i.e. Class I TEs characterized by a ‘copy-
paste’ replication mechanism with an RNA intermediate; Wells & 
Feschotte, 2020) were much more common in Erebia (genome pro-
portion ranging from 0.9% to 9.3%) than DNA transposons (i.e. Class 
II TEs characterized by a ‘cut-and-paste’ replication mechanism with 
a DNA intermediate (Wells & Feschotte,  2020); genome propor-
tion ranging from 0.01% to 0.6%). Among the identified repetitive 
sequences, the proportion of unidentified repeats ranged between 
15.0% and 27.8%. As the genus-level analyses for Erebia were per-
formed only on 0.04X genomic coverage, proportions of repeats in 
the genomes were computed twice on different runs of subsam-
pling. The results were largely congruent, differing by less than 0.1% 
of the genome for each identified repeat type, and by 0.3% for uni-
dentified repeats (Table S5a). The results were also largely congru-
ent between the automated and manually curated repeat annotation 
for the 250 most abundant clusters in the Erebia dataset (Table S5b), 
and no wrongly annotated clusters were detected.

The proportion of repeats for the Carex species (Figures 3b and 
S4) was more variable, ranging between 13.7% (C. capitata) and 

F I G U R E  1  Principal Coordinate (PCo) analysis based on Bray–Curtis dissimilarity matrices of repetitive elements abundance and diversity 
in populations of four Erebia species in increasing order of genetic differentiation between populations: (a) E. cassioides, (b) E. tyndarus, (c) E. 
nivalis and (d) E. pronoe.
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    |  7CORNET et al.

48.8% (C. sempervirens). The most abundant repeat types were LTR 
retrotransposons, particularly the Ty1/copia and Ty3/gypsy families 
(genome proportion ranging from 0.2% to 9.9% and from 0.03% to 
20.0%, respectively). Interestingly, DNA transposons (especially 
the TIR family) were more abundant in Carex than in Erebia (t-test: 
t1,24.8 = 5.90, p < .001), with values higher than those of retrotrans-
posons in some species (genome proportion ranging from 0.3% to 
32.0% for retrotransposons and from 0.2% to 4.7% for DNA trans-
posons). The proportion of identified rDNA was higher for Carex 
than for Erebia (t1,13 = 5.88, p < .001), while no statistical difference 
occurred for satDNA (t1,26 = 0.53, p = .599). Among the identified re-
petitive sequences, the proportion of unidentified repeats ranged 
between 10.1% and 24.8%. It was expected that this proportion 
would be lower for Carex than for Erebia as the RepeatExplorer2 pipe-
line was initially designed for plants (Novák et al., 2020). Genome 
size was positively correlated with total repeats proportion in the 
Carex genomes (PGLS: t = 11.76, p < .001). For 11 Carex species, two 
individuals were analysed per species, showing some intraspecific 
variation (Figure S5).

The overall repeat landscape showed a global concordance be-
tween the phylogeny and the clustering of the species based on the 
repeat landscape, both for Erebia (Figure 4a) and Carex (Figure 4b), 
although several notable discrepancies occurred. For example, the 
Tyndarus clade in Erebia clustered together based on the repeat 
landscape, except for E. cassioides and E. rondui. For Carex, the po-
sition of C. sempervirens (the species with the highest repeat pro-
portion in the genome) was very different in the phylogeny and 
in the clustering based on the repeat landscape. It is important to 

note that, both for Erebia and Carex, the topology of the two trees 
differed at several scales (i.e. sister species, subclades and deeper 
nodes), suggesting that the repeat landscape as characterized here 
is insufficient for phylogenetic inference.

When statistically investigating the phylogenetic signal of spe-
cific repeat types, contrasting results were observed for Erebia 
(Table  1a) and Carex (Table  1b). For Erebia, LTR retrotransposons 
that could be identified down to repeat family level (i.e. Bel-Pao, 
Ty1/copia and Ty3/gypsy), Penelope retrotransposons and Helitron 
DNA transposons showed phylogenetic signals corresponding to 
Brownian motion (i.e. Pagel's λ close to one) that remained signifi-
cant following a False Discovery Rate (FDR) correction (p < .05). On 
the contrary, retrotransposons of the families DIRS, LINE and LTR 
that could not be identified at a finer scale, and Maverick DNA trans-
posons did not show a significant phylogenetic signal (i.e. closely 
related species were not significantly more similar in their repeat 
abundance than distantly related species; Pagel's λ close to zero; 
p > .6). For Carex, LINE, Ty3/gypsy, LTR retrotransposons that could 
not be identified to repeat family level showed a significant phyloge-
netic signal (Pagel's λ close to one; p < .05 following FDR). The same 
relationship for TIR DNA transposons was not significant following 
the FDR. Interestingly, both for Erebia and Carex, rDNA and satDNA 
did not show an overall phylogenetic signal (Pagel's λ close to zero; 
p > .05), suggesting that rDNA and satDNA evolved independently 
to the phylogeny and that other factors such as selection could be 
involved in the evolution of these two types of repetitive elements.

None of the associations between specific repeat types and 
chromosome number were significant following FDR (Table  1; 

F I G U R E  2  Correlations between genome-wide SNP-based estimates and estimates based on repetitive elements abundance and 
diversity for Erebia cassioides, E. tyndarus, E. nivalis and E. pronoe. (a) Correlations between individual-based θ estimates of genetic diversity 
and Simpson diversity index based on repeat landscape. (b) Correlations between Euclidean genetic distance between individuals and Bray-
Curtis distance in repeat landscape. Significance was assessed with a distance-based Redundancy Analysis, even though straight lines and 
shaded grey areas represent a linear regression and the 95% confidence interval.
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8  |    CORNET et al.

Figure S6), which could also indicate limited statistical power given 
our sample size. We summarize the relationships that were signifi-
cant before applying the FDR as they could hint towards potential 
associations that would be ideally tested at a larger scale in future. 
First, there could be an association between the abundance of LTR 
retrotransposons and chromosome number for both Erebia and 
Carex (Table 1). The association was positive for Erebia, suggesting 
that a higher LTR abundance in the genome could corresponds to a 
higher chromosome number, contrarily to Carex for which this as-
sociation was negative, suggesting that a higher LTR abundance in 

the genome corresponds to a lower chromosome number. Second, 
in Erebia, DNA transposons were negatively associated with chro-
mosome number for Helitrons and positively for Mavericks. Lastly, 
in Carex, Ty3/Gypsy retrotransposons were negatively associated 
with chromosome number. When adding other variables in the 
model for Carex (Table S6), rates of chromosome evolution were pos-
itively associated with the abundance of LINEs (t = 5.68, p < .001), 
LTRs (t = 2.99, p = .014) and Helitrons (t = 3.60, p = .005) following 
an FDR, when the same relationship for Ty1/copia and Ty3/gypsy 
did not remain significant following the FDR. Similarly, the negative 

F I G U R E  3  Proportion of repetitive elements in the genomes of (a) Erebia and (b) Carex species, calculated by the proportion of reads 
in clusters corresponding to repetitive elements in RepeatExplorer2. Unrooted phylogenies are represented on the left. TE—Transposable 
Element, rDNA—ribosomal DNA, satDNA—satellite DNA.

(a)

(b)
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    |  9CORNET et al.

association between chromosome number with the abundance of 
LTR and Ty3/gypsy were nonsignificant following the FDR. Number 
of different karyotypes per species was never significantly associ-
ated with repeats (all p > .074, Table S6).

The estimated sample sizes (ESSs) for all parameters estimated 
in Bayou were > 200, which indicate that the Bayesian analyses 
reached convergence and stationarity. The Bayou results displayed 
no significant shift in optima for some of the repeat landscape 
variables (LINEs, Ty3/gypsy, Penelope, and Maverick; Table  S7, 
Figure S7). However, chromosome number and most of the repeat 
variables (DIRS, Bel-Pao, LTRs, Ty1/copia, Helitrons, 45S rDNA 

and satDNA) showed significant shifts in optima. Chromosome 
number showed seven shifts (eight optima), three of the four with 
the highest PPs occurred within the karyotypically diverse and 
species rich Tyndarus group (Table S7, Figure 5a). DIRS, Bel-Pao, 
LTRs, Ty1/copia and satDNA showed 1–4 shifts but related to ter-
minal branches or small clades (2–3 species; Table S7, Figure S7). 
Exceptionally, one of the shifts inferred for satDNA corresponded 
to a bigger clade, the Pronoe group (Table S7; Figure 5d). Helitrons 
(Table S7; Figure 5b) and 45S rDNA (Table S7; Figure 5c) showed 
four shifts each, 3 and 4 of them, respectively, related to the 
Tyndarus group.

F I G U R E  4  Correspondence between 
the unrooted phylogeny (left side) and 
Bray—Curtis distance between species 
based on the repeat landscape (right side), 
for (a) Erebia and (b) Carex. Lines for Erebia 
are coloured according to the different 
subgenera defined in Augustijnen et 
al. (2023). Tyndarus is the most species-
rich and karyotypically variable clade.
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10  |    CORNET et al.

The null model (a flat relationship between 2n and any vari-
able) in the slouch analyses (2n ~1) showed a corrected Akaike 
Information Criterion (AICc) value of 399. The R2 of all fitted mod-
els in slouch was small (<5%) and AICc was higher than the AICc 
of the null model, with only two exceptions (Table  S8). Helitrons 
explained up to R2 = 11.60% of chromosome number variation and 
the model showed the lowest AICc value (396). The model with the 
second highest R2 value was the one that included DIRS as predictor 
(R2 = 6.44%, AICc = 398).

The RepeatMasker analysis revealed contrasting repeat land-
scapes between Erebia species (Figure 6 and Data S1). Species be-
longing the karyotypically diverse and species-rich Tyndarus group 
(e.g. E. cassioides; Figure 6a) tended to show lower Kimura substitu-
tion values than species belonging to more karyotypically conserved 
groups (e.g. E. epistygne; Figure  6b), suggesting lower sequence 
divergence between copies and thus younger and more active re-
peats. Moreover, certain repeat types showed low Kimura values 
in most Erebia species, namely Helitrons, Maverick, satDNA and 
rDNA. On the contrary, the abundant LINEs consistently showed 
higher Kimura values. In Carex, the repeats consistently showing 
the lowest Kimura values were Ty1/Copia, Ty3/Gypsy, rDNA and 
satDNA (Data S2).

4  |  DISCUSSION

Repetitive elements can drive chromosome evolution and have 
been suggested to be associated with chromosomal rearrangements 
through ectopic recombination (Fedoroff, 2012). Species with holo-
centric chromosomes, that is without a defined centromere, are 
thought to be more prone to retain chromosomal rearrangements 
than monocentric species (Melters et al., 2012). However, the im-
pact of repeats on chromosomal rearrangements and chromosomal 
speciation in holocentric species is poorly understood. Here, we ex-
plored repeat landscapes across different levels, from intraspecific 
population structure to their association with karyotype changes in 
the holocentric clades Erebia and Carex. We used a reference-free 
low coverage (~0.1X) approach (Novák et al., 2010, 2020). This ena-
bled us to increase the taxonomic scope of our analyses, as still very 
few reference genomes are available.

At a micro-evolutionary level, we found evidence for an increased 
differentiation in the repeat landscapes that scales with the level 
of overall genetic differentiation. Furthermore, our results suggest 
that repeats are associated with large-scale chromosomal rearrange-
ments leading to karyotype changes in both Erebia and in Carex. We 
discuss these findings in the context of chromosomal speciation in 

Phylogenetic signal Chromosome 2n

Pagel's λ p t p

(a) Erebia

TE/Class_I/DIRS 0.00 1.000 −1.70 .097

TE/Class_I/LINE 0.00 1.000 0.96 .341

TE/Class_I/LTR 0.00 1.000 2.15 .037

TE/Class_I/LTR/Bel-Pao 1.01 .008* −0.78 .437

TE/Class_I/LTR/Ty1_copia 1.14 <.001*** −1.45 .154

TE/Class_I/LTR/Ty3_gypsy 0.85 .003** 1.55 .128

TE/Class_I/Penelope 1.16 <.001*** 0.83 .409

TE/Class_II/Helitron 0.57 .003** −2.66 .011

TE/Class_II/Maverick 0.24 .617 2.10 .041

rDNA 0.37 .217 1.69 .098

satDNA 0.00 1.000 1.20 .235

(b) Carex

TE/Class_I/LINE 1.07 <.001*** −1.52 .153

TE/Class_I/LTR 1.07 .003* −2.59 .024

TE/Class_I/LTR/Ty1_copia 1.05 .058 −2.02 .066

TE/Class_I/LTR/Ty3_gypsy 1.07 .007* −2.59 .024

TE/Class_II/TIR 1.06 .026 −0.95 .361

TE/Class_II/Helitron 0.92 .134 −0.42 .681

rDNA 0.00 1.000 1.55 .147

satDNA 0.30 .384 −0.70 .500

Note: A negative t-value represent a negative association between repeat abundance and 
chromosome number, and a positive t-value a positive association. Asterisks indicate significance 
after correcting for multiple testing (FDR) (*p ≤ .05; **p ≤ .01; ***p ≤ .001).
Abbreviations: TE, Transposable Element; rDNA, ribosomal DNA, satDNA, satellite DNA.

TA B L E  1  Transposable element 
families identified in (a) Erebia and (b) 
Carex, the phylogenetic signal in their 
genomic abundance (Pagel's λ), the 
p-value associated with λ (testing if λ is 
significantly different from 1) and their 
association with diploid (2n) chromosome 
number changes (tested by phylogenetic 
generalized least square regression, 
PGLS).
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    |  11CORNET et al.

holocentric species, aiming to shed light on how repeats might be 
implicated in population differentiation at micro-evolutionary lev-
els and chromosomal rearrangements and potentially speciation at 
macro-evolutionary scale.

4.1  |  Micro-evolutionary repeat patterns

Previous studies describing differences in repeats between popu-
lations found population specific repeat expansions or losses (e.g. 
Feliciello et al., 2015; Oggenfuss et al., 2021). Such differences have 
been suggested to be a result of different mutational processes, 
genetic drift, natural selection and/or local adaptation (Bourgeois 
& Boissinot,  2019; Charlesworth & Charlesworth,  1983). In small 
populations, drift might result in the random loss of rare repeats, 
or in repeat expansion due to reduced efficacy of selection against 
deleterious TE insertions (Charlesworth & Charlesworth,  1983). 
Selection, on the contrary, might favour different repeat landscapes 

in different environments, because of their potential phenotypic ef-
fects (e.g. Huang et al., 2018; Schrader et al., 2014). Comparing four 
different Erebia species, we found that population specific changes 
in the repeat landscape are common and increase with the level of 
intraspecific differentiation (Figure  1). Similarly, individual-based 
genetic distances correlated with distances in repeat landscape 
in all species (Figure 2b), suggesting that similar evolutionary pro-
cesses affected the repeat landscape and the genome as a whole. 
Incongruence between overall genetic distance and distance in re-
peat landscape potentially represent different selective regimes act-
ing on repeats and on the rest of the genome (Oggenfuss et al., 2021).

Repeat landscape variation between populations can lead to the 
build-up of genetic incompatibilities, eventually leading to repro-
ductive isolation (Serrato-Capuchina & Matute,  2018). Differences 
in the repeat landscape may for example lead to differences in 
gene expression (Rebollo et al.,  2012) or differences in chromatin 
structure (Feliciello et al.,  2015). Variation between populations in 
their repeats could also lead to variation in ectopic recombination 

F I G U R E  5  Bayou results showing shifts in optima along the Erebia phylogeny for chromosome number (a), and genomic abundance 
of Helitrons (b), rDNA (c) and satDNA (d). Significant shifts (PP >.3) in optima are represented by different branch colours, and red circles 
represent the PP of the shift. The analyses were done on an unrooted phylogeny of Erebia, while the trees were artificially rooted on E. ligea. 
The black vertical lines highlight the species-rich and karyotypically variable Tyndarus clade.
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12  |    CORNET et al.

and chromosomal rearrangements between populations (Serrato-
Capuchina & Matute,  2018). The observed increase in differentia-
tion in the repeat landscape with increasing population divergence 
could thus reflect increasing levels of reproductive isolation because 
of drift or local adaptation. This may especially be true for E. niva-
lis, where the Swiss population is geographically strongly restricted 
and isolated from its broader occurrence in the Eastern Alps (Gratton 
et al., 2016). Similarly, the strong difference in the repeat landscape 

for the two subspecies of E. pronoe, which even occur on differ-
ent substrates, may indicate some level of reproductive isolation 
(Sonderegger, 2005).

Repetitive elements diversity has previously been suggested to 
be associated with stochastic demographic processes (Bourgeois 
& Boissinot,  2019). Repeat diversity can be reduced due to ge-
netic drift, along with genome-wide diversity (Stritt et al.,  2018). 
However, our results indicate that this pattern is not ubiquitous and 

F I G U R E  6  Repeat landscape of Erebia cassioides (a) and E. epistygne (b) determined using RepeatMasker, showing genome repeat 
proportion in function of Kimura substitution levels. Inserts show specifically the values for DIRS, Helitrons and rDNAs.
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that other evolutionary processes such as selection might blur the 
correlation between repeat diversity and genome-wide diversity 
(Figure 2a). Overall, our findings imply that repeats hold valuable in-
formation to characterize population differentiation, despite being 
often ignored in population genetic analyses (Slotkin, 2018). In ad-
dition, these results were obtained using low coverage (~0.1X), and 
without the need for a reference genome (Novák et al., 2010, 2020), 
highlighting the relevance of repeats for studies with limited funds 
and genomic resources.

4.2  |  A macro-evolutionary view on karyotype 
evolution and repeat landscape

The most abundant repeats in the genomes of all Erebia species were 
LINE retrotransposons (Figure 3a). This is consistent with previous 
studies of the repeat landscape of Lepidoptera (Höök et al., 2023; 
Sproul et al., 2022). The abundance of LINEs probably results from 
phylogenetic constraints and could have phenotypic consequences 
due to the high association between LINEs and protein-coding 
genes (Sproul et al.,  2022). For Carex, the most abundant repeats 
differed between species (Figure 3b), particularly for C. sempervirens 
which had by far the highest repeat content among all Carex species. 
Such a variable repeat abundance between species was also found 
in Rhynchospora, another holocentric Cyperaceae genus (Costa 
et al., 2021). Although full manual curation of our repeat annotations 
would likely allow for more detailed repeat identification (Table S5b), 
a fully automated repeat annotation makes our results rather con-
servative. Indeed, the high unidentified repeat proportion (Figures 3 
and S2) may indicate an underestimation of associations between 
repeats and population differentiation and karyotype changes, but 
unlikely to false associations.

We found significant phylogenetic signals for some repeats 
(Table  1), and an overall correspondence between the phylogeny 
of Erebia and Carex species and their clustering based on their re-
spective repeat landscape (Figure 4). However, this correspondence 
is not sufficient for a reliable phylogenetic inference using only 
repeats, contrarily to former suggestions (Dodsworth et al., 2015; 
Vitales et al.,  2020). This does not seem surprising, as closely re-
lated species can differ substantially in their repeat landscapes, 
which can be attributed to differences in demographic history (e.g. 
Alioto et al.,  2020). For example, satDNA abundance is very vari-
able between species for both Erebia and Carex (Figure  3). This is 
expected under the so-called ‘library hypothesis’ (Fry & Salser, 1977; 
Salser et al., 1976), which highlights that different satDNA families 
are randomly amplified in different lineages, resulting in different 
satDNA catalogues even between closely related species. Moreover, 
TEs can shift between host genomes via horizontal gene transfer 
events (Bartolomé et al., 2009), which can also blur the phylogenetic 
patterns of repeat landscapes.

Repetitive elements have often been suggested to be associated 
with karyotypic variation because they can cause chromosomal 
rearrangements through ectopic recombination (Fedoroff, 2012). 

Indeed, comparisons between one or a few, often closely related 
species, indicated that TEs could be involved in fusions of chromo-
somes (e.g. Ahola et al., 2014; Höök et al., 2023). Here, we took a 
broader, genus-wide approach to evaluate the association between 
repeats and karyotype changes in a phylogenetic context. We used 
chromosome number changes as a proxy for chromosomal fusions 
and fissions, therefore likely underestimating the number of rear-
rangements (Mackintosh et al.,  2023) and their association with 
repeats. We found indications that certain types of repeats could 
be associated with karyotype changes at a macro-evolutionary 
level, although none of the associations were significant following 
a FDR correction in both Erebia and Carex (Table 1), suggesting that 
future macro-evolutionary investigations should increase taxon 
sampling. The relationships may nevertheless hint towards poten-
tial mechanisms. For instance, Helitrons were negatively associ-
ated with chromosome number in Erebia (Table 1a) and moreover 
explained the highest amount of variation in chromosome num-
ber (Table S8) with significant optima shifts in the Tyndarus clade 
(Figure  5b). This is especially interesting given that Tyndarus is 
the most karyotypically diverse, species-rich, and youngest clade 
within Erebia (Augustijnen et al., 2023), which also hints towards 
an association of repeats with karyotype changes and associated 
speciation. Lineage-specific repeat expansion could explain why 
some Erebia subclades are more karyotypically diverse than others 
(Augustijnen et al., 2023), a pattern also observed between differ-
ent Lepidoptera genera (de Vos et al., 2020; Robinson, 1971).

Both Maverick repeats and unidentified LTRs showed potential 
indications for a positive association with chromosome number in 
Erebia (Table 1a), which would differ from another study on wood-
white butterflies (Leptidea sp.; Höök et al., 2023), where Helitrons 
were generally depleted from fusion and fission sites, and LINEs and 
LTRs were enriched in fusion, but not fission, breakpoints. However, 
the taxonomic resolution of the aforementioned study was limited 
and unlike Erebia, intraspecific karyotypic variation is more common 
in Leptidea (Höök et al., 2023) and the impact of repeats on repro-
ductive isolation may thus differ. In Erebia, chromosomal fusions are 
more common than fissions, but fissions are more often involved in 
speciation events (Augustijnen et al., 2023). Our findings implicate 
that fusion and fission events are likely associated with different re-
petitive elements, where Helitrons might cause frequent fusions but 
therefore could be less important for speciation than Maverick and 
LTRs, involved in fissions events in Erebia. However, by using chro-
mosome numbers as proxy for rearrangements, we underestimate 
the impact of repeats that could be involved in both fusions and 
fissions of chromosomes. Interestingly, an enrichment in Helitrons, 
other DNA transposons, LINEs and LTRs was observed in rearrange-
ment breakpoints of holocentric aphids (Mathers et al., 2021), but no 
distinction between fusions and fissions of chromosomes was made. 
In Carex, LINEs, Ty1/Copia and Helitrons were associated with rates 
of chromosomal evolution (Table S6). We detected associations be-
tween unidentified LTRs and Ty3/Gypsies and chromosome number, 
that were not significant after the FDR (Table 1b). These findings are 
in accordance with a study based on comparative genomics among 
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14  |    CORNET et al.

three Carex species which found enrichment of similar repeats in re-
arranged parts of the genome (Escudero et al., 2023), but suggest 
that the relative impact of specific repeats on karyotypic changes 
differs among independently evolved holocentric groups.

One of the goals of this study was to determine which repetitive 
elements could be associated with karyotype changes in Erebia and 
Carex. Abundant repeats should be more likely to result in ectopic 
recombination (Kent et al., 2017). Surprisingly, LINEs, which were by 
far the most abundant repeats in Erebia genomes, showed no associ-
ation with karyotype changes (Table 1a). Helitrons, on the contrary, 
were the rarest repeats but showed some indication for an associa-
tion with karyotype changes (Figure 5). This is possibly because very 
abundant TEs could be more often silenced through methylation by 
the host to suppress ectopic recombination (Zamudio et al., 2015), 
or because retrotransposons such as LINEs might be controlled by 
piRNAs (Shoji et al.,  2023). Differences in repeat abundance be-
tween Erebia and Carex (Figure 3) could partly explain why different 
repeats were associated with rearrangements in these two genera. 
Furthermore, Erebia and Carex likely differ in their holocentromere 
structure. Indeed, sedges, possibly including Carex, have repeat-
based holocentromeres (satDNA) that can be involved in chromo-
somal rearrangements (Hofstatter et al., 2022). Centromeric satDNA 
can also be involved in chromosomal rearrangements in monocentric 
organisms (e.g. Antonarakis, 2022). In contrast, the holocentromeres 
of Lepidoptera are not resolved but do not seem to be repeat-based 
(Senaratne et al., 2021).

Recently active repeats that show little sequence divergence are 
the most likely to be involved in ectopic recombination (Li et al., 2006; 
Renkawitz et al., 2014). Indeed, the karyotypically diverse Tyndarus 
group in Erebia tended to show lower Kimura substitution values 
suggesting younger and more active repeats than more karyotyp-
ically conserved groups (Figure  6 and Data  S1). Moreover, repeat 
types associated with karyotype changes had generally low Kimura 
substitution levels, both in Erebia (e.g. Helitrons, DIRS and rDNA; 
Data  S1) and in Carex (e.g. Ty1/Copia and Ty3/Gypsy; Data  S2). 
Differences between TE classes in their importance for ectopic re-
combination could also be expected given their differences in trans-
position mechanisms. Indeed, retrotransposons, which do not excise 
(i.e. replicate via copy-paste mechanism, including LINES and LTRs), 
might show a stronger negative correlation with recombination rates 
than DNA transposons which cause double-strand breaks during ex-
cision, e.g. Helitrons (Kent et al., 2017). Because ectopic recombina-
tion rates are correlated with meiotic recombination rates (Goldman 
& Lichten, 1996), this suggests that DNA transposons could be more 
likely involved in chromosomal rearrangements, consistent with our 
findings for Erebia.

Another factor influencing the impact of repeats in rearrange-
ments is their genomic localisation. Repeats physically close to 
each other, close to telomeres, or close to recombination hotspots 
might be more likely to undergo ectopic recombination (Goldman 
& Lichten,  1996; Kent et al.,  2017). The repeat-rich sex chromo-
somes might also be more likely to undergo chromosomal rear-
rangements than autosomes (Nguyen & Carabajal Paladino,  2016; 

Wright et al.,  2023), but chromosome specific analyses would re-
quire chromosome-scale reference genomes for all species. Longer 
repeats are also more likely to cause ectopic recombination than 
shorter repeats (Petrov et al., 2003), and repeat orientation could 
also play a role (Delprat et al., 2009). Because we used a reference-
free repeat detection method based on short-read data and in the 
absence of reference genomes, we cannot investigate these factors 
here. Also, because we used only a subset of the phylogeny of Erebia 
and Carex, evolutionary contingencies might have masked the pat-
tern of repeats involved in rearrangements in the time that passed 
since the rearrangement evolved. Our results on the association 
between repeats and chromosomal rearrangements are therefore 
rather conservative. Further studies could investigate sister species 
pairs or closely related lineages to reduce the impact of evolutionary 
contingencies and further precise the role of repetitive elements in 
chromosomal rearrangements.

5  |  CONCLUSION AND FUTURE 
DIREC TIONS

This study is, to our knowledge, the first to explore repeat diversity 
in holocentric species at both micro- and macro-evolutionary scales. 
We highlight intraspecific divergence in repeat landscapes between 
populations, which scales with levels of population divergence. 
Consequently, repeats might be associated with population differen-
tiation. Furthermore, we provide evidence for a macro-evolutionary 
association between repeats and chromosomal rearrangements that 
lead to karyotype changes in two independently evolved holocentric 
clades. Our study thus sheds some light on the potential role of re-
peats on the process of species diversification (Kulmuni et al., 2020) 
and potentially chromosomal speciation. Future studies comparing 
reference assemblies between sister species, along with novel pipe-
lines for discovery and annotation of repeats (e.g. Baril et al., 2022), 
are likely to precise the role of repeats in chromosomal rearrange-
ments, even in non-model organisms, and may help to bridge the gap 
between micro- and macro-evolutionary patterns. Similarly, under-
standing the association with the epigenetic landscape could pro-
vide crucial insights into why only some clades show high karyotypic 
variation (Zamudio et al., 2015). A link between repeat-induced chro-
mosomal rearrangements and speciation has long been suggested 
(Serrato-Capuchina & Matute, 2018), but empirical evidence is still 
scarce. Here, we highlight variations in repeat landscape at both 
micro- and macro-evolutionary scales that have the potential to be 
involved in speciation. Further studies could make use of advances in 
genome editing technologies to cause chromosomal rearrangements 
(Ansai & Kitano, 2022) and infer a causal relationship between re-
peats, chromosomal rearrangements, and potentially speciation.
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