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Abstract: Selenium is an essential mineral element with important biological functions 32 

for the whole body through incorporation into selenoproteins. This element is highly 33 

concentrated in the thyroid gland. Selenoproteins provide antioxidant protection for this 34 

tissue against the oxidative stress caused by free radicals and contribute, via 35 

iodothyronine deiodinases, to the metabolism of thyroid hormones. It is known that 36 

oxidative stress plays a major role in carcinogenesis and that in recent decades there has 37 

been an increase in the incidence of thyroid cancer. The anti-carcinogenic action of 38 

selenium, although not fully understood, is mainly attributable to selenoproteins 39 

antioxidant properties, and to the ability to modulate cell proliferation (cell cycle and 40 

apoptosis), energy metabolism, and cellular immune response, significantly altered 41 
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during tumorigenesis. Researchers have suggested that different forms of selenium 42 

supplementation may be beneficial in the prevention and treatment of thyroid cancer; 43 

however, the studies have several methodological limitations. This review is a summary 44 

of the current knowledge on how selenium and selenoproteins related to thyroid cancer. 45 
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 47 

1. Introduction 48 

Selenium (Se) is a critical microelement that was discovered and isolated for the first 49 

time in 1817 by Swedish chemist Jöns Jacob Berzelius [1]. While not an essential 50 

nutrient for plants, it is an essential nutrient for humans and many other life forms [2, 51 

3]. In tissues, Se forms part of the amino acids selenomethionine and selenocysteine, 52 

with the latter being responsible for the main known biological activity of 53 

selenoproteins [4].  54 

The thyroid gland is the organ in the human body with the highest Se content per unit of 55 

tissue [5,6]. In it, selenoproteins play a crucial role in the cellular defence system 56 

against hydrogen peroxide (H2O2) and other reactive oxygen species (ROS) [7,8]. The 57 

overproduction of free radicals, which triggers oxidative stress (OS), has been 58 

associated with several diseases and with cancer in particular [9-11]. 59 

Thyroid cancer is the most prevalent malignant neoplasm of the endocrine system and 60 

its incidence has increased worldwide over the last four decades [12]. Histologically, 61 

there are three main types of thyroid cancer: differentiated thyroid carcinoma, anaplastic 62 

thyroid carcinoma and medullary thyroid carcinoma. Differentiated thyroid carcinoma 63 

accounts for about 95% of thyroid cancers and it originates from follicular thyroid cells, 64 

which are responsible for hormone production. This cancer can be subdivided into 65 

papillary, follicular and Hurthle cell carcinoma. The first of these is the most common 66 

and has the best prognosis [13]. Papillary thyroid cancer invades the lymph nodes, 67 

spreading to the cervical lymph nodes and also, less frequently, to other distant sites 68 

such as the lungs [14]. This pattern of dissemination is important and can be a 69 

presenting symptom of papillary carcinoma because the primary tumour is very small in 70 

some cases. When they are less than 1 cm they are often referred to as microcarcinomas 71 

[15]. Conversely, in the follicular form, haematogenous metastases are more frequent, 72 

mainly affecting the lungs and bones [14]. Hurthle cell carcinoma is follicular in origin, 73 

with at least 75% of the cells being Hurthle cells and having capsular and/or vascular 74 

invasion [16]. The Hurthle cell is characterized cytologically as a large cell with 75 

abundant eosinophilic, granular cytoplasm, and a large hyperchromatic nucleus with a 76 

prominent nucleolus. Cytoplasmic granularity is due to the presence of numerous 77 

mitochondria [17]. Hurthle cell carcinoma is poorly avid to radioiodine and poorly 78 

responsive to chemotherapy and radiation [18].  Hurthle cell carcinoma is believed to be 79 

more aggressive than common follicular carcinoma [16]. 80 

Since the thyroid is specially high in Se, and it plays an important role in this gland, the 81 

relationship of Se with the incidence of thyroid cancer has been extensively studied 82 

[11,19,20, 21, 22]. Thus, this review primarily aims to outline the current knowledge on 83 

the association between Se, selenoproteins and thyroid cancer. 84 
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2. Selenium, selenoproteins and thyroid homeostasis 85 

Adequate Se nutrition supports the synthesis and metabolism of thyroids hormones 86 

(THs) and protects the thyroid gland from damage from overexposure to iodide which 87 

increases OS [23]. Se is thus considered to be the second most important element in 88 

thyroid metabolism after iodine, which plays a beneficial role by forming part of 89 

different antioxidant selenoproteins [19].  90 

There are 25 different selenoproteins in the human body with at least one selenocysteine 91 

(Sec) amino acid in their structure [24,25]. Their difference in Sec incorporation 92 

efficiency leads to a “selenoprotein hierarchy” under selenium deficiency: proteins with 93 

higher Sec incorporation efficiency exploit more charged Sec-specific (Sec-tRNASec ) 94 

and are more rapidly synthesized [26]. The well-studied selenoproteins have antioxidant 95 

properties (such as the glutathione peroxidase (GPx) family), are involved in redox 96 

regulation (such as the thioredoxin reductases (TXNRD) family), or transport the serum 97 

Se to tissues as selenoprotein P (SELENOP). But they also have other biological 98 

functions, being regulators of growth, development, and cell differentiation, quality 99 

control of protein biosynthesis, inhibitors of non-specific immune responses, 100 

neutralizers of inflammatory responses, or antiapoptotic function [25, 27]. Many of 101 

these selenoproteins are expressed in the thyroid gland and are involved in different 102 

processes, such as the formation and regulation of THs (the iodothyronine deiodinases 103 

(DIO) family) and redox processes linked to gland protection (GPx and TXNRD) (GPx 104 

and TXNRD) [24]. These selenoproteins are necessary for the correct functioning of the 105 

thyrotropin-releasing hormone (TRH) and thyroid stimulating hormone (TSH). TSH is 106 

the major regulator of THs biosynthesis, since it activates a complex signaling network 107 

across the TSH-receptor in thyrocytes and ends up forming T3 and T4 hormones 108 

(Figure 1) [28]. In addition, TSH is involved in the selenoproteins regulation since, 109 

through its receptor, it clearly increases the expression of GPx1, GPx3 and 110 

TXNRD1[29]. This signaling pathway also stimulate the expression of DIO1 (and DIO2 111 

in human) inside the thyrocytes as well as H2O2 production [29,30,31].  112 

THs mediate important physiological processes such as development, growth, 113 

thermogenesis, and energy metabolism, as well as regulate fatty acid, cholesterol, and 114 

carbohydrate homeostasis [32,33]. The synthesis of THs is a complex, multistep process 115 

that encompasses several redox reactions that need H2O2 as an oxidative agent. THs 116 

synthesis requires the oxidative iodination of specific tyrosine residues of thyroglobulin. 117 

This process is catalyzed by the enzyme thyroid peroxidase (TPO), which requires an 118 

appropriate amount of H2O2 for oxidation in the colloid (Figure 1). Therefore THs 119 

synthesis needs H2O2 production. However, this is a disadvantage for thyrocyte, as this 120 

large amount of H2O2 in the colloid could cross the apical membrane of the thyrocyte 121 

and accumulate inside the cell, leading to OS-damage. 122 

As it was mentioned, GPxs protect thyroid follicles from excess H2O2 that is produced 123 

during the synthesis of THs [34]. Cytotoxic ROS are mainly produced in thyroid 124 

follicles following activation of TPO as a result of the interaction between H2O2, iodide 125 

and heme iron [35]. It has been demonstrated that the role of these selenoproteins, in 126 

relation to H2O2, is fundamental to the thyroid, since in severe Se deficiency the lack of 127 

GPx activity causes oxidative damage to the thyroid gland, leading to thyroid damage 128 
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and fibrosis [36, 37]. It has also been shown that pre-incubation of human thyroid 129 

follicles with Se (sodium selenite), even at low doses (10 nM) increases GPx activity 130 

and decreases cell death induced by high doses of H2O2, iodide or TGF-β [38, 39].  131 

The TXNRDs also play an important role in thyroid metabolism and, together with 132 

thioredoxin (Trx) and NADPH, form the thioredoxin system, common to nearly all 133 

living cells [40]. This system functions in thiol-dependent thiol-disulfide exchange 134 

reactions, crucial for controlling the reduced intracellular redox environment, cell 135 

proliferation and growth, defence against oxidative stress or control of apoptosis.  136 

Moreover, this system participates in the synthesis of deoxyribonucleotides for DNA 137 

synthesis and is involved in cancer protection [40]. The two main thioredoxin 138 

reductases are thioredoxin reductase 1 (TXNRD1), a cytosolic and nuclear form, and 139 

thioredoxin reductase 2 (TXNRD2), which is found only as a mitochondrial form [41]. 140 

TXNRDs are highly expressed in thyroid cells [8]. 141 

Specifically, type 1 and 2 deiodinases (DIO1 and DIO2) activate THs, while type 3 142 

deiodinases (DIO3) inactivate both tetraiodothyronine (T4) and 3,5,3′-triiodothyronine 143 

(T3) [42]. DIO1 is mainly found in the liver, kidneys and thyroid [43]. In humans, most 144 

of the circulating T3 is derived from the conversion of T4 to T3 by the actions of DIO1 145 

[44]. Unlike DIO1, the primary function of DIO2 is believed to be the supply of T3 to 146 

the nucleus so as to meet intracellular needs, as it is a subcellularly located 147 

selenoprotein that appears in muscle, brain, heart, bone and brown adipose tissue [45].  148 

DIO2 is important in determining T3 content in developing tissues and the adult brain, 149 

and in promoting the process of adaptive thermogenesis in brown adipose tissue. In 150 

particular, DIO2 plays a primary role in T4-mediated negative feedback in the pituitary 151 

gland and hypothalamus, in which T4 inhibits the expression of thyroid stimulating 152 

hormone (TSH) and thyrotropin-releasing hormone (TRH), respectively [33]. DIO3 is 153 

the physiological inactivator of THs, which acts by catalysing the deiodination of T4 154 

into reverse triiodothyronine (rT3) and converts T3 into 3,3`diiodothyronine (T2) [46]. 155 

This enzyme controls the local homeostasis of THs and protects tissues from their 156 

excess [47]. Deiodinases appear to occupy a special place in the hierarchy in cases of 157 

selenium deficiencies thanks to the existence of a selenium accumulation and/or 158 

redistribution system in the thyroid gland [39]. Initial cell culture and animal 159 

experimental studies indicated that adequate nutritional selenium supply appears to limit 160 

expression of functional deiodinases during development and in the adult organism. 161 

However, the deiodinative turnover of thyroid hormones requires only minimal amounts 162 

of active enzymes, in contrast to enzymatic pathways acting on abundant metabolic 163 

intermediates (e.g. carbohydrate, fatty acid, aminoacido or proteins). This might be one 164 

of the reasons why inadequate intake of the essential trace element selenium does not 165 

initially manifest as impaired deiodinase activity, but rather affects those metabolic 166 

pathways, which are catalyzed by more abundant selenoenzymes acting at higher 167 

substrate concentrations. These include GPxs and TXNRD involved in celular redox 168 

control, several endoplasmatic reticulum-associated selenoproteins as well as 169 

selenoprotein N (SELENON), all of which contribute to protein biosynthesis or 170 

represente structural componentes of cells and tissues [6]. Although small amounts of 171 

Se are required for the activity of DIOs, a deficiency of this nutrient decreases THs 172 

synthesis and has a major impact on thyroid function [48]. Decreased production of THs 173 
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leads to stimulation of the TRH-TSH-THs axis, due to lack of control of negative 174 

feedback, increasing the production of TSH [36].  175 

Finally, other selenoproteins, including selenoprotein P, K, S (SELENOP, SELENOK, 176 

and SELENOS, respectively) as well as SELENON are actively secreted in the 177 

thyrocytes. SELENOP is actively secreted together with GPx3 to protect thyrocytes 178 

from H2O2 at the colloid in absence of TSH, while the rest of the selenoproteins, within 179 

the endoplasmatic reticulum, take part in the quality control pathways [28, 49, 50]. The 180 

biosynthesis of these protective selenoproteins is mainly affected by genotype, Se 181 

availability, and inflammatory cytokines [28, 49].   182 

3. Selenium and thyroid cancer 183 

Se is recognised as a nutrient with many health benefits in humans and other mammals 184 

such as decreasing the incidence of cancer [51]. Although the specific mechanisms are 185 

not fully understood, the chemopreventive effects of Se result from its protective role on 186 

cell membranes against OS, its stabilising effect on DNA and its enhancement of 187 

cellular immune response [52]. This element also inhibits the proliferation of tumor 188 

cells by acting on the expression of the Bcl-2 apoptosis-suppressor gene and p53 tumor 189 

suppressor gene, which plays an important role in the processes of control and 190 

regulation of cell lifecycle and DNA replication. Furthermore, in vitro and in vivo 191 

studies have revealed that both Se compounds and selenoproteins act as anti-metastatic 192 

agents, inhibiting cell motility, migration and invasion, and reducing angiogenic factors 193 

[53]. Nevertheless, it is important to mention that some selenoproteins, like TXNRD1, 194 

SELENOF and GPx2 exhibit a split role in preventing and promoting cancer [51]. In 195 

addition, Se may exhibits a U-shape relation with cancer risk [54, 55].  196 

Various studies have been carried out to examine the relationship between Se and the 197 

development of thyroid cancer (Table 1). Overall, the findings suggest a potential 198 

association between lower Se concentrations and the development of thyroid cancer.  199 

Kucharzewski et al. [56] found that whole blood Se concentrations in a group of 200 

patients (n=21) with thyroid cancer were significantly lower (0.57 µg/g) than in a 201 

control group (0.71 µg/g, p < 0.01). There is no information as to the histological types 202 

of cancer included in the research. Moncayo et al. [57], in a study of patients with 203 

benign and malignant thyroid pathologies taking thyroid medication found that serum 204 

Se levels were lower in patients with papillary (n=73) (0.080 ± 0.020 µg/ml) and 205 

follicular (n=42) (0.077 ± 0.021 µg/ml) carcinoma than in the control group (0.091 ± 206 

0.021 µg/ml), p = 0.015 and p = 0.031 respectively). On the other hand, Przybylik-207 

Mazurek et al. [58] found no significant changes in Se levels in the serum of patients 208 

with papillary carcinoma (n=25) and in that of patients with follicular carcinoma (n=13) 209 

compared with a control group. The same finding was noted for glutathione peroxidase 210 

3 (GPx3) activity. The tumours were diagnosed histologically on routine basis, after 211 

surgery. The lag time between surgery and this study examination ranged between 8 and 212 

120 months, with mean ± SD of 42.9 ± 25.3 months. Patients with carcinomas were 213 

receiving thyroid medication. Subsequently, in 2013, Jonklaas et al. [59] conducted a 214 

study involving a group of euthyroid patients with indication for thyroidectomy for 215 

suspected thyroid cancer or nodular disease. Of the cohort, 48 patients had differentiated 216 

thyroid carcinoma and 17 had benign thyroid pathology. 33 of patients with 217 
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differentiated thyroid carcinoma had papillary carcinoma. Blood samples were obtained 218 

two to four weeks before thyroidectomy. In the final analysis, although Se 219 

concentrations were not significantly lower in thyroid cancer patients, they were 220 

inversely correlated with disease stage (p = 0.011).  221 

 222 

 223 

Authors, 
year 

Study 
design  

Description of 
participants  

Blood Se 
levels  

 

 Main results  Reference 
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 224 

Table 1. Summary of the most important clinical trials examining the relation between 225 

blood Se levels and thyroid cancer. TXRF- total-reflection X-ray fluorescence, AAS- 226 

atomic absorption spectrometry, ICP-AES- inductively coupled plasma - atomic 227 

emission spectrometry.   228 

 229 

In 2017, Baltaci et al. [60] conducted a study to examine the changes in serum Se levels 230 

before, immediately after and fifteen days after thyroidectomy in patients (n=30) with 231 

Kucharzewski 
et al., 2003 

- Cross -
sectional 
study  

 - Thyroid cancer              
   (n=21) 
-  Control (n= 50) 

- Whole blood (TXRF) 
- 0.57 ± 0.12  

(µg/g)  
- 0.71 ± 0.06 

 (µg/g) 

- Whole blood Se levels 
were significantly lower in 
the group of patients with 
thyroid cancer vs. control 
group  (p < 0.01) 

[56] 

Moncayo et 
al., 2008 

- Cross -
sectional 
study  

- Papillary carcinoma 
(n=73)  

- Follicular carcinoma 
(n= 42) 

- Control (n= 554) 

- Serum (AAS) 
- 0.080 ± 0.020 

(µg/ml) 
- 0.077 ± 0.021 

(µg/ml) 
- 0.091 ± 0.021 
  (µg/ml) 

-  Serum Se levels were 
significantly lower in 
patients with papillary  and  
and folicular carcinoma vs. 
control group ( p = 0.015 
and p = 0.031 respectively) 
 

[57] 

Przybylik-
Mazurek et 
al., 2011  

- Cross -
sectional 
study 

- Papillary carcinoma 
(n=25)  

- Follicular carcinoma 
(n= 13) 

-  Control (n=20)  

- Serum (AAS) 
- 0.78 ± 0.12  
  (μM/L) 
- 0.80 ± 0.14  
   (μM/L) 
- 0.76 ± 0.12  
   (μM/L) 

- No significant differences 
among the groups in serum   
Se levels  

[58] 

Jonklaas et 
al., 2013 

- Cross -
sectional 
study 

- Differentiated 
thyroid carcinoma 
(n=48)  
- Benign thyroid 
disease (n= 17)  

- Serum (AAS) 
- 0.116 ± 0.014 

(µg/ml) 
- 0.117 ± 0.010  
   (µg/ml)  

- No significant differences 
among the groups in serum 
Se levels  

- Serum Se levels were 
inversely correlated with 
thyroid cancer stage  
(p=0.011) 

[59] 

Baltaci et al., 
2017  

- Cross -
sectional 
study 

- Group 1: male 
thyroid cancer 
patients group          
(n = 15) 

-  Group 2: female 
thyroid cancer 
patients group 

- (n = 15); 
-  Group 3: male 

control group 
 (n = 10) 

-  Group 4: female 
control group 
 (n = 10). 

- Serum (ICP-AES) 
Pre-operative  
(μg/dl) 
- Group 1: 52.4 ± 5.6 

  - Group 2: 50.5 ± 4.8 
  - Group 3: 70.1 ± 6.9 
  - Group 4: 66.9 ± 7.3 
  
   Post- operative 

 (μg/dl) 
  - Group 1: 54.6 ± 5.5 
  - Group 2: 51.7 ± 5.2 
  - Group 3: 69.5 ± 7.1 
  - Group 4: 67.6 ± 5.9 
 
   15 days after the 
operation  

 (μg/dl) 
  - Group 1: 70.6 ± 5.9 
  - Group 2: 70.2 ± 5.5 
  - Group 3: 72.5 ± 6.5 
  - Group 4: 68.6 ± 8.0 
 

- Pre- and postoperative 
serum Se concentrations in 
patients with thyroid cancer 
were significantly lower in 
serum vs. control groups (p 
< 0.05)  
 
-  15 days after the 
operation, insignificant 
differences were detected 
in serum Se concentrations 
among the groups 
 
  

[60] 

Mehl et al., 
2020 

- Cross -
sectional 
study  

-  Thyroid patients  
(n=323)  

- Control (n=200)  

- Serum (TXRF) 
 - 76.9 ±18.8  
  (µg/L) 
 - 85.1 ± 17.4  
  (µg/L)  

- A high fraction of patients 
(37.5%) was classified as Se-
deficient (serum Se 
concentrations <70 μg/L), in 
particular the patients with 
thyroid malignancy (59%) 

[61] 
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thyroid cancer (papillary carcinoma). In addition, thyroid tissue samples were taken 232 

from all subjects in the postoperative period. Serum Se levels were significantly 233 

decreased (p < 0.05) before and immediately after surgery compared with the controls. 234 

Fifteen days later Se levels were similar to those found in the control group. Thyroid Se 235 

levels postoperatively were significantly higher (p < 0.05) than those  of the controls. 236 

The fact that the same patients have less Se in their serum indicates, according to the 237 

authors, that Se is retained excessively in the thyroid and that changes in the levels of 238 

this mineral could be related to the pathogenesis of thyroid cancer. Very recently, Mehl 239 

et al. [61] carried out a study to assess the levels of trace elements (iodine, Se, copper 240 

and zinc) in patients with thyroid pathologies in a European metropolis. The authors 241 

found that patient serum Se values were lower than those in control group participants 242 

(p < 0.0001) More importantly, it was found that it was in the group of patients with 243 

thyroid malignancy (n= 17) that a higher fraction of Se deficient patients were found 244 

(59%).  245 

It is not yet clear whether the decrease in serum Se levels detected in most studies on 246 

thyroid cancer is a consequence or a cause of the disease or if it is simply associated 247 

with related pro-inflammatory conditions that alter the expression and secretion of 248 

hepatic selenoprotein P, the main contributor to the Se content in serum [6]. A decrease 249 

in this protein may be a phenomenon secondary to negative regulation triggered by 250 

inflammatory mediators such as tumour necrosis factor α (TNF-α), interleukin 1 β (IL-1 251 

β) and interferon γ (IFN- γ) [62, 63]. 252 

4. Selenoproteins and thyroid cancer 253 

Se is co-translationally inserted in protein as the 21st amino acid, Sec and accounts for a 254 

vast majority of the biological activities of Se [64]. Twenty-five selenoproteins have 255 

been identified in the human proteome and twenty-four in rat and mouse proteome [65]. 256 

The share of selenium in the metabolic pathways associated  with the protection of cells 257 

against oxidative stress causes changes in the activity of selenoproteins. Selenoprotein 258 

expression is regulated by the concentration of this element [66, 67]. However, there are 259 

differences in protein expression. These differences are the result of changes in mRNA 260 

translation or the reduction of its stability (increased degradation) [67].  261 

There have also been several studies relating the activity and expression of seleno-262 

proteins with thyroid cancer, the most studied being the DIO1 and DIO2 implicated in 263 

the control of THs turnover, and GPx1, GPx3 and TXNRD1, which protect thyroid 264 

from OS-damage [11, 21, 68, 69, 70, 71, 72, 73, 74].  265 

4.a. Selenoproteins implicated in the control of THs turnover 266 

Deiodinase expression patterns in thyroid cancers vary and depend on the type and 267 

differentiation of the tumour stage. T3 is known to regulate the expression and/or 268 

activity of tumour suppressors genes and oncogenes. Thus, local alterations in the 269 

expression and activity of DIOs may have the potential to influence carcinogenesis [75]. 270 

Different studies in papillary and follicular carcinomas support this fact. In 2005, 271 

Arnaldi et al. [68] found that DIO1 and DIO2 were underexpressed in papillary 272 

carcinoma following evaluation using cDNA analysis of three thyroid cancer cell lines. 273 

In the same year, Ambroziak et al. [69] identified significantly decreased levels of DIO1 274 



9 
 

and DIO2 expression (p = 0.017 and p = 0.012, respectively) in papillary carcinoma 275 

samples compared to control group samples (thyroid tissue from a non-cancer affected 276 

part in human patients) and Meyer et al. [70] found in human patients that DIO1 277 

expression and activity were decreased in papillary carcinoma samples compared to 278 

surrounding normal tissue  (0.25 ± 0.24 vs. 1.09 ± 0.54 arbitrary units (AU), p < 0.001 279 

and 0.08 ± 0.07 vs. 0.24 ± 0.15 pmol T4/min/mg protein, p = 0.045, respectively). 280 

However, in the latter study, the authors found a significant increase in DIO1 expression 281 

and activity in tissue samples with follicular carcinoma (1.2 ± 0.46 vs. 0.67 ± 0.18 AU, 282 

p = 0.038 and 1.20 ± 0.58 vs. 0.20 ± 0.10 pmol T4/min/mg protein, p < 0·001, 283 

respectively). They also detected an increase in DIO2 activity in tissue samples with 284 

metastatic follicular carcinoma (5.20 ± 0.81 vs. 0.30 ± 0.27 fmol T4/min/mg protein, p 285 

< 0.001)  Subsequently, Romitti et al. [76] analysed the expression and activity of DIO3 286 

in papillary carcinoma human samples. The researchers observed that the augmentations 287 

in D3 activity were paralleled by increased DIO3 mRNA levels (approximately 288 

fivefold). They also found a positive correlation between tumour size and DIO3 activity 289 

(r=0.68, p=0.003). Finally, they found that an increase in DIO3 activity in tumour 290 

samples was associated with more advanced disease at diagnosis.  291 

Taken together, one could posit that the changes found in the expressions of DIOs in 292 

papillary carcinoma samples could cause a decrease in intracellular hormones and 293 

favour tumour proliferation. Increased DIO3 and decreased DIO1 and DIO2, leading to 294 

decreased T3 concentrations, could provide an advantage for tumour cell proliferation, 295 

as THs can block oncogenic Ras-mediated proliferation, which specifically interferes 296 

with the activity of the mitogen-activated protein kinase (MAPK) signalling pathway 297 

[71]. This pathway has previously been implicated in DIO3 overregulation in other 298 

pathological changes [77,78]. Genetic alterations leading to the activation of this 299 

pathway are a distinguishing marker of papillary thyroid carcinoma [76]. It is known 300 

that DIO3 is upregulated in the papillary thyroid carcinoma-derived cell line, K1, by 301 

transforming growth factor β 1 (TGF β 1).  Furthermore, it is known that treatment with 302 

the inhibitors U0126 (ERK pathway) and SB203580 (p38 pathway) leads to blocking of 303 

the MAPK pathway and subsequent decrease of DIO3 and inhibition of transcriptional 304 

induction of DIO3 through TGF β 1, which clearly suggests that DIO3 is positively 305 

regulated through the MAPK signalling pathway [76,79]. In the development of this 306 

carcinoma, the BRAF gene is one of those principally affected, with the BRAFV 600 E 307 

mutation occurring frequently, through substitution of a valine for a glutamic acid at 308 

position 600 [80]. In the study described above, Romitti et al. [76] found that the 309 

samples in which this mutation was present were those in which there was greater DIO3 310 

activity. Subsequently, Romitti et al. [81] found that activation of the sonic hedgehog 311 

(SHH) pathway could also be involved in DIO3 upregulation through a signalling 312 

cooperation with the MAPK pathway. SHH signalling is critical for embryogenesis and 313 

other cellular processes such as proliferation and differentiation. Disruption of SHH 314 

signalling leads to several human diseases and appears to contribute to the development 315 

of neoplastic processes. Reactivation of SHH occurs in about 25% of human tumours 316 

and has been associated with the induction of DIO3 [81-83]. 317 

Interestingly, retinoic acid (RA) has been shown to induce DIO1 activity in human 318 

thyroid carcinoma cell lines. RA transcriptionally increased the abundance of the p27 319 

subunit of DIO1. RA stimulated DIO1 activity to a greater extent in follicular thyroid 320 
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carcinoma-133 cells than in follicular thyroid carcinoma-238 cells and had no effect in 321 

anaplastic thyroid carcinoma. Retinoid induction of DIO1 may thus serve as a parameter 322 

of functional differentiation of thyroid follicular carcinoma cells [84]. 323 

The higher DIO2 activity, in metastatic follicular carcinoma, without significant 324 

changes in DIO2 mRNA levels, suggests that DIO2 uprregulation occurs mainly via 325 

post-transcriptional regulatory mechanisms [71]. The expression pattern of DIO2 326 

reveals that this selenoprotein is encoded by an cAMP-sensitive gene, so its expression 327 

increases in tumoural contexts, such as follicular carcinoma, in which there is an 328 

overstimulation of the cAMP pathway [45]. 329 

4.b. Selenoproteins which protect thyroid from OS-damage 330 

OS plays an important role in carcinogenesis by inducing DNA damage and its effects 331 

on intracellular signal transduction pathways. ROS can induce almost all forms of DNA 332 

damage that have been described in the dysfunction of genes involved in cancer genesis 333 

and play a key role in cancer development by originating and maintaining oncogenic 334 

phenotypes [65].  335 

In the thyroid gland, high amounts of H2O2 are produced, which triggers high OS, 336 

during synthesis of thyroid hormones in follicular cells. On the other hand, as 337 

mentioned above, Se deficiency, regardless of the cause, diminished expression and 338 

activity of selenoproteins with antioxidant functions such as GPx and TXNRDs. Thus, 339 

these selenoproteins cannot fight properly ROS generated during cellular metabolism, 340 

increasing OS and cancer genesis [85]. Moreover, thyroid cancer itself can induce OS 341 

through inflammation, which is one of its significant features, and this in turn is a 342 

classic source of ROS. As a consequence of OS, instability in DNA can be produced 343 

and maintained, which are believed to be neoplasia-preceding events in thyroid cells 344 

[86].  345 

There are also two ‘professional’ ROS-generating systems in thyroid gland, the 346 

NADPH oxidases DUOX1 and NOX4, which cause DNA damage that may promote 347 

chromosomal instability, tumourigenesis and anaplasia. Ionising radiation and mutation 348 

of oncogenes such as RAS and BRAF positively regulate these NADPH oxidases, 349 

playing a key role in thyroid carcinogenesis [87]. In turn, ROS can stimulate MAPK, 350 

phosphatidylinositol-3-kinase (PI3K) and NFκB pathways, forming a vicious circle that 351 

spurs carcinogenesis [86].    352 

In this context, Young et al. [88] evaluated the levels of DNA damage and lipid pe-353 

roxidation, measured 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG) and the 4-HNE 354 

respectively, in patients with follicular thyroid adenoma (n = 71), papillary thyroid 355 

carcinoma (n = 45) and follicular thyroid carcinoma (n = 17). They established that the 356 

cytoplasmic expression of 8-oxo-dG and 4-HNE was significantly higher in thyroid 357 

tissue samples from patients with follicular adenoma, follicular carcinoma and papillary 358 

carcinoma compared to their normal tissue (all p values < 0.001). Similarly, increased 359 

nuclear levels of 8-oxo-dG were found in thyroid tissue samples from patients with 360 

follicular adenoma, follicular carcinoma and papillary carcinoma compared to their 361 

normal tissue (p values < 0.07, p < 0.001 and p < 0.001, respectively). 362 
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Since a correct oxidative balance plays an important role in thyroid carcinogenesis, the 363 

main antioxidant selenoproteins expressed in thyroid have been analysed in this context. 364 

GPx1 is distributed throughout the human body and its main activity is antioxidant [1]. 365 

It catalyses the reduction of H2O2, using reduced glutathione (GSH), transforming it 366 

into water. During this process, glutathione is oxidised, subsequently returning to its 367 

original state through the action of the enzyme glutathione reductase (GR), so as to 368 

maintain GSH levels [89]. GPx1 is one of the selenoproteins that is most sensitive to Se 369 

alterations in the body, exhibiting dramatic reductions when this microelement is 370 

depleted [90]. 371 

Zagrodzki et al. [21] detected decreased GPx1 activity in anaplastic carcinoma samples 372 

compared to normal tissue samples from surrounding parts of the gland. Previously, 373 

Hasegawa et al. [72] found decreased expression of this enzyme in the same type of thy-374 

roid cancer. More recently, Metere et al. [11] analysed the expression of GPx1 and 375 

TXNRD1 in tissue samples with papillary carcinoma. The researchers found a reduction 376 

in the expression of these enzymes compared to that observed in healthy tissue samples 377 

taken from the same patients.  378 

Several studies show a decrease in GPx1 expression in different tumours and suggest a 379 

protective role for GPx1 [91]. GPx1 can limit oxidant-induced cell mutagenesis, as well 380 

as the inflammatory responses that promote certain cancers. Loss of GPx1 in the early 381 

stages of carcinogenesis may contribute to cancer initiation and, in later stages, its defi-382 

ciency may induce proliferative responses [92]. 383 

With respect to GPx3, this selenoenzyme is the only extracellular enzyme of the GPx 384 

family [65]. It has an important extracellular antioxidant role and affords protection to 385 

the thyroid against H2O2 [36]. It is one of the most highly expressed selenoproteins in 386 

follicular cells and, as a result, contributes to the high Se levels of the thyroid [39, 93]. 387 

In situ hybridization revealed to Menth et al. [73] reduced levels of GPx3 in Hurthle cell 388 

carcinoma. Subsequently, Schmutzler et al. [94] also used in situ hybridization to study 389 

the localization of various selenoproteins within the thyroid gland using goiter, 390 

autoimmune thyroiditis or thyroid tumor samples. The researchers found that the 391 

strongest hybridization signals were obtained from GPx3 mRNA. In thyroid 392 

carcinomas, the follicular structure of the normal thyroid was disrupted and GPx3 393 

signals were evenly dispersed over the whole sample areas or parts of it  without any of 394 

the thyroid-specific differential distribution patterns observed, e.g., in goiter. More 395 

recently, Zhao et al. [74] investigated the expression of GPx3 in patients with primary 396 

papillary carcinoma. They found that its expression was often reduced/absent in the 397 

carcinoma samples compared to surrounding healthy tissue samples. In addition, they 398 

found that GPx3 was frequently methylated in the carcinoma samples. These authors 399 

also found that the reduced/absent expression was related to hypermethylation of the 400 

promoter region and that carcinoma metastasis was suppressed by GPx3 through 401 

inhibition of the Wnt / β-catenin signalling pathway. In this context, gene hyper-402 

methylation has also been indicated as a cause of down-regulation in various tumour 403 

tissues [95-97]. Decreased GPx3 expression has been associated with tumour initiation, 404 

proliferation and migration as a consequence of increased oxidative stress and pro-405 
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tumourigenic redox signalling. It is currently unclear whether loss of GPx3 leads to 406 

compensatory increases in other antioxidant enzymes in tumour cells [98].  407 

GPx7 is mainly involved in maintaining the redox homeostasis of the body [99]. In 408 

functional terms, GPx7 is not selenocysteine-containing peroxidase due to the lack of a 409 

GSH-binding domain, but rather a protein disulfide isomerase peroxidase. It is located 410 

in the lumen of the endoplasmic reticulum, where it uses the H2O2 produced by 411 

endoplasmic reticulum oxidoreductase 1 alpha to oxidize protein disulfide isomerase 412 

[100]. Recently, Li-Dan Liu et al. [99] investigated the expression of GPx7 in papillary 413 

thyroid carcinoma tissues. In this study, GPx7 was found to be expressed at higher 414 

levels in papillary thyroid carcinoma tissues and  papillary thyroid carcinoma cell lines 415 

than in other thyroid tissues and related to the size of papillary thyroid tumors. GPx7 416 

was successfully knocked down in K1 cells, and knockdown of GPx7 inhibited cell 417 

proliferation and clone formation as well as increased apoptosis and caspase 3/7 activity 418 

in K1 cells. According to the authors, these results demonstrated that GPx7 promotes 419 

the growth of papillary thyroid carcinoma but the mechanisms underlying of action of 420 

GPx7 on proliferation and apoptosis are still unclear.  421 

Overexpression and hyperactivation of TXNRD1 have been described in several cancers 422 

[101]. Moreover, the high expression and activity of TXNRD1 has been directly related 423 

to cellular protection against oxidative stress induced by 4-hydroxynonenal (4- HNE), 424 

one of the end products of lipid peroxidation [102].  425 

Metere et al. [11] suggest that the reduction in TXNRD1 and GPx1 expression seen in 426 

their study may result from hyperproduction of free radicals, which were not adequately 427 

counteracted by the altered antioxidant system in cancer cells, possibly due to increased 428 

consumption of antioxidants. Furthermore, the authors detected a significant increase in 429 

free radical production in all thyroid tumour tissue samples, compared with healthy 430 

tissue from the same patients.  431 

Finally, it is important to bear in mind that not just selenoproteins protect thyroid from 432 

OS-damage. For instance, J. Maier et al. [103] detected  a higher mRNA expression for 433 

superoxide dismutase (SOD)-3 isoform and increased total SOD enzyme activity in the 434 

thyroid exposed to iodine deficiency compared to normal diet. Especially increased 435 

SOD-3 expression, which is the extra cellular SOD isoform, could detoxify superoxide 436 

in the follicular lumen and might act as an effective shield against oxidative stress 437 

induced by ROS in response to luminal H2O2.  Catalase, as well as the peroxiredoxins 438 

(PRDX), also protect thyroid cells against H2O2  [104, 105].  439 

5. Selenium supplementation and thyroid cancer 440 

Due to growing evidence suggesting the vulnerability of cancer cells to oxidative stress, 441 

the idea of targeting the antioxidant capacity of tumour cells has grown as a therapeutic 442 

strategy, leading to the rational design of new anticancer agents. Accordingly, Se has 443 

stood out as a redox modulator of cancer cells among compounds with great anti-cancer 444 

potential [106]. Different forms of Se have anti-cancer effects on different cancers, such 445 

as hepatocarcinoma, breast cancer, oesophageal cancer, prostate cancer and ovarian 446 

cancer, among others [25]. However, several studies have shown that Se has a tumor-447 

promoting effect. The NPC trial, for example, found that selenium supplementation (as 448 
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selenized yeast; 200 µg/day) significantly increased the risk of non-melanoma skin 449 

cancer and squamous-cell carcinoma [107]. Another study was conducted on the 450 

population of the Reggio Emilia municipality in Italy, who were exposed to 7–9 μg/liter 451 

of selenate in tap water from 1975 to 1985. Melanoma incidence was 3.9 times higher in 452 

selenium-exposed people than in non-selenium exposed people, according to the 453 

findings of this study [108]. More recently, Tsuji et al. [109] detected that the deficiency 454 

in the 15 kDa selenoprotein inhibits human colon cancer cell growth. Because Sep15 455 

expression depends on the selenium status, these results are important in regards to 456 

differential intake of, and response to, dietary selenium and potential cancer risk.  457 

The anti-cancer activity of different forms of Se depends on many factors, such as 458 

chemical form, dose, acute vs. long-term nutrition, preventive or pharmacological 459 

application, type of cancer cell, bioavailability, and stage of disease [110]. Selenium 460 

exhibits chemopreventive activity when used at higher than optimal concentrations or 461 

applied for cancer treatment in combination with chemotherapy and radiation [111]. 462 

Also, the greatest anticarcinogenic Se effect has been obtained when it is administered 463 

before or at an early stage of disease development. It is important to bear in mind that 464 

one of the marginal problems of Se use is its narrow range between the toxic dose and 465 

the dose necessary for the proper functioning of living organisms [112]. In recent years, 466 

due to both their reduced toxicity and their selectivity, Se nanoparticles are considered 467 

to be more effective in cancer treatment than other Se compounds. These nanoparticles 468 

are prepared by chemical, physical or biological methods, and contain a main inorganic 469 

therapeutic core of elemental Se, which presents better antitumor properties than the Se 470 

salts [113].  Based on this, Kuršvietienė et al. [110], studying the role of Se and the 471 

selenoproteins in maintaining cellular redox balance and anticancerogenic function, 472 

suggested that nanoparticles are taken up by cancer cells via endocytosis. In these cells, 473 

Se nanoparticles act as prooxidants producing endoplasmic reticulum stress, 474 

mitochondrial membrane cleavage, apoptosis, DNA fragmentation, and cell cycle arrest. 475 

Besides, Khurana et al. [114] trying to understand the various pharmacological activities 476 

of Se nanoparticles as well reduction in toxicity of Se upon nanoparticlization, proposed 477 

that Se nanoparticles act as antioxidants against high ROS generated by cancer cells. 478 

Moreover, their low toxicity, their high bioavailability and biocompatibility are some of 479 

the properties that also make Se nanoparticles an attractive drug delivery vehicle, 480 

reducing the systemic toxicities associated with conventional chemotherapeutic drugs 481 

and working synergistically to improve their efficacy [115]. Very recently, beneficial in 482 

vivo results have been obtained using a tumor model of mice preinoculated with K1 483 

cells and treated with a combination of drugs including Se nanoparticles for the 484 

treatment of thyroid cancer [116]. However, additional and independent studies are 485 

needed to confirm these results in animals. On the other hand, in order to apply the 486 

anticancer benefits of Se nanoparticle in clinical studies, extensive studies on its safety 487 

and synergistic activities with other therapeutic compounds are still needed. 488 

Even though Se supplementation may combat the development of thyroid cancer, the 489 

data that exist so far are not conclusive. The question of whether a Se deficit is a 490 

consequence of thyroid cancer or a predisposing risk factor remains unresolved [20]. 491 

Access to mostly retrospective data, relatively small patient groups and short 492 

observation periods are significant limitations of the studies performed [117].  493 
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Recent studies have shown beneficial effects of Se supplementation. Nettore et al. [7] 494 

conducted a study to characterise the molecular effects determined by Se 495 

supplementation (10 nM sodium selenite) on thyroid follicular cells, using the rat 496 

thyroid follicular cell line FRTL5 as a model. They examined the effect of Se on cell 497 

growth, mortality and proliferation, and modulation of pro- and anti-apoptotic 498 

pathways, concluding that Se supplementation improved the growth rate of FRTL5. 499 

Furthermore, they found that Se reduced cell death and was associated with a 500 

downregulation of the proapoptotic genes p53 and Bim and an upregulation of the 501 

antiapoptotic genes NF-kB and Bcl2. More recently, Ruggeri et al. [118] investigated 502 

the effects of Se  on oxidative damage in human thyroid follicular cells and thyroid 503 

fibroblasts in vitro. Primary cultures were exposed to H2O2 in the presence or absence 504 

of Se, in the form of selenomethionine or selenite. Administration of increasing 505 

concentrations of Se, from 0.05 to 20 μM, significantly prevented the genotoxic and 506 

cytotoxic effects of H2O2 by increasing cell viability, reducing morphological 507 

abnormalities, improving cellular DNA integrity and decreasing lipid peroxidation. 508 

H2O2-induced apoptosis was reduced and almost eliminated, as evidenced by reduced 509 

caspase-3 activity and modulation of the expression of the antiapoptotic 510 

Bcl2/proapoptotic Bax genes. Furthermore, both selenomethione and selenite induce an 511 

increase in GPx activity which, according to the authors, suggests that these protective 512 

effects may be, in part, mediated by these selenoproteins. 513 

Animal and human studies have suggested that supplementation with different forms of 514 

Se at concentrations higher than those required to maximise selenoprotein expression 515 

decreases the incidence of cancer [119]. However, a recent meta-analysis that took as 516 

one of its research questions "describe the efficacy of Se supplementation for cancer 517 

prevention in humans" found no evidence to suggest that increasing Se intake, through 518 

diet or by supplementation, prevents cancer in humans [120]. All observational studies 519 

and randomised trials appear to be highly conditioned by population characteristics with 520 

regard to covariates and confounding factors, which include initial Se intake levels, 521 

antioxidants cosupplemented, age, gender, diet, lifestyle [65].  522 

6. Conclusions and future perspectives 523 

Se and selenoproteins play a significant role in the development of thyroid cancer. It is 524 

generally agreed that oxidative stress plays an important role in cancer genesis and 525 

tumour progression. Most studies indicate an association between Se deficiency and the 526 

development of thyroid cancer, as well as significant changes in the expression and 527 

activity of various selenoproteins in different types of thyroid cancer. The mechanisms 528 

underlying these changes are not yet fully understood. Although Se supplementation is 529 

theoretically beneficial for cancer, in practice the studies are not conclusive, mainly due 530 

to methodological limitations. In this respect, and specifically for thyroid cancer, the 531 

literature is also very scarce. Nevertheless, Se components have already become part of 532 

the therapeutic strategy to fight thyroid cancer. It is expected that in the near future there 533 

will be a greater knowledge of these components' mechanisms of action, in order to 534 

improve their use in the prevention and treatment of thyroid cancer. 535 

 536 
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