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Abstract. In this paper we analyze a finite element method applied to a continuous downscaling
data assimilation algorithm for the numerical approximation of the two and three dimensional Navier-
Stokes equations corresponding to given measurements on a coarse spatial scale. For representing
the coarse mesh measurements we consider different types of interpolation operators including a
Lagrange interpolant. We obtain uniform-in-time estimates for the error between a finite element
approximation and the reference solution corresponding to the coarse mesh measurements. We
consider both the case of a plain Galerkin method and a Galerkin method with grad-div stabilization.
For the stabilized method we prove error bounds in which the constants do not depend on inverse
powers of the viscosity. Some numerical experiments illustrate the theoretical results.
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1. Introduction. Data assimilation refers to a class of techniques that combine
experimental data and simulation in order to obtain better predictions in a phys-
ical system. There is a vast literature on data assimilation methods, specially in
the recent years (see e.g., [4], [33], [35], [41], and the references therein). One of
these techniques is nudging, where a penalty term is added in order to drive the
approximate solution towards coarse mesh or large scale spatial observations of the
data. In a recent work [7], a new approach, known as continuous data assimilation,
is introduced for a large class of dissipative partial differential equations, including
Rayleigh-Bénard convection [19], the planetary geostrophic ocean dynamics model
[20], etc. (see also references therein). Continuous data assimilation has also been
used in numerical studies, for example, with the Chafee-Infante reaction-diffusion
equation the Kuramoto-Sivashinsky equation (in the context of feedback control) [36],
Rayleigh-Bénard convection equations [3], [18], and the Navier-Stokes equations [25],
[28]. However, there is much less numerical analysis of this technique. The present
work concerns with the numerical analysis of continuous data assimilation for the
Navier-Stokes equations when discretized with mixed finite element methods (MFE).

To be more precise, we consider the Navier-Stokes equations (NSE)

∂tu− ν∆u+ (u · ∇)u+∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω,(1.1)
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in a bounded domain Ω ⊂ Rd, d ∈ {2, 3}. In (1.1), u is the velocity field, p the
kinematic pressure, ν > 0 the kinematic viscosity coefficient, and f represents the
accelerations due to external body forces acting on the fluid. The Navier-Stokes
equations (1.1) must be complemented with boundary conditions. For simplicity, we
only consider homogeneous Dirichlet boundary conditions u = 0 on ∂Ω.

Following [37] we consider given coarse spatial scale measurements, corresponding
to a solution u of (1.1), observed at a coarse spatial mesh. The measurements are
assumed to be continuous in time and error-free. We denote by IH(u) the operator
used for interpolating these measurements, where H denotes the resolution of the
coarse spatial mesh. Since the initial condition for u is missing one cannot compute
u by simulating equation (1.1) directly. To overcome this difficulty it was suggested
in [7] to consider instead a solution v of the following approximating system

∂tv − ν∆v + (v · ∇)v +∇p̃ = f − β(IH(v)− IH(u)), in (0, T ]× Ω,

∇ · v = 0, in (0, T ]× Ω,(1.2)

where β is the relaxation (nudging) parameter.
In the case of the Navier-Stokes equations (and indeed, of many other nonlinear

dissipative systems), it is well-known that for relatively not so small Reynolds num-
bers, solutions are unstable and even chaotic. For this reason, it is expected that
any small error in the initial data could lead to exponentially growing error in the
solutions. Notably, the instabilities in the NSE occur at the large spatial scales, while
the fine scales are stabilized by the viscosity. For this reason once the large spatial
scales are stabilized, as it is done in the proposed downscaling data assimilation ap-
proximation, equation (1.2), the corresponding solution are stable and converge to the
same solution u that is corresponding to IH(u). This is the very reason that small
errors are not magnified in time and allows to obtain uniform in time error bounds.

In this paper we consider a semidiscretization in space with inf-sup stable mixed
finite elements for equation (1.2) and analyze two different methods: the Galerkin
method and the Galerkin method and grad-div stabilization. Grad-div stabilization
was originally proposed in [21] to improve the conservation of mass in finite ele-
ment methods (see also [38], [39]) However, it has been observed in the simulation of
turbulent flows, [32], [42], that using only grad-div stabilization produced stable (non-
oscillating) simulations. We prove uniform-in-time error estimates for approximating
the unknown reference solution, u, that corresponds to the coarse spatial scale mea-
surement IH(u). For the Galerkin method without grad-div stabilization, the spatial
error bounds we prove are optimal, in the sense that the rate of convergence is that
of the best interpolant. In the case we add grad-div stabilization, as in [15], [16], we
get error bounds in which the error constants do not depend on inverse powers of the
viscosity parameter ν. This fact is of importance in many applications where viscosity
is orders of magnitude smaller than the velocity (i.e., large Rynolds number). The
convergence rates we prove in our error bounds are sharp and confirmed by numerical
experiments.

We now comment on the analysis of numerical methods for (1.2). In [37], a
semidiscrete postprocessed Galerkin spectral method for the two-dimensional Navier-
Stokes equations is studied. Under suitable conditions on the nudging parameter β
and the coarse mesh resolution H, uniform-in-time error estimates are obtained for the
difference between the numerical approximation to v and u. Furthermore, the use of
a postprocessing technique introduced in [23] [24], allows for higher convergence rates
than a standard spectral Galerkin method. A fully-discrete method for the spatial
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discretization in [37] is analyzed in [31], where the backward Euler method is used
for time discretization. Fully implicit and semi-implicit methods are considered, and
optimal uniform-in-time error estimates are obtained with the same convergence rate
in space as in [37].

More closely related to the present work are [34] and [40]. In [40] they only analyze
linear problems and, for the proof of the results on the Navier-Stokes equations they
present, they refer to [34] with some differences that they point out. They also present
a wide collection of numerical experiments. In [34], the authors consider fully discrete
approximations to equation (1.2) where the spatial discretization is performed with
a MFE Galerkin method plus grad-div stabilization. A second order IMEX in time
scheme is analyzed in [34], and, as in [31], [37] and the present paper, uniform-in-
time error bounds are obtained. Compared with [34], for the same convergence rate,
the error bounds in the present paper have constants that do not depend on inverse
powers of the viscosity parameter ν (Theorem 3.3) or, for similar error constants, error
bounds in the present paper have an order of convergence one unit larger (Theorem 3.2
below). Also, the analysis in [34] is restricted to IHu being an interpolant for non
smooth functions (Clément, Scott-Zhang, etc), since it makes explicit use of bound
(2.19), which is not valid for nodal (Lagrange) interpolation (neither it is (2.20)). In
the present paper, we prove error bounds for the case in which (2.19) holds, but also
for the case in which IHu is a standard Lagrange interpolant (Theorem 3.12 below).
To our knowledge, this is the first time in the literature where such kind of bounds
are proved. Also, compared with [34] and [40], we remove the upper bound assumed
on the nudging parameter β. The authors of [34] had observed (see [34, Remark 3.8])
that the upper bound they required in the analysis does not hold in the numerical
experiments and they state that a different approach to the analysis should be used
to remove the upper bound on β. An analogous upper bound on β appears also in
[31] and [37], where the value of H depends on the inverse of the nudging parameter
β which means that increasing the value of β would require a smaller value of H.

Although the analysis of the present paper could be extended to fully discrete
methods following for example the techniques in [15], [16] we believe that the new
ideas introduced in the present paper are easier to understand in the framework of
the semidiscrete methods. The extension of the analysis of the present paper to the
fully discrete case will be subject of future work.

The rest of the paper is as follows. Section 2 is devoted to preliminary material,
in Section 3 we introduce and analyze the finite element method for equation (1.2)
with and without grad-div stabilization. In Subsection 3.1 we analyze the case in
which IHu is the standard Lagrange interpolant. Finally, in Section 4 some numerical
experiments are shown to illustrate the theoretical results.

2. Preliminaries and Notation. Throughout the paper, W s,p(D) will denote
the Sobolev space of real-valued functions defined on the domain D ⊂ Rd with dis-
tributional derivatives of order up to s in Lp(D). We denote by | · |s,p,D standard
seminorm, and, following [14], for W s,p(D) we will use the norm ‖ · ‖s,p,D defined by

‖f‖ps,p,D =

s∑
j=0

|D|
p(j−s)

d |f |pj,p,D ,

where |D| stands for the Lebesgue measure of D so that ‖f‖m,p,D |D|
m
d −

1
p is scale

invariant. If s is not a positive integer, W s,p(D) is defined by interpolation [1]. In the
case s = 0 one has W 0,p(D) = Lp(D). As it is standard, W s,p(D)d will be endowed
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with the product norm and, since no confusion can arise, it will be denoted again
by ‖ · ‖W s,p(D). The case p = 2 will be distinguished by using Hs(D) to denote the
space W s,2(D). The space H1

0 (D) is the closure in H1(D) of the set of infinitely
differentiable functions with compact support in D. For simplicity, ‖ · ‖s (resp. | · |s)
is used to denote the norm (resp. semi norm) both in Hs(Ω) or Hs(Ω)d. The exact
meaning will be clear by the context. The inner product of L2(Ω) or L2(Ω)d will
be denoted by (·, ·) and the corresponding norm by ‖ · ‖0 in general D is skipped
in the notation for the norm when D = Ω. For vector-valued functions, the same
conventions will be used as before. The norm of the dual space H−1(Ω) of H1

0 (Ω)
is denoted by ‖ · ‖−1. As usual, L2(Ω) is always identified with its dual, so one
has H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω) with compact injection. The following Sobolev’s
embedding [1] will be used in the analysis: For s > 0, let 1 ≤ p < d/s and q be such
that 1

q = 1
p −

s
d . Then, there exists a positive scale invariant constant cs such that

(2.1) ‖v‖Lq′ (Ω) ≤ cs|Ω|
s
d−

1
p + 1

q′ ‖v‖W s,p(Ω),
1

q′
≥ 1

q
, ∀v ∈W s,p(Ω).

If p > d/s the above relation is valid for q′ = ∞. A similar embedding inequality
holds for vector-valued functions.

We will also use the following interpolation inequality (see, e.g., [14, formula (6.7)]
and [22, Exercise II.2.9])

(2.2) ‖v‖L2d/(d−1)(Ω) ≤ c1 ‖v‖
1/2
0 ‖v‖1/21 , ∀v ∈ H1(Ω),

(where, for simplicity, by enlarging the constants if necessary, we may take the con-
stant c1 in (2.2) equal to cs in (2.1) for s = 1) and Agmon’s inequality

(2.3) ‖v‖∞ ≤ cA ‖v‖
1/2
d−2 ‖v‖

1/2
2 , d = 2, 3, ∀v ∈ H2(Ω).

The case d = 2 is a direct consequence of [2, Theorem 3.9]. For d = 3, a proof for
domains of class C2 can be found in [14, Lemma 4.10]. By means of the Calderón
extension theorem (see e.g., [1, Theorem 4.32] the proof is also valid for bounded
Lipschitz domains. Finally, we will use Poincaré’s inequality,

(2.4) ‖v‖0 ≤ cP |Ω|
1/d‖∇v‖0, ∀v ∈ H1

0 (Ω),

where the constant cP can be taken cP ≤
√

2/2. Denoting by

(2.5) ĉP = 1 + c2P ,

observe that from (2.4) it follows that

(2.6) ‖v‖1 ≤ (ĉP )1/2‖∇v‖0, ∀v ∈ H1
0 (Ω).

In all previous inequalities, the constants cs, c1, cA and cP are scale-invariant, as it
will be the case of all constants in the present paper unless explicitly stated otherwise.

Let H and V be the Hilbert spaces H = {u ∈
(
L2(Ω))d |div(u) = 0, u ·n|∂Ω

= 0},
V = {u ∈

(
H1

0 (Ω))d |div(u) = 0}, endowed with the inner product of L2(Ω)d and
H1

0 (Ω)d, respectively.
Let Th = (τhj , φ

h
j )j∈Jh , h > 0 be a family of partitions of suitable domains Ωh,

where h is the maximum diameter of the elements τhj ∈ Th, and φhj are the mappings
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from the reference simplex τ0 onto τhj . We shall assume that the partitions are shape-
regular and quasi-uniform. Let r ≥ 2, we consider the finite-element spaces

Sh,r =
{
χh ∈ C

(
Ωh
) ∣∣χh|τh

j
◦ φhj ∈ P r−1(τ0)

}
⊂ H1(Ωh),

S0
h,r = Sh,r ∩H1

0 (Ωh),

where P r−1(τ0) denotes the space of polynomials of degree at most r − 1 on τ0. For
r = 1, Sh,1 stands for the space of piecewise constants.

When Ω has polygonal or polyhedral boundary Ωh = Ω and mappings φhj from
the reference simplex are affine. When Ω has a smooth boundary, for the purpose of
analysis we will assume that Ωh exactly matches Ω, as it is done for example in [12],
[43], although at a price of a more complex analysis discrepancies between Ωh and Ω
can also be taken into account (see, e.g., [6], [44]).

We shall denote by (Xh,r, Qh,r−1) the MFE pair known as Hood–Taylor elements
[10, 46], when r ≥ 3, where

Xh,r =
(
S0
h,r

)d
, Qh,r−1 = Sh,r−1 ∩ L2(Ωh)/R, r ≥ 3,

and, when r = 2, the MFE pair known as the mini-element [11] where Qh,1 = Sh,2 ∩
L2(Ωh)/R, and Xh,2 = (S0

h,2)d ⊕ Bh. Here, Bh is spanned by the bubble functions

bτ , τ ∈ Th, defined by bτ (x) = (d+ 1)d+1λ1(x) · · ·λd+1(x), if x ∈ τ and 0 elsewhere,
where λ1(x), . . . , λd+1(x) denote the barycentric coordinates of x. For these elements
a uniform inf-sup condition is satisfied (see [10]), that is, there exists a constant βis > 0
independent of the mesh grid size h such that

(2.7) inf
qh∈Qh,r−1

sup
vh∈Xh,r

(qh,∇ · vh)

‖vh‖1‖qh‖L2/R
≥ βis.

The velocity will be approximated by elements of the discrete divergence-free space

Vh,r = Xh,r ∩
{
χh ∈ H1

0 (Ωh)d | (qh,∇ · χh) = 0 ∀qh ∈ Qh,r−1

}
.

For each fixed time t ∈ [0, T ] the solution (u, p) of (1.1) is also the solution of a
Stokes problem with right-hand side f − ut − (u · ∇)u. We will denote by (sh, qh) ∈
(Xh,r, Qh,r−1), its MFE approximation satisfying

ν(∇sh,∇ϕh)− (qh,∇ ·ϕh) = ν(∇u,∇ϕh)− (p,∇ ·ϕh)

= (f − ut − (u · ∇u),ϕh) ∀ϕh ∈ Xh,r,(2.8)

(∇ · sh, ψh) = 0 ∀ψh ∈ Qh,r−1.

We observe that sh = Sh(u) : V → Vh,r is the discrete Stokes projection of the
solution (u, p) of (1.1) (see [29]) and satisfies

ν(∇Sh(u),∇ϕh) = ν(∇u,∇ϕh)− (p,∇ ·ϕh) = (f − ut − (u · ∇)u,ϕh), ∀ ϕh ∈ Vh,r.

The following bound holds:

(2.9) ‖u− sh‖0 + h‖u− sh‖1 ≤ CNj(u, p)hj , 1 ≤ j ≤ r,

where here and in the sequel, for v ∈ V ∩Hj(Ω)d and q ∈ L2
0(Ω)∩Hj−1(Ω) we denote

(2.10) Nj(v, q) = ‖v‖j + ν−1‖q‖Hj−1/R, j ≥ 1.



6 B. GARCÍA-ARCHILLA, J. NOVO, AND E. S. TITI

The proof of (2.9) when Ω = Ωh can be found in [30, Lemma 5.3]. For the general
case, superparametric approximation at the boundary is assumed, see [5]. Under the
same conditions, the bound for the pressure is (cf. [27])

(2.11) ‖p− qh‖L2/R ≤ Cβis
νNj(u, p)h

j−1, 1 ≤ j ≤ r,

where the constant Cβis
depends on the constant βis in (2.7). Assuming that Ω is of

class Cm, with m ≥ 3, and using standard duality arguments and (2.9), one obtains

(2.12) ‖u− sh‖−s ≤ CNr(u, p)hr+s, 0 ≤ s ≤ min(r − 2, 1).

We also consider a modified Stokes projection that was introduced in [15] and that
we denote by smh : V → Vh,r satisfying

ν(∇smh ,∇ϕh) = (f − ut − (u · ∇)u−∇p,ϕh), ∀ ϕh ∈ Vh,r.(2.13)

The following bound holds, see [15]:

(2.14) ‖u− smh ‖0 + h‖u− smh ‖1 ≤ C‖u‖jhj , 1 ≤ j ≤ r.

Following [12], one can also obtain the following bound

‖∇(u− smh )‖∞ ≤ C‖∇u‖∞,(2.15)

where C does not depend on ν. We will denote by πhp the L2 projection of the
pressure p onto Qh,r−1. It holds

(2.16) ‖p− πhp‖0 ≤ Chj−1‖p‖Hj−1/R, 1 ≤ j ≤ r.

If the family of meshes is quasi-uniform then the following inverse inequality holds
for each vh ∈ Sh,r, see e.g., [13, Theorem 3.2.6],

(2.17) ‖vh‖Wm,p(K) ≤ cinvh
n−m−d( 1

q−
1
p )

K ‖vh‖Wn,q(K),

where 0 ≤ n ≤ m ≤ 1, 1 ≤ q ≤ p ≤ ∞, and hK is the diameter of K ∈ Th.
In the sequel ILah u ∈ Xh,r will denote the Lagrange interpolant of a continuous

function u. The following bound can be found in [9, Theorem 4.4.4]

(2.18) |u− ILah u|Wm,p(K) ≤ cinth
n−m|u|Wn,p(K), 0 ≤ m ≤ n ≤ k + 1,

where n > d/p when 1 < p ≤ ∞ and n ≥ d when p = 1.
We will assume that the interpolation operator IH is stable in L2, that is,

‖IHu‖0 ≤ c0‖u‖0, ∀u ∈ L2(Ω)d,(2.19)

and that it satisfies the following approximation property,

‖u− IHu‖0 ≤ cIH‖∇u‖0, ∀u ∈ H1
0 (Ω)d.(2.20)

The Bernardi–Girault [8], Girault–Lions [26], or the Scott–Zhang [45] interpolation
operators satisfy (2.20) and (2.19). Notice that the interpolation can be on piecewise
constants, as we use in the numerical experiments in Section 4.

We remark that, for the error analysis, we do not need condition (3.105) in [37],
i.e., we do not assume that ‖u− IH(u)‖−1 ≤ c−1H‖u‖0, for u ∈ L2(Ω)d.
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3. The finite element method. We consider the following method to approx-
imate (1.2). Find (uh, ph) ∈ Xh,r×Qh,r−1 satisfying for all (ϕh, ψh) ∈ Xh,r×Qh,r−1

(u̇h,ϕh) + ν(∇uh,∇ϕh) + bh(uh,uh,ϕh) + µ(∇ · uh,∇ ·ϕh) + (∇ph,ϕh)

= (f ,ϕh)− β(IH(uh)− IH(u), IHϕh),(3.1)

(∇ · uh, ψh) = 0,

where µ is a stabilization parameter that can be zero in case we do not stabilize the
divergence or different from zero in case we add grad-div stabilization and bh(·, ·, ·) is
defined in the following way

bh(uh,vh,ϕh) = ((uh · ∇)vh,ϕh) +
1

2
(∇ · (uh)vh,ϕh), ∀uh,vh,ϕh ∈ Xh,r.

Hereafter, we denote by (·, ·) both the inner product in L2 and the duality action
between H−1 and H1

0 , depending on the context. It is straightforward to verify that
bh enjoys the skew-symmetry property

(3.2) bh(u,v,w) = −bh(u,w,v) ∀u,v,w ∈ H1
0 (Ω)d.

Let us observe that taking ϕh ∈ Vh,r from (3.1) we get

(u̇h,ϕh) + ν(∇uh,∇ϕh) + bh(uh,uh,ϕh) + µ(∇ · uh,∇ ·ϕh) =(3.3)

(f ,ϕh)− β(IH(uh)− IH(u), IHϕh).

For the analysis below, we need to introduce the values µ and k, defined as follows

(3.4) µ =

{
0, if µ = 0,
1, otherwise,

k =

{
0, if µ = 0,
1/µ, otherwise.

The following lemma will be used for proving the main results of the section.

Lemma 3.1. Let uh be the finite element approximation defined in (3.3) and let
wh, τ

1
h, τ

2
h : [0, T ]→ Vh,r be functions satisying

(ẇh,ϕh) + ν(∇wh,∇ϕh) + bh(wh,wh,ϕh) + µ(∇ ·wh,∇ ·ϕh) =(3.5)

(f ,ϕh) + (τ 1
h,ϕh) + µ(τ 2

h,∇ ·ϕh),

Assume that the quantity L defined in (3.14), below, when µ = 0, and in (3.15), below,
when µ > 0 is bounded. Then, if β ≥ 8L and H satisfies condition (3.21), below, the
following bounds hold for eh = uh −wh,

‖eh(t)‖20 ≤ e−γt/2‖eh(0)‖20 +

∫ t

0

e−γ(t−s)/2
(

(1− µ)
2ĉP
ν

+
µ

L

)
‖τ 1

h‖2−1+µ ds

+

∫ t

0

e−γ(t−s)/2 (βc20‖u(s)−wh(s)‖20 + 2k‖τ2
h‖20
)
ds,(3.6)

where, µ and k are defined in (3.4), and γ is defined in (3.24) below.

Proof. Subtracting (3.5) from (3.3) we get the error equation

(ėh,ϕh) + ν(∇eh,∇ϕh) + β(IHeh, IHϕh) + bh(uh,uh,ϕh)− bh(wh,wh,ϕh)(3.7)

+µ(∇ · eh,∇ ·ϕh) = β(IHu− IHwh, IHϕh) + (τ 1
h,ϕh) + µ(τ 2

h,∇ ·ϕh), ∀ϕh ∈ Vh,r.
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Taking ϕh = eh in (3.7) we get

1

2

d

dt
‖eh‖20 + ν‖∇eh‖20 + β‖IHeh‖20 + µ‖∇ · eh‖20 ≤ |bh(uh,uh, eh)− bh(wh,wh, eh)|

+β|(IHu− IHwh, IHeh)|+ |(τ 1
h, eh)|+ |µ(τ 2

h,∇ · eh)|.(3.8)

We will bound the terms on the right-hand side of (3.8). For the nonlinear term and
the truncation errors we argue differently depending on whether µ = 0 or µ > 0.

If µ = 0, using the skew-symmetry property (3.2), (2.1) and (2.6), and when
d = 3, we have

|bh(uh,uh, eh)− bh(wh,wh, eh)| = |bh(eh,wh, eh)| ≤ ‖∇wh‖L2d/(d−1)‖eh‖L2d‖eh‖0

+
1

2
|(∇ · eh)wh, eh)| ≤ ĉ1‖∇wh‖L2d/(d−1)‖∇eh‖0‖eh‖0 +

1

2
‖∇eh‖0‖wh‖∞‖eh‖0

≤
(

2ĉ21
‖∇wh‖2L2d/(d−1)

ν
+
‖wh‖2∞

ν

)
‖eh‖20 +

ν

4
‖∇eh‖20,

(3.9)

where

(3.10) ĉ1 = (ĉP )1/2c1,

c1 being the constant in (2.1) for s = 1. In the case d = 2, and noticing that
2d = 2d/(d − 1), the first term on the right-hand side above, using (2.2), (2.6) and
Young’s inequality is bounded as follows

‖∇wh‖L2d/(d−1)‖eh‖L2d‖eh‖0 ≤ (ĉP )1/4c1‖∇wh‖L2d/(d−1)(‖∇eh‖0‖eh‖0)1/2‖eh‖0

≤ 3(ĉP )1/3c
4/3
1

‖∇wh‖4/3L2d/(d−1)

(4ν)1/3
‖eh‖20 +

ν

4
‖∇eh‖20.(3.11)

For the truncation error when µ = 0 using (2.6) we get

(3.12) |(τ 1
h, eh)| ≤ ‖τ 1

h‖−1‖eh‖1 ≤ (ĉP )1/2‖τ 1
h‖−1‖∇eh‖0 ≤

ĉP
ν
‖τ 1

h‖2−1 +
ν

4
‖∇eh‖20.

When µ 6= 0, we bound the nonlinear term in the following way. Using again the
skew-symmetry property (3.2) we get

|bh(uh,uh, eh)− bh(wh,wh, eh)| = |bh(eh,wh, eh)| ≤ ‖∇wh‖∞‖eh‖20

+
1

2
‖∇ · eh‖0‖wh‖∞‖eh‖0 ≤ ‖∇wh‖∞‖eh‖20 +

µ

4
‖∇ · eh‖20 +

‖wh‖2∞
4µ

‖eh‖20.(3.13)

In the sequel we denote

L = max
t≥0

(
2
ĉ
2d/3
1 ‖∇wh(t)‖2d/3

L2d/(d−1)

ν(2d−3)/3
+
‖wh(t)‖2∞

ν

)
, if µ = 0,(3.14)

L = 2 max
t≥0

(
‖∇wh(t)‖∞ +

‖wh(t)‖2∞
4µ

)
, if µ > 0,(3.15)

Observe that in the case µ = 0, bounding the factor 3(ĉP )1/3/41/3 in (3.11) by 2(ĉP )2/3

we have the left-hand side of (3.9) can be bounded by L‖eh‖20 + (ν/2)‖∇eh‖20, and, in
the case µ > 0 the left-hand side of (3.13) is bounded by (L/2)‖eh‖20 +(µ/4)‖∇·eh‖20.
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Next, we bound the truncation error when µ > 0,

|(τ 1
h, eh)|+ |µ(τ 2

h,∇ · eh)| ≤ 1

2L
‖τ 1

h‖20 +
L

2
‖eh‖20 + k‖τ2

h‖20 +
µ

4
‖∇ · eh‖20,(3.16)

where k is defined in (3.4).
For the second term on the right-hand side of (3.8) applying (2.19) we get

β|(IHu− IHwh, IHeh)| ≤ βc0‖u−wh‖0‖IHeh‖0

≤ β

2
c20‖u−wh‖20 +

β

2
‖IHeh‖20.(3.17)

Inserting (3.9), (3.11), (3.12), (3.13), (3.16) and (3.17) into (3.8) we get

1

2

d

dt
‖eh‖20+(1 + µ)

ν

2
‖∇eh‖20 +

β

2
‖IHeh‖20 +

µ

2
‖∇ · eh‖20 ≤ L‖eh‖20(3.18)

+ k‖τ2
h‖20 +

β

2
c20‖u−wh‖20 +

(
(1− µ)

ĉP
ν

+
µ

2L

)
‖τ 1

h‖2−1+µ.

Now we bound

L‖eh‖20 ≤ 2L‖IHeh‖20 + 2L‖(I − IH)eh‖20.

Since we are assuming that β ≥ 8L we have that β/2− 2L ≥ β/4, so that taking into
account that 1 + µ ≥ 1 and (µ/2)‖∇ · eh‖ ≥ 0 we get

d

dt
‖eh‖20 + ν‖∇eh‖20 − 4L‖(I − IH)eh‖20 +

β

2
‖IHeh‖20 ≤(3.19)

2k‖τ2
h‖20 + βc20‖u−wh‖20 +

(
(1− µ)

2ĉP
ν

+
µ

L

)
‖τ 1

h‖2−1+µ.

For the second and third terms on the left-hand side above, applying (2.20) to the
latter, we write

ν‖∇eh‖20 − 4L‖(I − IH)eh‖20 ≥ ν‖∇eh‖20 − 4Lc2IH
2‖∇eh‖20 ≥

ν

2
‖∇eh‖20,(3.20)

whenever

(3.21) H ≤ ν1/2

(8L)1/2cI
.

Therefore, for the last three terms on the left-hand side of (3.19) we have

(3.22) ν‖∇eh‖20 +
β

2
‖IHeh‖20 − 4L‖(I − IH)eh‖20 ≥

ν

2
‖∇eh‖20 +

β

2
‖IHeh‖20.

Now, applying (2.20) again to bound below the right-hand side above we have that

ν

2
‖∇eh‖20 +

β

2
‖IHeh‖20 ≥

ν

2
c−2
I H−2‖(I − IH)eh‖20 +

β

2
‖IHeh‖20(3.23)

≥ γ(‖IHeh‖20 + ‖(I − IH)eh‖20),

where

(3.24) γ = min

{
ν

2
c−2
I H−2,

β

2

}
.
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Finally, since γ(‖IHeh‖20+‖(I−IH)eh‖20) ≥ (γ/2)‖eh‖20, from (3.19), (3.22) and (3.23)
it follows that

d

dt
‖eh‖20 +

γ

2
‖eh‖20 ≤ 2k‖τ2

h‖20 + βc20‖u−wh‖20 +

(
(1− µ)

2ĉP
ν

+
µ

L

)
‖τ 1

h‖2−1+µ,

from which we reach (3.6).

We now obtain the error bounds of the standard Galerkin method (case µ = 0).

Theorem 3.2. Assume that the solution of (1.1) satisfies that u ∈ L∞(Hs(Ω)d),
p ∈ L∞(Hs−1(Ω)/R), ut ∈ L∞(Hmax(2,s−1)(Ω)d) and pt ∈ L∞(Hmax(1,s−2)(Ω)/R)
for s ≥ 2. Let uh be the finite element approximation defined in (3.3) with µ = 0.
Then, if β ≥ 8L and H satisfies condition (3.21) the following bound holds for t ≥ 0
and 2 ≤ r ≤ s,

‖u(t)− uh(t)‖0 ≤e−γt/2‖uh(0)− u(0)‖20
+ C

(
max

0≤τ≤t

(
(β/γ)1/2 + (γν)−1/2K0(u, p, |Ω|)

)
Nr(u, p)

+ (γν)−1/2 max
0≤τ≤t

|Ω|(1+r̂−r)/dNr̂(ut, pt)
)
hr,

where γ is defined in (3.24), K0(u, p, |Ω|) is defined in (3.28) below and r̂ = r − 1 if
r ≥ 3 and Ω is of class C3 and r̂ = r otherwise.

Proof. Following [6] we compare uh with sh, where sh satisfies (2.8) for which we
apply Lemma 3.1 with wh = sh. To bound the norms ‖sh‖∞ and ‖∇sh‖L2d/(d−1) in
(3.14) we apply (3.30) and (3.31).

We observe that equation (3.5) holds with µ = 0 and τ 2
h = 0 and

(τ 1
h,ϕh) = (ut − ṡh,ϕh) + bh(u,u,ϕh)− bh(sh, sh,ϕh), ∀ϕh ∈ Vh,r.

Then from (3.6) we get

‖eh(t)‖20 ≤ e−γt/2‖eh(0)‖20 +

∫ t

0

e−γ(t−s)/2 2ĉP
ν
‖τ 1

h‖2−1 ds

+

∫ t

0

e−γ(t−s)/2βc20‖u(s)−wh(s)‖20 ds.

Consequently,

‖eh(t)‖20 ≤e−γt/2‖eh(0)‖20 +
4ĉP
νγ

max
0≤τ≤t

‖τh(τ)‖2−1 + 2c20
β

γ
max

0≤τ≤t
‖u(τ)− sh(τ)‖20.

To bound the last term on the right-hand side of above we apply (2.9) to get

max
0≤τ≤t

‖u(τ)− sh(τ)‖20 ≤ Ch2r max
0≤τ≤t

Nr(u(τ), p(τ)).

For the truncation error, applying (2.12) we can bound

‖ut − ṡh‖−1 ≤ ChrNr−1(ut, pt),

or, in case we use the mini-element or the boundary is not of class C3, applying (2.9)
again we get

‖ut − ṡh‖−1 ≤ C|Ω|1/dhrNr(ut, pt).



ERROR ESTIMATES FOR A FEM APPLIED TO A DOWNSCALING DA ALGORITHM 11

Also, applying Lemma 3.6 below we have

sup
‖ϕ‖1=1

|bh(u,u,ϕ)− bh(sh, sh,ϕ)| ≤ K0(u, p, |Ω|)‖u− sh‖0,

so that we conclude the proof by applying again (2.9).

We observe from Theorem 3.2 that the rate of convergence of the method is
optimal O(hs) and, as in [37], we have obtained uniform in time error estimates.
In the following theorem we bound the error of the Galerkin method with grad-div
stabilization (case µ > 0). Comparing with Theorem 3.2 we show that adding grad-
div stabilization allows to remove the dependence of the error constants on inverse
powers of the viscosity ν.

Theorem 3.3. Assume that the solution of (1.1) satisfies that u ∈ L∞(Hs(Ω)d)∩
W 1,∞(Ω)d, p ∈ L∞(Hs−1(Ω)/R), ut ∈ L∞(Hs−1(Ω)d) for s ≥ 2. Let uh be the finite
element approximation defined in (3.3) with grad-div stabilization (µ 6= 0). Then,
if β ≥ 8L and H satisfies condition (3.21) the following bound holds for t ≥ 0 and
2 ≤ r ≤ s,

‖u(t)− uh(t)‖0 ≤e−γt/2‖uh(0)− u(0)‖20

+
C

L1/2
hr−1 max

0≤τ≤t

((
β1/2h+ µ1/2 +

K1(u, |Ω|)
L1/2

)
‖u‖r

+
1

L1/2
‖ut‖r−1 +

1

µ1/2
‖p‖Hr−1/R)

)
,

where γ is defined in (3.24) and K1(u, |Ω|) is defined in (3.29) below.

Proof. Following [15], [16] we compare uh with smh , where smh satisfies (2.13). We
first observe that the norms in (3.15) are bounded since for ‖smh ‖∞ we apply (3.32)
and applying (2.15) ‖∇smh ‖∞ ≤ C‖∇u‖∞.

Then, we apply Lemma 3.1 with wh = smh . We observe that (3.5) holds with

(τ 1
h,ϕh) = (u̇− ṡmh ,ϕh) + bh(u,u,ϕh)− bh(smh , s

m
h ,ϕh), ∀ϕh ∈ Vh,r,

and
(τ 2
h,∇ ·ϕh) = (πhp− p,∇ ·ϕh) + µ(∇ · (u− smh ),∇ ·ϕh)

and then from (3.6) we get

‖eh(t)‖20 ≤ e−γt/2‖eh(0)‖20 +

∫ t

0

e−γ(t−s)/2 ‖τ 1
h‖20
L

ds

+

∫ t

0

e−γ(t−s)/2
(
βc20‖u(s)− smh (s)‖20 +

2

µ
‖τ2
h‖20
)
ds.

Consequently,

‖eh(t)‖20 ≤ e−γt/2‖eh(0)‖20 +
2

γL
max

0≤τ≤t
‖τ1
h(τ)‖20+2c20

β

γ
max

0≤τ≤t
‖u(τ)− smh (τ)‖20

+
4

µγ
max

0≤τ≤t
‖τ 2

h(τ)‖20.

From (3.21) and (3.24) and taking into account that we are assuming β ≥ 8L we get
1/γ ≤ max (2/β, 1/(4L)) = 1/(4L) and β/γ ≤ max (2, β/(4L)) = β/(4L). Then, it
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follows that

‖eh(t)‖20 ≤ e−γt/2‖eh(0)‖20 +
1

2L2
max

0≤τ≤t
‖τ1
h(τ)‖20 +

β

2L
c20 max

0≤τ≤t
‖u(τ)− smh (τ)‖20

+
1

µL
max

0≤τ≤t
‖τ 2

h(τ)‖20.(3.25)

To bound the second term on the right-hand side of (3.25) we apply (2.14) to get

max
0≤τ≤t

‖u(τ)− sh(τ)‖20 ≤ Ch2r max
0≤τ≤t

‖u(τ)‖2r.

For the first term in the truncation error τ 1
h we apply (2.14) again to get

max
0≤τ≤t

‖ut(τ)− ṡh(τ)‖20 ≤ Ch2(r−1) max
0≤τ≤t

‖ut(τ)‖2r−1.

For the second term in the truncation error τ 1
h, applying Lemma 3.6 below we have

sup
‖ϕ‖0=1

|bh(u,u,ϕ)− bh(smh , s
m
h ,ϕ)| ≤ K1(u, |Ω|)‖u− smh ‖1 ≤ CK1(u, |Ω|)hr−1‖u‖r,

where in the last inequality we have applied (2.14). Finally, from (2.16) and (2.14)
we obtain

‖τ 2
h‖0 ≤ Chr−1‖p‖Hr−1/R + Cµhr−1‖u‖r,

which concludes the proof.

Remark 3.4. Some works in the literature [34], [37], use β(IH(uh − u),ϕh) as
nudging term instead of the one in (3.1), which is also used in [40]. Using (3.1) in the
present paper is essential for the error analysis of the method. In the case where IH
is the orthogonal projection in L2, since β(IH(uh − u),ϕh) = β(IH(uh − u), IHϕh)
the analysis presented above obviously covers both nudging terms.

Remark 3.5. By adding +µ(∇·sh,∇·ϕ) to the left hand side of the first equation
in (2.8), and repeating the arguments in the proof of Theorem 3.2 (with obvious
changes), one can obtain an O(hs) error bound also when µ > 0, but where, as
in Theorem 3.2 and opposed to Theorem 3.3, error constants depend on inverse powers
of ν and, hence, are useful in practice only when ν is not too small (see Fig. 2 below).

Lemma 3.6. The following bounds hold

sup
‖ϕ‖1=1

|bh(u,u,ϕ)− bh(sh, sh,ϕ)| ≤ K0(u, p, |Ω|)‖u− sh‖0,(3.26)

sup
‖ϕ‖0=0

|bh(u,u,ϕ)− bh(smh , s
m
h ,ϕ)| ≤ K1(u, |Ω|)‖u− smh ‖1,(3.27)

where
(3.28)

K0(u, p, |Ω|) = C
(
K1(u, |Ω|) +N1(u, p)1/2

(
Nd−1(u, p) + |Ω|(3−d)/dN2(u, p)

)1/2)
,

(3.29) K1(u, |Ω|) = C
(

(‖u‖d−2‖u‖2)1/2 + |Ω|(3−d)/(2d)(‖u‖1‖u‖2)1/2
)
,

and Nj(u, p) is the quantity in (2.10).
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Proof. Applying [17, Lemma 5] we have

|bh(u,u,ϕ)− bh(sh, sh,ϕ)| ≤C
(
‖∇u‖L2d/(d−1) + ‖∇sh‖L2d/(d−1)

)
‖u− sh‖0‖ϕ‖L2d

+
(
‖u‖∞ + ‖sh‖∞

)
‖u− sh‖0‖∇ϕ‖0.

To bound ‖∇u‖L2d/(d−1) and ‖u‖∞ we apply (2.2) and (2.3), respectively, and ap-
plying Sobolev’s inequality (2.1) we have ‖ϕ‖L2d ≤ c1|Ω|(3−d)/(2d)‖ϕ‖1. The proof
of (3.26) is finished by applying Lemma 3.7 below.

To prove (3.27), we replace sh by smh in the arguments above, and use the skew-
symmetric property of b to interchange the roles of ϕ and u − sh. We finish by
applying Lemma 3.8 below.

Lemma 3.7. There exist a positive constant C0 such that the following bounds
hold

‖sh‖∞ ≤ C0

(
(‖u‖d−2‖u‖2)1/2 +

(
N1(u, p)Nd−1(u, p)

)1/2)
(3.30)

‖∇sh‖L2d/(d−1) ≤ C0

(
N1(u, p)N2(u, p)

)1/2
(3.31)

Proof. For the L∞ bound, applying inverse inequality (2.17), we write

‖sh‖∞ ≤ C‖Ih(u)‖∞+‖sh−Ih(u)‖∞ ≤ C‖u‖∞+cinvh
−d/2(‖sh−u‖0+‖u−Ih(u)‖0

)
,

an apply (2.3) to bound ‖u‖∞. In the case d = 2 we have

‖u− Ih(u)‖0 ≤ Ch‖u‖1 ≤ Ch(‖u‖0‖u‖2)1/2 = Chd/2(‖u‖d−2‖u‖2)1/2,

where we have applied (2.20) for H = h and also ‖u− Ih(u)‖0 ≤ Ch2‖u‖2. By (2.9)

‖sh − u‖0 ≤ CN1(u, p)h.

In the case d = 3,

‖u− Ih(u)‖0 ≤ Ch3/2(‖u‖1‖u‖2)1/2 = Chd/2(‖u‖d−2‖u‖2)1/2.

and

‖sh − u‖0 ≤ Chd/2(N1(u, p)N2(u, p))1/2.

For ‖∇sh‖L2d/(d−1) , since ‖∇sh‖Lq ≤ C(‖∇u‖Lq + ν−1‖p‖Lq ), for q = 2,∞ [12], by
the Riesz-Thorin interpolation theorem and applying (2.2)

‖∇sh‖L2d/(d−1) ≤ C(‖∇u‖L2d/(d−1) + ν−1‖p‖L2d/(d−1)

≤ C((‖u‖1‖u‖2)1/2 + ν−1(‖p‖0‖p‖1)1/2) ≤ C(N1(u, p)N2(u, p))
1/2

.

Lemma 3.8. There exist a positive constant C1 such that the following bounds
hold

‖smh ‖∞ ≤ C1(‖u‖d−2‖u‖2)1/2,(3.32)

‖∇smh ‖L2d/(d−1) ≤ C1

(
‖u‖1‖u‖2

)1/2
.(3.33)

Proof. We argue exactly as in the proof of Lemma 3.7 replacing (2.9) by (2.14).
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Remark 3.9. In the case µ = 0, according to Lemma 3.7, we have that β ≥ 8L
when wh = sh if for t ≥ 0,
(3.34)

β ≥ 8

(
2

(
(ĉ1C0)2N1(u, p)N2(u, p)

)d/3
ν(2d−3)/3

+ C2
0

‖u‖d−2‖u‖2 +N1(u, p)Nd−1(u, p)

ν

)
,

with C0 the constant in Lemma 3.7. In case µ 6= 0 from (2.15) and (3.32) we have
that β ≥ 8L when wh = smh if for t ≥ 0

(3.35) β ≥ 16

(
C1‖∇u‖∞ + C2

1

‖u‖d−2‖u‖2
4µ

)
.

3.1. The Lagrange interpolant. In this section we consider when IHu =
ILaH u. With the help of the following lemmas we will show that the analogous of
Theorems 3.2 and 3.3 (Theorem 3.12 below) also holds in this case.

Lemma 3.10. Let vh ∈ Xh,r then the following bound holds

(3.36) ‖vh − ILaH vh‖0 ≤ cLaH‖∇vh‖0,

where

(3.37) cLa = C (H/h)
d(p−2)

2p ,

where C is a generic constant and p = 3 if d = 2 and p = 4 if d = 3.

Proof. For vh ∈ Xh,r we write
(3.38)

‖vh − ILaH vh‖20 =
∑
K∈TH

‖vh − ILaH vh‖2L2(K) ≤ C
∑
K∈TH

H
d(p−2)

p ‖vh − ILaH vh‖2Lp(K),

the last inequality being a consequence of Hölder’s inequality and of the fact that
|K| ≤ CHd. Applying (2.18) and (2.17) we get

‖vh − ILaH vh‖Lp(K) ≤ cintH‖∇vh‖Lp(K) ≤ cintcinvH‖∇vh‖L2(K)h
− d(p−2)

2p ,

so that inserting the above inequality into (3.38) we reach (3.36).

Lemma 3.11. Let sh be the Stokes projection defined in (2.8). Then the following
bound holds

(3.39) ‖(I − ILaH )(sh − u)‖0 ≤ CH2hr−2‖u‖r,

where C is a generic constant.

Proof. We write

(I − ILaH )(sh − u) = (I − ILaH )(sh − ILah u) + (I − ILaH )(ILah u− u)

Applying (3.36) and (3.37) to vh = sh − ILah u and then (2.9) and (2.18) we get

‖(I − ILaH )(sh − ILah u)‖0 ≤ C (H/h)
d(p−2)

2p H‖∇(sh − ILah u)‖0

≤ C (H/h)
d(p−2)

2p Hhr−1‖u‖r ≤ CH2hr−2‖u‖r,(3.40)
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where in the last inequality we have bounded (H/h)d(p−2)/(2p) by H/h. For the other
term we argue as in (3.38) and apply (2.18) to get

‖(I − ILaH )(ILah u− u)‖20 ≤ CcintH
2H

d(p−2)
p

∑
K∈τH

‖∇(ILah u− u)‖2Lp(K)

≤ CcintH
2H

d(p−2)
p h2(r−2)

∑
K∈τH

|u|2r−1,p,K .(3.41)

Applying (2.1) with s = 1 and taking into account CHd ≤ |K| ≤ CHd we get

‖u‖Lp(K) ≤ CH1− d(p−2)
2p ‖u‖1,K , from which

|u|2r−1,p,K ≤ CH
2− d(p−2)

p ‖u‖2r,2,K .

Inserting the above inequality into (3.41) we reach

‖(I − ILaH )(ILah u− u)‖0 ≤ CH2hr−2‖u‖r.(3.42)

Finally, (3.39) follows from (3.40) and (3.42).

Theorem 3.12. In the same conditions of Theorem 3.2 (resp. Theorem 3.3), if
IH is replaced by ILaH , H satisfies condition (3.21) with cI replaced by cLa defined in
(3.37), and H/h remains bounded, then, the statement of Theorem 3.2 (resp. Theo-
rem 3.3) holds with γ defined in (3.24) with cI replaced by cLa.

Proof. The proof of the theorem can be obtained arguing exactly as in the proof
of Theorem 3.2 (resp. 3.3) with only two differences that we now state. We first
observe that assuming H/h remains bounded we can apply (3.36) instead of (2.20)
in (3.20) and (3.23). We also observe that since (2.19) does not hold for IH = I laH we
cannot apply (3.17). Instead, adding and subtracting u− sh and using (3.39) we get

β|(IHu− IHsh, IHeh)| ≤ β|(IH − I)(u− sh), IHeh)|+ β|(u− sh, IHeh)|
≤ β(CH2hr−2‖u‖r + ‖u− sh‖0)‖IHeh‖0 ≤ β(Chr‖u‖r + ‖u− sh‖0)‖IHeh‖0,

where in the last inequality we have applied that since H/h is bounded then H ≤ Ch.
Then we replace (3.17) in the proof of Lemma 3.1 and consequently in the proof of
Theorem 3.2 (resp. 3.3). by the following inequality

β|(IHu− IHsh, IHeh)| ≤ β

2
(Chr‖u‖r + ‖u− sh‖0)2 +

β

2
‖IHeh‖20

and we can conclude applying the same arguments.

4. Numerical experiments. We check the results of the previous section with
some numerical experiments. As it is customary for these purposes, we use an example
with a known solution. In particular, we consider the Navier-Stokes equations in
Ω = [0, 1]2, with the forcing term f chosen so that the solution u and p are given by

u(x, y, t) =
6 + 4 cos(4t)

10

[
8 sin2(πx)(2y(1− y)(1− 2y)
−8π sin(2 ∗ πx)(y(1− y))2

]
(4.1)

p(x, y, t) =
6 + 4 cos(4t)

10
sin(πx) cos(πy),(4.2)

which means that f = ∂tu − ν∆u + (u · ∇)u + ∇p with the above expressions
of u and p and a value of ν that will be specified for every experiment. For the
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spatial discretization we used P2/P1 elements on a regular triangulation with SW-NE
diagonals, with the same number of subdivisions on each coordinate direction. For
for coarse mesh interpolation we take piecewise constants. The time integration was
done with an implicit/explicit (IMEX) method based on the second order backward
differentiation formula (BDF), where, to avoid solving nonlinear steady problems at
each step, linear extrapolation of the form bh(2uh(t −∆t) − uh(t − 2∆t),uh(t),ϕh)
was used in the convection term, where ∆t is the time step, except in the first step
where bh(uh(t−∆t),uh(t),ϕh) was used. The time step was chosen so that the error
arising from the spatial discretization was dominant. To check that this was the case,
we made sure that results were not essentially altered if recomputed with a smaller
∆t. For h = 1/12, 1/18, 1/24, 1/36 and 1/48, the values of ∆t used were, respectively,
∆t = 1/160, 1/160, 1/320, 1/320 and 1/640. Unless stated otherwise, in what follows
the initial condition was set to uh = 0 and p = 0, so that there is an O(1) error at
time t = 0.

We first check that there is no upper bound on the nudging parameter β. The
left plot in Fig. 1 shows the velocity errors in L2 vs time for different values of β
for ν = 10−6, including β = 100. It can be seen a clear difference between β = 0,
where the initial errors do not decay with time, and β > 0 where they do, and for the
four largest values of β shown, they do so exponentially in time, until an asymptotic
regime is reached. We also notice that the results are little altered for β ≥ 10. In
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Fig. 1. Velocity errors vs time

view of (3.24), one may be temped to question the advantage of taking β ≥ ν(cIH)−2,
since the rate of decay of the initial errors, γ, is unaltered for larger values of β. If we
assume that cI is of order one, then, the value of ν(cIH)−2 in the present example is
unlikely to be larger than 10−5, so that Fig. 1 (and more examples in [34] and [40])
seems to suggest that there is some advantage in taking β ≥ ν(cIH)−2 if we want
a faster decay of the initial errors. Since this is in apparent contradiction with the
analysis in the previous section, we now propose an alternative explanation.

Let us consider for some integer k ≥ 2 the value r = ‖IH(u(0))‖0/(k‖u(0)‖0). If
we take the intial condtion uh = 0, then, by continuity there exist t0 > 0 such that

(4.3) ‖IH(eh(t)‖0 ≥ r‖eh(t)‖0, t ∈ [0, t0].
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Consequently, from (3.18) it follows that

d

dt
‖eh‖20+(βr2−2L)‖eh‖20 ≤ 2k‖τ2

h‖20+βc20‖u−wh‖20+

(
(1− µ)

2ĉP
ν

+ µL

)
‖τ 1

h‖2−1+µ,

for t ∈ [0, t0], which, for β > 2L/r2, could explain that initial errors decay faster when
larger values of β are taken. In Fig. 1 we also show the ratios ‖IH(eh)‖0/‖eh‖0. It
can be seen that although they became smaller as β is increased, they are sufficiently
away from zero to suggest that the analysis in the present section may explain the
faster rates of decay of the initial errors when larger values of β are taken.

In the reminder of this section we take β = 1. Since, as shown in Fig. 1, after
an initial decay, the errors show an oscillatory behaviour, in the examples below by
L2 errors we mean the maximum of errors ‖uh(t) − u(t)‖0 for values of t after the
asymptotic regime has shown itself.

We now check the rates of convergence proved in the present paper. In Fig. 2 we
show errors vs h for different values of the diffusion parameter ν and compare the cases
of positive µ (µ = 0.05) and µ = 0. The value of H is H = 3h and β is set to β = 1.
Results corresponding to the smallest value of ν are represented with discontinuous
lines in both plots so that they can be seen superimposed to those corresponding to
larger values of ν. Slopes of least squares fits to the results corresponding to each
value of ν are shown, so that the order of convergence can be checked. In both cases,
µ = 0.05 and µ = 0, O(h3) errors are obtained for large values of ν, which is what
Theorem 3.2 and Remark 3.5 predict. However, for smaller values of ν, while the
errors with positive µ become O(h2) and independent of ν, as Theorem 3.3 predicts,
for µ = 0 the method does not have convergent behaviour for the values of h shown
(presumably, the method will show convergence for h ≤ ν).
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Fig. 2. Velocity errors. Left, µ = 0.05 Right, µ = 0.

Finally, we check that the requirement H/h bounded is required for convergence
if Lagrange interpolants are used. In Fig. 3 we show velocity errors when h → 0 in
two different scenarios: h = H/3 (left) and H fixed to H = 0.25. We see that while
H = 3h, the method converge as predicted by Theorem 3.12 (the value of ν = 10−6

and that of µ = 0.05). If H is kept fixed, however, the method using the Lagrange
Interpolant does not exhibit convergent behaviour. We remark, however, that with
larger values of β or ν, convergence is not altered as much as in Fig. 3 when H/h
grows. Nevertheless, this example shows the risks of not keeping (H/h) bounded with
Lagrange interpolants.
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Fig. 3. Velocity errors. Left H = 3h. Right H = 0.25.

5. Conclusions. We have analyzed a semidiscretization in space by inf-sup sta-
ble mixed finite elements of a continuous downscaling data assimilation method for the
two and three-dimensional Navier-Stokes equations. The data assimilation method,
introduced in [7], combines observational data (measurements) on large spatial scales
or coarse mesh, IHu, with simulations in order to improve predictions of the physical
phenomenon being studied. We have considered the Galerkin method with and with-
out grad-div stabilization. Uniform error bounds in time have been obtained for the
approximation to velocity field, under standard assumptions in finite element analy-
sis. The order of convergence proved for the method without stabilization is optimal,
in the sense that it is the best that can be obtained with the finite element space
being used (i.e., errors of the same order as interpolation). For the Galerkin method
with grad-div stabilization error bounds in which the constants are independent on
inverse powers of the viscosity are proved. Convergence rates and dependence or in-
dependence of ν are corroborated in numerical experiments. As opposed to previous
works in the literature, our analysis also covers the case in which IHu is the standard
Lagrange interpolant, where we show that H/h must be kept bounded in order to get
convergence. Also, the upper bound on the nudging parameter assumed in previous
references is removed. The techniques of analysis used in the present paper allow to
improve the available error bounds for a closely-related finite element method in [34].
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