WEAK \mathcal{Z}-STRUCTURES AND ONE-RELATOR GROUPS

M. CÁRDENAS, F. F. LASHERAS, AND A. QUINTERO

Abstract

Motivated by the notion of boundary for hyperbolic and $C A T(0)$ groups, Bestvina [2] introduced the notion of a (weak) \mathcal{Z}-structure and (weak) \mathcal{Z}-boundary for a group G of type \mathcal{F} (i.e., having a finite $K(G, 1)$ complex), with implications concerning the Novikov conjecture for G. Since then, some classes of groups have been shown to admit a weak \mathcal{Z}-structure (see [15] for example), but the question whether or not every group of type \mathcal{F} admits such a structure remains open. In this paper, we show that every torsion free onerelator group admits a weak \mathcal{Z}-structure, by showing that they are all properly aspherical at infinity; moreover, in the 1-ended case the corresponding weak \mathcal{Z}-boundary has the shape of either a circle or a Hawaiian earring depending on whether the group is a virtually surface group or not. Finally, we extend this result to a wider class of groups still satisfying a Freiheitssatz property.

1. Introduction

We recall that a compact metrizable space W is a compactification of a (path connected) locally compact metrizable space X if it contains a homeomorphic copy $X \subset W$ as a dense open subset. Furthermore, we say that W is a \mathcal{Z}-compactification of X if $Z=W-X$ is a \mathcal{Z}-set in W, i.e., for every open set $U \subset W$ the inclusion $U-Z \hookrightarrow U$ is a homotopy equivalence; equivalently (if X is an ANR), there is a homotopy $H: W \longrightarrow W$ with $H_{0}=i d_{W}$ and $H_{t}(W) \subset X$ for all $t>0$. And in this case, we say that Z is a \mathcal{Z}-boundary for X. The model example is that in which W is a compact manifold and $Z \subseteq \partial W$ is a closed subset.

From now on all spaces will be ANRs; in fact, we will deal with (connected) locally finite CW-complexes.

In [2] Bestvina introduced the notion of \mathcal{Z}-structure and \mathcal{Z}-boundary for a group (of type \mathcal{F}) as an attempt to generalize the already existing notion of boundary for hyperbolic and $C A T(0)$ groups; namely,

Definition 1.1. A \mathcal{Z}-structure on a group G is a pair (W, Z) of spaces satisfying:
(1) W is a contractible ANR,
(2) Z is a \mathcal{Z}-set in W,
(3) $X=W-Z$ admits a proper, free and cocompact action by G, and
(4) (nullity condition) For any open cover of W, and any compact subset $K \subseteq$ X, all but finitely many translates of K lie in some element of the cover.
Observe that is not necessary that W be finite-dimensional, by [26, 17]. If only conditions (1)-(3) are satisfied, then (W, Z) is called a weak \mathcal{Z}-structure on G, and we refer to Z as a (weak) \mathcal{Z}-boundary for G.

[^0]An additional condition can be added to the above:
(5) The action of G on X can be extended to W.

If conditions (1)-(5) are satisfied, then (W, Z) is called a $\mathcal{E Z}$-structure on G. It was shown in [11] that the Novikov conjecture holds for any (torsion free) group admitting an $\mathcal{E} \mathcal{Z}$-structure. Examples of groups admitting an $\mathcal{E Z}$-structure are (torsion free) δ-hyperbolic and $C A T(0)$ groups, see $[3,2]$.

Although not stated explicitly, it follows that such a group G as in Definition 1.1 must be of type \mathcal{F} (see [15, Prop. 1.1]). The more conditions on a \mathcal{Z}-structure on a group the better; nonetheless, a weak \mathcal{Z}-boundary already carries significant information about the group and, when it exists, it is well-defined up to shape, and it is always a first step towards finding a stronger structure on it. The question whether or not every group of type \mathcal{F} admits a (weak) \mathcal{Z}-structure still remains open. In this paper, we give a positive answer to this question for a class of groups containing all torsion free one-relator groups. For this, we first use some previous work from [4, 21] to show that they are all properly aspherical at infinity, and then combine this with some recent work in [5] to characterize the corresponding boundary in the 1 -ended case. Our main results are Theorems 1.2 and 1.6 below.

Theorem 1.2. Every finitely generated, torsion free one-relator group G admits a weak \mathcal{Z}-structure. Moreover, if G is 1 -ended then the corresponding weak \mathcal{Z} boundary has the shape of either a circle or a Hawaiian earring depending on whether G is a virtually surface group or not.

Bestvina [2] already pointed out that the Baumslag-Solitar group $\left\langle x, t ; t^{-1} x t=\right.$ $\left.x^{2}\right\rangle$ admits a \mathcal{Z}-boundary homeomorphic to the Cantor-Hawaiian earring, which is shape equivalent to the ordinary Hawaiian earring (see [24] as a general reference for shape theory). It is worth mentioning that for the particular class of BaumslagSolitar groups a stronger $\mathcal{E Z}$-structure has been recently described in [18].

More generally, we may construct the following class \mathcal{C} of finitely presented groups starting off from one-relator group presentations as follows. Let G and H be finitely generated one-relator groups, and assume $\mathcal{P}=\langle X ; r\rangle$ and $\mathcal{Q}=\langle Y ; s\rangle$ are presentations of G and H with a single relation, respectively. Let $V \subset X$ and $W \subset Y$, together with a bijection $\eta: V \longrightarrow W$, be (possibly empty) subsets not containing all the generators involved in any of the relators of the corresponding presentation. We declare the corresponding amalgamated product $G *_{F} H$ associated with η (over a free group of rank $\operatorname{card}(V)=\operatorname{card}(W)$) to be in our class \mathcal{C} together with the obvious presentation for it obtained from \mathcal{P} and \mathcal{Q}. It seems natural to consider the class \mathcal{C} of all finitely generated one-relator groups together with those finitely presented groups which can be obtained by successive applications of the construction above, so that \mathcal{C} is closed under amalgamated products (over free subgroups) of the type just described. The group presentations obtained in this way still satisfy a Freiheitssatz property, see [21] for more details. Henceforth, we will refer to those groups as in \mathcal{C} as "generalized" one-relator groups.
Remark 1.3. The first interesting examples of groups in the class \mathcal{C} (other than onerelator groups and their free products) are those groups G given by a presentation of the form $\langle X ; r, s\rangle$, where r, s are cyclically reduced words so that $r \in F(Y)$, $Y \subsetneq X$, and $s \in F(X)-F(Y)$ misses at least one generator in Y which occurs in r. Indeed, one can obtain G as an amalgamated product $\langle Y ; r\rangle *_{F}\langle(X-Y) \cup Z ; s\rangle$
over a free group of rank $\operatorname{card}(Z)$, where $Z \subsetneq Y$ is the subset consisting of those generators in Y which occur in s.
Remark 1.4. From the above remark, one can see that Higman's group H, with presentation $\left\langle a, b, c, d ; a^{-2} b^{-1} a b, b^{-2} c^{-1} b c, c^{-2} d^{-1} c d, d^{-2} a^{-1} d a\right\rangle$, is in \mathcal{C}. Indeed, H can be expressed as an amalgamated product (of the type described above) of two copies of $\left\langle x, y, z ; x^{-2} y^{-1} x y, y^{-2} z^{-1} y z\right\rangle$ over a free subgroup of rank 2 (see [19]).
Remark 1.5. It was also shown in [21] that every finitely presented group G given by a staggered presentation \mathcal{P} is in \mathcal{C}. We recall that $\langle X ; R\rangle$ is defined to be a staggered presentation if there is a subset $X_{0} \subset X$ so that both R and X_{0} are linearly ordered in such a way that: (i) each relator $r \in R$ contains some $x \in X_{0}$; (ii) if r, r^{\prime} are relators with $r<r^{\prime}$, then r contains some $x \in X_{0}$ that precedes all elements of X_{0} occurring in r^{\prime}, and r^{\prime} contains some $y \in X_{0}$ that comes after all those occurring in r (see [22]).

Theorem 1.2 above together with the results in [21] yield the following generalization.

Theorem 1.6. Every torsion free, 1 -ended generalized one-relator group $G \in \mathcal{C}$ admits a weak \mathcal{Z}-structure. Moreover, the corresponding weak \mathcal{Z}-boundary has the shape of either a circle or a Hawaiian earring depending on whether G is a virtually surface group or not.

2. Preliminaries

Given a non-compact (strongly) locally finite CW-complex Y, a proper ray in Y is a proper map $\omega:[0, \infty) \longrightarrow Y$. Recall that a proper map is a map with the property that the inverse image of every compact subset is compact. We say that two proper rays ω, ω^{\prime} define the same end if their restrictions to the natural numbers $\left.\omega\right|_{\mathbb{N}},\left.\omega^{\prime}\right|_{\mathbb{N}}$ are properly homotopic. This equivalence relation gives rise to the notion of end determined by ω as the corresponding equivalence class, as well as the space of ends $\mathcal{E}(Y)$ of Y as a compact totally disconnected metrizable space (see $[1,13]$). The CW-complex Y is semistable at the end determined by ω if any other proper ray defining the same end is in fact properly homotopic to ω; equivalently, if the fundamental pro-group $\operatorname{pro}-\pi_{1}(Y, \omega)$ is pro-isomorphic to a tower of groups with surjective bonding homomorphisms (see [13, Prop. 16.1.2]). Recall that the homotopy pro-groups pro $-\pi_{n}(Y, \omega)$ are represented by the inverse sequences (tower) of groups

$$
\pi_{n}(Y, \omega(0)) \stackrel{\phi_{1}}{\leftarrow} \pi_{n}\left(Y-C_{1}, \omega\left(t_{1}\right)\right) \stackrel{\phi_{2}}{\longleftarrow} \pi_{n}\left(Y-C_{2}, \omega\left(t_{2}\right)\right) \longleftarrow \cdots
$$

where $C_{1} \subset C_{2} \subset \cdots \subset Y$ is a filtration of Y by compact subspaces, $\omega\left(\left[t_{i}, \infty\right)\right) \subset$ $Y-C_{i}$ and the bonding homomorphisms ϕ_{i} are induced by the inclusions and basepoint-change isomorphisms. One can show the independence with respect to the filtration. Also, properly homotopic base rays yield pro-isomorphic homotopy pro-groups pro $-\pi_{n}$, for all n. If Y is semistable at each end then we will simply say that Y is semistable at infinity, and in this case two proper rays representing the same end yield the same (up to pro-isomorphism) homotopy pro-groups pro $-\pi_{n}$. We refer to $[13,24]$ for more details.

Given a CW-complex X, with $\pi_{1}(X) \cong G$, we will denote by \widetilde{X} the universal cover of X, constructed as prescribed in ([13], $\S 3.2$), so that G is acting freely on
the CW-complex \widetilde{X} via a cell-permuting left action with $G \backslash \widetilde{X}=X$. The number of ends of an (infinite) finitely generated group G represents the number of ends of the (strongly) locally finite CW-complex \widetilde{X}^{1}, for some (equivalently any) CWcomplex X with $\pi_{1}(X) \cong G$ and with finite 1-skeleton, which is either 1,2 or ∞ (finite groups have 0 ends $[13,27]$). If G is finitely presented, then G is semistable at infinity if the (strongly) locally finite CW-complex \widetilde{X}^{2} is so, for some (equivalently, any) CW-complex X with $\pi_{1}(X) \cong G$ and with finite 2 -skeleton. Observe that any finite-dimensional locally finite CW-complex is strongly locally finite, see [13].

The following result will be crucial for the proof of the main result in this paper.
Proposition 2.1. Let $\mathcal{P}=\langle X ; r\rangle$ be a finite presentation of a torsion free group with a single (cyclically reduced) relator $r \in F(X)$, and consider the associated 2-dimensional $C W$-complex $K_{\mathcal{P}}$. Then, the (contractible) universal cover $\widetilde{K}_{\mathcal{P}}$ is properly aspherical at infinity, i.e., for any choice of base ray, the homotopy progroups pro $-\pi_{n}\left(\widetilde{K}_{\mathcal{P}}\right)=0$ are pro-trivial for $n \geq 2$. Furthermore, the fundamental pro-group pro $-\pi_{1}\left(\widetilde{K}_{\mathcal{P}}\right)$ is pro-(finitely generated free).

Observe that the universal cover $\widetilde{K}_{\mathcal{P}}$ above is already known to be contractible (see [8]) and semistable at infinity (see [25]), and hence its homotopy pro-groups do not depend (up to pro-isomorphism) on the choice of the base ray.

Remark 2.2. Recall that the (finite) 2-dimensional CW-complex $K_{\mathcal{P}}$ associated to \mathcal{P} is constructed as follows. The 0 -skeleton consists of a single vertex and the 1-skeleton $K_{\mathcal{P}}^{1}$ consists of a bouquet of circles, one for each element of the basis $x_{i} \in X$, all of them sharing the single vertex in $K_{\mathcal{P}}$. Finally $K_{\mathcal{P}}$ is obtained from $K_{\mathcal{P}}^{1}$ by attaching a 2 -cell d via a PL map $S^{1} \longrightarrow K_{\mathcal{P}}^{1}$ which spells out the single relator r. Note that every lift in the universal cover $\tilde{d} \subset \widetilde{K}_{\mathcal{P}}$ of the 2-cell $d \subset K_{\mathcal{P}}$ is a disk as r is a cyclically reduced word. Moreover, by the Magnus' Freiheitssatz (see $[22,23]$) every subcomplex of the 1 -skeleton $K_{\mathcal{D}}^{1}$ not containing all the 1-cells involved in the relator r lifts in the universal cover $\widetilde{K}_{\mathcal{P}}$ to a disjoint union of trees.

Proposition 2.1 follows immediately from the following lemma, which is an enhancement of [4, Prop. 2.7].

Lemma 2.3. Let $\mathcal{P}=\langle X ; r\rangle$ be a finite, torsion free group presentation with a single (cyclically reduced) relator $r \in F(X)$, and consider the associated 2-dimensional $C W$-complex $K_{\mathcal{P}}$. Then, the universal cover $\widetilde{K}_{\mathcal{P}}$ is proper homotopy equivalent to another 2-dimensional CW-complex $\widehat{K}_{\mathcal{P}}$ which has a filtration $\widehat{C}_{1} \subset \widehat{C}_{2} \subset \cdots \subset \widehat{K}_{\mathcal{P}}$ by finite contractible subcomplexes satisfying (for any choice of base ray):
(a) The tower $\{1\} \leftarrow \pi_{1}\left(\widehat{K}_{\mathcal{P}}-\widehat{C}_{1}\right) \leftarrow \pi_{1}\left(\widehat{K}_{\mathcal{P}}-\widehat{C}_{2}\right) \leftarrow \cdots$ consists of finitely generated free groups of increasing rank, with the bonding maps being the obvious projections, and
(b) The tower $\{1\} \leftarrow \pi_{n}\left(\widehat{K}_{\mathcal{P}}-\widehat{C}_{1}\right) \leftarrow \pi_{n}\left(\widehat{K}_{\mathcal{P}}-\widehat{C}_{2}\right) \leftarrow \cdots$ is the trivial tower, $n \geq 2$.

Remark 2.4. In fact, the proper homotopy equivalence in the statement of Lemma 2.3 can be replaced by a "strong" proper homotopy equivalence, i.e., a (possibly infinite) sequence of internal collapses and/or expansions, carried out in a proper fashion. See [4] for more details.

Proof. Indeed, the proof of this lemma is that of [4, Prop.2.7], only that now we extend it, by taking a closer look, so that it covers part (b) here. The proof there goes by induction on the length of the relator $r \in F(X)$ in such a presentation $\mathcal{P}=$ $\langle X ; r\rangle$. It consists of a simultaneous double induction argument keeping track of two possible cases, depending on whether there is a generator in X whose exponent sum in r is zero or not, see $\S 3$ and $\S 4$ in [4] respectively.

In the first case ($\S 3$ in [4]), one shows that the induction lies on the fact that $K_{\mathcal{P}}^{\prime}$, an intermediate cover of the CW-complex $K_{\mathcal{P}}$, is made out, up to homotopy, of blocks $K_{\mathcal{P}^{\prime}}$, where \mathcal{P}^{\prime} satisfies the inductive hypothesis. In fact, its universal cover $\widetilde{K_{\mathcal{P}^{\prime}}}$ is being slightly altered (within their proper homotopy type) to a CWcomplexes $\widehat{K}_{\mathcal{P}^{\prime}}$ so that their copies can be assembled together resulting into a new CW-complex $\widehat{K}_{\mathcal{P}}$ strongly proper homotopy equivalent to the universal cover of $K_{\mathcal{P}}$. This new CW-complex $\widehat{K}_{\mathcal{P}}$ consists of copies of the various CW-complexes $\widehat{K}_{\mathcal{P}^{\prime}}$ above, glued together along trees (which were already present in the universal cover of $K_{\mathcal{P}}$, that correspond to the intersections of the different copies of $K_{\mathcal{P}^{\prime}}$ and whose existence is a consequence of the Magnus' Freiheitssatz, see Remark 2.2.

The desired filtration for $\widehat{K}_{\mathcal{P}}$ is then the result of assembling the filtrations we encounter on the various complexes $\widehat{K}_{\mathcal{P}^{\prime}}$, which already have one by induction, as we grow towards infinity. This can be carefully done in such a way that if two of these CW-complexes $\widehat{K}_{\mathcal{P}^{\prime}}$ meet along a tree inside $\widehat{K}_{\mathcal{P}}$ then each of the members of the corresponding filtration for each of them intersects that tree in a connected subtree.

Finally, given a compact subset $\widehat{C}_{n} \subset \widehat{K}_{\mathcal{P}}$ from this resulting filtration, the generalized van-Kampen theorem yields that the fundamental group $\pi_{1}\left(\widehat{K}_{\mathcal{P}}-\widehat{C}_{n}\right)$ is the free product of a free group together with the various $\pi_{1}\left(\widehat{K}_{\mathcal{P}^{\prime}}-\widehat{C}_{n}^{\prime}\right)$ (finitely generated free by induction), where $\widehat{C}_{n}^{\prime}=\widehat{K}_{\mathcal{P}^{\prime}} \cap \widehat{C}_{n} \neq \emptyset$.

The novelty here consists of adding part (b) of the statement to the induction hypothesis, and observing that each neighborhood of infinity of the form $U=$ $\widehat{K}_{\mathcal{P}}-\widehat{C}_{n}$ is an assembly of the various neighborhoods of infinity $U^{\prime}=\widehat{K}_{\mathcal{P}^{\prime}}-\widehat{C}_{n}^{\prime}$ (with $\widehat{C}_{n}^{\prime}=\widehat{K}_{\mathcal{P}^{\prime}} \cap \widehat{C}_{n} \neq \emptyset$) together with all those (contractible) copies $\widehat{K}_{\mathcal{P}^{\prime}} \subset \widehat{K}_{\mathcal{P}}$ which do not intersect \widehat{C}_{n}. Moreover, if two of the neighborhoods of infinity U^{\prime} (corresponding to two different copies of $\widehat{K}_{\mathcal{P}^{\prime}}$) intersect inside $\widehat{K}_{\mathcal{P}}$, then they do it along the various components of $T-\widehat{C}_{n}^{\prime}$, where $T \subset \widehat{K}_{\mathcal{P}}$ is the corresponding tree along which those copies of $\widehat{K}_{\mathcal{P}^{\prime}}$ are glued together inside $\widehat{K}_{\mathcal{P}}$. This way, the universal cover \widetilde{U} of $U=\widehat{K}_{\mathcal{P}}-\widehat{C}_{n}$ is the result of putting together the universal covers \widetilde{U}^{\prime} of the various neighborhoods of infinity $U^{\prime}=\widehat{K}_{\mathcal{P}^{\prime}}-\widehat{C}_{n}^{\prime}$ glued along connected subtrees, together with all those copies $\widehat{K}_{\mathcal{P}^{\prime}} \subset \widehat{K}_{\mathcal{P}}$ which do not intersect \widehat{C}_{n}, each one glued to the rest along a copy of the corresponding tree from the construction indicated above. Thus, the induction hypothesis guarantees that each \widetilde{U}^{\prime} is a contractible CW-complex and hence part (b) follows for $\widehat{K}_{\mathcal{P}}$.

As for the second case ($\S 4$ in [4]), in which there is no generator in X whose exponent sum in r is zero, the proof goes somehow the other way around. An auxiliary CW-complex $K_{\mathcal{P}^{\prime}}$ is built. For such $K_{\mathcal{P}^{\prime}}$ the induction hypothesis applies since it has a generator whose exponent sum is zero in the presentation \mathcal{P}^{\prime}, which lies under the inductive hypothesis for the previous case ($\S 3$ in [4]). As above, its universal cover can be slightly altered (within its proper homotopy type) to a new CW-complex $\widehat{K}_{\mathcal{P}^{\prime}}$ which is made out of blocks, corresponding to copies of
our candidates for the CW-complex $\widehat{K}_{\mathcal{P}}$ in question, glued together along copies of the real line. Given an appropriate filtration $\widehat{C}_{n}^{\prime} \subset \widehat{K}_{\mathcal{P}^{\prime}}$ by compact subsets (provided by the induction hypothesis) satisfying the required properties for $\widehat{K}_{\mathcal{P}^{\prime}}$, one can get the desired filtration on each copy $\widehat{K}_{\mathcal{P}}$ inside $\widehat{K}_{\mathcal{P}^{\prime}}$ simply by considering the intersections $\widehat{C}_{n}=\widehat{K}_{\mathcal{P}} \cap \widehat{C}_{n}^{\prime}$. Observe that this procedure may yield different choices for the desired filtration on each of those copies of $\widehat{K}_{\mathcal{P}}$, but they all satisfy the required properties (a)-(b). Indeed, by induction, each neighborhood of infinity in $\widehat{K}_{\mathcal{P}^{\prime}}$ of the form $U^{\prime}=\widehat{K}_{\mathcal{P}^{\prime}}-\widehat{C}_{n}^{\prime}$ has finitely generated free fundamental group and trivial higher homotopy groups. From here, the argument is similar to the one given above, concluding that the corresponding neighborhoods of infinity $U=\widehat{K}_{\mathcal{P}}-\widehat{C}_{n}$ in each copy $\widehat{K}_{\mathcal{P}}$ inside $\widehat{K}_{\mathcal{P}^{\prime}}$ behave in the same way (as each $\pi_{1}(U)$ is now a free factor of $\left.\pi_{1}\left(U^{\prime}\right)\right)$.

A tower of groups $F \equiv\left(\{1\} \longleftarrow F_{1} \longleftarrow F_{2} \longleftarrow \cdots\right)$ consisting of finitely generated free groups of non-decreasing rank and the obvious projections as bonding maps will be said to be "telescopic" (or of telescopic type). One can always associate to any given telescopic tower a 1-ended locally-finite (simply connected) 2-dimensional CW-complex $Y_{m}, 0 \leq m \leq \infty$, whose fundamental pro-group realizes that telescopic tower as follows. Set $Y_{0}=\{*\} \times\left[0, \infty\right.$) (a copy of \mathbb{R}_{+}). Assume Y_{n} constructed, $n \in \mathbb{N} \cup\{0\}$. Then, Y_{n+1} consists of the proper wedge of Y_{n} and a copy $S^{1} \times[n, \infty) \cup D^{2} \times\{n\}$ of \mathbb{R}^{2} attached along Y_{0}. Finally, we set $Y_{\infty}=\cup_{n \geq 0} Y_{n}$. Indeed, one can easily check that for some $0 \leq m \leq \infty$ and some filtration $\left\{J_{n}\right\}_{n \geq 1}$ of Y_{m}, there is a pro-isomorphism $\psi=\left\{\psi_{n}\right\}_{n \geq 1}:$ pro $-\pi_{1}\left(Y_{m}\right) \longrightarrow F$, where each $\psi_{n}: \pi_{1}\left(Y_{m}-J_{n}\right) \longrightarrow F_{n}$ is an isomorphism between finitely generated free groups. Observe that the proper homotopy type of Y_{m} can be represented by a subpolyhedron of \mathbb{R}^{3}, see the figure below.

Figure 1. Locally finite subpolyhedron of \mathbb{R}^{3}

Corollary 2.5. With the above notation, in the 1-ended case the universal cover $\widetilde{K}_{\mathcal{P}}$ is proper homotopy equivalent to either $Y_{1}\left(=\mathbb{R}^{2}\right)$ or Y_{∞}.
Proof. According to the above, by Lemma 2.3 (a), there is some $0 \leq m \leq \infty$ and a pro-isomorphism $\psi=\left\{\psi_{n}\right\}_{n}:$ pro $-\pi_{1}\left(Y_{m}\right) \longrightarrow$ pro $-\pi_{1}\left(\widehat{K}_{\mathcal{P}}\right)$, with each $\psi_{n}: \pi_{1}\left(Y_{m}-J_{n}\right) \longrightarrow \pi_{1}\left(\widehat{K}_{\mathcal{P}}-\widehat{C}_{n}\right)$ being an isomorphism between finitely generated free groups. Moreover, by Lemma 2.3 (b) and [6, Prop. 3.3], there is a proper map $f: Y_{m} \longrightarrow \widehat{K}_{\mathcal{P}}$ inducing the pro-isomorphism ψ; in fact, f is a weak proper homotopy equivalence, as Y_{m} is clearly properly aspherical at infinity as well, and hence f induces pro-isomorphisms between all the homotopy pro-groups. Therefore, by the corresponding proper Whitehead theorem (see [10, Thm. 5.5.3] or [1, § 8],
for instance) f is in fact a proper homotopy equivalence.
It remains to show that $m=1$ or ∞. For this, observe that $m>0$ since otherwise $\widehat{K}_{\mathcal{P}}$ (and hence $\widetilde{K}_{\mathcal{P}}$) would be proper homotopy equivalent to a 3 -manifold with a single plane on its boundary (as $Y_{0}=\mathbb{R}_{+}$thickens to a 3 -dimensional half-space), which is not possible by [5, Cor. 5.14]. Furthermore, Y_{m} (and hence $\widetilde{K}_{\mathcal{P}}$) must be proper homotopy equivalent to a 3 -manifold with boundary (by means of a regular neighborhood of the subpolyhedron of \mathbb{R}^{3} in the figure above) which can only have either two or infinitely many plane boundary components, by [5, Cor. 5.11, 5.14]. The rest of the proof follows from this and the fact that the first option only occurs in the case of a virtually surface group, see [5, Thm. 5.17].

Remark 2.6. In terms of [5], every 1-ended, torsion free one-relator group is proper 2-equivalent to either $\mathbb{Z} \times \mathbb{Z}$ or $\mathbb{F}_{2} \times \mathbb{Z}$ by [5, Thm 5.1], as one relator groups are properly 3 -realizable, see $[4,21]$; in fact, given a presentation \mathcal{P} as above, the universal cover of $K_{\mathcal{P}}$ itself is proper homotopy equivalent to a 3-manifold (by considering a regular neighborhood of the above subpolyhedron in \mathbb{R}^{3}) with no need to take wedge with a single 2 -sphere, thus answering in the affirmative a conjecture posed in [4] (in the torsion free case). Observe that the third option $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ from [5, Thm 5.1] is ruled out by [5, Cor. 5.14], and the first option $\mathbb{Z} \times \mathbb{Z}$ only occurs in the case of a virtually surface group, by [5, Thm. 5.17].

3. Proof of the main results

The purpose of this section is to prove Theorems 1.2 and 1.6. For this, we need the following previous result, which is a combination of other well known results.

Lemma 3.1. Let X be a locally finite n-dimensional ($P L$) CW-complex. If the following two conditions hold:
(a) X is inward tame, and
(b) For any choice of base ray, the fundamental pro-group pro $-\pi_{1}(X)$ is pro(finitely generated free)
then the product $X \times I^{2 n+5}$ admits a \mathcal{Z}-compactification, with $I=[0,1]$.
We recall that an ANR X is inward tame if, for each neighborhood of infinity N there exists a smaller neighbohood of infinity $N^{\prime} \subset N$ so that, up to homotopy, the inclusion $N^{\prime} \hookrightarrow N$ factors through a finite complex; equivalently, for every closed neighborhood of infinity N there is a homotopy $H: N \times[0,1] \longrightarrow N$ with $H_{0}=i d_{N}$ and $\overline{H_{1}(N)}$ compact, see [16]. One can check that inward tameness is a proper homotopy invariant, and we may think of it as pulling the end of X inside X yielding some kind of finite domination at infinity. It is worth noticing that any \mathcal{Z}-compactifiable ANR must be inward tame, see [16, Remark 3.8.13]. Also, observe that as a combination of the results in [12] and [14], there is an example of a locally finite 2-dimensional polyhedron X whose product $X \times I^{9}$ is \mathcal{Z}-compactifiable but X itself is not.

Proof. Let I^{∞} denote the Hilbert cube. It is well known that the product $Y=$ $X \times I^{\infty}$ is a Hilbert cube manifold (see [29, 9]) which satisfies again properties (a) and (b) from the statement, as I^{∞} is compact and contractible and so X and Y are proper homotopy equivalent. In particular, Y is inward tame. Moreover,
the Chapman-Siebenmann obstructions for a Hilbert cube manifold admitting a \mathcal{Z} compactification ([7, Thms 3, 4], see also $[16, \S 3.8 .2]$) vanish for Y since $\operatorname{pro}-\pi_{1}(Y)$ can be represented by an inverse sequence

$$
\pi_{1}(Y) \longleftarrow \pi_{1}\left(N_{1}\right) \longleftarrow \pi_{1}\left(N_{2}\right) \longleftarrow \cdots
$$

where $\left\{N_{i}\right\}_{i}$ is a nested cofinal sequence of neighborhoods of infinity in Y with $\pi_{1}\left(N_{i}\right)$ a finitely generated free group, $i \geq 1$; in fact, each N_{i} can be taken as a product $N_{i}=M_{i} \times I^{\infty}$, where M_{i} is a neighborhood of infinity in X. Thus $Y=X \times I^{\infty}$ admits a \mathcal{Z}-compactification. Finally, the results in [12] show that $X \times I^{2 n+5}$ admits a \mathcal{Z}-compactification as well.

We now proceed with the proof of the main results.
Proof of Theorem 1.2. Suppose a given torsion free finitely presented group G admits a finite presentation $\mathcal{P}=\langle X ; r\rangle$ with a single (cyclically reduced) relator $r \in F(X)$. If G is 2 -ended then G must be the group of integers \mathbb{Z} (see [27, Thm. 5.12]) which easily admits a weak \mathcal{Z}-structure just by adding two points as its boundary. Assume now G is 1-ended. Then, by Corollary 2.5, the universal cover $\widetilde{K}_{\mathcal{P}}$ is proper homotopy equivalent to either the plane \mathbb{R}^{2} or the locally finite subpolydedron of \mathbb{R}^{3} shown in figure 1 , which are both easily shown to be inward tame, and hence so is $\widetilde{K}_{\mathcal{P}}$. On the other hand, Proposition 2.1 ensures condition (b) in Lemma 3.1 above. Therefore, the (contractible) CW-complex $\widetilde{K}_{\mathcal{P}} \times I^{9}$ admits a \mathcal{Z}-compactification. Observe that the proper, free and cocompact G action on $\widetilde{K}_{\mathcal{P}}$ yields a proper, free and cocompact G action on $\widetilde{K}_{\mathcal{P}} \times I^{9}$ in the obvious way, thus providing a weak \mathcal{Z}-structure on G whose associated weak \mathcal{Z}-boundary has the shape of the \mathcal{Z}-boundary of a \mathcal{Z}-compactification of either the plane or the subpolyhedron shown in figure 1 , see [16, Cor. 3.8.15]. In the case of the plane this \mathcal{Z}-boundary has the shape of a circle, and in the second case one can easily show that the corresponding \mathcal{Z}-boundary has the shape of a Hawaiian earring, as claimed.

Finally, if G is infinite ended then G decomposes as a free product of groups (as G is torsion free) by the Stallings's structure theorem (see [13,27]). Moreover, being G a one-relator group, it follows from Grushko's theorem that G is a free product of a free group and a one-relator group with at most one end. See [22, Prop. II.5.13] for details. Both factors admit a weak \mathcal{Z}-structure and hence so does their free product, by the proof of [28, Thm. 2.9].

Just as we did in section $\S 2$ with respect to the work in [4], a closer look at the proofs of [21, Thm. 1.13] and [21, Prop. 1.18] yields the following generalization of Proposition 2.1 and Lemma 2.3 (in the 1-ended case).

Proposition 3.2. Let $\mathcal{P}=\langle X ; R\rangle$ be a finite aspherical presentation of a torsion free, 1-ended generalized one-relator group $G \in \mathcal{C}$, with each $r \in R$ being a cyclically reduced word in $F(X)$, and consider the associated 2-dimensional $C W$-complex $K_{\mathcal{P}}$. Then, the (contractible) universal cover $\widetilde{K}_{\mathcal{P}}$ is properly aspherical at infinity, i.e., for any choice of base ray, the homotopy pro-groups pro $-\pi_{n}\left(\widetilde{K}_{\mathcal{P}}\right)=0$ are protrivial for $n \geq 2$, and the fundamental pro-group pro $-\pi_{1}\left(\widetilde{K}_{\mathcal{P}}\right)$ is pro-isomorphic to a telescopic tower

Thus, the proof of Theorem 1.6 is the same as that of Theorem 1.2 in the 1-ended case.

Remark 3.3. It is worth pointing out that sometimes the strategy followed to prove that some classes of 1 -ended groups admit a weak \mathcal{Z}-structure includes showing that the fundamental pro-group is pro-(finitely generated free). Under semistability at infinity, this property about the fundamental pro-group amounts to saying that the groups under study are properly 3 -realizable, i.e., they can be realized by a finite 2-dimensional CW-complex whose universal cover is proper homotopy equivalent to a 3 -manifold. See [20, Thm. 1.2]) and [5, Thm. 5.22]. The above is the case of this and other papers, see [15] for instance. At the time of writing it is unknown whether there is a relation between proper 3-realizability and the existence of a weak \mathcal{Z}-structure.

References

[1] H. J. Baues, A. Quintero. Infinite Homotopy Theory. K-Monographs in Mathematics, vol. 6, Kluwer, 2001.
[2] M. Bestvina. Local Homology Properties of Boundaries of Groups. Michigan Math. J., vol. 43, no. 4 (1996), 783-788.
[3] M. Bestvina, G. Mess. The boundary of negatively curved groups. J. Amer. Math. Soc., vol. 4, no. 3 (1991), 469-481.
[4] M. Cárdenas, F. F. Lasheras, A. Quintero, D. Repovš. One-relator groups and proper 3realizability Rev. Mat. Iberoamericana, vol. 25, no. 2 (2009), 739-756.
[5] M. Cárdenas, F. F. Lasheras, A. Quintero, R. Roy. A topological equivalence relation for finitely presented groups. J. Pure Appl. Algebra, vol. 224, no. 7 (2020), 25 pp.
[6] M. Cárdenas, F. Muro, A. Quintero. The proper L-S category of Whitehead manifolds. Top. Appl., vol. 153 (2005), 557-579.
[7] T. A. Chapman, L. C. Siebenmann. Finding a boundary for a Hilbert cube manifold. Acta Math., vol. 137, no. 3-4 (1976), 171-208.
[8] E. Dyer, A. T. Vasquez. Some small aspherical spaces. J. Austral. Math. Soc., 16 (1973), 332-352.
[9] R. D. Edwards. Characterizing infinite-dimensional manifolds topologically (after Henryk Torunczyk). Séminaire Bourbaki (1978/79), Exp. No. 540, Lecture Notes in Math. 770 (1980), Springer, 278-302.
[10] D. A. Edwards, H. M. Hastings. \check{C} ech and Steenrod homotopy theories with applications to geometric topology. Lecture Notes in Mathematics, vol. 542. Springer-Verlag, 1976.
[11] F. T. Farrell, J-F. Lafont. EZ-structures and topological applications. Comment. Math. Helv., vol. 80 (2005), 103-121.
[12] S. C. Ferry. Stable compactifications of polyhedra. Michigan Math. J., vol. 47, no. 2 (2000), 287-294.
[13] R. Geoghegan. Topological Methods in Group Theory. Graduate Texts in Mathematics 243, Springer, 2008.
[14] C. R. Guilbault. A non- \mathcal{Z}-compactifiable polyhedron whose product with the Hilbert cube is ZZ-compactifiable. Fund. Math., vol. 168, no. 2 (2001), 165-197.
[15] C. R. Guilbault. Weak \mathcal{Z}-structures for some classes of groups. Algebr. Geom. Topol., vol. 14, no. 2 (2014), 1123-1152.
[16] C. R. Guilbault. Ends, shapes, and boundaries in manifold topology and geometric group theory. Topology and geometric group theory, Springer Proc. Math. Stat., vol. 184 (2016), Springer, 45-125.
[17] C. R. Guilbault, M. A. Moran. Proper homotopy types and \mathcal{Z}-boundaries of spaces admitting geometric group actions. Expo. Math., vol. 37, no. 3 (2019), 292-313.
[18] C. R. Guilbault, M. A. Moran, C. J. Tirel. Boundaries of Baumslag-Solitar groups. Algebr. Geom. Topol., vol. 19 (2019), 2077-2097.
[19] G. Higman. A finitely generated infinite simple group. J. London Math. Soc., vol. 16 (1973), 332-352.
[20] F. F. Lasheras. Ascending HNN-extensions and properly 3-realisable groups. Bull. Austral. Math. Soc., vol. 72 (2005), 187-196.
[21] F. F. Lasheras, R. Roy. Relating the Freiheitssatz to the asymptotic behavior of a group. Rev. Mat. Iberoamericana, vol. 29, no. 1 (2013), 75-89.
[22] R. C. Lyndon, P. E. Schupp. Combinatorial Group Theory. Springer-Verlag, Berlin, 1977.
[23] W. Magnus. Über diskontinuierliche Gruppen mit einer definierenden Relation. (Der FHS) J. reine angew. Math., vol. 163 (1930), 141-165.
[24] S. Mardešic, J. Segal. Shape Theory. North-Holland, 1982.
[25] M. Mihalik, S. Tschantz. One relator groups are semistable at infinity. Topology, vol. 31, no. 4 (1992), 801-804.
[26] M. A. Moran. Finite-dimensionality of \mathcal{Z}-boundaries. Groups Geom. Dyn., vol. 10, no. 2 (2016), 819-824
[27] P. Scott, C. T. C. Wall. Topological methods in group theory. Homological Group Theory, London Math. Soc. Lecture Notes, Cambridge Univ. Press, Cambridge (1979), 137-204.
[28] C. J. Tirel. Z-structures on product groups. Algebr. Geom. Topol., vol. 11 (2011), 2587-2625.
[29] J. E. West. Factoring the Hilbert cube. Bull. Amer. Math. Soc., vol. 76 (1970), 116-120.
Departamento de Geometría y Topología, Fac. Matemáticas, Universidad de Sevilla, C/. Tarfia S/n 41012-Sevilla, Spain

Email address: mcard@us.es
Departamento de Geometría y Topología, Fac. Matemáticas, Universidad de Sevilla, C/. Tarfia s/n 41012-Sevilla, Spain

Email address: lasheras@us.es
Departamento de Geometría y Topología, Fac. Matemáticas, Universidad de Sevilla, C/. Tarfia s/n 41012-Sevilla, Spain

Email address: quintero@us.es

[^0]: Date: July 13, 2022.
 2020 Mathematics Subject Classification. Primary 57M07; Secondary 57M10.
 Key words and phrases. Weak \mathcal{Z}-structure, one relator-group, proper homotopy.

