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Abstract—This brief discusses the use of Artificial Intelligence
(AI) to manage the operation and improve the performance
of Analog-to-Digital Converters (ADCs) based on Sigma-Delta
Modulators (Σ∆Ms). The reconfigurable nature of Σ∆Ms can
be enhanced by AI algorithms in order to adapt the specifications
of ADCs to diverse input signal requirements, environment
interferences, noise levels, battery status, etc. A high degree of
programmability is required, which demands for scaling-friendly,
mostly-digital analog circuit techniques as well as suitable topolo-
gies of Artificial Neural Networks (ANNs) to implement the AI
engine. Moreover, the practical implementation of AI-assisted
Σ∆Ms requires to adopt diverse design strategies – from the
Σ∆M architecture itself to AI modules and circuit building blocks
– which are overviewed in this brief. As an application and case
study, an ANN-assisted ADC for Software-Defined Radio (SDR)
and Cognitive Radio (CR) is considered. The system is based on
the use of a widely-tunable Band-Pass (BP)-Σ∆M, and an ANN
is used to predict the occupancy of frequency bands and modify
the notch frequency of the BP-Σ∆M accordingly.

Index Terms—Analog-to-digital conversion, sigma-delta mod-
ulation, artificial intelligence, neural networks, cognitive radio.

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) is one of the key tech-
nology players of the so-called digital transformation,

which is shaping many different aspects of our daily lives
[1], [2]. The use of AI algorithms is becoming more and
more intensive in countless application scenarios which in-
clude, among others, multimedia pattern classification and
recognition, biometric identification, robotics, computation,
communications, etc. [3]–[7]. In most cases, AI modules
are implemented in the form of Artificial Neural Networks
(ANNs). Essentially, an ANN is a computing system formed
by the interconnection of layers of artificial neurons, which are
inspired by the way biological neurons set connections among
them by means of synapses [8]. ANN-based AI systems,
such as Machine Learning (ML) and Deep Learning (DL),
are fuelled by an increasingly computing power provided by
both cloud and edge computing, as well as the giant volumes
of data collected and provided by Internet-of-Things (IoT)
devices [9], [10]. This way, the combination of big data and
AI is used nowadays to solve a number of automatization and
optimization problems [7], [11].
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Moreover, technology downscaling is allowing the inte-
gration of more and more systems into a single chip, with
the subsequent benefits in terms of increased performance of
information storage and management, together with communi-
cation and computation facilities, located in end-devices such
as mobile phones and IoT nodes [12], [13]. Embedding AI
modules in Systems-on-Chip (SoC) is becoming a common-
place in mobile terminals, where ML/DL engines are used for
some specific tasks such as face or fingerprint recognition [7].
Moreover, ANN-based algorithms are also being applied to
improve the performance metrics of analog circuits by means
of linearization or calibration techniques [14]–[20].

These AI-empowered systems benefit from digital signal
processing in terms of programmability, scalability and robust-
ness against technology process and environment variations.
Thus, the increasingly number of digital-driven applications
and systems is moving the analog/digital interfaces closer and
closer to the point where the information is either collected
or transmitted, so that most part of the hardware is digital,
and hence, easier to program via software. The need of earlier
digitization makes the Analog-to-Digital Converter (ADC) one
of the key components in many SoCs. The use of ML/DL
algorithms can be applied to improve the performance metrics
of ADCs [21], so that their main specifications such as the
effective resolution and the sampling rate, can be dynamically
adapted and optimized to diverse signal requirements, envi-
ronment conditions, power/battery status, etc. AI algorithms
can be also applied as optimization engines to automate the
synthesis and design procedure of ADCs [22].

The state of the art on ADCs is mostly dominated by
three architectures: Pipeline, Successive Approximation Reg-
ister (SAR) and Sigma-Delta Modulators (Σ∆Ms) [23]–[27].
These techniques – or a combination of them – cover a
vast range of applications: from biomedical devices, sensors,
instrumentation to wideband communications. In terms of
energy, SAR ADCs are more efficient in applications with
resolutions below medium resolution (11−12 bit), while Σ∆M
ADCs consume less energy if higher resolutions are needed.
However, the efficient implementation of AI-managed ADCs
demands for new generations of A/D interfaces which will be
able to include strategies at both system and circuit level, and
increase the degree of programmability and robustness to make
them suited to be controlled by AI modules. Examples of these
ADCs include hybrid SAR/Σ∆M/Pipeline [28], [29] or Noise-
Shaping (band-pass) SAR ADCs [30], among others. At circuit
level, some scaling-friendly/mostly-digital techniques such as
time/frequency-based quantization [31], [32] or digital-assisted
analog circuits [33], [34], are among the most promising
candidates to implement programmable AI-managed ADCs,
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since they are more suitable to embed ANN-based algorithms
to enhance their performance.

The main goal of this tutorial brief is to present a survey
of some circuits and systems techniques and design methods
intended for AI-managed Σ∆M ADCs – going from system-
level models, architectures and algorithms to circuit-level
implementation. As a case study, the use of AI-managed
ADCs for Cognitive-Radio (CR) digitizers is considered as
one of the key technology enablers to implement efficient
hand-held terminals and IoT nodes. The rest of this article is
organized as follows. Section II explains the concept behind
AI-empowered Σ∆Ms, revisiting their main fundamentals.
Section III discusses the use of ANNs as optimization engine
for the automated synthesis of Σ∆Ms. Section IV highlights
some programmable and mostly-digital circuits suited for AI-
assisted Σ∆Ms. Finally, Section V shows a case study, and
conclusions are drawn in Section VI.

II. AI-EMPOWERED Σ∆MS: THE CONCEPT

Fig. 1(a) shows a conceptual block diagram of an AI-
managed Σ∆ ADC, where the operation of the Σ∆M is
assisted by an ANN. In order for this system to work prop-
erly, the ANN should be previously trained to optimize the
performance of the Σ∆M in terms of its main specifications,
i.e. Signal-to-Noise Ratio (SNR), Dynamic Range (DR), Total
Harmonic Distortion (THD), etc. These Σ∆M performance
metrics are used as input variables for the ANN and its
outputs are the design parameters that determine the maximum
performance of Σ∆M in practice, i.e. the building-block
electrical requirements such as: amplifier finite DC gain, Gain
Bandwidth (GB), Slew-Rate (SR), Output Swing (OS), etc.
The nonideal errors associated to Σ∆M building-block metrics
are grouped into an error vector, denoted as ε̄, which degrades
in practice the Σ∆M loop-filter transfer function, H(f, ε̄), and
consequently the noise-shaping of the modulator.

Assuming a linear additive white noise model with gain kq
for the B-bit quantizer in Fig. 1(a), the Z-transform of the
Σ∆M output, y, can be expressed as:

Y (z, ε̄) = STF(z, ε̄)X(z) + NTF(z, ε̄)E(z) (1)

where X(z) is the Z-transform of the input signal, E(z) is
the Z-transform of the quantization error, and STF and NTF
stand for the signal- and noise-transfer functions, given by:

STF(z, ε̄) =
kqH(z, ε̄)

1 + kqH(z, ε̄)
,NTF(z, ε̄) =

1

1 + kqH(z, ε̄)
(2)

Considering an Lth-order loop filter, it can be shown that
the DR of a Σ∆M can be approximately given by [26]:

DR ≈6.02 ·B + 1.76dB

+ 10 log10[(2L+ 1) · OSR(2L+1)/π2L]

−∆DR(OSR, L,B, ε̄)|dB

(3)

where OSR ≡ fs/(2 ·Bw), stands for the oversampling ratio,
fs is the sampling frequency and Bw is the signal bandwidth.
The first term of Eq. (3) defines the Effective Number Of Bits
(ENOB) of a Nyquist-rate B-bit ADC. As known, Σ∆Ms
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Fig. 1. AI-assisted Σ∆Ms: (a) Conceptual diagram, (b) ANN training.

increase ENOB with OSR by approximately 3 · (2L + 1)
dB/octave – second term in (3) – although this enhancement
is degraded by the effect of circuit errors – conceptually
formulated as ∆DR in (3). The three key parameters, namely
OSR, L and B, define the system-level performance of Σ∆Ms,
and can be combined in many ways, giving rise to a diverse
topologies of Σ∆Ms – single-loop or cascade; Low-Pass (LP)
or Band-Pass (BP); single-bit or multi-bit; Continuous-Time
(CT) or Switched-Capacitor (SC) — in order to achieve the
maximum DR [35], [36].

The idea behind an AI-empowered Σ∆M consists of using
an ANN to minimize the DR degradation, ∆DR, caused by
circuit nonidealities, ε̄. To this end, an ANN can be trained
to achieve the maximum performance for a given Σ∆M
architecture. The training process is conceptually depicted in
Fig. 1(b). During the design phase of the Σ∆M, training data
is generated from simulated Σ∆M output metrics, i.e. SNR,
THD, NTF, STF, etc. within the multi-dimensional design
space formed by a number of design points defined by the
combinations of design parameters inset ε̄. This way, the Σ∆M
performance metrics (SNR, THD, etc), play the role of input
variables of the ANN while ε̄ are the ANN outputs. This way,
the learning process consists of mapping such input data, i.e.
the Σ∆M specifications, onto the output data, i.e. the design
parameters, ε̄, that optimize the performance of the Σ∆M.

Once the ANN is trained, it can be used to control the
operation of the Σ∆M by modifying its building-block design
parameters as depicted in Fig. 1(a). Thus, measured SNR, DR,
THD, etc. are provided to the trained ANN, which generates a
new set of design parameters, denoted as ∆ε̄, that minimizes
∆DR. This approach – successfully implemented as calibration
scheme to linearize CT-Σ∆Ms [6] – can be extended to control
and optimize the performance of Σ∆Ms.

III. ANN-ASSISTED SYNTHESIS OF Σ∆MS

In addition to be embedded in Σ∆M circuits to enhance
their performance after being designed, ANNs can be used
during the design phase of Σ∆Ms. In this case, the ANN plays
the role of the optimization engine which is combined with a
simulator to automate the synthesis of Σ∆Ms. Indeed, ANNs
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have been already applied as part of the design methodology
for the sizing of analog and mixed-signal circuits [14]–[17],
[22], [37], and they can be used for the optimization of Σ∆Ms.

Optimization-based synthesis methodology is widely used
for the automatic sizing of circuits and systems, in order to
find the best set of design parameters that meet the required
specifications of a given circuit. To this end, the well-known
top-down/bottom-up design procedure divides a given system
– a Σ∆M in this case – into several hierarchy levels, so
that at each abstraction level, the design process consists of
transmitting or mapping the specifications in a hierarchical
way: from the top level to the bottom level. Thus, at system
level, Σ∆M specifications, Bw and ENOB, are mapped onto
bulding-block specifications, i.e. the electrical requirements of
amplifiers, transconductors, comparators, switches, etc. At this
design stage, the design variables of the sizing problem are the
finite DC gain, GB, SR, etc. Once these design variables are
found, the sizing process is moved to the lower abstraction
level, i.e. the electrical level, in which, after an appropriate
topology has been selected for every Σ∆M subcircuit, tran-
sistor sizes and bias currents are obtained [38].

Fig. 2(a) shows the conventional flow diagram of the
optimization-based high-level synthesis of Σ∆Ms based on
the combination of behavioral simulation (SIMSIDES in this
example [39]) as performance evaluator, and an optimizer to
explore the design space and find the optimum set of building-
block electrical parameters to get the optimum modulator
performance. The starting point is the modulator architecture.
Here, the design parameters are the building-block specifi-
cations; that is, the nonideal parameters used to model the
main error mechanisms that affect the performance of Σ∆Ms
and define the electrical specifications of its subcircuits: in-
tegrators, comparators, DAC elements, and so on, which are
generically denoted in this paper as ε̄. Considering arbitrary
initial conditions in Fig. 2(a), a set of perturbations of the
design parameters is generated by the optimizer. With the
new design parameters, a new set of simulations is carried
out to evaluate the modulator performance and the process is
repeated in an iterative way until a cost function is optimized.
The type and value of such perturbations, as well as the
iteration acceptance or rejection criteria, depend on the type
of optimization method, i.e. evolutionary algorithms, genetic,
simulated annealing, etc [26], [40].

Some authors propose using ANNs in an optimization-
based synthesis methodology. In some works, the ANN has
been trained to replace the simulator, while other approaches
consider ANNs as the optimization engine [14]. In the latter
case, the ANN is trained to size a given system for a set
of specifications. Thus, the ANN should be trained with
sized solutions known from prior optimized designs. Once
the ANN is trained, it is able to automate the sizing process
and generate optimum sizing solutions for additional sets
of specifications which were not considered in the training
dataset. This methodology, proposed in [14] for arbitrary
analog circuits, is illustrated in Fig. 2(b) for the optimization
of Σ∆Ms.

As conceptually depicted in Fig. 2(b), the data used to train
the ANN is comprised of a set of data pairs denoted as {ε̄, Γ̄},
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Fig. 2. Using ANNs to optimize the high-level design of Σ∆Ms: (a)
Conventional synthesis methodology, (b) ANN-based synthesis methodology.

where Γ̄ stands for a vector of performance metrics, i.e. SNR,
Bw, THD, etc. In order to train the ANN, an input dataset
{ε̄, Γ̄} is generated from a database of previous simulations
of Σ∆Ms which led to useful designs1. This dataset can be
augmented to increase the number of input data to train the
ANNs, so that they can learn to find optimum designs outside
the train set distributions. Once the ANN is trained, it can be
used to generate optimum designs, i.e. to provide an optimum
case of ε̄ that satisfies a given set of specifications. To that
end, the ANN-based optimizer is combined with a behavioral
simulator (SIMSIDES) to explore the design space and to find
the best design as illustrated in Fig. 2(b).

ANNs can be implemented in many different ways, regard-
less it is used as an optimization algorithm to design Σ∆Ms
(Fig. 2(b)) or as part of the circuit itself (Fig. 1(a)). In the
latter case, it can be either synthesized in hardware, as an
Field-Programmable Gate Array (FPGA) or as an on-chip
dedicated module, or software embedded in a Digital Signal
Processor (DSP). There are also diverse ways to connect
artificial neurons, either in a feedforward or Recurrent NNs
(RNNs), or including hidden layers of neurons – referred to as
Deep NNs or DNNs. Depending on the degree of connectivity
of their neurons, ANNs can be divided into fully-connected
ANNs – where each neuron in a given layer is connected to

1Typically, thousands of simulations are needed to generate the training
dataset. This may take several hours depending on the computing resources.
However, once this dataset is generated, it can be applied to a number of
different synthesis problems, where the training and optimization process may
take a few minutes, depending on the Σ∆M architecture and specifications.
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Fig. 3. Scaling-friendly analog circuit techniques for mostly-digital Σ∆Ms.

all neurons of the remaining layers – or Convolutional Neural
Networks (CNNs), where each neuron is connected to a given
subgroup of neighboring layers2.

IV. DIGITAL-FRIENDLY PROGRAMMABLE ANALOG
CIRCUITS FOR AI-MANAGED Σ∆MS

Highly-reconfigurable analog circuits are needed to increase
the programmability of Σ∆M building blocks, so that their op-
eration can be managed by an ANN module. Digital-assisted,
scaling-friendly analog circuits – some of them highlighted in
Fig. 3 – are suited for AI-enhanced Σ∆Ms [41].

Inverter-based and VCO-based Operational Transconduc-
tance Amplifiers (OTAs): A good candidate is the use of
CMOS inverters for the realization of OTAs, as originally
proposed by Nauta [42]. Since the first inverter-based OTAs,
there has been an increasing interest to apply this technique for
the implementation of filters and ADCs, due to their better ef-
ficiency for the required gain performance and bandwidth [36].
More and more digital circuits are being embedded to improve
the performance of analog circuits, by means of calibration,
tuning, etc, that try to alleviate the limitations of nanometer
CMOS analog circuits [43]. In spite of their potential benefits,
inverter-based OTAs offer lower performance metrics such as
robustness over PVT variations, impact of circuit parasitics,
limited DC gain, etc. Some authors have proposed improved
versions of inverted-based OTAs [43]–[48] and their use is
becoming more and more popular in Σ∆Ms [33], [34], [49].
Other authors suggest the use of Voltage-Controlled Oscillators
(VCOs) to implement OTAs, as an alternative to increase the
gain of inverter-based OTAs for lower supply voltages, and to
implement highly-programmable Σ∆Ms [50].

Hybrid Active/Passive Σ∆Ms: Another approach to reduce
the number of power-hungry circuits consists of replacing
some active building blocks with passive circuit elements. This
has a number of drawbacks such as the loop-filter gain loss,
increased thermal noise and a higher sensitivity to technology
process variations and parasitics. In spite of these limitations,
passive RC networks are becoming a popular circuit solution
for the implementation of Σ∆Ms in diverse applications

2A detailed explanation of ANNs is beyond the scope of this brief and the
interested reader can find a large number of references in literature [7].

[51]–[56]. Indeed, hybrid active/passive circuits are suited for
reconfigurable loop filters such as Time-Interleaved (TI) or
N -path filters [57] made up of switchable RC networks [58].

Time-based Quantization: Another scaling-friendly ap-
proach is based on translating the quantized information from
the amplitude domain to the time domain by means of a
voltage-to-frequency conversion. The principle of operation
behind this approach, proposed in [59], relies on the use
of a ring oscillator to count the number of edges within a
given time period as conceptually depicted in Fig. 3. The
result is directly related to the input signal, thus obtaining
a digital representation of the amplitude. In addition to their
higher speed and lower supply voltages, VCO-based quantizers
provide an implicit first-order noise-shaping filter [15], [31],
[32], [59]–[71]. However, it is limited in practice by the
nonlinearity of the voltage-to-frequency conversion, requiring
the use of either calibration or linearization techniques [65]–
[67], [72], [73]. An alternative to VCO-based quantizers
consists of using pulse-width modulation (PWM) [74], [75]
and a Time-to-Digital Converter (TDC) that generates a time-
quantized representation of the signal [76]–[80]. The so-called
Gated Ring Oscillators (GROs) have been successfully applied
attenuate the nonlinearity of VCOs and be combined with
active-RC integrators, thus benefiting from both amplitude-
and time-based circuit techniques [81].

Finite Impulse Response (FIR) Feedback DACs: Regardless
the Σ∆M quantizer is realized either in amplitude or time
domain, by increasing the number of bits yield to an increase
of the circuit complexity and nonlinearity of the feedback
DAC. These problems can be palliated by using a DAC with
a FIR filter [51], [82]–[84]. The idea – originally proposed
in [85] and conceptually illustrated in Fig. 3 – is to feedback
a filtered version of the single-bit quantization output, such
that due to the high-frequency attenuation of the FIR filter,
the DAC output, is a multi-level waveform. This allows to
achieve the low-jitter sensitivity and high linearity of a multi-
bit Σ∆M, while keeping the simplicity and robustness of
single-bit Σ∆Ms [84], [86]. The combination of TI topologies
and FIR DACs is an alternative to implement GHz-range
Σ∆Ms [87], [88]. Moreover, FIR DACs make it easier to
digitally control Σ∆M specifications by mean of an ANN,
as required in AI-assisted Σ∆Ms.
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V. CASE STUDY: AI-MANAGED Σ∆MS FOR CR ADCS

As a case study, let us consider the CT BP-Σ∆M shown
in Fig. 4(a) intended for RF ADCs in CR systems. This is a
communication paradigm that allows to make a more efficient
use of the frequency spectrum, by dynamically modifying
receiver specifications according to the information sensed
from the electromagnetic environment. In this example, an
AI module – made up of Long Short-Term Memory (LSTM)
networks – is used to predict and to identify the least occupied
frequency band [89], [90], so that the noise-shaping of the
BP-Σ∆M is modified accordingly, in order to operate over the
selected band. This feature can be realized by BP-Σ∆M ADCs
with a widely tunable notch frequency, fn, while keeping the
required resolution over the digitized band [41], [91].

The BP-Σ∆M of Fig. 4(a) is designed in 65-nm CMOS, and
consists of a 4th-order loop filter made up of inverted-based
Gm-LC resonators and a 4-bit quantization [92]. The loop-
filter resonators are based on programmable inverter-based
transconductors like those shown in Fig. 3, which are in turn
made up of unitary circuit elements that can be connected or
disconnected depending on the operation mode required for
the digitizer. This way, the tuning of specifications can be
managed by the AI module. Both system-level and circuit-
level reconfiguration techniques are considered to allow the
modulator to digitize signals placed at several carrier frequen-
cies, ranging from 450MHz to 950MHz, with a programmable
1.2/2GHz clock rate [92], [93].

As stated in Section IV, inverted-based unitary transconduc-
tors are simple and modular, thus increasing the flexibility and
programmability of the RF ADC according to the information
provided by the ANN engine. In order to adjust the values of
the requested loop-filter coefficients with a higher accuracy,
different values of the unitary transconductance are used,
namely: gmu, 1/2gmu. These values can be easily changed
by properly scaling the value of the tail current, Ibias, of
the unitary transconductors as well as the sizing. Another
reconfigurable circuit strategy consists of programming the
resonant frequency by using banks of switchable unitary
capacitors, which are in turn digitally controlled in order to
program the value of fn required for the BP CT-Σ∆M to work
in each operation mode [26], [92].

The performance of the CT BP-Σ∆M can be adapted to the
different operation modes with optimized power consumption,
by adjusting the biasing of all building blocks by means of a
programmable master current generator. One of the character-
istics of highly programmable ADCs is the huge number of
digital control signals required to control and program their
operation. For instance, in a reconfigurable BP CT-Σ∆M like
that shown in Fig. 4, almost 200 digital control signals are
needed. Such a large number of digital signals are provided
in practice by a serial-to-parallel register that collects a serial
input data and transforms this data into a set of parallel control
bits which program the operation of the ADC [26].

This way, the CT BP-Σ∆M can be digitally programmed
in an easy way, by loading the required control configuration
for each operation mode. In the case of AI-managed digitizers
for CR end-devices, the serial input data contains the infor-
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mation sensed from the electromagnetic environment, which
is provided by the ANN engine, as conceptually illustrated
in Fig. 4(a). Fig. 4(b) shows the evolution of the occupancy
signals of several channels. Every time the ANN engine selects
a certain channel, control parameters of different building
blocks in the CT BP-Σ∆M can be modified accordingly. This
is illustrated in Fig. 4(c), that shows how the notch frequency
of the BP CT-Σ∆M can be tuned according to the feedback
provided by the LTSM-based ANN module. In order for the
overall CR system to operate correctly, the granularity of the
programmability of the Σ∆M-based ADC must be as fine
as possible in order to give the AI engine more degrees of
freedom to properly choose the best parameters to optimize
the communication in the selected channel.

VI. CONCLUSIONS

The performance of Σ∆M ADCs can be improved by the
action of AI algorithms implemented as ANNs. These engines
can be used as an enhancement building block to manage
and control the operation of Σ∆Ms. They can also assist the
synthesis methodology of Σ∆Ms by playing the role of an
optimizer to find out the best sizing solution in a top-down
design process. The practical implementation of these AI-
assisted techniques would impose a number of design trade-
offs which involves reconfiguration techniques at both circuit
and system level, as well as new design methods and CAD
tools. Some of them have been overviewed in this tutorial
brief, while many others are still open to research.
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