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Abstract—Embedding Artificial Intelligence (AI) in integrated
circuits is one of the technology pillars of the so-called digital
transformation. Nowadays, the vast majority of electronic devices
benefits from digital signal processing to implement more and
more functionalities, which can be further enhanced by the action
of AI algorithms and artefacts. Moreover, as the analog/digital
interfaces are moving closer and closer to the point where the
information is either acquired or transmitted, the so-called AI-
managed data converters are becoming key building blocks in
an increasingly number of interconnected cyberphysical systems
– made up of both software and hardware components. Software
Defined Radio (SDR) and Cognitive Radio (CR) systems intended
for 5G/6G communications are good examples which can benefit
from an early digitization managed by AI engines.

In this context, this paper presents an overview of circuits
and systems techniques for AI-managed analog/digital interfaces
with application in SDR/CR mobile telecom systems. Some
design trends and challenges are discussed, going from new
communications and computing paradigms for AIoT devices and
networks, to digital-based/scaling-friendly analog circuit tech-
niques for an efficient digitization. The state of the art on Analog-
to-Digital Converters (ADCs) is surveyed, putting emphasis on
highly-programmable Sigma-Delta Modulators (Σ∆Ms) as one
of the best ADC candidates for SDR/CR transceivers. Some chip
examples are shown to illustrate their potential application in
AI-enhanced CR end-devices.

Index Terms—Cognitive Radio, software defined radio, artifi-
cial intelligence, analog-to-digital conversion, sigma-delta modu-
lation.

I. INTRODUCTION

THERE is no doubt that we are living one of the greatest
technological revolutions in the history of humankind.

Some disruptive technologies such as Artificial Intelligence
(AI), big data, robotics and cloud computing, are becoming
more and more present in our daily lives, and they have accel-
erated their pace of penetration, prompted by the needs arisen
from the global crisis generated by the COVID-19 pandemic,
transforming many of our social and economic activities
towards a virtual format. This digital transformation [1] is fu-
elled by the continuous evolution of the micro/nanoelectronics
industry, that has exponentially grown over the last six decades
as predicted by Moore’s law. Nowadays it is possible to design
chips which contain billions of transistors with dimensions
close to a few atoms of silicon [2].

Manuscript received May 6, 2021; revised June 28, 2021; accepted July 1,
2021.

This work was supported in part by the Spanish Ministry of Science and
Innovation (with support from the European Regional Development Fund)
under contract PID2019-103876RB-I00 and by Junta de Andalucı́a under
contracts US-1260118 and PY20-00599.
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Among other benefits, the downscaling of microelectronics
allows the pervasive integration of information, communi-
cation and computation technologies in everyday objects,
giving rise to the so-called Internet of Things (IoT) as one
of the key technology players in the virtualization process.
IoT implies the interconnection of billions of cyberphysical
entities, which can either be physical or virtual, with a hybrid
software/hardware structure, capable of communicating with
each other, sometimes without the need of human intervention
thanks to Machine-to-Machine (M2M) communication proto-
cols. Moreover, IoT is expected to have a potential impact
on the global economy of 11.1 trillion dollars in 2025, what
means above 10% of the gross domestic product globally,
about 30 billion connected devices in year 2023 and 350
billion by 2030 [3], [4].

IoT devices need to be equipped with a certain level of
intelligence, so that they can make decisions in real time,
and locally, i.e. without being connected to remote servers.
It is therefore necessary to address a number of design
challenges in order to build a solid bridge between the physical
environment and its corresponding virtualized version. Effi-
cient IoT nodes will require also the development of hybrid
software/hardware platforms, new computation paradigms and
communication protocols, as well as highly adaptive and
programmable circuitry, and very specially in the analog side
of the system and the analog/digital interface [2], [3], [5], [6].

One of the main bottlenecks associated to the increasingly
number of IoT devices which will have an impact of the
design of end-devices is the increasingly shared use of the
electromagnetic spectrum. Although new bands – such as
millimeter wavelengths (mm-Wave or mm-W) – are being
incorporated in the latest generations of mobile networks (5G
and the incoming 6G), they will also keep increasing the
traffic of data [7]–[13]. The so-called Cognitive Radio (CR)
[14] allows communication systems to make a more efficient
use of the frequency spectrum, by dynamically modifying the
transceiver specifications according to the information sensed
from the electromagnetic environment [15]. An efficient imple-
mentation of CR-based terminals may benefit from embedding
AI engines in their main building blocks, which in turn will
need new Circuits and Systems (CAS) strategies with a high
degree of programmability and reconfigurability in order to
dynamically select the optimum set of performance metrics
and transmission bands [3], [9], [13], [16]–[19].

Fig. 1 shows the conceptual diagram of a CR-based
transceiver, where the operation of its main building blocks is
controlled by an AI engine. CR-based mobile terminals would
require also that the analog/digital (A/D) interfaces should be
placed as close as possible to the antenna, so that most of
the hardware can be essentially digital, thus being easier to
program its functionality by software. Another key technology



IEEE CIRCUITS AND SYSTEMS MAGAZINE 2

Actuators

DSP
Rx	RF/ASP

DAC
Tx	RF/ASP

Embedded	So8ware	
&	AI	Engine

ADC

Sensors

Fig. 1. Conceptual diagram of a CR-based AI-managed transceiver.

enabler is related to the use of AI-managed Analog Signal
Processing (ASP) and Radio-Frequency (RF) front-ends, so
that they can set their best specifications in an autonomous
way, according to the environment conditions (communi-
cation coverage, band occupancy, noise and interferences,
etc.), battery status and energy consumption. However, the
practical realization of CR-based IoT devices requires highly
programmable digital-friendly analog/RF front-ends [20].

In this context, this paper overviews some emerging strate-
gies – including telecom systems and computing architectures,
AI algorithms based on neural networks, as well mostly-
digital/digital-assisted analog circuit techniques – intended for
energy-efficient CR-based end-devices. A survey of the most
important technology enablers is given to set the application
scenario and define the main objetives that should be addressed
by AI-managed CAS for CR-based IoT nodes, by focusing on
the Analog-to-Digital Converter (ADC) as one of their key
building blocks. The state of the art is briefly surveyed and
main architectures and circuit strategies to implement pro-
grammable, digital-friendly digitizers are overviewed, putting
emphasis on Sigma-Delta Modulation (Σ∆M) as one of the
best candidates to implement AI-managed digitizers.

The rest of the paper is organized as follows. Section II gives
an overview of mobile telecom systems, which have evolved
from voice-transmission devices to AI-empowered multimedia
handheld computers. Section III presents some background
and fundamentals of CR systems. The other important pillar of
CR/AIoT networks is the AI engine and neural computation,
which is discussed in Section IV. Section V goes down
to circuit level and focuses on the main objetive of this
article: analog/digital interfaces based on mostly-digital highly
programmable Σ∆Ms. Section VI shows some chip examples
and case studies and conclusions are drawn in Section VII.

II. FROM VOICE-TRANSMISSION TO
CONNECTED-INTELLIGENCE

Wireless communications are key elements for the optimal
implementation of CR/AIoT end-devices and networks. They
must be adapted and programmed to communicate with very
diverse types of devices – from computers and mobile phones
to household appliances, industrial robots, etc – and inter-
act with both virtual and physical media, through sensors,
actuators and transceivers, having a high capacity of recon-
figurability and adaptability to the very diverse conditions
in which wireless communications take place [21]. The vast
majority of IoT nodes are equipped with diverse types of
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Fig. 2. Evolution of mobile telecom systems.

wireless communication systems, thus benefiting from the
rapid evolution of i-devices such as tablets, cell phones, smart
watches as well as many other wearable gadgets. This has
led to a second wave of the digital transformation, fuelled
by the complement action of three main technology vectors:
digitization, computation and communications [1].

A. Evolution of Mobile “Phones”

To get an idea of the pace of evolution of mobile communi-
cations it is illustrative to look at some of the most represen-
tative operation modes, standards and main services offered
by the different generations of wireless systems, illustrated in
Fig. 2. At the beginning of the wireless telecom era, about
three decades ago, mobile terminals were simple electronic
devices whose only functionality was the voice transmission
– called first generation (1G). Later, the so-called second
generation (2G), incorporated a Short Message Service (SMS),
whose data transmission speeds were in the order of a few
kilobits per second (kb/s). With the development of the third
generation (3G) in the first years of this century, mobile phones
began to transform into handheld computers, by offering a
number multimedia services as well as wideband connection
to the Internet, with data transfer rates of several Megabits per
second (Mb/s). This was followed by the fourth-generation
(4G), which included previous communication standards –
such as GSM, GPRS, EDGE, UMTS, Bluetooth, Wireless
LAN, etc. – with new ones – such as HSDPA and LTE.
The fourth generation of cellular networks is widely extended,
by making it possible to notably increase the data rates,
ranging from hundreds of Mb/s to Gigabits per second (Gb/s)
– depending on the network conditions [22], [23].

This trend is set to continue and the fifth generation (5G)
mobile telecom is being progressively implemented, reaching
up to tens of Gb/s data rates, thanks to new communication
standards operating in different frequency bands – ranging
from the sub-6GHz band to the mm-W band. Moreover, 5G
networks are extending the possibilities of IoT services and
applications, with an estimated volume of wireless data traffic
1000 times higher than that achieved a decade ago. Among
others, 5G allows the realization of new multiple access tech-
niques such as Non-Orthogonal Multiple Access (NOMA), as
well as the so-called Cloud Radio Access Network (C-RAN)
protocols. In addition to its higher operation frequencies,
5G will bring a notably reduction in latency. This feature
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Fig. 3. Multi-standard chipsets embedded in mobile telecom: from hardware-
based multi-chip and SiP modules to reconfigurable SDR-based SoCs.

provides real-time interactivity for services where peer-to-peer
communication must be almost instantaneous. This is specially
critical in applications like telemedicine, very demanded to
remotely monitor some situations like epidemics or severe
deseases where it is difficult to access in person to the patients
[8], [10], [11], [23], [24].

B. Towards Software Defined Radio

Although most smart phones already present a great num-
ber of the mentioned standards and applications, the current
addition mechanism of new operating modes and services
are difficult to sustain since they do not scale. Every time a
new communication protocol is developed, it usually requires
a dedicated RF and baseband chipset to implement it on
the device – conceptually illustrated in Fig 3. There are a
number of different System-in-Package (SiP) technologies, in
which the required components are assembled by using ultra-
dense packaging, so that the physical volume of the electronic
parts of every new mobile generation either remains constant
or even shrinks. Moreover, it could be said that many of
today’s cellphones are marvels of miniaturization although
fundamentally, they are still just plain radios. Even though this
trend turns into a significant increase in component count and
Bill of Materials (BoM), the final product price can be kept or
even reduced, partially thanks to the huge number of terminals
sold. Indeed, the celerity at which new functionalities are
incorporated in handheld devices is starting to exceed the rate
of package reduction and the trend towards Systems on Chip
(SoC) provided by technology downscaling. Addressing this
challenge implies redefining the concept of mobile terminals,
going from pure hardware-based to hybrid hardware/software-
based devices [6], [22], [25]–[28].

As envisaged by Mitola in 1995 [29], a Software-Defined-
Radio (SDR) is defined as a universal radio platform which
can be programmed to steer any frequency band, and pro-
cess arbitrary communication protocols, while ensuring the
required quality of service as well as guaranteeing privacy and
security [6]. An ideal SDR transceiver – conceptually depicted
in Fig. 4(a) – would process all information in the digital
domain, so that it would be composed by three main building
blocks: the antenna, the A/D interfaces and the DSP. As will be
discussed later, this implementation is not realistic due to the
huge amount of power consumed by the A/D interfaces, what
requires at least some analog signal conditioning circuitry (see
Fig. 1), to really implement an efficient interface between RF
signals and the digital data.

ADC DSP DAC
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ADC DSP DAC
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Fig. 4. Conceptual diagram of SDR and CR transceivers: (a) SDR transceiver,
where signals are ideally transformed from RF to digital domain – unfeasible
in practice due to the power-hungry A/D interfaces (ADC in the receiver path
and DAC in the transmitter path). (b) Ideal CR transceiver made up of two
main building blocks: the SDR and a spectrum-management subsystem.

SDRs are the base platform to implement CR technology
in order to make a more efficient use of the electromagnetic
spectrum [14], by dynamically modifying its transmission and
reception parameters according to the information sensed from
the environment – a technique also referred to as spectrum
sensing. Essentially, CR-based technology enables wireless
networks and handheld terminals to use the RF spectrum
in a dynamic manner. As a result, a more efficient use
of licensed/unlicensed spectrum can be done, with reduced
interferences and/or at a lower power consumption. This way,
SDR/CR-based mobile terminals would be capable of dynam-
ically sensing their spectral environment and to exploit the
captured information to change their transmission/reception
parameters in order to improve the communication link and to
reduce the energy consumed on the fly.

Therefore, SDR/CR devices must be smart enough to in-
corporate cognitive (also referred to as spectrum-sensing) ca-
pabilities, and flexible enough to be dynamically programmed
according to the information obtained from their interaction
with the environment. As conceptually illustrated in Fig. 4(b),
SDR/CR systems can be divided into two main building
blocks: the SDR transceiver itself and a spectrum-management
subsystem. The latter will do the cognitive tasks required
to implement CR functionalities. Note that this approach
is completely different from the fixed spectrum assignment
policy followed by today’s mobile telecom systems, in which
a large portion (around 80 − 90%) of the assigned radio
spectrum is used sporadically while the remaining bands are
truly busy at any given time. Indeed, it is expected that the
combined use of SDR and CR approaches can be advantageous
to optimally selecting the most suitable parameters for the
communication systems, depending on the environment con-
ditions, interferences, battery level, etc. as well as optimizing
power consumption. It will also add flexibility in a number
of applications such as autonomous vehicles, thanks to the
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Fig. 5. Illustration of the concept of CR: frequency allocation and occupancy
over time by primary users (PU) versus secondary users (SU).

incorporation of new protocols such as the so-called Vehicle-
to-Everything (V2X) [16], [30].

As will be discussed later, one of the direct consequences
of the physical implementation of SDR/CR-based terminals is
that the RF signal conditioning, the ASP and the digitizer, i.e
the circuits responsible for transforming the signals from the
analog/RF to the digital domain, should be moved as close
as possible to the antenna, so that most of the hardware is
digital and hence, it is easier to program via software. This
is however one of the main design challenges and bottlenecks
– specially from the circuit designer perspective. But, before
going down to the circuit level, it is illustrative to get some
insight about CR systems.

III. BACKGROUND ON COGNITIVE RADIO

The idea of CR was first proposed by Mitola more than 20
years ago [14]. As illustrated in Fig. 5, the core concept behind
CR systems consists of using free, vacant bands or frequency
holes, by CR users, also known as Secondary Users (SUs),
when those bands are not occupied by the Primary Users
(PUs). This way, those users (PUs) who occupy frequency
bands assigned or licensed to commercial communication
standards and protocols in a given location, can allow CR users
(SUs) to use their bands when they are vacant. For that reason,
sometimes CR is also referred to as an opportunistic radio
approach, since their users, i.e. SUs, make use of licensed
frequency bands only when they are not occupied by their
owners, i.e. PUs. The CR concept is really clever and pretends
to make a more efficient use of the electromagnetic spectrum.
However, the real implementation of CR presents a large
number of practical limitations, which go from aspects related
to legal regulations dealing with the bands licensed to mobile
companies and internet providers for its commercial use, to
the so many technical challenges – such as for instance the
interferences caused by SU/CR users to PU/licensed users as
well as the spectrum-management tasks (access, sensing, band
allocation, handoff, etc.) [15], [16], [31].

A. CR Regulation, Standards and Modalities

Several regulatory institutions around the world – including
the International Telecommunication Union (ITU), the Euro-
pean Telecommunications Standards Institute (ETSI) and the

Federal Communications Commission (FCC) – are working to
set the corresponding legal and technical regulations for CR to
be implemented in the most efficient way, in order to make use
of the spectrum which can be dynamically changed over the
time and places, without interfering with the licensed users
at different locations and regions. There have been several
approaches to this problem, which go from occupying some
unused and/or unlicensed, portions of the spectrum, like digital
broadcasting TV white spaces or the Industrial, Scientific
and Medical (ISM) bands. The first CR Wireless Regional
Area Network (WRAN) standard, IEEE 802.22, was developed
by IEEE 802 LAN/MAN standard committee and published
in 2011. This standard – which can be considered as the
official communication protocol for CR systems – is based
on geolocation and spectrum-sensing techniques in order to
identify unused portions (bands, channels) of the frequency
spectrum in a given time period and/or in a specific location
or geographical area [15]–[18], [32].

Attending to the degree of reconfigurability of transmission
and reception parameters, CR systems can be divided into two
main categories: Full CR – also known as Mitola radio – in
which the CR system must sense all transmission parameters
required to reconfigure the entire operation of CR transceivers
and Spectrum-Sensing (SS) CR, where just the sensing of the
RF spectrum is taken into account by CR transceivers. There
are other classification criteria of CR systems depending on
whether they use or not some portions of licensed bands such
as ISM, Bluetooth or IEEE 802.11; the spectrum mobility
over band transitions, etc. Most existing research and practical
implementations of CRs focus on SS-based CRs, since they
are the best candidates to put the concept of CR transceivers
in practice [16]–[18].

B. Spectrum Management in CR

As stated above, CR systems must be able to develop several
spectrum-management functions, which include at least the
following ones [16], [31], [33], [34]:

• (1) Spectrum sensing: determine and identify the available
frequency holes,

• (2) Spectrum decision: select the best portion of the
spectrum among detected holes,

• (3) Spectrum sharing: manage the spectrum so that it can
be shared by CR users (SUs) without interfering PUs,

• (4) Spectrum allocation: vacate the occupied chan-
nels/bands when PUs require their use.

In order to implement these functions, CR transceivers must
be capable to interact with the electromagnetic environment
to sense the information needed i.e. CR circuits and systems
need to be doted with some kind of cognitive capability. On
the other hand, CR transceivers must be able to reconfigure
their specifications – in terms of sensitivity, selectivity, Quality
of Service (QoS), frequency band, power consumption, mod-
ulation scheme, etc. – in order to adapt the performance of
the transceiver building blocks to the information sensed from
the surrounding environment. This way, any CR transceiver
must have at least two main building blocks as illustrated in
Fig. 4(b): the transceiver itself and a spectrum-management
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subsystem. The former will process the information as in any
other wireless transceiver, while the latter will be responsible
for doing the spectrum-management functions listed above.
Embedded software or hardware (or a mix of both) are
needed to implement the required signal processing algorithms
together with the main part of the system, i.e. the transceiver,
which will essentially process the information signals.

As stated above, Spectrum Sensing (SS) is one of the most
important tasks to extract the required information from the
electromagnetic environment, so that CR systems can detect
the best band to be used by SUs without interfering the
operation of PUs. There have been many diverse SS techniques
reported so far, including among others: energy detection,
cyclostationary-feature detection, matched filter detection, etc.
The former, energy detection, is one of the most used ones,
since it is relatively simple to implement, based on detecting
the presence or absence of a signal by sensing/measuring
the power received in a given band. However, in spite of its
simplicity, it is not easy for the energy detector system to
distinguish what is really an information signal from simply
noise variance information flowing through the communication
channel. To this end, more sophisticated and precise strategies
– such as matched filter or cyclostationary-feature detectors
– are used. Cyclostationary-feature detection method is based
on the idea that deterministic information signals being propa-
gated through the electromagnetic spectrum, i.e. those signals
which carry information, are not simply channel noisy signals.
Therefore, these signals follow a well-known communication
protocol based on a modulation technique, such as BPSK,
QPSK, OFDM, etc, and feature a cyclostationary behavior –
not shown by Additive White Gaussian Noise (AWGN) present
in the communication channel. There has been a number of
approaches to implement spectrum-management techniques –
summarised in Fig. 6. The detailed explanation of all of them
can be read in detail in the open literature1 [16], [33], [34].

Apart from the above mentioned techniques – which can
be generically grouped as narrowband techniques – there are
other SS-based CR approaches based on a wideband analysis
and inspection of the spectrum. Although these methods can

1The interested reader can find more details about these techniques in some
surveys included in the references such as the work by Hu et al. at [16].

provide more detailed, precise and exhaustive information
about the bands occupied by PUs and SUs, interferences, etc.
the price to pay is that a large spectral bandwidth, typically
in the order of tens to hundreds of MHz, or even GHz,
need to be handled by CR digitizers! This is not feasible
due to the power consumption demanded by the spectrum-
management block of the CR system. Some other alternatives
involve the use of the so-called compressive spectrum sensing
or any kind of sub-Nyquist sampling in order to relax the
requirements of the ASP/RF and very specially the speed
requirements of the A/D interface. Most of CR spectrum-
management functions can be optimized if they are carried
out by an AI engine – as conceptually shown in Fig. 1.
Another limitation deals with their legal coexistence with the
vast amount of commercial/licensed wireless communication
standards available in 5G and incoming 6G mobile networks
[8]–[11], [18]. Regardless the way in which such AI engine is
implemented, i.e. either by embedded software, hardware or
an hybrid way, an efficient computing strategy must be used to
make CR-based mobile terminals feasible in terms of energy,
cost and practical implementation.

IV. EFFICIENT COMPUTING FOR CR/AIOT DEVICES

In addition to the communication subsystems, CR/AIoT
devices and networks will need also to increase their com-
puting capabilities for the huge volumes of information being
handled. In many cases, these devices will require to process
the sensed information in the shortest possible time and in
a ubiquitous way, i.e. without being able to communicate
with a remote server, and the minimum energy consumption
[12]. Conventional processors based on von Neuman computer
architectures are inefficient to perform the tasks required
by CR/AIoT nodes. This has prompted the exploration of
alternative computing paradigms to implement the AI engine
embedded in CR transceivers. First approaches are based on
the so-called Machine Learning (ML) and Deep Learning
(DL), which are in turn based on the use of algorithmic models
– mostly implemented in software and inspired in Artificial
Neural Networks (ANNs) – successfully used nowadays for
image and voice recognition [35]. The approach here is to
extend the use of ML/DL and ANNs to automatize the SS
functions required by CR devices [18], [36]–[40]. Let us revisit
some basic concepts about ANNs first.

A. Artificial Neural Networks: Basics and Main Topologies

Essentially, an ANN is a computing system formed by the
interconnection of layers of units or nodes called artificial
neurons, which are inspired by the neurons in a biological
brain. Similarly to biological neural systems, artificial neurons
establish connections among them by means of synapses, so
that they can transmit (electrical) signals to other neurons.
These connections or synapses are represented by real numbers
or weights, so that the output of each neuron in an ANN is
computed as a (nonlinear) function of the sum of its inputs, i.e.
those neurons connected to that neuron. The behavioral model
of ANNs adjusts the values of the connections by increasing
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or decreasing the weights, depending on the strength of the
synapsis, i.e. the signals at a given connection [41], [42].

The generic concept of an ANN can be implemented in
many different ways, either in software or hardware or as
an hybrid form. Fig. 7 illustrates some of the most common
ANN topologies and their potential application to CR systems.
Those called generic ANNs – where synaptic weights are
trained by using examples – can either be feedforward or re-
current, and are usually associated to applications like artificial
vision or voice recognition, where logic programming presents
some limitations. The so-called Deep Neural Network (DNN)
has at least more than one hidden layer of neurons and it
operates in a feedforward way. These ANNs use costly offline
training methods which require huge amount of datasets. They
also present very good performance for some tasks like face
recognition, movement detection, etc. Another topology of
ANNs – shown in Fig. 8 – is the so-called Spiking Neural
Network (SNN) [43]. In this type of ANNs, neurons update
their state only when they receive an input spike – in a
similar way as it happens in biology – and there is a temporal
correlation between spikes, which becomes crucial for the
correct modeling of these kinds of ANNs [41], [42].

There are many other classification criteria of ANNs. One
of then is the degree of connectivity of their neurons, so that
ANNs can be divided in fully-connected ANNs – where each
neuron in a given layer is connected to all neurons of the
remaining layers in a feed-forward way – or Convolutional
Neural Networks (CNNs), where each neuron is connected to a
given subgroup of neighboring layers in a projective/receptive
field (see Fig. 7). Another classification criterion deals with the
way ANNs are trained, thus dividing ANNs into supervised-

learning, unsupervised-learning or self-learning, depending on
the data provided to the ANN to get them trained. Finally,
another criterion deals with the implementation itself, which
can be either in software – by using many diverse language
programs such as Python, C, MATLAB, etc. – or in hardware,
either in FPGAs or embedded in a chip.

B. Neuromorphic Computing

One of the ANN approaches that is gaining more and
more relevance in the last years is the so-called neuromorphic
computing, which is inspired by the information processing
of the human brain [44], and allows DL algorithms to be
implemented in hardware instead of software [45]. This is
the case of the TrueNorth processor, designed by IBM in
28nm process [46] – with a high energy efficiency of 26
pJ per synapse – making it viable for a broad spectrum of
commercial applications. Another milestone is the Loihi chip,
developed by Intel in a 14nm technology, with the capacity
to emulate 130,000 artificial neurons [47]. Neural computing
is also beginning to be implemented in modules embedded in
conventional processors to perform very diverse ML functions.
For example, the A1X Bionic series processors – developed
by Apple for their mobile devices and more recently in their
M1X series processors included in recent generations of their
computers and iPads – incorporate a neural computing module,
which can perform several billion operations per second in a
more efficient way than their von Neumann counterparts. Some
other best-known neuromorphic chips are Neurogrid [48] and
BrainScaleS [49], to cite a few. A comparison of these chips
based on specifications like technology, feature size, number
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of transistors, number of neurons, number of synapses, energy,
etc. can be found in literature – see for instance [50].

Another promising technology – still in its infancy – con-
sists of emulating synapses by memristors. As well known,
Prof. Leon Chua postulated the existence of a fourth circuit
element, which he coined as ‘memristor’ in the early 70s [51],
although it was not until 2008 when HP labs demonstrated the
physical existance of this element [52]. Among its multiple
applications, it has been demonstrated that memristive devices
can emulate synapses in ANNs and they can be combined
with CMOS neurons in a 3D chip implementation. However,
one of the limitations to realize general-purpose neuromorphic
processors is their scalability, so that they are capable of
emulating SNNs – conceptually shown in Fig. 8 – with the
required computational capacity and feasible power consump-
tion, although recent research studies demonstrate that using
some circuits and systems techniques – like offset calibration
– are promising approaches to increase the scalability of
memristor-based neuromorphic processors [53].

C. Application of ANNs to AI-managed CR Systems

In spite of the mentioned limitations, some recent studies
suggest the possibility to use ANNs and AI/ML technologies
to manage the signal processing and performance metrics of
the communication systems embedded in IoT nodes in order to
implement the CR concept in 5G mobile systems and beyond.
As mentioned above, although general-purpose neuromorphic
processors are still far from reality, the need of more efficient
ubicuos computation requirements opens the doors to look
for alternative computing paradigms. Indeed, in the last years,
there has been an increased interest in applying learning-based
techniques, such as DL/ML, to optimize the management of
the electromagnetic spectrum – a core function in CR systems
as described in previous sections. A detailed analysis of the
multiple reported approaches is well beyond the scope of this
article, but the interested reader can find excellent surveys
and overviews published in literature [17], [54], [55]. Instead,
let us consider here some applications of ANNs to SS-based
CR transceivers to illustrate the big picture and envision the
potential applications of AI/ML to automatically manage the
performance metrics of CR transceivers, and to identify the
optimum way to manage the information in terms of frequency
spectrum occupancy, noise, interferences, battery status, or any
other performance metric [8], [17], [36], [38], [39], [54]–[58].

Although AI-managed engines embedded in a SoC solution
for CR transceivers are still far from an actual implemen-
tation, there are some interesting approaches which show
the way on how the use of learning-based spectrum-driven
strategies can be successfully applied to analyze and manage
the spectrum in CR nodes and networks. Some authors in
[56] show how DL algorithms implemented in CNNs can
be applied at the physical layer to address problems such
as modulation recognition. The same approach is followed to
radio fingerprinting [17] and Medium Access Control (MAC)
[59]. In the majority of cases, a collection of signal stimuli
is extracted from spectrum data, stored in the cloud and used
as training models for the AI engine [17]. This approach may
work well for some functions needed in SS-based CRs such as
power management, dynamic spectrum access and any other
task requiring the identification and classification of some
spectrum features. However, it is not clear how this procedure
can be applied in practice to effectively address real-time
problems. A very promising approach is based on translating
the identification problem of frequency holes to a time series
prediction problem. To solve these kinds of problems, the so-
called Recurrent Neural Networks (RNN) have been used for
decades and more recently, a specific type of RNN called Long
Short-Term Memory (LSTM) networks has been proposed to
be specially suited to predict temporal evolution of data [60].

LSTM networks are one of the best ANN architectures to
predict the future occupation of arbitrary frequency bands in a
CR-based system, so that using the predictions provided by the
LSTM network, the CR-based device can take a decision to use
the less occupied band and tune dynamically CR transceiver
design parameters to transmit/receive the information through
that frequency band [60], [61]. Another open question is the
real implementation of the AI engine, either as embedded
software or as a specific hardware block, implemented either
in an FPGA or in the same chip together with the rest of the
CR transceiver. This is still a matter of research, and there
are many opportunities of designs innovations in this field.
The efficient implementation of CR nodes will also demand
an increase of circuit-level programmability in order to adapt
the transceiver specifications to the performance metrics set
by the AI engine according to the information sensed from
the electromagnetic environment. This is specially critical for
the ASP/RF subsystem and digitizers, as discussed in next
sections.
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V. PROGRAMMABLE AND MOSTLY-DIGITAL DIGITIZERS –
KEY TECHNOLOGY ENABLERS FOR CR TRANSCEIVERS

The system-level trends and challenges discussed in pre-
vious sections are transferred to the circuit and physical
level, by demanding innovative solutions to implement ef-
ficient Integrated Circuits (ICs) to put SDR/CR concept in
practice. As stated in Section II, multi-standard transceivers
embedded in last-generation cellular phones tend to reduce
the analog/RF content, although it is still a common approach
to implement such multi-mode transceivers by using single
down/up conversion scheme as conceptually depicted in Fig. 9.
This architecture eliminates the need for both Intermediate-
Frequency (IF) and Image Reject (IR) filtering and requires
only a single oscillator and mixer, which increases hardware
sharing. Moreover, the most common situation in practice is
that, separate (switchable) RF front-end paths are used for
different standards, whereas a single, digitally-programmed
baseband section is shared by all of them.

One of the major design challenges is to make as many RF
building blocks reconfigurable as possible, so that the ideal
scheme should be as that conceptually shown in Fig. 10. How-
ever, even this fully-programmable transceiver scheme would
be feasible, there are several issues that should be also taken
into account. On the one hand, multi-standard transceivers
must be able to support different standards concurrently. For
example, several standards operate in a concurrently way at
a given time. Thus, it is common to use simultaneously cel-
lular standards (GSM, UMTS, LTE, etc.) with other wireless
communications such as WLAN, Bluetooth, GPS, etc. The
challenge therefore lies in designing a reconfigurable cellular
transceiver that can meet many diverse requirements without
replicating the hardware and increasing the cost/size. The trend
nowadays is towards implementing the DSP, the programmable
A/D/A interface and most of the reconfigurable ASP/RF signal
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processing in an advanced CMOS technology process, while
the rest of components, basically the antenna interface and
RF front-end components, can be implemented in RF-friendly
III-V semiconductor technologies, such as GaAs or SiGe [62].

One of the key technology enablers to make SDR and CR
a reality is to translate most of the signal processing from
the analog to the digital side. This strategy makes the A/D
interfaces one of the most critical building blocks and design
bottlenecks of incoming generations of wireless (SDR/CR)
transceivers. As stated earlier, the boundary between the ana-
log and digital domains has increasingly shifted to the antenna,
with the subsequent benefits from technology downscaling and
programability – a very important feature required by SDR/CR
systems. Indeed, in an ideal SDR/CR transceiver, there would
theoretically be no need for any ASP other than that necessary
for the corresponding ADC in the receiver and the Digital-to-
Analog Converter (DAC) in the transmitter.

In an ideal SDR/CR system, most of the signal processing
could be implemented via software in the DSP. However, such
a SDR/CR end-device is unfeasible in practice, since it would
imply the need for ADCs and DACs with specifications which
are well beyond the state of the art. Roughly speaking, the
A/D interface would need to digitize signals placed at carrier
frequencies within the GHz range with signal bandwidths of
tens or even hundreds of MHz and effective resolutions of
10-12 bit, or even more, depending on the communication
standard. These demanding requirements should be fulfilled
with the minimum amount of energy to maximize the battery
life, what in many cases would involve consuming only a
few µWs. These specifications can be relaxed by means of an
ASP/RF and signal conditioning interface between the antenna
and the digitizer (see Fig. 10). The rest of the paper focuses
on the receiver path of CR transceivers, and puts emphasis on
the ADC as one of its key components and technology players
enabling CR systems. State-of-the-art ADC architectures as
well as some key reconfigurable, mostly-digital/digital-based
analog circuit techniques are revisited, looking at the features
demanded by AI-managed systems.

A. An overview of the State of the Art on ADCs

Fig. 11 represents the performance of state-of-the-art ADCs
in terms of their main specifications, i.e. the digitized signal
bandwidth, Bw, as a function of the resolution, quantified by
the Effective Number Of Bits (ENOB). The conversion region
covered by Σ∆Ms is comparable to the rest of (Nyquist-
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rate) ADCs, which is in turn mostly dominated by Successive
Approximation Register (SAR) and Pipeline ADCs. These
three techniques – or a combination of them – cover a vast
range of applications [63], [64].

Two different state-of-the-art fronts can be identified in
Fig. 11. One front – mainly dominated by Σ∆ ADCs – goes
from low-frequency (tens/hundreds of Hz) and high-resolution
(< 21 bit), to medium-high frequency (tens/hundreds of
MHz) and medium-high resolution (< 14bit). The other front
is dominated by SAR and Pipeline ADCs, and goes from
hundreds of MHz and medium-resolution (in the order of 10
bit), to dozens of GHz and low-resolution (up to 5-6 bit). The
fastest ADCs are the Flash architectures – based on a parallel
A/D conversion using a bank of 2N comparators, with N
being the effective resolution. This resolution is limited by the
power consumed by the exponential number of comparators.
In contrast, other types of ADCs such as semi-Flash (two-
step), Pipeline (multi-step), SAR and Σ∆M ADCs relax the
energy-vs-resolution trade-off by relying their performance on
a divide and conquer strategy. Essentially these ADCs trade
the precision of their (analog) building blocks by (digital)
signal processing. As a result, a more efficient digitization
is achieved in terms of the conversion energy, and the price
to pay is a reduction in the comparison speed as compared to
fully-parallel Flash ADCs [63]–[67].

The energy consumed per conversion in an ADC, can be
quantified as E ≡ P/fsnyq, where P is the power dissipated
and fsnyq ≡ 2 · Bw, stands for the ADC Nyquist rate or
output rate. The conversion energy has been reduced over
the years, by pushing state-of-the-art ADCs foward. This
is illustrated in Fig. 12, which shows the evolution of the
energy per conversion of state-of-the-art ADCs within the
last three decades. This picture – commonly known as an
energy plot – represents graphically the aforementioned trade-
off between resolution and conversion energy [68]–[70]. It is
clear from Fig. 12 that ADCs have benefited from technology
downscaling to make more and more efficient digitization.

AI-managed CR-based transceivers would require energy-
efficient ADCs with a high degree of programmability to

ENOB (bits)

E (J)

Fig. 12. Evolution of energy plot of CMOS ADCs over the last three decades.

digitize very diverse signal types, while handling the environ-
mental interferences and noisy signals, battery status, spectrum
band occupancy, etc. ADCs based on Σ∆Ms, noise-shaping
SARs, and hybrid SAR/Σ∆M/Pipeline architectures are – a
priori – good candidates to implement highly programmable
A/D interfaces. Moreover, prompted by its inherent robustness
provided by the action of noise-shaping and feedback, Σ∆M-
based digitizers are among the best ADC topologies to merge
with RF/ASP front-end circuits as well as with the ANN
engine that control the operation of CR/SDR transceivers [71].

The use of Σ∆Ms in some spectrum-management functions
such as energy detection [72], RF digitizers [73]–[79], as
well as their suitability to embed RF signal processing as
Image-Reject (IR) filtering [80], are just some examples of
the versatility and suitability of Σ∆M circuits and systems
techniques to design incoming AI-managed CR digitizers.
There are also some hybrid ADC architectures such as Σ∆M-
SAR [81], Noise-Shaping SAR [82]–[84], SAR-Pipeline [85],
[86], or GHz-rate Continuous-Time (CT) Pipeline ADCs [87]
– just to cite a few – suited to implement some spectrum-
management functions in CR systems [88]. The remaining
sections mainly focus on some Σ∆M-based architectures and
circuit strategies to implement highly programmable, digital
friendly digitizers for AI-managed CR-based receivers.

B. Σ∆M-based Receivers for SDR/CR

Over the years, more and more CT-Σ∆Ms are demonstrat-
ing to be a competitive solution for the implementation of
power-efficient ADCs operating in the GHz range [74]–[76],
[89]–[99]. The use of CT loop filters make more feasible the
development of digital-intensive RF transceivers [100] and
SDR, often referred to as Σ∆ receivers [101]. One of the
most common topologies in mobile handsets consists of using
a Direct Conversion Receiver (DCR) like the one conceptually
depicted in Fig. 13(a). This receiver is made up of an ASP –
made up of a LNA, a mixer, and a baseband filter – followed
by a Low-Pass (LP) CT-Σ∆M. The latter benefits from their
CT circuit nature to merge some RF functions like out-of-
band blocker/interfering-rejection filtering, frequency-mixing
process, channel-selection and antialiasing filtering [80], [98],
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[102]–[113]. These functionalities can be embedded within
the Σ∆M feedback loop, thus yielding to more compact RF
receivers [64]. However, the analog content is still too complex
to be controlled by an AI engine, where a mostly-digital
approach is more suited to merge it with ANNs.

An alternative trend towards SDR receivers is based on
placing GHz-range BP CT-Σ∆Ms as close as possible to the
antenna, as illustrated in Fig. 13(b), yielding to the so-called
RF-to-baseband converters or RF-to-digital converters [92],
[94], [101], [114]–[121]. Although this topology is close to the
ideal implementation of SDR [29], its practical application is
mostly limited by the unfeasible power-hungry requirements
demanded by the GHz-clocked ADC. These specifications
can be patially mitigated by using some techniques such
as embedded out-of-band filtering [101], [120], frequency-
translating [116], [120] and undersampling or subsampling
[94], [114], [115], [122], [123].

For BP-Σ∆ ADCs intended for RF conversion, tuning range
is also a concern. The majority of RF-to-digital BP CT-Σ∆Ms
use a fixed center or notch frequency and a programmable
frequency synthesizer. This issue has motivated the interest for
reconfigurable/programmable BP-Σ∆Ms with wide tunable
notch frequency [76], [92], [124]–[126]. Another limiting
challenge is associated with the design of loop filters in
the GHz range, which need to achieve a high-quality and
accurate resonance. LC tanks are great from a power and
linearity perspective but typically support only an octave of
range, whereas active-RC resonators can be widely tunable
but require amplifiers with high gain at the ADC’s center
frequency [71]. These limitations have motivated exploring
alternative signal processing techniques, such as translational
circuits, polyphase or N-path filters [127]. Although the idea
of using N-path filters in BP Σ∆Ms is not new [128], there
has been a resurgence of these signal processing techniques
to implement BP-ADCs, by combining NS-SAR and Σ∆M
techniques [129]. Indeed, these techniques can be combined
with either active or passive downconversion structures em-
bedded into the modulator loop filter as conceptually shown

in Fig. 13(a), in order to achieve the required received linearity
and sensitivity [32], [101], [130], in some cases without
needing integrated inductors [130].

The Σ∆M-Rx architectures depicted in Fig. 13 are – a priori
– among the best candidates for SDR/CR. The main advantage
of using a BP-Σ∆M is its high degree of programmability,
since virtually all signal processing is done digitally. The
biggest drawback lies in the accuracy required for analog
blocks, specifically the LNA and the RF-to-digital converter
[64]. However, the use of suitable synthesis methodologies
[125], combined with circuit-level optimization and RF/ASP
circuit tuning strategies can reduce the power consumption to
the order of a few mW [126] or even µW [131]. However, even
though the tuning range can be increased, the specifications
required for the ADC are still well beyond the state of the art.
The required Dynamic Range (DR) can be however achieved
by the ASP/RF subsystem. This imposes also significant trade-
offs in terms of the signal saturation and sensitivity of the
receiver, which must be handled while keeping the requested
programmability to implement CR functions.

Although the performance of some Σ∆M RF digitizers like
that shown in Fig. 13(a) is still well short of what is needed
for being included in SDR/CR end-devices, the state of the
art on ADCs look at different circuits and systems techniques
to further reduce the RF/ASP content and make CR-based
transceivers more and more programmable via software to easy
their control an AI engine [64]. Another alternative – based
on a DCR in which out-of-band blockers are embedded in the
Σ∆M loop filter– takes the advantage of the feedback nature
of the Σ∆M to reduce the sensitivity of the analog circuitry to
non-ideal effects [80]. Moreover, the use of some techniques
like either multi-channel BP-Σ∆M [79] can further enhance
the operation of Σ∆M-Rx for SDR/CR applications.

Regardless the topology of the CR-based receiver, the
overall system must work under the control of the AI/ML
engine. This subsystem – which implements the spectrum-
management functions required by the CR terminal – can
be implemented in diverse ways. It can be synthesized either
in hardware as an off-chip (FPGA-based) part, or as an on-
chip dedicated module – which would need its own ASP
and A/D interfacing – or as a software embedded in the
DSP. If dedicated hardware is used by the AI engine, this
would require low/medium bandwidth ADCs in the receiver.
Alternative, in case of AI algorithms embedded in a DSP, a
wideband digitizer would be needed. Both approaches – still
a matter of research – have their pros and cons in terms of
hardware complexity, power consumption, programmability,
etc. and they have a significant impact on the performance
metrics of the whole CR end terminal [72], [132], [133].

C. Digital-Friendly Analog Circuits for AI-managed Σ∆Ms

Fuelled by the mentioned need of an earlier digitization,
there is a trend in recent years to either complement or replace
more and more ASP building blocks by the so-called digital-
assisted, digital-friendly analog solutions – some of them
highlighted in the conceptual diagram shown in Fig. 14. A
clear example is the use of CMOS inverters for the realiza-
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tion of Operational Transconductance Amplifiers (OTAs), as
originally proposed by Prof. Bram Nauta in the late 1980s.
Since then, there has been an increasing interest to apply this
technique to the implementation of GHz-range filters, as well
as ASP/ADCs, which may obtain greater energy efficiency
for the required gain performance and bandwidth [71]. At the
same time, more and more digital circuitry is being embedded
to improve the performance of ASP circuits, by means of
calibration, tuning, etc, that try to alleviate the limitations of
nanometer CMOS analog circuits [134]. These features can be
enhanced by the action of an embedded AI engine to manage
the operation of the analog/digital interface [20].

In spite of their potential benefits, inverter-based OTAs
offer lower performance metrics such as robustness over PVT
variations, impact of circuit parasitics, limited dc gain, etc.
These limitations have motivated some authors to proposed
improved versions of inverted-based integrators to implement
both Switched-Capacitor (SC) and CT Σ∆Ms [134]–[139].
The use of digital-based ASP is a very promising strategy for
the implementation of highly programmable digitizers, and
it is expected that the use of these circuit techniques might
benefit from technology downscaling in the next few years
[140], [141].

Hybrid Active/Passive & Amplifier-Less Σ∆Ms: Another
alternative to reduce the number of OTAs consists of replacing
some active building blocks with passive-RC networks. The
drawbacks of this approach are the loss in loop-filter gain,
increased thermal noise as well as a higher sensitivity to

parasitics. Although the idea is not new, passive RC networks
are becoming a popular circuit solution for the implementation
of both CT- and SC-∆ΣMs [93], [121], [142]–[148]. Hybrid
active/passive analog filters can be applied to BP-Σ∆Ms
for RF digitizers. However, due to their higher operating
frequencies – in the GHz range – RF digitizers present larger
sensitivity to mismatch, technology process variations, as well
as the degradation caused by parasitics – specially critical
to achieve a high quality factors of integrated inductors in
loop-filter resonators. Indeed, hybrid active/passive circuits
could be properly combined with other kinds of hybrid circuit
techniques – such as CT/SC Σ∆Ms– to take advantage of the
different circuits involved, i.e. faster operation of CT circuits
and lower sensitivity of SC circuits to errors [147]–[155].

Hybrid Σ∆M/Nyquist-rate ADCs: The performance of
Σ∆Ms can be enhanced by using high-resolution quantizers
implemented by energy-efficiency SAR or Pipeline ADCs.
This idea – originally proposed in [156] to implement hybrid
Pipeline-Σ∆ ADCs – can also increase the reconfigurability
and programmability of the resulted ADC. Indeed, there has
been a number of hybrid Σ∆M-Nyquist ADCs featuring a
competitive performance in very diverse application scenarios
[82], [157]–[166]. In the majority of cases, the basic strategy
followed by hybrid Σ∆M/Nyquist ADCs consists of replacing
(power and area)-hungry Flash quantizers, by another type of
Nyquist-rate ADCs, such as pipeline [156], [157], [161], [164],
two-step flash [161], SAR [82], [159], [163], [165], [166],
cyclic [158], [160] and integrating ADC [162].
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Incremental Σ∆ ADCs (I-Σ∆ ADCs) can also be consid-
ered as hybrid Σ∆M/Nyquist ADCs. These kinds of ADCs
use oversampling and noise-shaping, but reset the loop-filter
integrators and digital filters after each conversion [167]. These
features allow these ADCs to be especially efficient in low-
frequency high-resolution applications like sensor interfaces
using SC circuits [168] and other applications requiring to pro-
cess multiplexed low-frequency signals with high-resolution
[169]. Some other I-Σ∆ ADCs are based on multi-step ar-
chitectures or the so-called extended counting [36], which in
turn can benefit from the hardware/stage-sharing techniques.
These ADCs consist of a front-end I-Σ∆ ADC and a back-end
stage made up of a Nyquist-rate–which can either be a SAR
or a Cyclic ADC– to digitize the residue voltage of the front-
end I-Σ∆ stage [170]. Although I-Σ∆ ADCs have been used
in low/medium frequency applications, the use of CT circuit
techniques and the combination with either SAR or Pipeline
ADCs is allowing their application to wideband digitizers and
can also be suited to implement reconfigurable ADCs [171]–
[173], which can be handled by ANNs in CR/SDR.

Time-based Quantization: Another scaling-friendly ap-
proach – suitable for medium-low resolution (< 10bit) and
GHz-range speed required in RF digitizers – is that based on
time coding by using Voltage Controlled Oscillators (VCOs),
rather than using amplitude quantization. The idea consists
of translating the quantized information in the amplitude
domain to the time domain by means of a voltage-to-frequency
conversion. This can be performed by a VCO circuit as
conceptually depicted in Fig. 14, that shows one of the
first implementations of this concept [174]. The principle of
operation behind this approach relies on the use of a ring
oscillator to count the number of edges within a given time
period. The result is directly related to the input signal, thus
obtaining a digital representation of the amplitude. In addition
to their higher speed, they can operate at supply voltages below
0.5V, while reducing the analog content, which makes them
highly scalable. Moreover, VCO-based quantizers provide an
implicit first-order noise-shaping filter due to their inherent
differentiator operation required to implement the frequency-
to-voltage conversion in the digital domain [100], [174]–[190].

The main limitation of VCO-based quantization is the
inherent nonlinearity of the voltage-to-frequency conversion,
requiring the use of either calibration or linearization tech-
niques [180]–[182], [191], [192]. Another strategy consists of
embedding VCO-based quantizers in the back-end stage of a
cascade2 Σ∆M, such that their nonlinearities can be attenuated
by the noise shaping of precedent stages in the cascade [193].
Indeed, this idea has been used in other types of two-step
hybrid Σ∆/Nyquist-rate ADCs [82], [194]. An alternative to
VCO-based quantizers consists of using pulse-width modu-
lation (PWM) [195], [196] and a Time-to-Digital Converter
(TDC) that generates a time-quantized representation of the
signal. Indeed, embedded TDCs have been succesfully imple-
mented by a number of recent Σ∆Ms [197]–[203]. Another
approach is based on the so-called Gated Ring Oscillators
(GROs), which can attenuate the nonlinearity of VCOs and

2Cascade are also known as multistage noise shaping (MASH) Σ∆Ms.

be combined with active-RC integrators, thus benefiting from
both amplitude- and time-based circuit techniques [204].

Finite Impulse Response (FIR) Feedback DACs: Regardless
the ADC quantization is realized in either amplitude or time
domain, it presents a number of inconveniences in terms
of analog circuit complexity and the nonlinearity caused by
mismatches in the feedback DAC. To address this problem,
some authors propose the use of alternative implementations
of the modulator feedback DAC waveforms–such as a DAC
with a Finite Impulsive Response (FIR) [91], [93], [205],
[206]. The idea –originally proposed in [207] and conceptually
illustrated in Fig. 14 – is to feedback a filtered version of
the single-bit quantization output, such that due to the high-
frequency attenuation of the FIR filter, the DAC output is
a multi-level waveform. This way, using a single-bit ADC
and a FIR DAC allows to obtain the low-jitter sensitivity
and high linearity of a multi-bit Σ∆M, while keeping the
simplicity and robustness of single-bit Σ∆Ms as well as a
reduced analog circuit content [206], [208]. Moreover, the
combination of Time-Interleaved (TI) topologies [209] and
FIR DACs is a promising approach to implement Σ∆M-
based GHz-range and RF-to-digital converters [210]. Thus,
FIR DACs reduce the analog content of the ADC and make it
easier to digitally control its specifications by using an ANN
algorithm as pretended in AI-managed digitizers.

Fully Depleted Silicon-on-Insulator (FDSOI) Technologies:
The aforementioned digital-assisted analog techniques can
benefit from the use of nanoscale technologies such as FDSOI.
This process is postulated as one of the key technologies
for mobile telecom applications, thanks to its better per-
formance than bulk CMOS in terms of transit frequency
(fT ), transconductance efficiency (gm/Id), reduced impact of
passive parasitic elements, as well as improved noise isolation.
Another great potential of FDSOI is its enhanced body effect
by a wider tuning of the threshold voltage, Vth, which makes
it possible to reduce the voltage ranges to supply voltages in
the order of a few hundreds of mV [211], thus increasing the
performance metrics of ASP in communications, including the
enhanced linearity of frequency/time-based circuits [212].

VI. CIRCUIT EXAMPLES: PROGRAMMABLE Σ∆MS FOR
AI-MANAGED CR DIGITIZERS

As an application of the circuits and systems techniques
discussed above, let us consider two Σ∆M examples and
case studies which can be applied to implement mostly-digital,
highly programmable digitizers for SDR/CR transceivers. Two
circuit examples are shown to illustrate their application in
the CR-based receivers shown in Fig. 13, i.e. a DCR receiver
with a programmable LP-Σ∆M ADC and a widely tunable
BP-Σ∆M for RF-to-digital conversion. In the latter case, an
example of how LSTM-based AI engines can be used to
manage the electromagnetic spectrum and reconfigure their
operation in CR-based receivers will be shown.

A. Reconfigurable SC-Σ∆M for DCR-based SDR/CR systems

Let us consider first the use of Σ∆Ms for the design
of reconfigurable baseband ADCs in DCR-based receivers.
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Fig. 13(a) shows the block diagram of such a receiver for
SDR/CR, where after being filtered and preamplified, incom-
ing RF signals are downconverted to baseband, where they are
digitized by a reconfigurable LP-Σ∆M ADC. In this example,
the receiver aims to cover the requirements of diverse wireless
standards including in 4G such as GSM, Bluetooth, GPS,
UMTS, DVB-H, WLAN, LTE, among others. These standards
involve digitizing signals with Bw ranging from hundreds of
kHz to hundreds of MHz with an ENOB within 12 to 8
bit, respectively. A Switched-Capacitor (SC) Σ∆M will be
considered to highlight its high programability feature – one
of the main characteristics required to implement AI-managed
CR devices. The required programmable requirements can be
addressed by properly reconfiguring a SC Σ∆M with a loop-
filter order of L = 2, 4, 6, an embedded quantization of B = 1-
to-3 bit, and an OverSampling Ratio, OSR ∈ (10, 200) [64],
[213]–[215].

Modulator Architecture: The conceptual Σ∆M considered
in this example – shown in Fig. 15 – consists of a N -stage
MASH topology, where all stages can be made independently
switchable according to the desired quantization noise shaping,
and the Digital Cancellation Logic (DCL) can be programmed
according to the value of L [214]. If a stage is turned off,
its building blocks can be powered down to save power. The
number of bits of the internal quantizers, i.e., Bi, and/or
the OSR can be also reconfigured to increase the flexibility
of the ADC. In addition to its reconfigurable characteristics
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(OSR, L and B), a multimode Σ∆ ADC should be able
to digitize signals corresponding to different standards–for
instance, GSM and Bluetooth signals and WLAN signal–in
a simultaneuous or concurrent way. Indeed, concurrency can
be also implemented in a MASH Σ∆M, as shown in Fig. 15,
where a switchable SC network is used to allow the ADC to
be configured as several sub-ADCs, working in parallel–each
one processing a different input signal [214].

Programmability at Circuit Level: Several alternative Σ∆M
topologies can be considered for the ADC in Fig. 15, by
properly combining 2nd-order stages and 1st-order stages in
order to guarantee the stability of each sub-modulator [213],
[216]. Fig. 15 shows an example based on 2nd-order stages
with local resonators in the loop filter. This technique allows
to place the zeroes of the Noise Transfer Function (NTF) in
optimal frequencies to maximize the ENOB. As an illustration,
the SC schematic of an intermediate stage with resonation is
shown in Fig. 16, where switchable capacitor arrays are used
to implement the programmable loop-filter coefficients. This
SC-Σ∆M ADC requires additional digital logic blocks – not
shown in the figure for the sake of simplicity – in order to im-
plement the main reconfiguration functionalities by means of
a set of control signals which are also used to power up/down
the different building blocks according to the configuration
needed by the ADC for each operation mode. This is an
important requirement for the ADC in CR applications where
the specifications must be dynamically modified according to
the information sensed from the environment.

Scalable Power Circuit Techniques: Reconfigurable ADCs
need to be capable to adapt their performance to the specifica-
tions of diverse standards with the minimum power consump-
tion. This becomes particularly critical in portable devices such
as CR handheld terminals. One of the most common ways to
implement this power adaptability is to adjust the biasing of
the Σ∆M ADC by means of a programmable master bias
current generator [213], [217]–[219], as illustrated in Fig. 17.
In this example, reconfiguration is performed by using binary-
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weighted pMOS current mirrors, and all mirrored currents are
selected by control signals, which are in turn applied to the
gates of nMOS-based control switches. This way, the electrical
characteristics of analog circuits such as loop-filter amplifier
metrics – DC Gain, Gain-Bandwidth (GB), Slew-Rate (SR),
etc. — can be modified according to the bias current demanded
by each building block [215].

Measured Programmable Noise Shaping: As an illustration
of the aforementioned programmability circuit techniques,
let us consider two Σ∆M chips designed in 90-nm CMOS
intended for SDR [215]. One of them is a 4th-order two-stage
(2-2) MASH with 3-level quantization and the other one is
a 6th-order three-stage (2-2-2) which includes concurrency,
programable local resonation and reconfigurable 3-to-5-level
quantization. In both cases, the OSR can be programmed by
varying the sampling frequency, fs, from 40MHz to 240MHz.
The noise-shaping of the ADC can be programmed according
to required specifications by varying OSR, L or B.

Fig. 18(a) illustrates the capability to digitize different
signals simultaneously, i.e. in a concurrent way. This example
shows the experimental output spectra of the first and the
second stages of the 6th-order Σ∆M by processing two input
sinewaves placed at 20 and 200 kHz, respectively. Fig. 18(b)
shows the measured output spectra of the 4th-order MASH
SC-Σ∆M considering different configuration and operation
modes, for an input sinewave with an amplitude of −12.2dB
below Full-Scale (dBFS). This chip featured a peak SNDR
of 72.3-to-48.7dB within 100kHz-to-10MHz, with an adaptive
power consumption of 4.6-to-11mW, being at the cutting-edge
of the state of the art in reconfigurable ADCs [213]. The
programmability features of this Σ∆M, at both architectural
and circuital level, make it suitable to be managed by ANN-
based AI engines in applications such as CR receivers.

B. Widely-Tunnable CT BP-Σ∆Ms for RF Digitizers

As stated above, CR-based ADCs require not only digitize
GHz signals but also to seamlessly hop from one frequency
band to another, according to the information sensed from
the electromagnetic spectrum. This feature can be realized
by BP-Σ∆M ADCs with a widely tunable notch frequency,
fn, while keeping the required resolution over the digitized
band [20], [76]. To illustrate this approach, let us consider
a second Σ∆M chip example, designed in 65-nm CMOS,
which consists of a 4th-order loop filter made up of inverted-
based Gm-LC resonators and a 4-bit quantizer, conceptually
depicted in Fig. 19(a). The loop-filter resonators are based
on programmable inverter-based transconductors shown in
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Fig. 19(b), which are in turn made up of unitary circuit ele-
ments that can be connected or disconnected depending on the
operation mode required for the digitizer. This way, the notch
frequency can be tuned as illustrated in the output spectra
shown in Fig. 19(c). Moreover, the tuning of specifications
can be managed by an LSTM network [61] as shown later.

Both system-level and circuit-level reconfiguration tech-
niques are considered to allow the modulator to digitize signals
placed at several carrier frequencies, ranging from 450MHz to
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950MHz, with a programmable 1.2/2GHz clock rate. Inverter-
based switchable transconductors are used to make the loop
filter reconfigurable and optimize the ADC performance in
terms of robustness to circuit errors, stability and power
scalability. Usually, the design bottleneck is not so critical
at the circuit level but at the system level, where a proper
synthesis and sizing of the Σ∆M can lead to a more efficient
and robust design, while relaxing the required design margins
of most performance metrics at transistor level [125], [126].

Increasing the Tunning Range of BP-Σ∆M RF Digitizers:
In order to increase the programmability of the BP-Σ∆M
ADC, loop-filter Gm-LC resonators are realized as switchable
multiples of a unitary transconductance element as depicted
in Fig. 19(b). The quality factor, Q, of the Gm-LC resonators
is enhanced by adding two extra transconductances, gkq1,2,
which can be calibrated in order to maximize the performance
of the modulator. The quantizer is made up of a 4-bit flash
ADC in the forward path and a current-steering FIR-DAC
in the feedback loop. The modulator was synthesized by
applying a CT-to-DT transformation to a BP DT-Σ∆M with
a NTF, considering input signals with Bw = 40MHz placed
at a programable notch frequency, from fn = 450MHz to
fn = 950MHz. As discussed in more detail in [64], [125], the
Schreier’s toolbox can be used to synthesize the NTF for a
given value of fn. Once the ideal NTF and STF have been
determined, the best values of the loop-filter coefficients are
selected in order to optimize the performance of the BP CT-
Σ∆M in terms of robustness and stability, while maximizing
DR and the SNDR with the minimum power consumption3.

Circuit-level Reconfiguration Techniques for RF Digitizers:
In order to put in practice the system-level programmability
required in CR systems, proper reconfigurable circuits are
needed. To this end, mostly-digital circuit implementations are
very suitable, as for instance the use of switchable inverter-
based transconductors to make Gm-LC resonators (Fig. 19(b)).
Inverted-based unitary transconductors are simple and mod-
ular, thus increasing the flexibility and programmability of
the RF digitizer, while minimizing its power dissipation. In
order to adjust the values4 of the requested loop-filter coeffi-
cients with a higher accuracy, different values of the unitary
transconductance, gmu = 100µA/V, are used, namely: gmu,
1/2gmu. The same strategy is followed for gqu, where 1/2gqu
1/4gmu are also used. These values can be easily changed by
properly scaling the value of the tail current, Ibias = 12.5µA,
of the unitary transconductors as well as the sizing. Another
reconfigurable circuit strategy consists of programming the
resonant frequency by using switchable unitary capacitors
connected by switches, which are in turn digitally controlled in
order to program the value of fn required for the BP CT-Σ∆M
to work in each operation mode. Different values of unitary
capacitances are used to increase the granularity of the overall
capacitance value. Additionally, a pMOS-based varactor is also
used to fine-tune the resonance frequencies required by each
operation mode [64], [126].

3The whole design methodology is described in [64], [126].
4Details on the transconductances in this circuit can be found in [126].
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Fig. 20. SPR combined with an AI engine to program an ADC.

Biasing and Digital Control Programmability: Similarly
to the examples shown in previous section, the performance
of CT BP-Σ∆Ms can be adapted to the different operation
modes with optimized power consumption, by adjusting the
biasing of all building blocks by means of a programmable
master current generator. One of the characteristics of highly
programmable ADCs is the huge number of digital control
signals required to control and program their operation. For
instance, in the widely tunable BP CT-Σ∆M of Fig. 19, more
than 180 digital control signals are needed. Such a large
number of digital signals requires a Serial-to-Parallel Register
(SPR) to collect a serial input data and transform this data
into the parallel control bits and hence program the operation
of the ADC as illustrated in Fig. 20. This way, the BP CT-
Σ∆M can be digitally programmed in an easy way, by loading
the required control configuration for each operation mode. In
the case of AI-managed digitizers for CR end-devices, the
serial input data contains the information sensed from the
electromagnetic environment, which is provided by the AI
engine, as conceptually illustrated in Fig. 20.

C. Application of LSTM-based ANNs for CR Digitizers

In a CR receiver like that shown in Fig. 13(b), the operation
of all building blocks can be assisted by an AI engine in
order to find the best frequency holes and optimize the quality
of service of the communication. To this end, a LSTM-
based ANN will be considered as AI engine in this case
study. This ANN needs to interact with the ASP/RF front-
end, the ADC and the DSP in order to sense the information
from the electromagnetic environment and predict the level of
occupancy in a given band and/or channel.

Fig.21(a) illustrates a portion of the frequency spectrum
with n channels centered at frequencies f1, f2, ... fn. For
each channel i, let us assume that the band occupancy can
be measured in real time, obtaining the signals represented in
Fig.21(b) for channels 1, 2, ... n. These occupancy signals,
Oci, constitute the inputs for the AI engine, as shown in
Fig. 22. In this case, n LSTM networks work in parallel,
each one predicting the future evolution of an occupancy
signal Ocprei , so that a decision block takes the decision
about which channel will be less occupied next. The decision
block provides the information required to modify the receiver
specifications according to the selected band [61].

LSTM ANN for CR-based Receiver: The LSTM networks
used in Fig. 22 are uni-variable, i.e. they have one neuron,
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for input and output layers, while having one hidden layer
with M LSTM cells followed by a fully connected layer
and a single-neuron output layer. In this example, M = 256
is considered without loss of generality and a multi-step
LSTM network was implemented to forecast more than one
future time step, as defined for regression predictive modelling
problems [220]. The aim of each LSTM network is to predict
a certain number of future samples Np of its input signal
Oci. For that, the network has to be trained with a set of
data representing real band occupancy signals, allowing the
network to learn their characteristics and dynamics. After
training phase, each network can start predicting occupation
in real time. Every time the new LSTM network receives a
time sample, it calculates a programmable number of future
samples Np that can be processed by the decision block. The
number of predicted samples Np is a trade-off: a very small
value will give a more precise prediction but it will limit the
capability of the system to anticipate the future evolution of the
frequency spectrum, while a very large value will improve the
anticipation but the error of the predicted signal will increase.

AI Engine Decision and Receiver Response: A decision
subsystem receives all predicted occupancy signals for each
channel and determines which one should be selected with
a certain anticipation related to the value of Np. The center
frequency of the RF filter, the LNA and the BP CT-Σ∆M
can be properly selected according to the data provided by
the LSTM network engine, so that the desired signals can
be moved to the most convenient band allocation in terms
of interferences, noise floor and QoS. This can be imple-
mented as follows: at a given time instance, t0, the decision
block has to compare the future evolution of each occupancy
signal Ocprei (t0, ..., t0 + Np). From the comparison of these
n segments, the decision block predicts which channel will
reach the lowest occupancy value within this time interval.
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Fig. 22. CR transceiver controlled by a LSTM-based AI engine.

If the lowest value corresponds to a channel different from
the currently selected one, the decision block has to choose
a different set of control parameters to adjust the operating
frequency of the different building blocks in the receiver chain.
In this example, a look-up table approach is used to map
the information provided by the LSTM network to electrical
parameters of the RF filter, the LNA and the BP CT-Σ∆M.

Let us consider an example of four frequency channels as
an example extracted from [61]. This is a particular case of the
one proposed in Fig. 22 by considering four LSTM networks.
As inputs, some synthetic patterns are defined by alternating
between full and empty occupancy for each channel. First,
a segment with 10, 000 samples was generated to train the
LSTM networks, and afterwards 4 segments with 2, 500 sam-
ples were used to test the system. A fragment with 1, 000
samples of the 4 input test signals is shown in Fig. 23(a), while
the last signal shown in this picture corresponds to the band
selection signal generated by the decision block. Each step of
this signal indicates which channel must be selected by the
receiver. It can be shown how at instant t1 the system predicts
that the occupancy of channel 4 will decrease, selecting its
corresponding frequency band. At t2, the predictions say that
the occupancy of the selected channel 4 will increase, while it
will decrease for channel 3. Therefore, channel 3 is selected
until t3, when the system predicts that two different channels
will become less occupied (1 and 2), so the first one is chosen
following a priority list where lower bands are preferred. At
t4, the selected channel is expected to get busy again, so the
decision block compares all predictions, selecting channel 2.

Note that every time the decision block selects a certain
band, it modifies the control parameters of the different
building blocks of the receiver, i.e. the BP filter, the LNA
and the BP-Σ∆M, to make them to operate over the selected
frequency. As an illustration, Fig. 23(b) represents the four
transfer functions for an example bandwidth given by the RF
filter, where each one is chosen to select a different frequency
channel. The center frequency is automatically selected in each
case according to the information provided by the LSTM AI
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engine. Based on the information provided by the LSTM-based
AI engine, the rest of receiver blocks change their parameters.
This is also illustrated in Fig. 23(b) by showing how the
NTF and the notch frequency of the BP CT-Σ∆M is modified
according to the feedback provided by the decision block. It
is important to remark that, in order for the overall CR system
to operate correctly, the granularity of the programmability of
the Σ∆M-based digitizer must be as fine as possible in order
to give the AI engine more degrees of freedom to properly
choose the best parameters to optimize the communication in
the selected sub-band or channel. This would impose a number
of design trade-offs which involves reconfiguration techniques
at both circuit and system level which are still open to research.

VII. CONCLUSIONS

Cognitive radio postulates as one of the technology enablers
to efficiently connect the increasingly number of wireless
devices through new generations of mobile telecom systems
such as 5G/6G and beyond. The basic concept behind CR
– proposed by Mitola more than 20 years ago – is a smart
way to manage the crowded electromagnetic spectrum by
sensing the information from the environment, identifying the
less occupied frequency band, and consequently adapting the
transmission parameters of wireless transceivers in order to do

the communication with the best quality of service possible.
AI engines can be applied to this purpose and there are an
increasing interest in using different types of ANNs to perform
the spectrum sensing and management functions required for
CR systems. However, although much work is being done,
there is still a long way to make CR-based transceivers a reality
and to put such transceivers in commercial mobile terminals.
A number of design challenges must be faced – from system
concept to circuit implementation, becoming more and more
demanding for the RF front-end, analog signal processor and
analog/digital interfaces of CR-based transceivers.

An survey of some of the circuits and systems techniques re-
quired to put CR end-devices in practice have been overviewed
in this paper, highlighting the benefits and trends of using
ANNs to do spectrum-management tasks and control the
operation of CR transceivers. In the most ideal case, translating
the signal processing from the analog to the digital domain
would make it easier the implementation of the CR paradigm.
However, there is a number of trade offs involving the use of
a mostly-digital approach and the price paid by an early RF
digitization. From the circuit design perspective, the RF/digital
interface is one of the bottlenecks and special emphasis has
been put in this article on the use of ADCs as one of the
key building blocks and technology players to make CR
transceivers a reality.

The state of the art on ADCs has been roughly reviewed,
by putting special attention on those ADC architectures based
on reconfigurable Σ∆Ms, as well as mostly-digital, digital-
assisted analog circuit techniques as technology drivers to
embed the required programmability in AI-managed RF-to-
digital interfaces. Some examples discussed in the paper are
emerging digitizers based on the hybrid combination of Σ∆Ms
and Nyquist-rate ADCs – such as SAR and Pipeline – are
also good cadidate architectures. Two chip case studies based
on reconfigurable LP SC-Σ∆Ms and widely-tunable BP CT-
Σ∆Ms, as well as the use of LSTM-based ANNs, have been
shown as an illustration of using highly programmable Σ∆Ms
for AI-managed ADCs in CR receivers. Some of the circuits
and systems discussed in this survey are still in their early
stages of deployment, while others are based on more mature
circuit techniques. In all cases, merging AI engines to control
the operation and specifications of ADCs is still a matter of
research. Addressing some of the challenges discussed in this
paper in the incoming deep-nanometer technology nodes will
lead to new research opportunities and ways to implement AI-
managed digitizers in an increasingly digital-driven world.
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