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A B S T R A C T

A new general semi-analytic procedure for the characterisation of singular asymptotic elastic states in the
vicinity of the apex of linearly elastic anisotropic multi-material corners, including frictional contact, is
developed and tested. The corners can consist of any finite number of homogeneous wedges defined by
polar sectors. The variability of configurations covered is enormous as frictional contact can be considered
on one or more outer boundary surfaces or interfaces, in addition to a large variety of homogeneous boundary
conditions and perfect bonding or frictionless sliding interface conditions between wedges in the corner.
The Coulomb rate-independent and dry frictional contact law is assumed. One of the novelties is that, in
addition to the singularity exponent 𝜆, the angle 𝜔 of the friction tangential stress vector on each frictional
contact surface is an a priory unknown to be determined by solving a nonlinear corner eigensystem. The
procedure, which considers power-law stress singularities, is based on the Stroh formalism of anisotropic
elasticity, assuming generalised plane strain (2.5D) conditions, and on the semi-analytic matrix formalism for
wedge transfer-matrices and boundary and interface condition matrices. This makes it, firstly, very suitable
for computational implementations, secondly, very efficient especially in cases with several perfectly bonded
homogeneous wedges, and, thirdly, very accurate due to its fully semi-analytic nature. The code developed is
tested by solving a large variety of examples, comparing the present results with those obtained by solving
closed-form corner-eigenequations deduced by previous authors for specific useful practical configurations,
confirming the extremely high accuracy of the present code in the computation of 𝜆 and 𝜔. The differences
observed in some cases with anisotropic materials are explained by the fact that some of the previous authors
did not take the true 3D Coulomb friction law into account.
1. Introduction

Friction has numerous implications in many areas of science and
technology, it is an inherent phenomenon in the operation of me-
chanical systems where structural elements are in contact with each
other, and is responsible for significant energy loss and wear. Frictional
contact is often associated with stress concentrations or stress singular-
ities with unbounded stresses, e.g., in material forming with frictional
contact between the workpiece and the tool, punch indentation, fretting
fatigue cracks, interface cracks between dissimilar materials, and in
joints [1]. Stress singularities take place in linear elastic structures
at discontinuities in geometry, material properties, jumps in bound-
ary or interface conditions, and often cause failure initiation due to
high stresses [2,3]. Such discontinuities are called singular points (or
edges in 3D view) and their neighbourhood as corners, or in general
multi-material corners if several materials meet at a singular point.
Multi-material corners are present in many kinds of heterogeneous
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materials and structural elements, such as composites, multilayers,
and polycrystals (e.g., metals, ceramics, rocks, and photovoltaic cells),
at different scales, from nanoscale to macroscale. Some of the most
relevant publications dealing with theoretical and numerical singularity
analysis of isotropic and anisotropic multi-material corners are [4–9]
and [10–18], respectively.

As might be expected, frictional contact occurs in many configu-
rations of multi-material corners in deformable structures at different
scales, and it is therefore necessary to consider frictional contact in the
singularity analysis of such corners for a large number of engineering
applications. Although several contact models are available at present,
the most commonly used, especially in computational structural anal-
ysis, is the Signorini–Coulomb contact model based on the Signorini
unilateral contact law and the Coulomb friction law, as it proposes a
relatively simple and widely accepted formulation for frictional contact
vailable online 3 November 2023
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problems, [1,19–22]. This is the contact model that will be considered
in the following. Due to the inherently non-linear nature of frictional
contact, it is more difficult to include such contact in the analysis
of singular elastic solutions in multi-material corner problems, than
considering only standard linear boundary or interface conditions such
as free, clamped, symmetry, etc. Incorporating a true 3D formulation
of the Coulomb friction law described by the Coulomb friction cone is
particularly difficult.

Thus, although frictional contact has been considered in corner
singularity analysis by many authors, they have usually made some
simplifying assumptions. In particular, previous works have usually
considered linear elastic isotropic materials in contact under plane
strain (or plane stress) conditions [1,5,23–30]. Few attempts have been
made to analyse corner singularities with frictional contact between
anisotropic materials, and even fewer to consider generalised plane
strain (GPS) conditions, with the elastic fields independent of the 𝑥3-
oordinate, i.e. 𝑢𝑖 = 𝑢𝑖(𝑥1, 𝑥2) with 𝑖 = 1, 2, 3. In the following, we
ill focus on the stress singularity analysis of linear elastic anisotropic
ulti-material corners in GPS with frictional sliding contact.

Several authors simplified the 3D Coulomb friction law, represented
y the Coulomb cone, by adopting some simplifying hypotheses. As a
esult, the collinearity of the frictional tangential stress and relative
angential displacement vectors may not be satisfied in some GPS cases,
.g., with a general orientation of the planes of elastic symmetry (PES)
f contacting materials.

For instance, some authors arbitrarily restricted the relative dis-
lacement vector (sliding motion vector) in the contact plane to a
redetermined direction. In particular, Poonsawat et al. [31] and Mag-
ier et al. [32] simplified the Coulomb frictional contact problem
y assuming continuity of displacement in the 𝑥3-direction between
he materials in contact. The differences with respect to the true 3D
oulomb frictional contact model that such a simplification implies in
he results of the singularity analysis are discussed in Section 6. A step
orward was made by Leguillon [33], who generalised this approach
onsidering any given direction of the relative tangential displacement
ector in the contact plane.

In another series of articles, Ting and Chou [34] and Sung and
hung [35] simplified the Coulomb frictional contact law, with the

riction coefficient 𝜇, basically assuming that the values of the frictional
angential stresses 𝜎12 and 𝜎23 are either ±𝜇𝜎22 or zero (considering the
𝑥2-direction normal to the contact 𝑥1𝑥3-plane). This assumption may
ot be valid in configurations where there is no PES coinciding with the
3 = 0 coordinate plane, and where the relative displacements in the 𝑥1-
nd 𝑥3-directions cannot generally be decoupled, leading to incorrect
esults.

This difficult problem of singularity analysis of linear elastic
nisotropic multi-material corners with frictional sliding contact under
PS conditions was solved independently and almost simultaneously

n 2012 by Chen et al. [36] and Mantič et al. [37]1, see also [38],
ho introduced two new but distinct semi-analytic approaches, both
ased on the Stroh formalism of anisotropic elasticity [39,40]. The
ormer approach [36] was formulated for a particular case of two
nisotropic wedges in a frictional sliding contact, deducing a system
f two nonlinear eigenequations for the stress singularity exponent 𝜆
nd the angle 𝜔 of the frictional tangential stress vector measured
n the contact plane. The latter approach [37] formulated for multi-
aterial corners with any finite number of faces with isotropic and

nisotropic frictional contact, developed an original and general matrix
ormalism leading to the search for the minimum singular value 𝜎min
f the rectangular matrix of a nonlinear eigenvalue system. 𝜎min was
onsidered as a function of the stress singularity exponent 𝜆 and
he angles of the frictional tangential stress vectors 𝜔𝑤 measured in

1 Book manuscript submitted to the publisher in 2012.
2

different contact planes. However, a general and fully operative com-
putational implementation of the latter approach was not developed at
that time, only a few preliminary results were presented, so neither any
verification by comparison with some previously published results was
carried out.

Therefore, the aim of the present article is, first, to thoroughly revise
and complete the matrix formalism for the singularity analysis of linear
elastic anisotropic multi-material corners with frictional sliding contact
under GPS, introduced concisely in [37,38], and secondly, to develop
its general computational implementation and to test its performance
and accuracy by comparing the obtained results with those available
in the relevant literature. This should allow us, in the future, to solve
virtually any singularity problem for anisotropic multi-material corners
including frictional sliding contact covering any number and type
of homogeneous linear elastic materials in each wedge, any type of
homogeneous boundary and interface conditions, any geometry of the
corner with radial faces.

The present article is in fact a continuation and generalisation of a
previous one on the singularity analysis of multi-material linear elastic
corners by the present authors [18], where the study was limited to
homogeneous (orthogonal) boundary conditions, orthogonal referring
to the fact that the stress and displacement vectors are perpendicular
to each other, together with interface conditions of perfect bonding or
frictionless contact. Here, we focus on the possibility to consider also
isotropic frictional sliding contact as boundary or interface condition
on any number of faces in the corner. This generalisation requires a
substantial modification of the previous matrix formalism developed
and implemented in [18], by including additional unknown variables
giving angles 𝜔𝑤 of the frictional tangential component of the stress
vector and the relative tangential displacement vectors at the faces or
interfaces with frictional contact, in view of their collinearity in the
isotropic frictional contact. As mentioned above, this modification leads
to the solution of a non-linear eigensystem with a rectangular matrix for
the singularity exponent 𝜆 and angles 𝜔𝑤. Several numerical procedures
are proposed to solve this non-linear eigensystem and their accuracy is
tested.

The present semi-analytical matrix formalism is a general mathe-
matical tool capable of solving stress singularity problems under GPS
for anisotropic multi-material corners with frictional sliding contact,
and with the local geometry near the corner apex and boundary and
interface conditions as described in Fig. 1. The study of open or closed
(periodic) corners, from the most simple case of single-material and
single-wedge case to the multi-material wedge and multi-wedge case
of multi-material corners, is covered by this formalism. As in [18],
only power singularities are considered, for the sake of simplicity. Thus,
special cases of logarithmic or power-logarithmic singularities [4,5,17]
are not covered by this formalism, although its semi-analytic nature
would allow the study of such singularities if necessary. Theoretically,
the geometry of each wedge in the corner is defined by a semi-infinite
angular sector.

The article is organised as follows: First, a general analytic expres-
sion of a singular elastic solution in a single-material wedge and the
transfer matrix are constructed using the Stroh formalism of anisotropic
elasticity [39–42] in Section 2. This section is presented in an abridged
form, as it was extensively developed in [13,18,37,38]. In Section 3, the
matrices for frictional sliding boundary and interface conditions, one of
the main novelties of this work, are introduced. The characteristic ma-
trix of the non-linear eigensystem is assembled using the single-material
wedge transfer matrices and the boundary and interface condition
matrices in Section 4. The implementation of the code is summarised
in Section 5, which develops some points for which the reader may
need further clarification. The numerical results in Section 6 show
perfect agreement with the results for isotropic corners and orthotropic
corners, with one PES parallel to the contact plane and another PES
perpendicular to the 𝑥3-axis, found in the literature, but significant
differences are sometimes obtained with the results obtained by other
authors for orthotropic corners with a general orientation of PES, the
reasons for these differences are discussed. Finally, in Section 7 some

concluding remarks are given and further developments are proposed.
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Fig. 1. Schematic of a multi-material corner (2D view).
2. Singular elastic solution for a single-material wedge. Transfer
matrix

To describe singular elastic solutions near singular points in linear
elastic anisotropic homogeneous materials, the Stroh formalism [39–
42] briefly summarised in Appendix A, is used. As mentioned above,
in this work, we focus on the power-law singularities, defined by
the functions 𝑓𝛼(𝑧𝛼) = 𝑧𝜆𝛼𝑞𝛼 (A.13) in the Stroh formalism. Then,
the following general expressions can be obtained for the power-law
displacement and stress function vectors, as shown in Appendix A,

𝐮 = 𝑟𝜆{𝐀⟨𝜁𝜆∗ ⟩𝐪 + �̄�⟨𝜁𝜆∗ ⟩�̃�}, (1)

𝝋 = 𝑟𝜆{𝐁⟨𝜁𝜆∗ ⟩𝐪 + �̄�⟨𝜁𝜆∗ ⟩�̃�}, (2)

where 𝐀 and 𝐁 are 3 × 3 complex square matrices that depend on the
elastic properties of the material defined in (A.17), 𝐪 and �̃� are arbitrary
constant vectors, ⟨𝜁𝜆∗ ⟩ is a diagonal matrix defined in (A.16), and the
overbar denotes complex conjugate matrix. These expressions can be
arranged in a more compact form by defining the 6 × 1 vector of elastic
variables 𝐰(𝑟, 𝜃) in (A.18).

2.1. Transfer matrix

This section briefly presents the very useful transfer matrix concept
introduced by Ting [10], see [13,37,38] for a more detailed analy-
sis. The transfer matrix for the single-material wedge of number 𝑚,
𝐄𝑚(𝜆, 𝜃𝑚, 𝜃𝑚−1), gives a relation between the power-law solution values
on the two faces of the wedge, 𝐰𝑚(𝑟, 𝜃𝑚−1) and 𝐰𝑚(𝑟, 𝜃𝑚), see Fig. 2,

𝐰𝑚(𝑟, 𝜃𝑚) = 𝐄𝑚(𝜆, 𝜃𝑚, 𝜃𝑚−1)𝐰𝑚(𝑟, 𝜃𝑚−1). (3)

The transfer matrix for a given 𝜆 depends on the properties of the
wedge material and the wedge geometry as

𝐄𝑚(𝜆, 𝜃𝑚, 𝜃𝑚−1) = 𝐗𝐙𝜆(𝜃𝑚, 𝜃𝑚−1)𝐗−1, (4)

where 𝐗 is defined in (A.19), and

𝐙𝜆(𝜃𝑚, 𝜃𝑚−1) =
[

⟨𝜁𝜆∗ (𝜃𝑚, 𝜃𝑚−1)⟩ 0
𝜆

]

, (5)
3

0 ⟨𝜁∗ (𝜃𝑚, 𝜃𝑚−1)⟩
Fig. 2. Schema of a single-material wedge.

with
⟨𝜁𝜆∗ (𝜃𝑚, 𝜃𝑚−1)⟩ = diag

(

𝜁𝜆1 (𝜃𝑚, 𝜃𝑚−1), 𝜁
𝜆
2 (𝜃𝑚, 𝜃𝑚−1), 𝜁

𝜆
3 (𝜃𝑚, 𝜃𝑚−1)

)

,

⟨𝜁𝜆∗ (𝜃𝑚, 𝜃𝑚−1)⟩ = diag
(

𝜁𝜆1 (𝜃𝑚, 𝜃𝑚−1), 𝜁
𝜆
2 (𝜃𝑚, 𝜃𝑚−1), 𝜁

𝜆
3 (𝜃𝑚, 𝜃𝑚−1)

)

,
(6)

𝜁𝛼(𝜃𝑚, 𝜃𝑚−1) = cos(𝜃𝑚 − 𝜃𝑚−1) + 𝑝𝛼(𝜃𝑚−1) sin(𝜃𝑚 − 𝜃𝑚−1), (7)

and

𝑝𝛼(𝜃𝑚−1) =
𝑝𝛼 cos (𝜃𝑚−1) − sin (𝜃𝑚−1)
𝑝𝛼 sin (𝜃𝑚−1) + cos (𝜃𝑚−1)

. (8)

Regarding the computational implementation of the complex power
functions in (6) keeping their continuity, see a detailed discussion
in [18].

3. Matrix formalism for boundary and interface conditions

3.1. Reference frame attached to a corner face

A basis of orthonormal vectors attached to a face of the multi-
material corner, see Fig. 3 and [18, Fig. 2],

(𝐬𝑟(𝜗), 𝐬3,𝐧(𝜗)), (9)

with the vectors expressed in the Cartesian coordinates as

𝐬𝑟(𝜗) =
⎛

⎜

⎜

−cos (𝜗)
− sin (𝜗)

⎞

⎟

⎟

, 𝐬3 =
⎛

⎜

⎜

0
0
⎞

⎟

⎟

, 𝐧(𝜗) =
⎛

⎜

⎜

− sin (𝜗)
cos (𝜗)

⎞

⎟

⎟

, (10)

⎝ 0 ⎠ ⎝1⎠ ⎝ 0 ⎠



Theoretical and Applied Fracture Mechanics 129 (2024) 104160M.A. Herrera-Garrido et al.

(

w

𝐤

𝐦

𝐧

𝐬
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defines a useful reference frame for the displacement and traction
vectors. The angle 𝜗 in (10) is defined in Fig. 1.

To describe the isotropic frictional sliding contact within the frame-
work of the present matrix formalism, it is first necessary to define two
orthonormal bases for the sliding and frictional shear stress directions,
which make it easy to impose the necessary conditions, see Fig. 3,

(𝐤(𝜗, 𝜔),𝐦(𝜗, 𝜔),𝐧(𝜗)) (11)

𝐧𝜇(𝜗, 𝜔, 𝜇), 𝐬𝜇(𝜗, 𝜔, 𝜇),𝐦(𝜗, 𝜔)), (12)

ith

(𝜗, 𝜔) = cos (𝜔)𝐬𝑟(𝜗) + sin (𝜔)𝐬3, (13)

(𝜗, 𝜔) = − sin (𝜔)𝐬𝑟(𝜗) + cos (𝜔)𝐬3, (14)

𝜇(𝜗, 𝜔, 𝜇) =
𝐧(𝜗) + 𝜇𝐤(𝜗, 𝜔)

√

1 + 𝜇2
, (15)

𝜇(𝜗, 𝜔, 𝜇) =
𝐤(𝜗, 𝜔) − 𝜇𝐧(𝜗)

√

1 + 𝜇2
, (16)

where 𝜇 ≥ 0 is a given constant value of the kinetic (or dynamic)
friction coefficient on the face of the wedge, and the unknown value
of the angle 𝜔 gives the direction of the tangential component 𝝉 of the
stress vector2 t associated with the normal vector 𝐧(𝜗), on the face at
the angle 𝜗, in the sense that

𝝉 = −|𝝉|𝐤(𝜗, 𝜔), (17)

2 Usually referred to as the tangential stress vector.
4

Therefore, the unit vector 𝐤(𝜗, 𝜔) determines the direction of the tan-
gential stress vector 𝝉. Vectors 𝐧𝜇 and 𝐬𝜇 are used in Sections 3.3
and 3.4 and the reason for choosing these vectors is explained in
Appendices B and C.

The subscript 𝑤 has been omitted in the above vector definitions, for
he sake of simplicity, but each wedge face in a multi-material corner
nder friction can have a different value of 𝜇 and 𝜔.

3.2. Signorini-Coulomb conditions for frictional sliding contact on a bound-
ary

The frictional contact model adopted in the present work is the
well-known Amontons–Coulomb friction model (or simply the Coulomb
model). For frictional sliding contact as a boundary condition for the
face number 𝑤 = 0 or 𝑊 , a null displacement must be imposed in the
ormal direction to the face.

𝜃(𝑟, 𝜗𝑤) = 0. (18)

In this work, only 𝜇 ≥ 0 is considered, since a negative value of the
riction coefficient considered by some other authors [23,26,29,31]
orresponds in the present formulation with a sliding direction in the
pposite sense to that obtained with a positive friction coefficient, that
s, with angles 𝜔 ± 180◦ and 𝜔, respectively. The shear stress vector
𝝉(𝑟, 𝜗𝑤) and the normal stress 𝝈𝜃𝜃(𝑟, 𝜗𝑤) are related by the Coulomb
friction coefficient 𝜇

|𝝉(𝑟, 𝜗𝑤)| = −𝜇𝜎𝜃𝜃(𝑟, 𝜗𝑤), (19)

where the shear stress vector on the faces with the number 𝑤 = 0 or 𝑊
is
𝝉(𝑟, 𝜗𝑤) = −𝜎𝜃𝑟𝐬𝑟(𝜗𝑤) + 𝜎𝜃3(𝑟, 𝜗𝑤)𝐬3. (20)
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Table 1
Matrices 𝐃𝑢 and 𝐃𝜑 for Coulomb sliding friction.

𝐃𝑢(𝜗, 𝜔) = [𝐧(𝜗), 𝟎,𝐦(𝜗, 𝜔), 𝟎]𝑇 𝐃𝜑(𝜗, 𝜔, 𝜇) = [𝟎, 𝐬𝜇(𝜗, 𝜔, 𝜇), 𝟎,𝐦(𝜗, 𝜔)]𝑇

�̃�𝑢(𝜗, 𝜔) = [𝟎,𝐤(𝜗, 𝜔)]𝑇 �̃�𝜑(𝜗, 𝜔, 𝜇) = [𝐧𝜇(𝜗, 𝜔, 𝜇), 𝟎]𝑇

The last condition for frictional sliding contact is that the (tan-
ential) displacement vector, 𝐮𝑖(𝑟, 𝜗𝑤), and the tangential stress vector

𝝉 𝑖(𝑟, 𝜗𝑤) must be parallel, 𝑖 denoting the wedge number and 𝑤 denoting
he face number,

𝑖(𝑟, 𝜗𝑤) = −𝜅𝐮𝑖(𝑟, 𝜗𝑤) with
{

𝜅 ≤ 0 for 𝑖 = 1 and 𝑤 = 0
𝜅 ≥ 0 for 𝑖 = 𝑊 and 𝑤 = 𝑊

(21)

choosing the sign of 𝜅 so that the direction of the physical tangential
stress is opposite to the direction of sliding to satisfy the condition of
frictional dissipation of energy.

In Appendix B, these contact conditions are related to the refer-
ence frames presented in Section 3.1 for a better comprehension of
the matrices presented in Section 3.3. The non-linear frictionless or
frictional sliding contact conditions are first imposed as linear boundary
or interface conditions, which is one of the main ideas behind this
formalism. Then, after solving the corner eigenproblem, each obtained
eigensolution is checked for the fulfilment of the compression condi-
tion on all contact surfaces, and for the frictional energy dissipation
condition. Only eigensolutions verifying these non-linear conditions are
valid.

3.3. Boundary condition matrices for frictional contact

As the traction vector at a point of a wedge face, associated to the
normal vector 𝐧 defined in (10), can be calculated as

𝐭𝑛(𝑥1, 𝑥2) = −
𝜕𝝋
𝜕𝐬𝑟

(𝑥1, 𝑥2) =
𝜕𝝋
𝜕𝑟

, (22)

oth vectors 𝐭𝑛 and 𝝋 are parallel, in view of (2), and we can consider
zero stress function vector 𝝋 at the edge of the wedge (𝑟 = 0), i.e. the

wedge apex in 2D view. Then, the usual homogeneous (orthogonal)
boundary conditions for 𝑟 > 0 at faces 𝑤 = 0 and 𝑤 = 𝑊 can be
expressed as a linear relation

𝐃𝑢(𝜗𝑤)𝐮(𝑟, 𝜗𝑤) + 𝐃𝜑(𝜗𝑤)𝝋(𝑟, 𝜗𝑤) = 𝟎, (23)

where 𝐃𝑢(𝜗𝑤) and 𝐃𝜑(𝜗𝑤) are 3 × 3 real matrices presented in [18,
Table 1] that fulfil the orthogonality relations shown in [13,18,37,38,
43].

The frictional contact boundary conditions described in Section 3.2
are imposed by using suitable boundary condition matrices defined in
the following. In contrast to the boundary conditions in [18, Table 1],
the matrices 𝐃𝑢 and 𝐃𝜑 for the frictional contact boundary condition
introduced in Table 1 are non-square real matrices and do not fulfil
the same orthogonality relation. These matrices are rectangular, having
one row more than the matrices for orthogonal boundary conditions.
This extra row leads to four boundary conditions instead of three.
This additional boundary condition is associated with the fact that a
certain direction of shear component of the traction vector 𝜔 is assumed
here, although, in general, the value of 𝜔 is unknown a priori and is
computed by solving the corner eigenvalue problem.

To express the boundary conditions of frictional contact, for bound-
ary faces 𝑤 = 0 and 𝑊 , as a linear relation in a way similar to that in
(23)

𝐃𝑢(𝜗𝑤, 𝜔𝑤)𝐮(𝑟, 𝜗𝑤) + 𝐃𝜑(𝜗𝑤, 𝜔𝑤, 𝜇𝑤)𝝋(𝑟, 𝜗𝑤) = 𝟎, (24)

the following hypothesis must be assumed: the whole face is sliding
in the same direction, with 𝜔 and 𝜇 constant on the whole face, and
a monotonic loading is applied from the unloaded state. In this way,
the non-linearities associated with the unilateral Signorini conditions
5

of non-penetration and the Coulomb friction law are avoided.
For the homogeneous (orthogonal) boundary condition (23), the
main boundary-condition-matrix, 𝐃BC is expressed as, see [18, Table 1],

𝐃BC(𝜗𝑤) =
[

𝐃𝑢(𝜗𝑤) 𝐃𝜑(𝜗𝑤)
�̃�𝑢(𝜗𝑤) �̃�𝜑(𝜗𝑤)

]

=
[

𝐃𝑢(𝜗𝑤) 𝐃𝜑(𝜗𝑤)
𝐃𝜑(𝜗𝑤) 𝐃𝑢(𝜗𝑤)

]

, (25)

whereas for the frictional sliding condition matrices in (24) as, see
Table 1,

𝐃BC(𝜗𝑤, 𝜔𝑤, 𝜇𝑤) =
[

𝐃𝑢(𝜗𝑤, 𝜔𝑤) 𝐃𝜑(𝜗𝑤, 𝜔𝑤, 𝜇𝑤)
�̃�𝑢(𝜗𝑤, 𝜔𝑤) �̃�𝜑(𝜗𝑤, 𝜔𝑤, 𝜇𝑤)

]

. (26)

Similarly, as discussed in [18], in the frictional contact case, the
matrices in Table 1 are not uniquely defined. It is easy to show that the
matrix 𝐃BC is a real square matrix 6 × 6 that fulfils the orthogonality
relation, cf. [13,18,37,38,43],

𝐃BC𝐃𝑇
BC = 𝐃𝑇

BC𝐃BC = 𝐈6×6. (27)

The orthogonality relation in (27) is equivalent to the following rela-
tions for the matrices in Table 1:

𝐃𝑢𝐃𝑇
𝑢 + 𝐃𝜑𝐃𝑇

𝜑 = 𝐈4×4, (28)

𝐃𝑢�̃�𝑇
𝑢 + 𝐃𝜑�̃�𝑇

𝜑 = 𝟎4×2, (29)

�̃�𝑢𝐃𝑇
𝑢 + �̃�𝜑𝐃𝑇

𝜑 = 𝟎2×4, (30)

�̃�𝑢�̃�𝑇
𝑢 + �̃�𝜑�̃�𝑇

𝜑 = 𝐈2×2. (31)

When multiplying from the left the vector 𝐰(𝑟, 𝜗𝑤) by the ma-
trix 𝐃BC in (25) or (26), the prescribed and unknown components of
𝐰(𝑟, 𝜗𝑤) appear grouped in two separate blocks, 𝐰P(𝑟, 𝜗𝑤) and 𝐰U(𝑟, 𝜗𝑤),
respectively,

𝐃BC𝐰(𝑟, 𝜗𝑤) =
[

𝐰P(𝑟, 𝜗𝑤)
𝐰U(𝑟, 𝜗𝑤)

]

. (32)

The vectors 𝐰P and 𝐰U are 3 × 1 vectors for the homogeneous (orthog-
onal) boundary conditions in [18, Table 1], but, in case of frictional
sliding contact, 𝐰P is a 4 × 1 vector and 𝐰U is a 2 × 1 vector. Taking
into account the orthogonality relation in (27) and the fact that 𝐰P = 𝟎,

𝐰(𝑟, 𝜗𝑤) = 𝐃𝑇
BC

[

𝐰P(𝑟, 𝜗𝑤)
𝐰U(𝑟, 𝜗𝑤)

]

=
[

�̃�𝑇
𝑢

�̃�𝑇
𝜑

]

𝐰U(𝑟, 𝜗𝑤) = �̃�𝑇
BC𝐰U(𝑟, 𝜗𝑤) (33)

for 𝑤 = 0 and 𝑊 .

3.4. Signorini-Coulomb conditions for frictional sliding contact on an inter-
face

For frictional sliding contact as an interface condition for faces at
angle 𝜗𝑤, with 1 ≤ 𝑤 ≤ 𝑊 − 1, for open corners, and 0 ≤ 𝑤 ≤ 𝑊 for
closed (periodic) corners, a null relative normal displacement must be
imposed between the two wedges in contact;

𝛥𝑢𝜃(𝑟, 𝜗𝑤) = 𝑢𝑤𝜃 (𝑟, 𝜗𝑤) − 𝑢𝑤+1
𝜃 (𝑟, 𝜗𝑤) = 0. (34)

The tangential stress vector 𝝉(𝑟, 𝜗𝑤) (20) and the normal stress are
related by the Coulomb friction coefficient 𝜇 as in (19). Additionally,
a continuity condition of tractions (in fact an equilibrium of tractions)
must be imposed for the materials in contact,

𝐭𝑤(𝜗𝑤) − 𝐭𝑤+1(𝜗𝑤) = 𝟎. (35)

At the interface, the relative tangential displacement vector is de-
fined as

𝛥𝐮(𝑟, 𝜗𝑤) = −𝛥𝑢𝑟(𝑟, 𝜗𝑤)𝐬𝑟(𝑟, 𝜗𝑤) + 𝛥𝑢3(𝑟, 𝜗𝑤)𝐬3(𝑟, 𝜗𝑤), (36)

where
𝛥𝑢𝑟(𝑟, 𝜗𝑤) = 𝑢𝑤𝑟 (𝑟, 𝜗𝑤) − 𝑢𝑤+1

𝑟 (𝑟, 𝜗𝑤),
𝑤 𝑤+1 (37)
𝛥𝑢3(𝑟, 𝜗𝑤) = 𝑢3 (𝑟, 𝜗𝑤) − 𝑢3 (𝑟, 𝜗𝑤).
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Table 2
Matrices 𝐃1, 𝐃2, �̃�1 and �̃�2 for frictional interface contact conditions.

𝐃1(𝜗, 𝜔, 𝜇) =
1
√

2

[

−𝐧(𝜗) 𝟎3×1 𝟎3×3 −𝐦(𝜗, 𝜔) 𝟎3×1
𝟎3×1 𝐬𝜇(𝜗, 𝜔, 𝜇) −𝐈3×3 𝟎3×1 𝐦(𝜗, 𝜔)

]𝑇

Frictional 𝐃2(𝜗, 𝜔, 𝜇) =
1
√

2

[

𝐧(𝜗) 𝟎3×1 𝟎3×3 𝐦(𝜗, 𝜔) 𝟎3×1
𝟎3×1 𝐬𝜇(𝜗, 𝜔, 𝜇) 𝐈3×3 𝟎3×1 𝐦(𝜗, 𝜔)

]𝑇

interface �̃�1(𝜗, 𝜔, 𝜇) =
1
√

2

[

𝐧(𝜗) 𝟎3×1
√

2𝐤(𝜗, 𝜔) 𝟎3×1 𝐦(𝜗, 𝜔)
𝟎3×1 𝐧𝜇(𝜗, 𝜔, 𝜇) 𝟎3×1 𝟎3×1 𝟎3×1

]𝑇

�̃�2(𝜗, 𝜔, 𝜇) =
1
√

2

[

𝐧(𝜗) 𝟎3×1 𝟎3×1
√

2𝐤(𝜗, 𝜔) 𝐦(𝜗, 𝜔)
𝟎3×1 𝐧𝜇(𝜗, 𝜔, 𝜇) 𝟎3×1 𝟎3×1 𝟎3×1

]𝑇
To satisfy the condition of frictional dissipation of energy, the
angential stress vector 𝝉 𝑖, acting on the face of the wedge 𝑖 = 𝑤,𝑤+1,
ust be parallel to 𝛥𝐮(𝑟, 𝜗𝑤) but with the opposite direction. Therefore,

𝑖 = −𝜅𝛥𝐮(𝑟, 𝜗𝑤) with 𝜅 ≥ 0, (38)

r component-wise

𝜏 𝑖𝑟(𝑟, 𝜗𝑤) = 𝜎𝑖𝜃𝑟(𝑟, 𝜗𝑤) = −𝜅
(

𝑢𝑤𝑟 (𝑟, 𝜗𝑤) − 𝑢𝑤+1
𝑟 (𝑟, 𝜗𝑤)

)

,

𝜏 𝑖3(𝑟, 𝜗𝑤) = 𝜎𝑖𝜃3(𝑟, 𝜗𝑤) = −𝜅
(

𝑢𝑤3 (𝑟, 𝜗𝑤) − 𝑢𝑤+1
3 (𝑟, 𝜗𝑤)

)

.
(39)

In Appendix C, these contact conditions are related to the reference
frames presented in Section 3.1 for a better comprehension of the
matrices presented in Section 3.5.

3.5. Interface condition matrices for frictional contact

For a perfectly bonded interface or for a frictionless sliding inter-
face, the following linear condition must be satisfied for the matrices
introduced in [18, Table 2], similar to (23) for the homogeneous
boundary condition,

𝐃1(𝜗𝑤)𝐰𝑤(𝑟, 𝜗𝑤) + 𝐃2(𝜗𝑤)𝐰𝑤+1(𝑟, 𝜗𝑤) = 𝟎, (40)

These matrices also satisfy the orthogonality relation presented in [18,
37,38].

The frictional contact interface conditions described in Section 3.4
are imposed by using suitable interface condition matrices defined in
the following. Similarly to the frictional sliding boundary condition, in
the case of the frictional sliding contact interface condition, a certain
friction shear direction (or sliding direction) given by the angle 𝜔 is
assumed here, which means that there are seven interface conditions
instead of the expected six conditions. Therefore, the matrices 𝐃1 and
𝐃2, presented in Table 2, are rectangular 7 × 6 real matrices, while �̃�1
and �̃�2 are rectangular 5 × 6 real matrices. As in the previous section,
the expressions of these matrices in Table 2 are just a convenient
example of possible options to impose the frictional interface contact.

To express the frictional contact interface condition as a linear
relation for vectors of elastic variables, the same hypothesis as adopted
in the previous section for the friction boundary condition must be
applied, leading to

𝐃1(𝜗𝑤, 𝜔𝑤, 𝜇𝑤)𝐰𝑤(𝑟, 𝜗𝑤) + 𝐃2(𝜗𝑤, 𝜔𝑤, 𝜇𝑤)𝐰𝑤+1(𝑟, 𝜗𝑤) = 𝟎. (41)

The main interface-condition matrix defined for the interface fric-
tional contact condition is a 12 × 12 real matrix 𝐃I, analogous to the
matrix 𝐃BC for boundary conditions. For perfectly bonded interface and
frictionless sliding condition, this matrix is defined as

𝐃I(𝜗𝑤) =
[

𝐃1(𝜗𝑤) 𝐃2(𝜗𝑤)
�̃�1(𝜗𝑤) �̃�2(𝜗𝑤)

]

, (42)

whereas for the frictional contact interface as

𝐃I(𝜗𝑤, 𝜔𝑤, 𝜇𝑤) =
[

𝐃1(𝜗𝑤, 𝜔𝑤, 𝜇𝑤) 𝐃2(𝜗𝑤, 𝜔𝑤, 𝜇𝑤)
�̃�1(𝜗𝑤, 𝜔𝑤, 𝜇𝑤) �̃�2(𝜗𝑤, 𝜔𝑤, 𝜇𝑤)

]

. (43)

Again, it can easily be checked that the matrix 𝐃I in (43) fulfils the
orthogonality relation

𝐃 𝐃𝑇 = 𝐃𝑇𝐃 = 𝐈 . (44)
6

I I I I 12×12
This orthogonality relation is analogous to the orthogonality relations
for a perfectly bonded interface and a frictionless sliding interface
deduced in [18, Eq. (50)], and is equivalent to the following relations
for the matrices in Table 2 for the frictional sliding interface

𝐃1𝐃𝑇
1 + 𝐃2𝐃𝑇

2 = 𝐈7×7,
𝐃1�̃�𝑇

1 + 𝐃2�̃�𝑇
2 = 𝟎7×5,

�̃�1𝐃𝑇
1 + �̃�2𝐃𝑇

2 = 𝟎5×7,
�̃�1�̃�𝑇

1 + �̃�2�̃�𝑇
2 = 𝐈5×5.

(45)

Multiplying a 12 × 1 vector given by two 6 × 1 vectors 𝐰(𝑟, 𝜗)
defined on the face 𝑤 of the two consecutive wedges, 𝑤 and 𝑤 + 1,
from the left by the matrix 𝐃I, the vectors 𝐰P(𝑟, 𝜗) and 𝐰U(𝑟, 𝜗) of the
prescribed and unknown elastic variables, respectively, are obtained

𝐃I

[

𝐰𝑤(𝑟, 𝜗𝑤)
𝐰𝑤+1(𝑟, 𝜗𝑤)

]

=
[

𝐰P(𝑟, 𝜗𝑤)
𝐰U(𝑟, 𝜗𝑤)

]

, (46)

where 𝐰P is a 7 × 1 vector and 𝐰U is a 5 × 1 vector. Then, by
multiplying (46) from the left by 𝐃𝑇

I , using the orthogonality relation
(44) and taking into account that 𝐰P = 0 we get a very relevant
expression of the interface elastic variables in terms of 𝐰U,
[

𝐰𝑤(𝑟, 𝜗𝑤)

𝐰𝑤+1(𝑟, 𝜗𝑤)

]

= 𝐃𝑇
I

[

𝐰P(𝑟, 𝜗𝑤)

𝐰U(𝑟, 𝜗𝑤)

]

=

[

�̃�𝑇
1

�̃�𝑇
2

]

𝐰U(𝑟, 𝜗𝑤). (47)

Once the characteristic system for the corner singularity analysis
described in the next section is solved, the fulfilment of the compression
condition must be checked, for both frictionless and frictional sliding
contacts. Furthermore, for frictional sliding contact, the conditions for
frictional dissipation of energy (21) and (38) should be checked.

4. Characteristic system for the stress singularity analysis in a
multi-material elastic corner with frictional contact

Up to this point, the analysis has focused on a single-material wedge
and a boundary or interface condition. In this section, first, all material
transfer matrices are used to define the multi-material wedge transfer
matrix, and the extended matrix of transfer relations of the multi-material
corner. Moreover, all the boundary and interface matrices of the corner
are used to assembly the extended boundary and interface condition
matrix of the multi-material corner. With these two matrices and the
vector of elastic variables at the corner, the characteristic system of the
corner is constructed.

4.1. Multi-material wedge transfer matrix

A multi-material wedge 𝑤 is defined by two or more perfectly
bonded single-material wedges with consecutive indices 𝑖𝑤, 𝑖𝑤+1,… , 𝑗𝑤−
1, 𝑗𝑤, where 𝑖𝑤 and 𝑗𝑤 are the indices of the first and last material in the
wedge 𝑤. The procedure to construct its multi-material wedge transfer
matrix, explained in detail in [18, Section 5.1], can also be applied
here, leading to the multiplication of all successive single-material wedge
transfer matrices in the wedge (4) as follows

𝐊 (𝜆) = 𝐄 (𝜆) ⋅ 𝐄 (𝜆) … 𝐄 (𝜆) ⋅ 𝐄 (𝜆). (48)
𝑤 𝑗𝑤 𝑗𝑤−1 𝑖𝑤+1 𝑖𝑤
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The size of the final characteristic system of the corner to be solved may
be significantly reduced by using this matrix for each multi-material
wedge in the corner; see [18, Section 5].

The assembly of the characteristic system of a multi-material corner
is based on the transfer relation for a multi-material wedge 𝑤 defined as
[

𝐊𝑤(𝜆) − 𝐈6×6
]

[

𝐰𝑤(𝑟, 𝜗𝑤−1)
𝐰𝑤(𝑟, 𝜗𝑤)

]

= 𝟎6×1. (49)

4.2. Characteristic system assembly for a multi-material corner

When a corner consists of two or more multi-material wedges, the
corresponding multi-material wedge transfer matrices are collected in
the 6𝑊 × 12𝑊 extended matrix of transfer relations of the multi-material
corner

𝐊corner_ext.(𝜆)

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐊1(𝜆) −𝐈6×6 𝟎6×6 𝟎6×6 ⋯ ⋯ 𝟎6×6
𝟎6×6 𝟎6×6 𝐊2(𝜆) −𝐈6×6 ⋯ ⋯ 𝟎6×6
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝟎6×6 𝟎6×6 𝟎6×6 𝟎6×6 ⋯ 𝐊𝑊 (𝜆) −𝐈6×6

⎤

⎥

⎥

⎥

⎥

⎦

. (50)

This matrix depends not only on 𝜆, but also on the properties of the
materials and the polar sector angles of all single-material wedges in
the corner. In the case that we are dealing with corners with two or
more multi-material or single-material wedges, the vector given by the
displacement and stress function vectors at outer faces and interfaces
has the following form

𝐰corner_ext. =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐰1(𝑟, 𝜗0)
𝐰1(𝑟, 𝜗1)
𝐰2(𝑟, 𝜗1)
𝐰2(𝑟, 𝜗2)

⋮

𝐰𝑊 (𝑟, 𝜗𝑊 −1)
𝐰𝑊 (𝑟, 𝜗𝑊 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (51)

All transfer relations (49) for multi-material wedges in the corner
can be written in a compact form as

𝐊corner_ext(𝜆)𝐰corner_ext = 𝟎6𝑊 ×1. (52)

In the following subsections, a new extended boundary and inter-
face condition matrix 𝐃corner_ext is constructed using the boundary and
interface condition matrices, for open corners in (57) and for closed
corners in (65). As the matrices 𝐃BC and 𝐃I, respectively, satisfy the
orthogonality relation in (27) and (44), the matrix 𝐃corner_ext satisfies
the orthogonality relation

𝐃corner_ext(𝝑,𝝎,𝝁)𝐃𝑇
corner_ext(𝝑,𝝎,𝝁) = 𝐈12𝑊 ×12𝑊 , (53)

where

𝝑 = (𝜗0, 𝜗1,… , 𝜗𝑊 ), (54)

is the vector of polar angles of multi-material wedge faces in the corner.
The vectors of the unknown values of the angle of friction shear stress
vector and the values of friction coefficient on the boundary faces and
interfaces with frictional contact are defined as

𝝎 = (𝜔𝑘1 , 𝜔𝑘2 ,… , 𝜔𝑘𝐹−1
, 𝜔𝑘𝐹 ) (55)

and

𝝁 = (𝜇𝑘1 , 𝜇𝑘2 ,… , 𝜇𝑘𝐹−1
, 𝜇𝑘𝐹 ). (56)

The set of 𝐹 sub-indices 𝑘𝑖 (𝑖 = 1,… , 𝐹 ), 0 ≤ 𝑘1 < 𝑘2 < ⋯ < 𝑘𝐹−1 <
𝑘𝐹 ≤ 𝑊 (0 ≤ 𝐹 ≤ 𝑊 +1), in (55) and (56), is defined by the numbers of
boundary faces or interfaces with frictional sliding contact. There are 𝐹
faces of this type in the corner. An illustration of this group of indices
is shown in Fig. 4, where a corner made up of 6 wedges is depicted,
with 3 and 4 faces, respectively, with frictionless and frictional contact.

If there is no frictional boundary or interface condition, 𝐹 = 0, and 𝝎
and 𝝁 are not defined, and the corner problem reduces to that analysed
in [18].
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Fig. 4. Schema of a corner with frictionless and frictional boundary and interface
conditions.

4.2.1. Open corner
Open corners have two outer boundary faces, and possibly one or

more interfaces in the case of a multi-material corner.

Extended boundary and interface condition matrix. In these cases, the
boundary and interface condition matrices, defined in Sections 3.3 and
3.5, are assembled in a 12𝑊 × 12𝑊 real-valued extended matrix of
boundary and interface conditions for an open multi-material corner

𝐃corner_ext.(𝝑,𝝎,𝝁) = blocked_diag[𝐃BC(𝜗0),𝐃I(𝜗1),… ,𝐃BC(𝜗𝑊 )]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐃BC(𝜗0) 𝟎6×12 𝟎6×12 ⋯ 𝟎6×6
𝟎12×6 𝐃I(𝜗1) 𝟎12×12 ⋯ 𝟎12×6
⋮ ⋮ ⋮ ⋱ ⋮

𝟎6×6 𝟎6×12 𝟎6×12 ⋯ 𝐃BC(𝜗𝑊 )

⎤

⎥

⎥

⎥

⎥

⎦

. (57)

It is evident that this matrix is an orthogonal matrix satisfying (53),
in view of the orthogonality of the sub-matrices 𝐃BC and 𝐃I on its
diagonal. For the sake of notation simplicity, on the right side of (57)
the arguments 𝝎,𝝁 are omitted.

Open-corner characteristic matrix. As in (32) and (46), multiplying the
vector 𝐰corner_ext (51) by the matrix (57),

𝐃corner_ext.(𝝑,𝝎,𝝁)𝐰corner_ext. = 𝐰corner_PU (58)

we get a vector which can be split in the sub-vectors of the prescribed
and unknown elastic variables at angles of wedge faces,

𝐰corner_PU =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐰P(𝑟, 𝜗0)
𝐰U(𝑟, 𝜗0)
𝐰P(𝑟, 𝜗1)
𝐰U(𝑟, 𝜗1)

⋮

𝐰P(𝑟, 𝜗𝑊 )
𝐰U(𝑟, 𝜗𝑊 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (59)

The size of the vector

𝐰corner_U =

⎡

⎢

⎢

⎢

⎢

⎣

𝐰U(𝑟, 𝜗0)
𝐰U(𝑟, 𝜗1)

⋮
𝐰U(𝑟, 𝜗𝑊 )

⎤

⎥

⎥

⎥

⎥

⎦

(60)

obtained by omitting the prescribed zero values of the elastic variables,
is (6𝑊 − 𝐹 ) × 1, showing its dependence on the number of frictional
sliding boundary and interface conditions, 𝐹 . The relation (58), can be
rewritten as

𝐰 = 𝐃𝑇 (𝝑,𝝎,𝝁)𝐰 (61)
corner_ext. corner_ext. corner_PU
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by applying the orthogonality relation in (53). Substituting (61) into
(52), we get

𝐊corner_ext.(𝜆)𝐃𝑇
corner_ext.(𝝑,𝝎,𝝁)𝐰corner_PU = 𝟎6𝑊 ×1. (62)

Some columns of the matrix result of multiplying the first two terms of
the previous expression can be removed as they would be multiplied
by the prescribed zero values of 𝐰P(𝑟, 𝜗𝑤). This reduced, in general
complex-valued, matrix has the following form

𝐊corner(𝜆,𝝎)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐊1�̃�𝑇
BC(𝜗0) −�̃�𝑇

1 (𝜗1) 𝟎6×𝑛2 ⋯ 𝟎6×𝑛𝑊 −1
𝟎6×𝑛𝑊

𝟎6×𝑛0 𝐊2�̃�𝑇
2 (𝜗1) −�̃�𝑇

1 (𝜗2) ⋯ 𝟎6×𝑛𝑊 −1
𝟎6×𝑛𝑊

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝟎6×𝑛0 𝟎6×𝑛1 𝟎6×𝑛2 ⋯ 𝐊𝑊 �̃�𝑇
2 (𝜗𝑊 −1) −�̃�𝑇

BC(𝜗𝑊 )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(63)

where 𝑛𝑤 is the number of rows in the matrices �̃�𝐵𝐶 (𝜗𝑤), for the
boundary conditions on faces 𝑤 = 0 and 𝑤 = 𝑊 , and the number
of rows in the matrices �̃�𝑖(𝜗𝑤), for the interface condition matrices in
1 ≤ 𝑤 ≤ 𝑊 − 1 and 𝑖 = 1, 2. The number of rows in each case will
depend on whether or not the frictional sliding contact condition is
prescribed on a boundary face (i.e., 𝑛𝑤 = 2 for frictional contact and
𝑛𝑤 = 3 for other boundary conditions) or an interface (i.e., 𝑛𝑤 = 5 for
frictional contact and 𝑛𝑤 = 6 for other interface conditions). In cases
where 𝐹 = 0, 𝐊corner is a 6𝑊 × 6𝑊 square matrix as in [18]. However,
when a frictional sliding contact boundary or interface condition is
prescribed on one or more material faces of the corner, 𝐹 ≥ 1, 𝐊corner
is a 6𝑊 × (6𝑊 − 𝐹 ) rectangular matrix.

The application of (63) in (62) together with (60) leads to the char-
acteristic system for the singularity analysis of an open multi-material cor-
ner, which represents a non-linear eigenvalue problem for this corner,
for values 𝜆 and 𝝎

𝐊corner (𝜆,𝝎)𝐰corner_U = 𝟎6𝑊 ×1. (64)

The vector 𝐰corner_U is an eigenvector that can be multiplied by any non-
zero factor, remaining a solution of the eigenproblem. A value of this
factor that makes that 𝐰corner_U satisfies the compression condition on
the surfaces with frictionless or frictional contact is chosen if possible.

4.2.2. Closed corner (periodic corner)
A closed corner, also called periodic corner, is a corner with no

outer faces and including only interface conditions prescribed at angles
𝜗𝑤(𝑤 = 0,… ,𝑊 ) where 𝜗𝑊 − 𝜗0 = 360◦.

Extended interface condition matrix. In this case, the interface condition
matrices, defined in Section 3.5, are gathered in a 12𝑊 × 12𝑊 real
matrix,

𝐃corner_ext.(𝝑,𝝎,𝝁)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐃2(𝜗0) 𝟎𝑛′0×12 𝟎𝑛′0×12 ⋯ 𝟎𝑛′0×12 𝐃1(𝜗𝑊 )

�̃�2(𝜗0) 𝟎𝑛0×12 𝟎𝑛0×12 ⋯ 𝟎𝑛0×12 �̃�1(𝜗𝑊 )

𝟎12×6 𝐃I(𝜗1) 𝟎12×12 ⋯ 𝟎12×12 𝟎12×6
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝟎12×6 𝟎12×12 𝟎12×12 ⋯ 𝐃I(𝜗𝑊 −1) 𝟎12×6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (65)

alled extended matrix of interface conditions for a closed multi-material
orner. Recall that the interface condition at 𝜗0 is the same as the
nterface condition at 𝜗𝑊 , since 𝜗𝑊 −𝜗0 = 360◦. In this matrix, 𝑛0 = 𝑛𝑊
s the number of rows of �̃�𝑖(𝜗𝑤) and 𝑛′0 = 𝑛′𝑊 is the number of rows of
𝑖(𝜗𝑤), for 𝑤 = 0 and 𝑊 . Thus, 𝑛0 + 𝑛′0 = 12, keeping 𝐃corner_ext. as
12𝑊 × 12𝑊 square matrix. For frictional contact at 𝑤 = 0 and 𝑊 ,

0 = 5, but for other interface conditions 𝑛0 = 6. From the orthogonality
elationship in (45), it can be deduced that this matrix is an orthogonal
atrix, in a similar way as it was proved in [18, Appendix C].
8

n

losed-corner characteristic matrix. Similar to open corners, if the vector
corner_ext., is multiplied from the left by the matrix 𝐃corner_ext., it is

eordered in the vector 𝐰corner_PU of prescribed and unknown variables

corner_PU = 𝐃corner_ext.(𝝑,𝝎,𝝁)𝐰corner_ext., (66)

where 𝐰PU is the 12𝑊 × 1 vector

𝐰corner_PU =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐰P(𝑟, 𝜗0)
𝐰U(𝑟, 𝜗0)
𝐰P(𝑟, 𝜗1)
𝐰U(𝑟, 𝜗1)

⋮

𝐰P(𝑟, 𝜗𝑊 −1)
𝐰U(𝑟, 𝜗𝑊 −1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (67)

that can be reduced to a (6𝑊 − 𝐹 ) × 1 vector

corner_U =

⎡

⎢

⎢

⎢

⎢

⎣

𝐰U(𝑟, 𝜗0)
𝐰U(𝑟, 𝜗1)

⋮
𝐰U(𝑟, 𝜗𝑊 −1)

⎤

⎥

⎥

⎥

⎥

⎦

, (68)

f the unknown elastic variables, by omitting the prescribed zero values
f the elastic variables.

Taking advantage of the orthogonality property of the matrix
corner_ext.(𝝑,𝝎), the expression (66) can be rewritten as

corner_ext. = 𝐃𝑇
corner_ext.(𝝑,𝝎,𝝁)𝐰corner_PU. (69)

Substituting this relation into (52) the following expression is obtained

𝐊corner_ext.(𝜆)𝐃𝑇
corner_ext.(𝝑,𝝎,𝝁)𝐰corner_PU = 𝟎6𝑊 ×1. (70)

Knowing that some values of the vector 𝐰corner_PU are the prescribed
zero values, 𝐰P, some columns of the matrix which is the result of
multiplying 𝐊corner_ext.(𝜆) by 𝐃𝑇

corner_ext.(𝝑,𝝎,𝝁) can be removed. This
leads to a reduced 6𝑊 × (6𝑊 − 𝐹 ), in general, complex-valued matrix

𝐊corner (𝜆,𝝎) =
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐊1�̃�𝑇
2 (𝜗0) −�̃�𝑇

1 (𝜗1) 𝟎6×𝑛2 ⋯ 𝟎6×𝑛𝑊 −2
𝟎6×𝑛𝑊 −1

𝟎6×𝑛0 𝐊2�̃�𝑇
2 (𝜗1) −�̃�𝑇

1 (𝜗2) ⋯ 𝟎6×𝑛𝑊 −2
𝟎6×𝑛𝑊 −1

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝟎6×𝑛0 𝟎6×𝑛1 𝟎6×𝑛2 ⋯ 𝐊𝑊 −1�̃�𝑇
2 (𝜗𝑊 −2) −�̃�𝑇

1 (𝜗𝑊 −1)

−�̃�𝑇
1 (𝜗0) 𝟎6×𝑛1 𝟎6×𝑛2 ⋯ 𝟎6×𝑛𝑊 −2

𝐊𝑊 �̃�𝑇
2 (𝜗𝑊 −1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(71)

here 𝑛𝑤 is the number of rows in the matrices �̃�𝑖(𝜗𝑤), for 0 ≤ 𝑤 ≤
− 1 and 𝑖 = 1, 2. Thus, 𝑛𝑤 = 5 for friction interfaces and 𝑛𝑤 = 6 for

ther interface conditions.
This reduced matrix appears in the characteristic system for the

ingularity analysis of a closed multi-material corner, which represents a
on-linear eigenvalue problem for this corner, for unknown values 𝜆
nd 𝝎:

corner(𝜆,𝝎)𝐰corner_U = 𝟎6𝑊 ×1. (72)

In cases where 𝐹 = 0, 𝐊corner is a 6𝑊 × 6𝑊 square matrix,
ecovering the system deduced in [18]. However, when a frictional
ontact boundary or interface condition is prescribed on one or more
orner faces, 𝐹 ≥ 1, 𝐊corner is a 6𝑊 × (6𝑊 − 𝐹 ) rectangular matrix.

As it may not be an easy task to deduce the matrix defined in
71) for the case of single wedge corners, the procedure to get the
xpressions for 𝐊corner(𝜆,𝝎) in the two possible cases was explained
n [18, Eq. (88)] for a perfectly bonded corner and [18, Eq. (93)] for a
losed corner with one frictionless sliding contact interface. The latter
xpression is also valid for the frictional sliding contact case, so it is

ot repeated here.
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As in the open corner case, an eigensolution 𝐰corner_U multiplied
by any non-zero factor solves the system (72). As we need to check
that compression is present on all contact faces, if in the obtained
solution tension is obtained on all these contact faces, the solution
can be multiplied by −1 to have compression on all these faces. If
ompression and tension are present on two different contact faces,
uch eigensolution is not valid.

.3. Solution of the characteristic system. Singular elastic solution

The sought solution of the non-linear eigensystems in (64) or (72)
s a (right) null vector of the matrix 𝐊corner(𝜆,𝝎), ignoring the trivial

solutions with 𝐰corner_U = 𝟎. This means that the next step is to find the
characteristic (singular) values of 𝜆 and 𝝎.

In the simplest case, for corners where 𝐹 = 0, the matrix 𝐊corner is
a square matrix and 𝜆 is the only unknown. To obtain the 𝜆 values,
olutions of the characteristic equation of the corner, the roots of the
eterminant of the matrix 𝐊corner can be found

et𝐊corner(𝜆) = 0. (73)

In general the roots of (73) can be real or complex. If 𝜆 is a complex
oot of (73) its complex conjugate is also a root of (73).

For corners where 𝐹 ≥ 1, a pair of values of 𝜆 and 𝝎, non-trivial
olution of the over-determined homogeneous systems (64) or (72), for
pen or closed corners, respectively, should be found. In the following,
hree different ways to get the values of 𝜆 and 𝝎 are proposed. In the

first method the characteristic equation of the corner is written as a
condition for a vanishing determinant

det(�̄�𝑇
corner(𝜆,𝝎)𝐊corner(𝜆,𝝎)) = 0, (74)

which ensures that the columns of 𝐊corner are linearly dependent. This
procedure has the advantage that the solution can be found in a similar
way as in (73), but a disadvantage is that the algebraic multiplicity of
each root is doubled. The second method is to evaluate the singular
value decomposition (SVD) [44] of the matrix 𝐊corner(𝜆,𝝎) in (64)
or (72), and to search for the vanishing minimum singular value by
solving

𝜎min(𝐊corner(𝜆,𝝎)) = 0. (75)

The last proposed method is to solve the following non-linear system
of 6𝑊 equations

𝑓 (𝐗) = 𝐊corner(𝜆,𝝎)𝐰corner_U = 𝟎 (76)

for (6𝑊 + 1) × 1 vector of unknowns

𝐗 =
⎡

⎢

⎢

⎣

𝐰corner_U
𝜆
𝝎

⎤

⎥

⎥

⎦

. (77)

This non-linear system could be augmented by a normalisation condi-
tion for 𝐰corner_U leading to a system with the same number of equations
and unknowns.

Usually, the characteristic values of 𝜆 are searched in the range
0 ≤ Re(𝜆) ≤ 1, as those singularity exponents 𝜆 correspond to singular
elastic solutions in the corner with unbounded stresses and strains
at the corner tip, but with a finite elastic strain energy there. The
characteristic values of 𝝎 are searched in the range −180o ≤ 𝜔𝑘𝑖 ≤ 180o,
for each component (𝑖 = 1,… , 𝐹 ). Recall that one 𝜔𝑘𝑖 value is found per
each interface or boundary face where a frictional contact is considered.

Once the values of 𝜆 and 𝝎, the solution to the corner problem, are
obtained, the singular stress and displacement fields can be computed
using the same procedure as in [18, Section 6].

Once displacements and stresses are obtained for a pair (𝜆,𝝎), it is
possible to check the feasibility of the eigensolution by verifying the
compression condition on the contact surfaces and the condition of
frictional energy dissipation. If the computed relative sliding direction
9

and the shear stress vector direction are parallel but with opposite
directions, the frictional energy dissipation condition is fulfilled. This
does not necessarily mean that eigensolutions which do not verify this
condition cannot be useful, given that the friction energy dissipation
condition is strictly speaking written in terms of the variation of relative
displacement, not its value. Therefore, in some configurations such
eigensolutions could be superposed with other solutions leading to
fulfilment of the friction energy dissipation condition.

Significant observations on the possibility of obtaining a complex
singularity exponent 𝜆 ∈ C, and its implications in configurations
involving frictional contact are presented in Section 7.

5. MATLAB implementation

New functions needed to cover the case of corners with frictional
sliding contact on outer boundaries and interface are added to the
code developed in [18] for corners with homogeneous boundary and
interface conditions. The resulting code is organised in 6 modules
similar to [18, Section 7.1], thus only the relevant changes in the code
are mentioned in the following

- Data input Friction coefficient can be introduced for some corner
surfaces.

- Definition of single-material wedges

- Boundary and interface condition matrices The matrices described
in Tables 1 and 2 are added for some corner surfaces.

- Characteristic system assembly The main difference is the possibil-
ity that the matrix 𝐊corner is a rectangular matrix, which depends
not only on 𝜆, but also on as many angles 𝜔𝑘𝑖 as faces with
frictional sliding contact exist in the corner.

- Solution of the characteristic system This module involves the
most substantial changes. A new sub-module is developed for
corners with frictional contacts. The non-linear eigensystem to
be solved depends on the characteristic pair (𝜆,𝝎). In the most
common and simplest case, when there is only one frictional
contact, to help find the initial point for the search for the solu-
tion of (74), (75) or (76) a contour plot of values of 𝜎min(𝜆, 𝜔)
for 0 ≤ 𝜆 ≤ 1 and −𝜋 ≤ 𝜔 ≤ 𝜋 is computed, as shown in Fig. 6.
In this plot the user can search manually for pairs of values of
𝜆 and 𝜔 that make the value of 𝜎min(𝜆, 𝜔) close to zero. These
values are used as a starting point to find the solution of (76)
with the Levenberg–Marquardt algorithm. With this algorithm,
it is possible to find real and complex values of 𝜆. The reason to
use the third method (76) from those presented in Section 4.3,
is that after several tests done with Matlab, this method tends
to converge to a more accurate solution than the methods based
on (74) and (75).

In some cases where frictional contact is imposed, the presented
algorithm converges to 𝜆 ∈ C. In these cases, when 𝜔 ∈ R, typ-
ically 𝜔 = 0, 180◦, the results obtained with the code are valid,
but when 𝜔 ≠ 0, 180◦, the code cannot separate the real part of
the solution from the imaginary part and 𝜔 ∈ C is obtained. This
solution is not valid, and the corner singularity problem needs to
be solved by a different procedure currently under development
and which will be presented in a forthcoming work.

Displacement and stress singular fields This module requires to
additionaly substitute the value of 𝝎 in (64) or (72) and take
into account the modified size of the boundary and interface
matrices in the case of frictional contact.



Theoretical and Applied Fracture Mechanics 129 (2024) 104160M.A. Herrera-Garrido et al.
Table 3
Engineering constants for the linear elastic materials used in the studied examples. Elastic moduli and shear moduli in GPa and fibre angles 𝜙𝑖 in degree.
Material 𝐸1 𝐸2 𝐸3 𝐺12 𝐺13 𝐺23 𝜈12 𝜈13 𝜈23 𝜙𝑖

A 68.67 0.33
B 3 0.35
C 137.89 14.48 1 5.86 1 1 0.21 0 0 0
D 137.9 14.48 14.48 5.86 5.86 5.86 0.21 0.21 0.21 𝜙𝑖
E 137.9 14.48 14.48 4.98 4.98 4.98 0.21 0.21 0.21 𝜙𝑖
F 5.85 0.25
G 141.3 9.58 9.58 5 5 3.5 0.3 0.3 0.32 𝜙𝑖
6. Numerical examples

Following the tests carried out in [18], the matrix formalism and
the code developed in the present article are checked by comparing its
results with those available in the literature. In Table 3, the engineering
constants for the materials used in the examples are listed in the full
precision used.

In the numerical examples, the boundary condition (BC) used are
stress-free (F), clamped (C), symmetry (frictionless contact) (S), an-
tisymmetry (A) and frictional contact (FC). The interface condition
(IC) are perfectly bonded (B), frictionless interface (FL) and frictional
contact (FC).

The abbreviation ‘‘Ex’’ stands for the number of each example and is
indicated in the corresponding column of each table when it contains
more than one example or in the title of the table or figure when it
contains only one example. For cases with boundary faces or interfaces
with frictional contact, 𝑓 ≶ 0 is used if the authors do so in their articles
and in that case 𝜇 = |𝑓 |. The symbol 𝜙𝑖 corresponds to the rotation
angle around the 𝑥𝑖-axis of the composite material fibre, see Fig. 5.
If the composite material has the fibres lying on the 𝑥1𝑥3-plane and
parallel to 𝑥1 or 𝑥3-axis the material behaves as an orthotropic material,
if the fibre is lying on the 𝑥1𝑥3 or 𝑥1𝑥2-plane rotated around the 𝑥2
or 𝑥3-axis respectively an angle 𝜙𝑖, black lines in Fig. 5, the composite
material behaves as an apparently monoclinic material, and if the com-
posite material has the fibre as the red line in Fig. 5, it behaves as an
apparently anisotropic material. As remarked in the previous sections,
once the 𝜆 and 𝜔 solutions in the studied problems are computed, it
is necessary to check if the relative tangential displacement obtained
and the friction shear stress satisfy the friction dissipation condition,
having both the same direction but opposite orientation, expressions
(21) and (38). Eigensolutions that meet the frictional dissipation of
energy requirement are marked with (∗), and with (𝑜) for solutions
with no frictional tangential stress at the interface, including anti-plane
mode. It must also be checked if the compression condition 𝜎𝜃𝜃 ≤ 0 is
satisfied on the contact face. When this condition is not satisfied, the
solution is marked with the symbol (±), which means that one contact
face is under compression and the other face is under tension. In the
examples shown in this section, the number of faces with frictional
contact is F=1, except in examples 1.9, 1.14 and 4 where 𝐹 = 2.
Noteworthy, problems with 𝐹 > 2 can be solved with the present matrix
formalism and the developed computational code, but the authors have
not found any previously solved problems with more than two friction
contact surfaces in the literature, so a comparison is not possible.

6.1. Singular solutions for open corners

6.1.1. Singular solutions for open corners with only one single-material
wedge
Example 1.1 - 1.4. For corners made of a single material, 𝐊1 = 𝐄1,
Table 4 presents the results for an isotropic wedge with different
values of angles 𝜃1 and different boundary conditions, one of them
being frictional sliding contact. These results are compared with those
obtained using the closed-form eigenequations by Sinclair [5], who
observed that both positive and negative friction coefficients 𝑓 ≶ 0
should be tried to ensure that the shear stress opposes any sliding,
i.e., ensure the frictional dissipation of energy condition. This can
10
Fig. 5. Fibre position for apparently anisotropic material.

Fig. 6. Contour plot of 𝜎min values of the SVD of the matrix 𝐊corner in Examples 1.1, for
0 ≤ 𝜆 ≤ 1 and −𝜋 ≤ 𝜔 ≤ 𝜋. Red arrows are solutions founds also solving eigenequation
from [5], black arrows are solutions that match with the anti-plane mode and green
arrows are unexpected solutions.

be achieved by selecting the appropriate sign of 𝑓 . With the present
formalism, with 𝜇 ≥ 0, we can find the results for both signs of 𝑓
computed with the closed-form expressions found in [5] considering
−𝜋 ≤ 𝜔 ≤ 𝜋. Solutions in [5] correspond to the plane mode and
coincide up to more than 9 decimal places with the results obtained
with the present code. Furthermore, this present methodology allows
us to find the solutions corresponding to the anti-plane mode, those
with 𝜔 = ±90◦, as well as some unexpected solutions, those with 𝜔 ≠
0◦,±90◦, 180◦, that involve modes in which the plane and anti-plane
modes cannot be decoupled. To the best of the authors’ knowledge,
these cases have not been previously reported by any other author
for either isotropic or orthotropic materials, and their existence and
properties will be studied in depth in a forthcoming article. The case
with both boundaries of the corner having frictional sliding boundary
condition with 𝜇 = 1 is computed for a wedge angle of 300◦. The
results obtained are the same as those for a wedge angle of 150◦ with
a frictional sliding boundary condition on one face and symmetry or
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Table 4
Comparison of results for 0 ≤ 𝜆 ≤ 1 and 𝜔 obtained by the present code and those found in the literature, for open single-material isotropic corners with one frictional boundary
condition, Section 6.1.1. (*) Fulfils the frictional dissipation of energy condition. (o) No frictional tangential stress on the contact face, including anti-plane mode.

Corner configuration Ex. BC1 BC2 Mat Results in
literature [5]

Present results 𝜆, 𝜔

1.1
FC
𝜇 = 1
𝜗0 = 0◦

F
𝜗1 = 300◦ A

0.3916876291
𝑓 = 1

0.3916876291
0.0◦

0.5238206585
𝑓 = 1

0.5238206585
0.0◦

– 0.3168546234
65.645◦

– 0.3168546234
−65.645◦

– 0.6, 90.0◦(o)

– 0.6, −90.0◦ (o)

– 0.7694649581
98.480◦ (∗)

– 0.7694649581
−98.480◦ (∗)

– 0.209797619
145.101◦

– 0.209797619
−145.101◦

0.1968137883
𝑓 = −1

0.1968137883
180.000◦ (∗)

1.2
FC
𝜇 = 1
𝜗0 = 0◦

C
𝜗1 = 300◦ A

0.329046166
𝑓 = 1

0.329046166
0.0◦ (∗)

0.649215698
𝑓 = 1

0.649215698
0.0◦ (∗)

0.867301578
𝑓 = 1

0.867301578
0.0◦

– 0.3, 90.0◦(o)

– 0.3, −90.0◦(o)

– 0.9, 90.0◦(o)

– 0.9, −90.0◦(o)

– 1 107.303◦ (∗)

– 1,−107.303◦ (∗)

0.297128929
𝑓 = −1

0.297128929
180.0◦

0.512105442
𝑓 = −1

0.512105442
180.0◦ (∗)

1.3
FC
𝜇 = 1
𝜗0 = 0◦

S
𝜗1 = 150◦ A

0.484725982
𝑓 = 1

0.484725982
0◦ (∗)

0.760133083
𝑓 = 1

0.760133083
0◦

– 0.954171230
79.766◦

– 0.954171230
−79.766◦

1.4
FC
𝜇 = 1
𝜗0 = 0◦

A
𝜗1 = 150◦ A

0.245553923
𝑓 = 1

0.245553923
0◦

– 0.285960827,
44.056◦

– 0.285960827,
−44.056◦

– 0.6, 90.0◦(o)

– 0.6,−90.0◦(o)

0.533683783
±0.20979646𝑖
𝑓 = −1

0.533683783
±0.20979646𝑖
180.0◦
antisymmetry boundary condition on the other face, Examples 1.3 and
1.4, respectively, in Table 4. The solution of Example 1.4 with 𝑓 = −1

obtained by searching for roots of the closed-form corner-eigenequation
given in [5] and also by the present formalism, with the angle 𝜔 = 180◦,
11
gives a complex singularity exponent 𝜆 ∈ C. This solution leads to an
oscillatory stress field similar to the well-known oscillatory solution in
the open model of an interface crack between dissimilar materials with
the Dundurs parameter 𝛽 ≠ 0 as analysed in [45,46].
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In Fig. 6, the contour plot of 𝜎min values of the singular value decom-
position (SVD) of the matrix 𝐊corner(𝜆, 𝜔), matrix of the characteristic
system for the singularity analysis, for the case in Example 1.1 is shown
to illustrate how the solutions for 𝜆 and 𝜔 are found. The darker blue
zones correspond to values of 𝜎min close to 0, so the singularity expo-
nent 𝜆 and the associated angle 𝜔 can be found there. The red arrows
correspond to solutions found also solving eigenequation from [5], the
black arrows are the solutions corresponding to the anti-plane mode
and the green arrows are the unexpected solutions mentioned above.
These latter values and their existence will be studied in a forthcoming
article.

Example 1.5 - 1.14. For a single-material orthotropic corner, the results
are compared with the results obtained by the closed-form expression
of corner eigenequations deduced in [43]. These examples are shown
in Table 5 for half-planes and in Table 6 for cracks with frictional-
sliding-contact boundary conditions. The values of 𝜗0 and 𝜗1 used for
the computation of the solution are indicated, but the results were
checked to be valid for any combination of 𝜗1 − 𝜗0 = 180◦ in Table 5
and 𝜗1 − 𝜗0 = 360◦ in Table 6. Examples 1.9 and 1.14 represent the
cases with frictional sliding contact on the two boundary faces. In these
cases, the sliding (or shear) direction angles are shown for both faces,
𝜔0 and 𝜔1. In [43] the closed-form expressions were deduced only for
the plane mode, in Tables 5 and 6 the results obtained by the present
code corresponding to the anti-plane mode (𝜔 = ±90◦) and modes
in which the plane and anti-plane modes cannot be decoupled (𝜔 ≠
0◦,±90◦, 180◦) are also presented. Any combination of 𝜆, 𝜔0, 𝜔1 values
that satisfies the conditions 𝜆 ∈ Z, i.e. 𝜆 is an integer number, and 𝜔1 =
−𝜔0 ± 𝑛𝜋, with 𝑛 ∈ Z, is also a solution of Example 1.9. Example 1.8
corresponds to an orthotropic semi-plane with antisymmetric boundary
condition at 𝜗0 and frictional sliding contact at 𝜗1, the same boundary
condition as in Examples 1.4, resulting in a solution with complex
singularity exponent 𝜆 ∈ C also. In all examples, the compression
condition at the frictional contact boundary is checked. As Examples
1.9 and 1.14 have frictional contact on both boundaries, both outer
faces must simultaneously fulfil the compression condition. However,
this requirement is not satisfied by the solutions marked with (±) in
Tables 5 and 6. In Table 6 some 𝜆 values are solution of the problem
regardless of the value of 𝜔, this is indicated as ∀𝜔 in the table.

6.1.2. Singular solution for open corners with two single-material wedges
Example 2.1. Gdoutos and Theocaris [47], employing the Williams [48]
technique, deduced a corner eigenequation to study the existence of a
power singularity at the apex of a plane indenter acting on an elastic
half-plane, applying the Dundurs mismatch parameter 𝛽 for bi-material
isotropic corners for different values of the friction coefficient and the
sharp edge angle. This eigenequation [47, Eq. (3)] is implemented to
obtain the singularity exponent for the friction coefficients 𝑓 = −1,
−0.5, 0, 0.5, and 1, and the solid angles of the indenter, 𝜗 = 30◦,
45◦, 60◦, 90◦ and 120◦. The material used for the half plane is B
and for the indenter is A in Table 3. All results obtained by solving
the corner eigenequation [47, Eq. (3)] are compared with the results
obtained for each case by the present general matrix formalism with
perfect match at least up to 12 digits. Later, Comninou [23] studied the
same case, but employing the Mellin transform that essentially leads to
the same expression of eigenequation as in [47] and therefore to the
same results. In Table 7 some of the results obtained are shown. The
results shown for a friction coefficient 𝜇 = 0 have been obtained in two
different ways with the present formalism for verification purposes.
First, using the interface condition matrices considering specifically
the frictionless case as presented in [18], and then with the interface
condition matrices in Table 2 considering 𝜇 = 0 obtaining identical
12

results up to 12 digits. v
Examples 2.2 and 2.3. Churchman and Hills [27] present a simpler cor-
ner eigenequation for the same case as in Example 2.1 but in isotropic
corners with the same materials and 𝜗2 = 90◦ angle of indenter. In this
kind of problem, as both wedges are made of the same material, the
results are independent of the properties of the material. In Fig. 7, the
results 𝜆 and 𝜔 obtained with the present formalism are superimposed
on the Fig. 3 in [27], and the numerical results are presented in Table 8.
The positive values of −𝑓 in Fig. 7 correspond to 𝜔 = 180◦ in Table 8
and the negative values of −𝑓 correspond to 𝜔 = 0◦. As can be seen in
oth Fig. 7 and Table 8, for the case of a perfectly bonded interface, the
ingular exponents obtained are the same as those that can be obtained
or a friction coefficient 𝜇 = 0.219 and a sliding angle 𝜔 = 0◦ and
or 𝜇 = 0.543 and a sliding angle 𝜔 = 180◦. Thus, 𝜇 = 0.219 and
= 0.543 are considered limit cases where there is no sliding. This case

an be instructive to show why, when varying the friction coefficient, a
olution becomes invalid as it is not fulfilling the frictional dissipation
f energy condition.

Hong et al. [30] presented a particularisation of the eigenequation
ntroduced by Gdoutos and Theocaris [47] and Comninou [23] for the
ase of a quarter-plane sliding with or without friction over a semi-
lane. The results obtained with the characteristic eigenequation (8)
n [30] is successfully verified with the present formalism. Character-
stic eigenequation (9) in [30] has also been verified for the case of

perfectly bonded interface. Yang in [29] presented solutions to dis-
imilar material contact problems. In this case, both wedges in contact
an vary their solid angle and the interface condition allows friction.
igenequation (58) in [29] is implemented and validated by comparing
ts solutions with the result obtained for the same configurations with
he present general matrix formalism. For the tests, materials A and B
ave been used with varying solid angles for both materials and the
riction coefficient.

xample 2.4. For the case of anisotropic materials, several procedures
an be found in the literature. Chen et al. [36] proposed a new specific
emi-analytic approach based on the Stroh formalism for frictional
liding contact of two anisotropic wedges considering GPS and the
sotropic Coulomb frictional contact law at the interface. Despite the
se of a similar friction model, the present results shown in Table 9
o not match with their results. In Fig. 8, the values for 𝛿 = 𝜆 − 1 in
able 9 are superimposed with the results obtained in [36, Fig. 5], using
he same colours for each friction coefficient, to show the differences
etween the results found in [36] and those obtained with the present
ormalism. In Fig. 8 only results that satisfy the frictional dissipation of
nergy condition and results of the frictionless case are plotted to make
he figure clearer. The most striking difference is that for all values of
he friction coefficient, the results shown in [36, Fig. 5] tend to 𝛿 = −0.5
𝜆 = 0.5), a characteristic that is not found in the values obtained by the
resent formalism. In each column in Table 9, results for each friction
oefficient at the interface are presented for different wedge angles of
he upper material. Material E in Table 3 is used for the half-plane
nd for the wedge. The fibre angles are 𝜙1

2 = 45◦ and 𝜙2
2 = −45◦

or the half-plane and wedge, respectively. In [49] a generalisation
f the semi-analytic approach introduced in [36], considering general
oundary conditions on the outer faces, is developed and implemented
n a computational code, providing the same results as obtained with
he present general matrix formalism. In view of all this, we are fully
onfident in our results shown in Fig. 8 and Table 9 as we obtain them
n two different ways. It has been observed that singular solutions with
∈ C may exist for some combinations of the friction coefficient 𝜇 and

he wedge angle 𝜃, but as these solutions are out of the scope of this
ork, we have not included them either in Table 9 or in Fig. 8.

xample 2.5. Poonsawat et al. [31], use a frictional model in which the
elative displacement between the crack faces in the 𝑥3-direction is not
llowed, which apparently does not represent the standard Coulomb
sotropic friction law, as in general the collinearity of the friction shear

ector and the vector of relative tangential displacement is not verified.
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Table 5
Comparison of results for 0 ≤ 𝜆 ≤ 1 and 𝜔 obtained by the present code and those found in the literature, for open single-material orthotropic corners with at least one frictional
boundary condition, Section 6.1.1. (*) Fulfils the frictional dissipation of energy condition. (o) No frictional tangential stress on the contact face, including anti-plane mode. (±)
One contact face under compression and the other contact face under tension.

Corner configuration Ex. BC1 BC2 Mat Results in
literature [43] 𝜆, 𝑓

Present results 𝜆 𝜔

1.5 F
𝜗0 = 20◦

FC
𝜇 = 1
𝜗1 = 200◦

C

0.423597837
𝑓 =1

0.423597837
0◦ (∗)

– 0.479710607
±71.58632◦ (∗)

– 0.520289393
±111.78927◦

0.547802109
𝑓 = −1

0.547802109
±180◦

1.6 C
𝜗0 = 20◦

FC
𝜇 = 1
𝜗1 = 200◦

C

0.423597837
𝑓 =1

0.423597837
0◦

– 0.5 ±90◦ (o)

0.547802109
𝑓 = −1

0.547802109
±180◦ (∗)

1.7 S
𝜗0 = 20◦

FC
𝜇 = 1
𝜗1 = 200◦

C

0.923597837
𝑓 =1

0.923597837
0◦

0.047802109
𝑓 = −1

0.047802109
180◦ (∗)

1.8 A
𝜗0 = 20◦

FC
𝜇 = 1
𝜗1 = 200◦

C

0.461798918±0.1098658𝑖
𝑓 = 1

0.461798918±0.1098658𝑖
0◦

– 0.5 ±90◦ (o)

– 0.618471327
±91.0944◦ (∗)

– 0.3815286737
±92.0756◦

0.707032932
𝑓 = −1

0.707032932
180◦ (∗)

0.340769177
𝑓 = −1

0.340769177
180◦

1.9
FC
𝜇 = 1
𝜗0 = 20◦

FC
𝜇 = 1
𝜗1 = 200◦

C

1 𝑓1=1 𝑓2 = 1 1 𝜔0 = 0◦ 𝜔1 = 0◦

0.875795728
𝑓1=−1, 𝑓2 = 1

0.875795728
𝜔0 = 180◦, 𝜔1 = 0◦

0.124204272
𝑓1=1, 𝑓2 = −1

0.124204272
𝜔0 = 0◦, 𝜔1 = 180◦ (±)

1, 𝑓1 = −1, 𝑓2 = −1 1, 𝜔0 = 180◦, 𝜔1 = 180◦
Fig. 7. 0 < 𝜆 < 1 and 𝜔 results in Table 8 presented together with [27, Fig. 3]. 𝜆B with the eigenvalues plotted by Churchman and Hills [27] for the case of the bonded interface.
See Ex 2.2 and Ex 2.3 in Table 8.
For that reason, the angle of the tangential frictional stress vector 𝜔

is not taken into account in [31], and our results only agree in those
cases in which 𝜔 is either 0◦ or 180◦. In Table 10, the variations of
𝜆 and 𝜔 with 𝜙Mat.1 and 𝜙Mat.2 , for a friction coefficient 𝜇 = 0.5, are
13

2 2
studied using the present friction model applied to the same problem
as considered in [31, Tables 4 and 5], a 90◦ broken graphite/epoxy
laminate (𝜃0 = −180◦, 𝜃1 = 0◦ and 𝜃2 = 90◦) shown in Fig. 9. The
material used in [31] is the material D in Table 3. The shaded cells
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Table 6
Comparison of results for 0 ≤ 𝜆 ≤ 1 and 𝜔 obtained by the present code and those found in the literature, for open single-material orthotropic corners with at least one frictional
boundary condition, Section 6.1.1. (*) Fulfils the frictional dissipation of energy condition. (o) No frictional tangential stress on the contact face, including anti-plane mode. (±)
One contact face under compression and the other contact face under tension.

Corner configuration Ex. BC1 BC2 Mat Results in
literature [43] 𝜆, 𝑓

Present results 𝜆, 𝜔

1.10 F
𝜗0 = 0◦

FC
𝜇 = 1
𝜗1 = 360◦

C

0.5, 𝑓 = ±1 0.5, ∀𝜔 (o)

0.222856347
𝑓 = 1

0.222856347
0◦ (∗)

0.722856347
𝑓 = 1

0.722856347
0◦ (∗)

– 0.240280639
±69.204◦ (∗)

– 0.740280639
±69.204◦ (∗)

– 0.259719361
±110.800◦

– 0.759719361
±110.800◦

0.277143653
𝑓 = −1

0.277143653
180◦

0.777143653
𝑓 = −1

0.777143653
180◦

1.11 C
𝜗0 = 0◦

FC
𝜇 = 1
𝜗1 = 360◦

C

0.222856347
𝑓 = 1

0.222856347
0◦

0.5, 𝑓 = ±1 0.5, ∀𝜔 (o)

0.722856347
𝑓 =1

0.722856347
0◦

– 0.25, 90◦ (o)

– 0.75, 90◦ (o)

0.277143653
𝑓 = −1

0.277143653
180◦ (∗)

0.777143653
𝑓 = −1

0.777143653
180◦ (∗)

1.12 S
𝜗0=0◦

FC
𝜇 = 1
𝜗1 = 360◦

C

0.472856347
𝑓 = 1

0.472856347
0◦

0.5, 𝑓 = ±1 0.5 ∀𝜔 (o)

0.972856347
𝑓 =1

0.972856347
0◦

0.027143653
𝑓 = −1

0.027143653
180◦ (∗)

0.527143653
𝑓 = −1

0.527143653
180◦ (∗)

1.13 A
𝜗0 = 0◦

FC
𝜇 = 1
𝜗1 = 360◦

C

0.222856347
𝑓 =1

0.222856347
0◦

0.25, 𝑓 = ±1 0.25, ∀𝜔 (o)

0.722856347
𝑓 = 1

0.722856347
0◦

0.75, 𝑓 = ±1 0.75, ∀𝜔 (o)

0.277143653
𝑓 = −1

0.277143653
180◦ (∗)

0.777143653
𝑓 = −1

0.777143653
180◦ (∗)

1.14
FC
𝜇 = 1
𝜗0=0◦

FC
𝜇 = 1
𝜗1 = 360◦

C

0.5, 𝑓1=1,
𝑓2 = 1

0.5, 𝜔0 = 0◦,
𝜔1 = 0◦ (±)

0.5,𝑓1 = −1,
𝑓2 = 1

0.5, 𝜔0 = 180◦,
𝜔1 = 0◦ (o)

0.445712694
𝑓1 = −1, 𝑓2 = 1

0.445712694
𝜔0 = 180◦,
𝜔1 = 0◦ (±)

0.945712694
𝑓1 = −1, 𝑓2 = 1

0.945712694
𝜔0 = 180◦, 𝜔1 = 0◦

0.5, 𝑓1 = 1,
𝑓2 = −1

0.5, 𝜔0 = 0◦,
𝜔1 = 180◦ (o)

(continued on next page)
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Table 6 (continued).
Corner configuration Ex. BC1 BC2 Mat Results in

literature [43] 𝜆, 𝑓
Present results 𝜆, 𝜔

1.14
FC
𝜇 = 1
𝜗0=0◦

FC
𝜇 = 1
𝜗1 = 360◦

C

0.054287306
𝑓1 = 1, 𝑓2 = −1

0.054287306
𝜔0 = 0◦,
𝜔1 = 180◦ (∗)

0.554287306
𝑓1 = 1, 𝑓2 = −1

0.554287306
𝜔0 = 0◦,
𝜔1 = 180◦ (±)

0.5 𝑓1 = −1,
𝑓2 = −1

0.5, 𝜔0 = 180◦,
𝜔1 = 180◦ (±)
Table 7
Example 2.1. Comparison of results for 0 ≤ 𝜆 ≤ 1 and 𝜔 obtained by the present code and those found in the literature for a wedge sliding with friction over a semi-plane. (*)
Fulfils the frictional dissipation of energy condition.

Corner configuration Mat Ex. BC1 IC1 BC2 Results in Present
literature [23,47]
𝜆, 𝑓

results 𝜆, 𝜔

2.1 M1 = A
M2 = B

F
𝜗0 =
−180◦

FC
𝜇 = 0
𝜗1 = 0◦

F 𝜗2 = 45◦ 0.829085095 0.829085095

F 𝜗2 = 60◦ 0.629457434 0.629457434

F 𝜗2 = 90◦ 0.526550237 0.526550237

F 𝜗2 = 120◦ 0.505189351 0.505189351

FC
𝜇=0.5
𝜗1 = 0◦

F 𝜗2 = 45◦

0.978829646
𝑓 = 0.5

0.978829646
0◦ (∗)

0.736972103
𝑓 = −0.5

0.736972103
180◦ (∗)

F 𝜗2 = 60◦

0.660673397
𝑓 = 0.5

0.660673397
0◦

0.601424848
𝑓 = −0.5

0.601424848
180◦ (∗)

F 𝜗2 = 90◦

0.513745930
𝑓 = 0.5

0.513745930
0◦

0.538993666
𝑓 = −0.5

0.538993666
180◦ (∗)

F 𝜗2 = 120◦

0.478522170
𝑓 = 0.5

0.478522170
0◦

0.531520587
𝑓 = 0 .5

0.531520587
180◦ (∗)

FC
𝜇 = 1
𝜗1 = 0◦

F 𝜗2 = 60◦

0.697046375
𝑓 = 1

0.697046375
0◦ (∗)

0.575440465
𝑓 = −1

0.575440465
180◦ (∗)

F 𝜗2 = 90◦

0.500701246
𝑓 = 1

0.500701246
0◦

0.550975283
𝑓 = −1

0.550975283
180◦ (∗)

F 𝜗2 = 120◦

0.452032964
𝑓 = 1

0.452032964
0◦

0.557034974
𝑓 = −1

0.557034974
180◦ (∗)
contain results obtained with the present code that match the results
obtained by [31], taking into account that in [31, Tables 4 and 5]
𝑘 = 1 − 𝜆 is presented. Although, only two of the singular solutions
with 0 < 𝜆 < 1 presented in Table 10 fulfil the frictional dissipation of
energy condition, it has been checked that solutions with 𝜆 > 1 can be
found which fulfil this condition.

Magnier et al. [32] use the same frictional model as Poonsawat
et al. [31] but a different computational procedure. To validate their
methodology, Magnier et al. [32] reproduce the results presented
in [31, Fig. 5, 6 and 7] for an inclined broken graphite/epoxy, material
D in Table 3, indenting a semi-plane of the same material with good
agreement. As their frictional model does not allow relative displace-
ment in the 𝑥3-direction, only the results shown in [32] in Fig. 7 (a)
with [𝜙1∕𝜙2] = [0◦∕90◦] and (d) with [𝜙1∕𝜙2] = [90◦∕0◦], and in Fig. 8
(a) with [𝜙1∕𝜙2] = [0◦∕90◦] and (d) with [𝜙1∕𝜙2] = [90◦∕0◦], agree with
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the results obtained for the same problems using the present matrix
formalism. That is, the same results are obtained only when the 𝑥1𝑥2-
plane is a PES, and therefore 𝜔 = 0◦ or 180◦. Noteworthy, for the case
of a perfectly bonded interface, all the results shown in [32, Fig. 6]
coincide with the results by the present procedure.

6.2. Singular solutions for closed (periodic) corners

6.2.1. Singular solutions for closed (periodic) corners with one multi-
material wedge
Example 3.1. Frictional interface crack in an isotropic bi-material. In-
terface cracks with frictionless and frictional contact in isotropic bi-
materials were first studied by Comninou [24,50]. The present results
in Table 11 for the frictional interface crack are compared with the
values of the singularity exponent 𝜆 given by the closed-form expression
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Table 8
Numerical values for 0 < 𝜆 < 1 and 𝜔 shown in Fig. 7, for open isotropic bi-material corners with frictional interface, see Section 6.1.2. (*) Fulfils the frictional dissipation of
energy condition.

Corner configuration Ex. Mat BC1 BC2 IC1 𝜗1 = 0◦ Present
results 𝜆, 𝜔

2.2 A F
𝜗0 = −180◦

F
𝜗2 = 90◦

FC
𝜇 = 0

0.774013112
0◦or 180◦

FC
𝜇 = 0.1

0.829259401
0◦ (∗)

0.724882387
180◦

FC
𝜇 = 0.2

0.894461293
0◦ (∗)

0.679923917
180◦

FC
𝜇 = 0.219

0.908587745
0◦

0.671750475
180◦

FC
𝜇 = 0.3

0.979878330
0◦

0.637987188
180◦

FC
𝜇 = 0.4

0.598318974
180◦

FC
𝜇 = 0.543

0.544511442
180◦

2.3 A F
𝜗0 = −180◦

F
𝜗2 = 90◦ B

0.544511442

0.908587745
Fig. 8. Example 2.4. 𝛿 = 𝜆 − 1 values versus upper wedge angle 𝜗2 for the case of a bi-material open corner with frictional contact interface presented in Table 9, superimposed

with those obtained by Chen et al. [36, Fig. 5]. Mat. 1 and Mat. 2 are material E in Table 3, see Section 6.1.2.
deduced in [24]. The configuration used is shown in Fig. 10, where
Mat1 and Mat2 are material B and A in Table 3, respectively, and IC1 in
𝜗 = −180◦ is frictional contact and IC2 in 𝜗 = 0◦ is a perfectly bonded
interface condition. The friction coefficients for IC1 are indicated in
Table 11 for each case in the first column3.

3 In the expression proposed by Comninou [24], it should be taken into
account the following relation between 𝜆Comninou and 𝜆 used in the present
article

𝜆 = 1 − 𝜆 (78)
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Comninou
None of the solutions obtained with 𝑓 > 0 with the eigenequation
found in [24] satisfies the frictional dissipation of energy condition.
This is because the compliant material is the upper material in the in-
terface crack corner. Therefore, to obtain results that fulfil the frictional
dissipation of energy condition, one possibility is to interchange the
material position obtaining the same result as if we change the sign
of 𝑓 , which implies changing the direction of the friction shear stress
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Table 9
Example 2.4. Numerical values of the 0 < 𝜆 < 1 and 𝜔 shown in Fig. 8 for open orthotropic bi-material corners with friction interface described in the figure, see Section 6.1.2.
(*) Fulfils the frictional dissipation of energy condition. (o) No frictional tangential stress on the contact face, including anti-plane mode.

BC2 𝜆, 𝜔

𝜇 = 0 𝜇 = 0.2 𝜇 = 0.4 𝜇 = 0.6 𝜇 = 0.8 𝜇 = 1

F 𝜗2 = 90◦

0.758705740 0.684127938 0.631431721 0.592058527 0.560533418 0.533921907
179.772◦ (o) 165.666◦ 156.104◦ 149.660◦ 145.134◦ 141.805◦

0.758705740 0.857890753 0.954851180 0.932644906 0.824276832 0.687979912
−0.227◦ (o) 18.526◦ (∗) 37.297◦ (∗) −58.085◦ −75.173◦ −91.2789◦

F 𝜗2 = 105◦

0.629233980 0.589927781 0.562410504 0.541586923 0.524250842 0.509291795
169.775◦ (o) 156.629◦ 148.017◦ 142.507◦ 138.767◦ 136.073◦ (∗)

0.629233980 0.682597964 0.744030910 0.809888175 0.879729113 0.953168543
−10.224◦ (o) 4.935◦ (∗) 17.268◦ (∗) 26.674◦ (∗) 34.476◦ 41.425◦

F 𝜗2 = 120◦

0.562179580 0.544186082 0.531446795 0.521304585 0.512619999 0.504861326
129.905◦ (∗)

152.931◦ (o) 143.196◦ 137.577◦ 134.054◦ 131.651◦ (∗)
0.741198610
26.243◦ (∗)

0.562179580 0.589646083 0.624729071 0.661993250 0.700578854 0.497342926
−102.236◦ (∗)

−27.069◦ (o) −11.763◦ (∗) 3.181◦ (∗) 13.550◦ (∗) 20.760◦ (∗)
0.523575361
−90.629◦ (∗)

F 𝜗2 = 135◦

0.527596524 0.522288584 0.518236821 0.514826624 0.511801503 0.509035099
122.937◦ (∗)

131.541◦ (o) 128.035◦ 125.980◦ 124.626◦ 123.662◦ (∗)
0.622167787
11.762◦ (∗)

0.527596524 0.535983431 0.552393349 0.575896257 0.599302798 0.484442677
−101.602◦ (∗)

−48.458◦ (o) −41.335◦ (∗) −25.784◦ (∗) −7.801◦ (∗) 4.014◦ (∗)
0.513757233
−79.689◦ (∗)

F 𝜗2 = 150◦

0.509880836 0.511589363 0.513129832 0.514557475 0.515902136 0.517182070
111.755◦ (o) 112.418◦ 112.894◦ 113.256◦ 113.543◦ 113.778◦

0.509880836 0.507891475 0.505353001 0.501493604 0.494060198 0.482004862
−68.245◦ (o) −69.242◦ (∗) −70.923◦ (∗) −74.276◦ (∗) −81.972◦ (∗) −94.017◦ (∗)

F 𝜗2 = 165◦

0.501721950 0.506768441 0.511711793 0.516557375 0.521304551 0.525958871
96.999◦ (o) 97.885◦ 98.687◦ 99.4236◦ 100.103◦ 100.736◦

0.501721950 0.496566407 0.491293648 0.485892755 0.480349885 0.474649212
−83.001◦ (o) −83.989◦(∗) −85.108◦(∗) −86.392◦(∗) −87.891◦(∗) −89.667◦(∗)

F 𝜗2 = 180◦

0.500000000 0.505971387 0.511938575 0.517897380 0.523843655 0.529773307
90.000◦ (o) 90.000◦ 90.000◦ 90.000◦ 90.000◦ 90.000◦

0.500000000 0.494028613 0.488061425 0.482102620 0.476156345 0.470226693
−90.000◦ (o) −90.000◦ (∗) −90.000◦ (∗) −90.000◦ (∗) −90.000◦ (∗) −90.000◦ (∗)
Fig. 9. Example 2.5. Schema of broken graphite/epoxy laminate as an open bi-material
corner with frictional contact interface. Mat. 1 and Mat. 2 are material D in Table 3,
and friction coefficient 𝜇 = 0.5. Results presented in Table 10, see Section 6.1.2.

considering compressions in the contact zone. The present matrix for-
malism does not need to use negative friction coefficients, as it has the
possibility of having a sliding angle in the opposite direction. It has also
been checked that for a friction coefficient 𝜇 = 0 or in the homogeneous
case (Mat1 = Mat2), the combination of materials does not matter,
𝜆 = 0.5, as explained in [24,50]. The singular solutions associated with
17
Fig. 10. Configuration used for interface crack examples.

𝜆1, 𝜔1 and 𝜆3, 𝜔3 represent a symmetric set of nonsymmetric solutions,
each one can be obtained from the other simply by multiplying it by
−1.

Example 3.2. Frictional interface crack in an anisotropic bi-material. The
results by Comninou [24,50] for the contact model of interface cracks
in isotropic bi-materials were later generalised to anisotropic
bi-materials by many authors, see [51] for most relevant references.
In Table 12, the present results are compared with those obtained
by solving a closed-form eigenequation for 𝜆 derived by Sung and
Chung [35]. The configuration used is as shown in Fig. 10, with
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Table 10
Example 2.5. Numerical values for the singularity exponent 0 < 𝜆 < 1 and sliding angle 𝜔 for two single-material wedges sliding
with friction in both interfaces, see Section 6.1.2. (*) Fulfils the frictional dissipation of energy condition. Shaded cells contain results
obtained with the present code that match the results obtained in [31].

𝜆, 𝜔

𝜙Mat2
2

𝜙Mat1
2 0◦ 30◦ 45◦ 60◦ 90◦

−90◦

0.548017099 0.565900331 0.564170398 0.561171875 0.560019792
180.000◦ (∗) 159.902◦ (∗) 164.051◦ 170.835◦ 180.000◦

0.936447242 0.934542791
-61.819◦ -60.596◦

−60◦

0.605308605 0.611539789 0.599601087 0.588025012 0.578173913
144.586◦ 143.912◦ 150.622◦ 158.476◦ 167.378◦

0.961278926 0.942248425
-54.322◦ -55.138◦

0.975626995
51.436◦

−45◦

0.611133541 0.621837505 0.613167283 0.604286635 0.596516326
150.646◦ 147.374◦ 153.271◦ 160.198◦ 167.626◦

0.988349267 0.954982281
43.524◦ 47.267◦

−30◦

0.612204427 0.627108419 0.622137106 0.616423552 0.611076764
160.596◦ 152.655◦ 157.770◦ 164.162◦ 171.468◦

0.951241488 0.921431011
39.220◦ 42.986◦

0◦

0.614714632 0.623845018 0.624200402 0.623734137 0.623688164
180.000◦ 162.622◦ 166.189◦ 171.950◦ 180.000◦

0.948633865 0.905792839 0.882083653 0.932323131
25.917◦ 32.618◦ 34.842◦ 0◦

30◦

0.612204427 0.598802691 0.601648274 0.604867872 0.611076764
-160.596◦ 170.662◦ 172.811◦ 178.793◦ -171.468◦

0.959118988 0.936101118
35.345◦ 35.994◦

0.956607715
-33.509◦

45◦

0.611133541 0.57982718 0.583005574 0.587236716 0.596516326
-150.646◦ 172.200◦ 174.284◦ 181.292◦ -167.626◦

0.990008663 0.961588569
42.775◦ 44.212◦

0.919986002
-53.910◦

60◦

0.605308605 0.582203506 0.568687031 0.568803269 0.578173912
−144.584◦ 150.533◦ 166.523◦ 178.723◦ -167.378◦

0.977686008
50.512◦

0.93580465 0.929115054
-59.476◦ -58.920◦
Table 11
Example 3.1. Numerical values for the singularity exponent 0 < 𝜆 < 1 and sliding angle 𝜔 for an interface crack in an isotropic corner, see Section 6.2.1. (*)
Fulfils the frictional dissipation of energy condition. (o) No frictional tangential stress in the interface, including anti-plane mode.

𝜇
Results in [24] Results in [24]

𝜆1 , 𝜔1 𝜆2 , 𝜔2 𝜆3 , 𝜔3 𝜆4 , 𝜔4𝑓 = 𝜇 𝑓 = −𝜇

0 0.5 0.5 0.5 0.5 0.5 0.5
−90◦ (o) 0◦ 90◦ (o) 180◦

0.2 0.486626904 0.513373096 0.5 0.513373096 0.5 0.486626904
−90◦ (o) 0◦ (∗) 90◦ (o) 180◦

0.4 0.473300850 0.52669915 0.5 0.52669915 0.5 0.473300850
−90◦ (o) 0◦ (∗) 90◦ (o) 180◦

0.5 0.466669922 0.533330078 0.5 0.533330078 0.5 0.466669922
−90◦ (o) 0◦ (∗) 90◦ (o) 180◦

0.6 0.460067898 0.539932102 0.5 0.539932102 0.5 0.460067898
−90◦ (o) 0◦ (∗) 90◦ (o) 180◦

0.8 0.446972184 0.553027816 0.5 0.553027816 0.5 0.446972184
−90◦ (o) 0◦ (∗) 90◦ (o) 180◦

1 0.43405509 0.56594491 0.5 0.56594491 0.5 0.43405509
−90◦ (o) 0◦ (∗) 90◦ (o) 180◦
a
f

Mat1 and Mat2 indicated in Table 12 and the interface conditions
IC1 and IC2 are frictional contact and perfectly bonded, respectively.
Orthotropic materials are represented with fibres that match the 𝑥1-
axis, apparently monoclinic materials are orthotropic materials with
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m

the fibre in 𝑥1𝑥3-plane but with a 𝜙2 angle measured from the 𝑥1-
xis or with the fibre in 𝑥1𝑥2-plane but with a 𝜙3 angle measured
rom the 𝑥1-axis and apparently anisotropic materials are orthotropic
aterials whose fibre is rotated an angle 𝜙 around the 𝑥 -axis and
2 2
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an angle 𝜙3 around the 𝑥3-axis, as represented in Fig. 5. Excellent
agreement is found between [35] and the present results for orthotropic
and apparently monoclinic materials with fibres in the 𝑥1𝑥2-plane, but
no coincidence is found either in the case of monoclinic materials
with fibres in the 𝑥1𝑥3-plane or in general anisotropic materials. This
mismatch can be explained by analysing the frictional sliding contact
model used by Sung and Chung in [35], where the angle 𝜔, direction
of the tangential stress, is not defined, assuming that the values of the
frictional tangential stresses 𝜎𝑖2 with 𝑖 = 1, 3 are either zero or ±𝜇𝜎22.
A procedure similar to that previously developed for open corners with
frictional contact in [49] is applied in [51] to the frictional interface
crack problem, whose results agree with those obtained by the present
matrix formalism.

As was checked for the isotropic case, it was also checked for any
orthotropic or monoclinic material with a PES parallel to the coordinate
planes 𝑥1𝑥3 or 𝑥1𝑥2, in the frictionless case with 𝜇 = 0 and in the case of
similar or identical materials (Mat1 = Mat2 with 𝜙1

𝑖 = 𝜙2
𝑖 ), that 𝜆 = 0.5

as well; however, in the case of dissimilar general anisotropic materials
with 𝜇 = 0, 𝜆 = 0.5±𝑖𝜀. Apart from the special cases (frictionless contact,
similar or identical materials, antiplane case with zero compression
and zero friction shear), if we only consider the singular solutions
that meet the frictional dissipation of energy criterion, then Re(𝜆) >
0.5. This observation is important as it shows that under friction and
with dissimilar materials the singularity will be weaker than in the
frictionless case or the case of similar or identical materials.

When the last example in Table 12, corresponding to a bi-material
formed by a semi-plane of material G with 𝜑2 = 60◦ and a semi-plane
of material E with 𝜑2 = 30◦ and 𝜑3 = −2◦ (an apparently anisotropic
material), is solved with the present code, complex values are obtained
for both 𝜆 and 𝜔. Therefore, this problem is also analysed with the code
currently under development for the special case of complex 𝜆 where
two angles 𝜔, 𝜔′ and 𝜔′′, are obtained for the frictional shear vector.
The treatment of complex singularity exponents 𝜆 is discussed in more
detail in Section 7. For completeness, the result obtained with this code
are added to this table as well.

The crack tip singularity in interface cracks with frictional contact
was also studied by Leguillon [33] for isotropic and anisotropic bi-
materials. In the model proposed in [33], the sliding direction is
assumed as a kinematic condition and can be chosen in any direction
between the plane mode and the anti-plane mode, this differs from the
model considered in the present work. Thus, good agreement can only
be achieved when comparing the results in [33] to those of the present
study for isotropic materials and orthotropic materials with a stacking
sequence of [0,90], when prescribing a sliding angle of 0◦ or 90◦.

Example 3.3. Closed crack tip terminating at a perfectly bonded interface.
Fig. 11 represents the configuration considered in the examples pre-
sented in Table 13, where the crack is located in one of the bonded
materials and not on the interface. This case can be studied as a
closed corner consisting of a three-material wedge, and was studied by
Comninou and Dundurs [25] among many other authors. Some tests
have been carried out to compare the results of the present procedure
with the results obtained from eigenequation [25, Eq. (5)], all with
perfect agreement. In Table 13 some of these numerical results are
shown. Mat1 and Mat3 are material B and Mat2 material A in Table 3.
In Table 13, the angle 𝜃1−𝜃0 is indicated for each case. In this example,
the inclination of the crack that terminates at the interface is varied by
changing the angle 0 ≤ 𝜃0 ≤ 180◦, while keeping the angles 𝜃1 = 0◦ and
𝜃2 = 180◦ fixed. The 𝜃3 = 𝜃0 + 360◦ is varying together with 𝜃0. The
friction coefficient used at the interface IC1 is 𝜇 = 1. IC2 and IC3 are
perfectly bonded interfaces. In Table 13, crack inclinations for which
no singularity exponent was found in the range 0 < 𝜆 < 1 have been
marked with the symbol −.

It has also been checked that:

• When 𝜃0 = 90◦ in Fig. 11, the results do not depend on the friction
coefficient, this is evident due to the symmetry generated in the
19

corner geometry.
Fig. 11. Corner configuration for examples in Table 13, crack reaching a perfectly
bonded interface.

• When 𝜃0 approaches the values 0◦ or 180◦, in Fig. 11, the results
for 𝜆 tend to the 𝜆 value in the case of a frictional interface crack.

• The singular solutions associated with 𝜆1, 𝜔1 and 𝜆3, 𝜔3 represent
a symmetric set of non-symmetric solutions, each one can be
obtained from the other just by multiplying it by −1 as they corre-
spond to the anti-plane mode. These solutions are also symmetric
with respect to the solutions associated with 𝜆1, 𝜔1 and 𝜆3, 𝜔3 for
a problem with a crack inclination 𝜃′1 − 𝜃′0 = (𝜃1 − 𝜃0) − 𝜃2, which
could be easily explained by symmetry arguments in view of the
isotropy of the materials.

6.2.2. Singular solutions for closed corners with two single-material wedges
Example 4. Arias et al. [28] studied the case of two isotropic materials
sliding one over the other with two frictional contact interfaces for
the case of tectonic plates. Table 14 shows no considerable difference
between the results obtained with the present matrix formalism and the
results obtained with the eigenequation presented by Arias et al. [28]
for isotropic homogeneous corners. The material used in the calculation
is material A from Table 3, but the same results are obtained for any
isotropic material, as long as the same material is chosen for both
wedges. As this example has frictional contact on IC1 and IC2, both
interfaces must simultaneously fulfil the compression condition. This
requirement is checked and in most cases presented in Table 14 it is not
met. Solutions not fulfilling the compression condition simultaneously
at both interfaces are marked with (±).

7. Concluding remarks

This article generalises the semi-analytic matrix formalism for sin-
gularity analysis of anisotropic linear elastic multi-material corners
and the computational procedure developed in [18], covering also
cases with any finite number of frictional sliding contact surfaces. It
expands and completes the matrix formalism introduced in a concise
way in [37,38]. The main contribution of this article is the presentation
of a general implementation of the procedure that has been exten-
sively tested and validated through numerous numerical examples.
This implementation also serves to confirm the excellent accuracy and
efficiency of the proposed matrix formalism.

The main features of the developed code are:

- Any finite number of single-material wedges in the corner
- Any linear elastic and homogeneous material in each wedge
- Generalised plane strain (GPS) 𝑢𝑖(𝑥, 𝑦), 𝑖 = 𝑥, 𝑦, 𝑧, a kind of 2.5D

elastic problem formulation
- Any finite number of frictional surfaces, outer boundary surfaces

or interfaces, in the corner
- A 3D Coulomb law for isotropic friction represented by Coulomb

cone.



Theoretical and Applied Fracture Mechanics 129 (2024) 104160M.A. Herrera-Garrido et al.
Table 12
Example 3.2. Numerical values for the singularity exponent 0 < 𝜆 < 1 and sliding angle 𝜔 for an interface crack between anisotropic materials, see Section 6.2.1. (*) Fulfils the
frictional dissipation of energy condition. (o) No frictional tangential stress in the interface, including anti-plane mode.
𝜇 Mat1 Mat2 Results in [35] 𝜆1 , 𝜔1 𝜆2 , 𝜔2 𝜆3 , 𝜔3 𝜆4 , 𝜔4

0.5 G
𝜙𝑖 = 0◦

E
𝜙𝑖 = 0◦

0.501651679 0.5 (o) 0.501651679 0.5 (o) 0.498348321
𝑓 = 0.5 −90◦ 0◦ (∗) 90◦ 180◦

1 0.503303268 0.5 (o) 0.503303268 0.5 (o) 0.496696732
𝑓 =1 −90◦ 0◦ (∗) 90◦ 180◦

0.5 G
𝜙3 = 60◦

E
𝜙3 = 30◦

0.502122213 0.5 (o) 0.502122213 0.5 (o) 0.496523204
𝑓 = 0.5 −90◦ −0◦(∗) 90◦ 180◦

1 0.503552288 0.5 (o) 0.503552288 0.5 (o) 0.489789778
𝑓 =1 −90◦ −0◦(∗) 90◦ 180◦

0.5 G
𝜙2 = 60◦

E
𝜙2 = 30◦

0.509595142 0.5 (o) 0.511519758 0.5 (o) 0.488480242
𝑓 = 0.5 237.377◦ −45.007◦ (∗) 57.377◦ 134.992◦

1 0.519172879 0.5 (o) 0.523009419 0.5 (o) 0.476990581
𝑓 =1 237.377◦ −45.007◦ (∗) 57.377◦ 134.992◦

1 G
𝜙2 = 60

E 𝜙2 = 30◦

𝜙3 = −2◦
0.516405370
𝑓 =1

0.503192599
240.639◦

0.523049834
−47.067◦ (∗)

0.477013012
137.057◦

𝜇 Mat1 Mat2 𝜆5 , 𝜔5 𝜆6 , 𝜔6

0.5 G
𝜙2 = 60◦

E
𝜙2 = 30◦

0.493212664 0.506787336
−135.007◦ 44.992◦ (∗)

1 0.486431495 0.513568505
−135.007◦ 44.992◦ (∗)

1 G
𝜙2 = 60◦

E 𝜙2 = 30◦

𝜙3 = −2◦
0.483420518 0.506309057±i0.0018419970
−137.876◦ 𝜔′ = 54.256◦ , 𝜔′′ = 50.543◦
Table 13
Example 3.3. Numerical values for the singularity exponent 0 < 𝜆 < 1 and sliding angle 𝜔 for a crack terminating at a perfectly bonded interface in an isotropic
corner with a friction coefficient in the crack 𝜇 = 1, see Section 6.2.1. (*) Fulfils the frictional dissipation of energy condition. (o) No frictional tangential stress
in the interface, including anti-plane mode.
𝜃1 − 𝜃0 Results in [25] 𝜆1 , 𝜔1 𝜆2 , 𝜔2 𝜆3 , 𝜔3 𝜆4 , 𝜔4

0◦ 0.43405509 0.5 0.43405509 0.5 0.56594491
-90◦ (o) 0◦ 90◦ (o) 180◦(∗)

15◦ 0.508410685 0.543314279 0.508410685 0.543314279 0.639143816
-90◦ (o) 0◦ 90◦ (o) 180◦(∗)

30◦ 0.633740388 0.594708947 0.633740388 0.594708947 0.683933616
-90◦ (o) 0◦ 90◦ (o) 180◦(∗)

45◦ – 0.656319424 – 0.656319424 0.669427348
-90◦ (o) – 90◦ (o) 180◦

60◦ – 0.730292305 – 0.730292305 0.6347699
-90◦ (o) – 90◦ (o) 180◦

75◦ 0.822212612 0.814682253 0.822212612 0.814682253 0.62589152
-90◦ (o) 0◦ (∗) 90◦ (o) 180◦

90◦ 0.6633562 0.869773695 0.663356243 0.869773695 0.663356243
-90◦ (o) 0◦ (o) 90◦ (o) 180◦ (o)

105◦ 0.62589152 0.814682253 0.62589152 0.814682253 0.822212612
-90◦ (o) 0◦ 90◦ (o) 180◦(∗)

120◦ 0.6347699 0.730292305 0.6347699 0.730292305 –
-90◦ (o) 0◦ 90◦ (o)

135◦ 0.669427348 0.656319424 0.669427348 0.656319424 –
-90◦ (o) 0◦ 90◦ (o)

150◦ 0.683933616 0.594708947 0.683933616 0.594708947 0.633740388
-90◦ (o) 0◦ (∗) 90◦ (o) 180◦

165◦ 0.639143816 0.543314279 0.639143816 0.543314279 0.508410685
-90◦ (o) 0◦ (∗) 90◦ (o) 180◦

180◦ 0.56594491 0.5 0.56594491 0.5 0.43405509
-90◦ (o) 0◦ (∗) 90◦ (o) 180◦
- Collinearity of friction shear vector and the relative displacement
vector is satisfied.

- The frictional dissipation of the energy condition and compression
condition are checked.
20
An excellent accuracy and robustness of the code, due to its semi-
analytic character, is confirmed by the agreement of the results of
the present code, up to a high number of digits coinciding, with the
numerical solutions of corner-singularity eigenequations deduced by
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Table 14
Example 4. Numerical values for the singularity exponent 0 < 𝜆 < 1 and sliding angle 𝜔 for two isotropic single-material wedges sliding with
friction in both interfaces, see Section 6.2.2. In [28], a friction coefficient on one face is denoted as 𝑓 , and a specific ratio of the friction
coefficients on both faces as 𝑤. (*) Fulfils the frictional dissipation of energy condition. (o) No frictional tangential stress in the interface,
including anti-plane mode. (±) One contact interface under compression and the other contact interface under tension.

Corner configuration ICI IC2 Results 𝜆 in [28] Present results 𝜆, 𝜔1 , 𝜔2

𝜇 = 0.4
𝜗0 = 30◦

𝜇 = 0.4
𝜗1 = 330◦

0.349057987 0.349057987
𝑓 = 0.4, 𝑤 =1 𝜔0 = 𝜔1 = 0◦

0.726220223 0.726220223 (±)
𝑓 = 0.4, 𝑤 =1 𝜔0 = 𝜔1 = 0◦

0.734403364 0.734403364 (±)
𝑓 = −0.4, 𝑤 =-1 𝜔0 = 180◦, 𝜔1 = 0◦

0.147909364 0.147909364
𝑓 = −0.4, 𝑤 =-1 𝜔0 = 180◦, 𝜔1 = 0◦

0.410676802 0.410676802 (∗)
𝑓 = 0.4, 𝑤 =-1 𝜔0 = 0◦, 𝜔1 = 180◦

0.704192317 0.704192317 (±)
𝑓 = 0.4, 𝑤 =-1 𝜔0 = 0◦, 𝜔1 = 180◦

0.349057987 0.349057987
𝑓 = −0.4, 𝑤 =1 𝜔0 = 𝜔1 = 180◦

0.726220223 0.726220223 (±)
𝑓 = −0.4, 𝑤 =1 𝜔0 = 𝜔1 = 180◦

– 0.6 (o)
𝜔0 = 𝜔1 = ±90◦

𝜇 = 0.5
𝜗0 = 30◦

𝜇 = 1
𝜗1 = 330◦

0.351115240 0.351115240
𝑓 = −1, 𝑤 = 0.5 𝜔0 = 𝜔1 = 0◦

0.731708957 0.731708955 (±)
𝑓 = −1, 𝑤 = 0.5 𝜔0 = 𝜔1 = 0◦

0.737966428 0.737966428 (±)
𝑓 = −1, 𝑤 = −0.5 𝜔0 = 180◦ , 𝜔1 = 0◦

0.513337305 0.513337355 (±)
𝑓 = 1, 𝑤 = −0.5 𝜔0 = 0◦, 𝜔1 = 180◦

0.600884868 0.600884868 (±)
𝑓 = 1, 𝑤 = −0.5 𝜔0 = 0◦, 𝜔1 = 180◦

0.890144750 0.890144750 (±)
𝑓 = 1, 𝑤 = −0.5 𝜔0 = 0◦, 𝜔1 = 180◦

0.511522494 0.511522501 (±)
𝑓 = 1, 𝑤 = 0.5 𝜔0 = 𝜔1 = 180◦

0.712545420 0.712545420 (±)
𝑓 = 1, 𝑤 = 0.5 𝜔0 = 𝜔1 = 180◦

– 0.6 (o)
𝜔0 = 𝜔1 = ±90◦
other authors for some specific and relevant engineering problems. Ac-
tually, the present solutions not only cover the solutions of the specific
eigenequations, but often singular solutions not detected by solving the
specific eigenequations are found, due to considering GPS states instead
of plane (2D) elastic states often considered in the deduction of specific
eigenequations. Although the present procedure works for any finite
number of frictional contact faces 𝐹 ≥ 0, only cases with 𝐹 = 1 and
𝐹 = 2 found in literature are studied in the present article for the testing
purposes.

Advantages of the present code. As previously mentioned in [18], there
are several benefits and positive aspects associated with the use of the
developed code, which include the following:

- One of the key advantages of this code is its versatility. It is
capable of solving a wide range of problems with a variety of
boundary and interface conditions, including any finite number
of frictional contact surfaces, as well as any linear elastic material
properties. This makes it a highly useful tool for addressing a
multitude of stress singularity problems.

- The code developed in this work exhibits a high degree of ac-
curacy and reliability. A comparison of the numerical results
computed by this code with those obtained from the numerical
solution of closed-form eigenequations found in the literature
reveals that they are essentially identical, up to at least 8 digits.
21
This exceptional level of accuracy is due to the semi-analytic
nature of the procedure, which employs numerical algorithms
to find the roots of the sextic Lekhnitskii–Stroh characteristic
polynomial for anisotropic materials when a solution in radicals
is not possible [52], and to find the roots of the transcendental
eigenequation for the corner problem. The remainder of the calcu-
lations are performed analytically, providing maximum accuracy.
In fact, using modern computer algebra software to work with
numbers stored at arbitrarily high precision, it is possible to
achieve an arbitrary level of accuracy.

- This code is user-friendly and easily expandable due to its mod-
ular design. This is demonstrated in this paper, since starting
from the developed code presented in [18], this article details in
Section 5 the changes made in the code to add the possibility of
solving problems with frictional contact.

- In addition to the potential self-checks mentioned in [18], the
inclusion of the interface and boundary frictional contact condi-
tion options in the code opens up the possibility for additional
self-checks to be performed.

– The frictionless interface case can be studied using the fric-
tionless interface condition or applying a friction coefficient
𝜇 = 0. The size of the matrices and the solution method
of the characteristic system are different, but the results
obtained for 𝜆 and 𝐰(𝑟, 𝜗) are the same.
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– When applying a friction coefficient 𝜇 = 0 to a bound-
ary and when applying the symmetry boundary condition
(only 𝑢𝜃 restricted), despite having different sizes of the
characteristic matrix, the results are the same in both cases.

– In the present formalism, the use of 𝜇 < 0 is not intended.
However, it has been used for verification purposes. The
problem is first solved using the friction coefficient 𝜇 > 0.
If 𝜆1, 𝜔1 is a solution to the problem, then when solving it
again with the friction coefficient −𝜇, the solution should
be 𝜆1, 𝜔2, where 𝜔2 = 𝜔1 + 𝜋.

This kind of new self-check is useful to ensure the accuracy and
reliability of the code results, especially when including new
features and implementations on different computer platforms.

Complex singularity exponent 𝜆 ∈ C in presence of frictional contact. As
hown in the numerical results, in cases of frictional contact between
sotropic materials, or orthotropic materials with a PES 𝑥3 = 0, poten-
ially valid solutions with 𝜆 ∈ C and 𝜔 ∈ R may appear. In the case of
rictionless contact on one face of an anisotropic material and complex
∈ C, it was observed by studying the solution in displacements

hat there are two different relative sliding angles 𝜔′
𝑢 and 𝜔′′

𝑢 on the
urface in contact. Assuming a continuous variation of the friction
oefficient from zero to positive values, it is considered that the values
f 𝜔′

𝑢, 𝜔′′
𝑢 and 𝜆 vary continuously. Therefore, another procedure is

eeded for modelling the frictional contact, which considers a complex
and two values of 𝜔′

𝑢 and 𝜔′′
𝑢 as unknowns on each frictional surface.

hese cases of complex 𝜆 are not covered in the present work for the
ake of brevity. However, by taking advantage of one of the benefits
f code, which is its ability to be expanded, the code has recently
een generalised to allow solutions of problems with frictional contact
nd complex singularity exponent 𝜆 ∈ C. This new procedure, which

considers two angles, 𝜔′ and 𝜔′′, of frictional shear vector for a 𝜆 ∈ C
has already been implemented and tested, and will be presented in a
forthcoming work, for the sake of simplicity and brevity. In the present
article, the generalised code for complex singularity exponents is used
in Example 3.2 in Table 12 as noted above.

The existence of 𝜆 ∈ C solution entails oscillatory stress fields,
which involve an infinite number of compression and tension zones
that interchange with each other in the contact zone near the corner
apex, thus not meeting the compression condition. To give a physical
meaning and utility to a complex singular eigensolution with 𝜆 ∈ C
either for frictional or frictionless contact, we propose the concept of
small scale tension zone, where the distance from the corner apex to
the far end of the tension zone that is located farthest from the corner
vertex is much smaller than the relevant characteristic length of the
boundary value problem under study.

Anisotropic frictional contact. The theoretical formulation of the matrix
formalism introduced in [37,38] also considers anisotropic friction,
which means that the sliding direction and the frictional shear direction
can be different, and then as a result the friction coefficient 𝜇 varies
as a function of these directions [20,53,54]. The computational imple-
mentation of this theoretical formulation in the present code is quite
straightforward, and it would allow characterising stress singularities in
the configurations where this direction-dependent friction anisotropy is
relevant.

Power-logarithmic stress singularities. It can be expected that the semi-
analytic nature of the present procedure will allow a generalisation to
also cover power-logarithmic stress singularities following the strategy
in complex variable developed in [17], but the need to include the
angles 𝜔𝑘𝑖 among the unknowns will require some modifications of the
22

trategy in [17]. [
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Appendix A. Basic relations of the Stroh formalism applied for the
stress singularity analysis

A brief explanation of the Stroh formalism [39–42] used to describe
the power-law singular elastic solutions in linearly elastic anisotropic
materials is given below.

From the linear elastic constitutive equation

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙 , (A.1)

relating stresses 𝜎𝑖𝑗 , small strains 𝜖𝑖𝑗 , and displacements 𝑢𝑖, with 𝑖, 𝑗 =
1, 2, 3, and under the assumption of generalised plane strain (GPS)
conditions, the following equilibrium equation, in the absence of body
forces, is obtained

𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙𝑗 (𝑥1, 𝑥2) = 0, (A.2)

hich is a second order elliptic system of three partial differential
quations (PDEs). Then, a solution of (A.2) given as a function

𝑘(𝑥1, 𝑥2) = 𝑎𝑘𝑓 (𝑧), (A.3)

f a complex variable

= 𝑥1 + 𝑝𝑥2. (A.4)

s considered. By differentiating twice (A.3) and substituting in (A.2),
he following quadratic eigenvalue problem is obtained

𝐶𝑖1𝑘1 + 𝑝(𝐶𝑖1𝑘2 + 𝐶𝑖2𝑘1) + 𝑝2𝐶𝑖2𝑘2]𝑎𝑘 = 0, (A.5)

here 𝑎𝑘 is a complex vector and 𝑝 is a complex constant, both to be
etermined. Defining the matrices

𝑖𝑘 = 𝐶𝑖1𝑘1, 𝑅𝑖𝑘 = 𝐶𝑖1𝑘2, 𝑇𝑖𝑘 = 𝐶𝑖2𝑘2, (A.6)

he eigenvalue problem (A.5) can be written in matrix form as
𝑇 2
𝐐 + 𝑝(𝐑 + 𝐑 ) + 𝑝 𝐓]𝐚 = 𝟎. (A.7)
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To solve this eigenvalue problem, first the roots of the matrix determi-
nant are found,

det
(

𝐐 + 𝑝(𝐑 + 𝐑𝑇 ) + 𝑝2𝐓
)

= 0. (A.8)

This is a polynomial equation of sixth degree in 𝑝 with real coeffi-
cients, whose solution are three pairs of conjugate complex roots called
eigenvalues,

Im 𝑝𝛼 > 0, 𝑝𝛼+3 = �̄�𝛼 . 𝛼 = 1, 2, 3 (A.9)

The eigenvectors associated to 𝑝𝛼 are denoted as 𝐚𝛼 .
For stresses, the stress function vector 𝝋𝑖 is introduced,

𝑖(𝑧) = 𝑏𝑖𝑓 (𝑧) or in matrix notation 𝝋 = 𝒃𝑓 (𝑧). (A.10)

The vector 𝐛 is related to the vector 𝐚 through the matrices 𝐐, 𝐑 and
and the eigenvalue 𝑝 as

𝛼 = (𝐑𝑇 + 𝑝𝛼𝐓)𝐚𝛼 = − 1
𝑝𝛼

(𝐐 + 𝑝𝛼𝐑)𝐚𝛼 . (A.11)

As there are three pairs of complex roots 𝑝𝛼 , there are also three pairs
of eigenvectors 𝐚𝛼 and 𝐛𝛼 ,

𝐚𝛼+3 = �̄�𝛼 and 𝐛𝛼+3 = �̄�𝛼 , 𝛼 = 1, 2, 3. (A.12)

For the analysis of the stress singularities, following general mathe-
atical results for elliptic PDEs by [56,57], the power-law singularities

n the form 𝑓𝛼(𝑧𝛼) = 𝑧𝜆𝛼𝑞𝛼 are considered, for the sake of simplicity. This
eads to

𝛼(𝑧𝛼) = 𝑧𝜆𝛼𝑞𝛼 , 𝑓𝛼+3(�̄�𝛼) = �̄�𝜆𝛼𝑞𝛼 , (A.13)

here 𝑞𝛼 and 𝑞𝛼 are constants and 𝜆 is the characteristic singularity
xponent.

Using the relations between the Cartesian and polar coordinates,
1 = 𝑟 cos(𝜃) and 𝑥2 = 𝑟 sin(𝜃), the complex variable 𝑧 in (A.4) can be
xpressed as a function of 𝑟 and 𝜃. This will make it easier to deal with
xpressions for the geometry of the corner problem, see Fig. 1,

𝛼 = 𝑟(cos(𝜃) + 𝑝𝛼 sin(𝜃)) = 𝑟𝜁𝛼(𝜃). (A.14)

Introducing now a suitable notation for a diagonal matrix as

⟨𝑧𝜆∗⟩ = diag(𝑧𝜆1 , 𝑧
𝜆
2 , 𝑧

𝜆
3), (A.15)

and substituting (A.14) into (A.15), we get

⟨𝑧𝜆∗⟩ = 𝑟𝜆diag
(

𝜁𝜆1 (𝜃), 𝜁
𝜆
2 (𝜃), 𝜁

𝜆
3 (𝜃)

)

= 𝑟𝜆⟨𝜁𝜆∗ (𝜃)⟩. (A.16)

The 3 × 3 complex square matrices 𝐀 and 𝐁 are defined by the three
eigenvectors 𝐚𝛼 and 𝐛𝛼 , respectively, as column vectors,

𝐀 =
[

𝐚1, 𝐚2, 𝐚3
]

, 𝐁 =
[

𝐛1,𝐛2,𝐛3
]

. (A.17)

By substituting 𝐀 and 𝐁, together with the expressions (A.13) and
(A.16) in (A.3) and in (A.10), the general expressions for the power-
law displacement and stress function vectors 𝐮(𝑟, 𝜃) in (1) and 𝝋(𝑟, 𝜃)
(2) are obtained. These two vectors can be arranged as the 6 × 1 vector
of elastic variables as

𝐰(𝑟, 𝜃) =
[

𝐮(𝑟, 𝜃)
𝝋(𝑟, 𝜃)

]

= 𝑟𝜆𝐗𝐙𝜆(𝜃)𝐭, (A.18)

where

𝐗 =
[

𝐀 �̄�
𝐁 �̄�

]

, 𝐭 =
[

𝐪
�̃�

]

, 𝐙𝜆(𝜃) =
[

⟨𝜁𝜆∗ (𝜃)⟩ 𝟎
𝟎 ⟨𝜁𝜆∗ (𝜃)⟩

]

. (A.19)

For the sake of brevity, the theoretical formulation in the present
work is deduced for mathematically non-degenerate materials in the
framework of the Stroh formalism. Nevertheless, this formulation can
be easily generalised to degenerate and extraordinary-degenerate ma-
terials, as shown in [13,37,38]. Moreover, numerical results for some
examples of degenerate materials are presented in Section 6.
23
Appendix B. Use of reference frames for boundary conditions of
frictional contact

In this appendix, the definition of the auxiliary reference frames
(11) and (12) and the boundary condition matrices in Table 1 are
described in more detail based on expressions in Section 3.2.

From the Signorini condition of non-penetrability in terms of the
cylindrical components of displacements (18)

𝑢𝜃(𝑟, 𝜗𝑤) = 0, (B.1)

the following condition in terms of the Cartesian components of dis-
placement is obtained

− sin (𝜗𝑤)𝑢1(𝑟, 𝜗𝑤) + cos (𝜗𝑤)𝑢2(𝑟, 𝜗𝑤) = 0 (B.2)

which adopts the following vector form

𝐧𝑇 (𝜗𝑤)𝐮(𝑟, 𝜗𝑤) = 0. (B.3)

To impose the Coulomb friction law (19), first the tangential stress
vector 𝝉 is expressed by its components 𝜎𝜃𝑟 and 𝜎𝜃3 and the direction
of friction shear and sliding 𝜔 as

|𝝉(𝑟, 𝜗𝑤)| = cos (𝜔𝑘)𝜎𝜃𝑟(𝑟, 𝜗𝑤) − sin (𝜔𝑘)𝜎𝜃3(𝑟, 𝜗𝑤) = −𝜇𝑘𝜎𝜃𝜃(𝑟, 𝜗𝑤), (B.4)

then expressing the stress components in terms of the stress function
𝝋(𝑟, 𝜗𝑤) as discussed in Section 3.3, and the relation of component
of the stress tensor and stress function 𝝋(𝑟, 𝜗𝑤) [18, Eq. (98)], the
condition (B.4) can be written as

cos (𝜔𝑘)𝐬𝑟(𝜗𝑤)𝝋,𝑟(𝑟, 𝜗𝑤) + sin (𝜔𝑘)𝐬3(𝜗𝑤)𝝋,𝑟(𝑟, 𝜗𝑤) = 𝜇𝑘𝐧(𝜗𝑤)𝝋,𝑟(𝑟, 𝜗𝑤),

(B.5)

and by integrating Eq. (B.5) with respect to 𝑟 and taking into account
that 𝝋(𝑟 = 0, 𝜗𝑤) = 𝟎 as

cos (𝜔𝑘)𝐬𝑟(𝜗𝑤)𝝋(𝑟, 𝜗𝑤) + sin (𝜔𝑘)𝐬3(𝜗𝑤)𝝋(𝑟, 𝜗𝑤) = 𝜇𝑘𝐧(𝜗𝑤)𝝋(𝑟, 𝜗𝑤), (B.6)

(cos (𝜔𝑘)𝐬𝑟(𝜗𝑤) + sin (𝜔𝑘)𝐬3(𝜗𝑤) − 𝜇𝑘𝐧(𝜗𝑤))𝝋(𝑟, 𝜗𝑤) = 0. (B.7)

By using the auxiliary vector 𝐤(𝜗𝑤, 𝜔𝑘) (13), this expression can be
rewritten as

(𝐤(𝜗𝑤, 𝜔𝑘) − 𝜇𝑘𝐧(𝜗𝑤))𝝋(𝑟, 𝜗𝑤) = 0, (B.8)

resulting in the following condition using the unit vector 𝐬𝜇 (16)

𝐬𝜇(𝜗𝑤, 𝜔𝑘, 𝜇𝑘)𝝋(𝑟, 𝜗𝑤) = 0. (B.9)

To ensure the condition (21), the collinearity between the rela-
tive tangential displacement and the tangential stress vectors, vector
𝐦(𝜗𝑤, 𝜔) (14), perpendicular to 𝐤(𝜗𝑤, 𝜔) (13), is used as an auxiliary
vector. To ensure the perpendicularity of the vectors 𝐮 and 𝝉 with
𝐦(𝜗𝑤, 𝜔), the following relations are imposed

𝐦(𝑟, 𝜗𝑤) ⋅ 𝐮(𝑟, 𝜗𝑤) = 0,

𝐦(𝑟, 𝜗𝑤) ⋅ 𝝉(𝑟, 𝜗𝑤) = 0.
(B.10)

In view of the following identities 𝐦(𝑟, 𝜗𝑤) ⋅ 𝝉(𝑟, 𝜗𝑤) = 𝐦(𝑟, 𝜗𝑤) ⋅
𝐭𝑛(𝑟, 𝜗𝑤) = 𝐦(𝑟, 𝜗𝑤) ⋅ 𝝋,𝑟(𝑟, 𝜗𝑤), after integration with respect to 𝑟,
Eq. (B.10)2 is equivalent to

𝐦(𝑟, 𝜗𝑤) ⋅ 𝝋(𝑟, 𝜗𝑤) = 0. (B.11)

From expression (B.3) and (B.10)1, the auxiliary vectors that multi-
ply the vector 𝐮 are chosen to build the matrix 𝐃𝑢(𝜗𝑤) in Table 1. The
matrix 𝐃𝜑(𝜗𝑤) in Table 1 is assembled with the auxiliary vectors that
multiply the vector 𝝋 in (B.9) and (B.11). These four expressions will
correspond to the prescribed zero values of the 4 × 1 vector 𝐰corner_P.

We consider 2 reference frames defined in (11) and (12), (𝐤(𝜗, 𝜔),
𝐦(𝜗, 𝜔),𝐧(𝜗)) for displacement vector and

(

𝐧𝜇(𝜗, 𝜔, 𝜇), 𝐬𝜇(𝜗, 𝜔, 𝜇),𝐦(𝜗, 𝜔)
)

for traction vector. The unitary vector 𝐧𝜇(𝜗, 𝜔, 𝜇) is defined in the way
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that it is orthogonal to 𝐦(𝜗, 𝜔) and 𝐬𝜇(𝜗, 𝜔, 𝜇). In the above, we have
imposed that two components of the displacement and traction vectors
in these reference frames are zero, (B.3), (B.10)1, (B.9) and (B.11)
respectively, and there is an unknown component of the displacement
and traction vectors, corresponding to the 𝐤(𝜗, 𝜔) and 𝐧𝜇(𝜗, 𝜔, 𝜇) direc-
tions, respectively. In this sense, two additional expressions are needed
to define the unknown variables in 𝐰corner_U,

𝑢𝑘 =? and 𝜑𝑛𝜇 =? (B.12)

These unknowns are obtained by multiplying 𝐮(𝑟, 𝜗𝑤) by the matrix
�̃�𝑢(𝜗𝑤) in Table 1 and by multiplying 𝝋(𝑟, 𝜗𝑤) by �̃�𝜑(𝜗𝑤) also in Table 1,
respectively.

Appendix C. Use of reference frames for interface conditions of
frictional contact

In this appendix, the definition of the interface condition matrices
is described by applying the reference frames to the expressions in Sec-
tion 3.4. The Signorini condition of non-penetrability in the cylindrical
components of displacements (34)

𝑢𝑤𝜃 (𝑟, 𝜗𝑤) − 𝑢𝑤+1
𝜃 (𝑟, 𝜗𝑤) = 0 (C.1)

can be written in vector form as

𝐧𝑇 (𝜗𝑤)𝐮𝑤(𝑟, 𝜗𝑤) − 𝐧𝑇 (𝜗𝑤)𝐮𝑤+1(𝑟, 𝜗𝑤) = 0. (C.2)

Then, as matrices in (41) involve the displacement and the stress
function vectors, 𝟎1×3 vectors are added to multiply the components of
the vectors 𝐰𝑤 and 𝐰𝑤+1 given by the stress function vectors, leading
to

−𝐧𝑇 (𝜗𝑤)𝐮𝑤(𝑟, 𝜗𝑤)+𝟎1×3𝝋𝑤(𝑟, 𝜗𝑤)−𝐧𝑇 (𝜗𝑤)𝐮𝑤+1(𝑟, 𝜗𝑤)+𝟎1×3𝝋𝑤+1(𝑟, 𝜗𝑤) = 0.

(C.3)

Expression (C.3) can be rewritten in matrix form as

[

−𝐧𝑇 (𝜗𝑤) 𝟎1×3 𝐧𝑇 (𝜗𝑤) 𝟎1×3
]

⎡

⎢

⎢

⎢

⎢

⎣

𝐮𝑤(𝑟, 𝜗𝑤)
𝝋𝑤(𝑟, 𝜗𝑤)
𝐮𝑤+1(𝑟, 𝜗𝑤)
𝝋𝑤+1(𝑟, 𝜗𝑤)

⎤

⎥

⎥

⎥

⎥

⎦

= 0. (C.4)

As the traction components have the same value at both sides of the
interface, for the sake of symmetry, we use the sum of these values to
impose the Coulomb law at both sides of the interface

|𝝉𝑤(𝑟, 𝜗𝑤)| + 𝜇𝑘𝜎
𝑤
𝜃𝜃(𝑟, 𝜗𝑤) + |𝝉𝑤+1(𝑟, 𝜗𝑤)| + 𝜇𝑘𝜎

𝑤+1
𝜃𝜃 (𝑟, 𝜗𝑤) = 0. (C.5)

Similarly as in (B.4)–(B.7), (C.5) can be expressed in terms of the stress
function vector 𝝋(𝑟, 𝜗𝑤) as
(

cos (𝜔𝑘)𝐬𝑇𝑟 (𝜗𝑤) + sin (𝜔𝑘)𝐬𝑇3 (𝜗𝑤) − 𝜇𝑘𝐧𝑇 (𝜗𝑤)
)

𝝋𝑤(𝑟, 𝜗𝑤)

+
(

cos (𝜔𝑘)𝐬𝑇𝑟 (𝜗𝑤) + sin (𝜔𝑘)𝐬𝑇3 (𝜗𝑤) − 𝜇𝑘𝐧𝑇 (𝜗𝑤)
)

𝝋𝑤+1(𝑟, 𝜗𝑤) = 0.
(C.6)

Adding the corresponding 𝟎1×3 vectors that multiply the displacement
components of the vectors 𝐰𝑤 and 𝐰𝑤+1 gives

𝟎1×3𝐮𝑤(𝑟, 𝜗𝑤) +
(

𝐤𝑇 (𝜗𝑤, 𝜔𝑘) − 𝜇𝑘𝐧𝑇 (𝜗𝑤)
)

𝝋𝑤(𝑟, 𝜗𝑤)

+ 𝟎1×3𝐮𝑤+1(𝑟, 𝜗𝑤) +
(

𝐤𝑇 (𝜗𝑤, 𝜔𝑘) − 𝜇𝑘𝐧𝑇 (𝜗𝑤)
)

𝝋𝑤+1(𝑟, 𝜗𝑤) = 0.
(C.7)

Finally, using the unit vector 𝐬𝑇𝜇 (16), (C.7) writes in matrix form as

[

𝟎1×3 𝐬𝑇𝜇 𝟎1×3 𝐬𝑇𝜇
]

⎡

⎢

⎢

⎢

⎢

⎣

𝐮𝑤(𝑟, 𝜗𝑤)
𝝋𝑤(𝑟, 𝜗𝑤)
𝐮𝑤+1(𝑟, 𝜗𝑤)
𝝋𝑤+1(𝑟, 𝜗𝑤)

⎤

⎥

⎥

⎥

⎥

⎦

= 0. (C.8)

Due to the imposed contact between both materials, the stresses
must fulfil the continuity condition (equilibrium of tractions) and,
therefore, the following relations

𝜎𝑤 (𝑟, 𝜗 ) − 𝜎𝑤+1(𝑟, 𝜗 ) = 0,
24

𝜃𝑗 𝑤 𝜃𝑗 𝑤 (C.9)
with 𝑗 = 𝜃, 𝑟, and 3. Similarly as above, the condition (C.9) can be
written in terms of the stress function vector 𝝋(𝑟, 𝜗𝑤) as

𝝋𝑤(𝑟, 𝜗𝑤) − 𝝋𝑤+1(𝑟, 𝜗𝑤) = 0. (C.10)

By adding the matrices 𝟎3×3, the simultaneous fulfilment of the three
equations gives

𝟎3×3𝐮𝑤(𝑟, 𝜗𝑤) − 𝐈3×3𝝋𝑤(𝑟, 𝜗𝑤) + 𝟎3×3𝐮𝑤+1(𝑟, 𝜗𝑤) + 𝐈3×3𝝋𝑤+1(𝑟, 𝜗𝑤) = 𝟎3×1,

(C.11)

and in matrix form

[

𝟎3×3 −𝐈3×3 𝟎3×3 𝐈3×3
]

⎡

⎢

⎢

⎢

⎢

⎣

𝐮𝑤(𝑟, 𝜗𝑤)
𝝋𝑤(𝑟, 𝜗𝑤)
𝐮𝑤+1(𝑟, 𝜗𝑤)
𝝋𝑤+1(𝑟, 𝜗𝑤)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝟎3×1. (C.12)

The collinearity condition between the relative tangential displace-
ment and the tangential stress vectors (38) can be imposed by verifying
that both tangential vectors are perpendicular to the auxiliary vector
𝐦(𝑟, 𝜗𝑤) (14), similar to the previous section, giving

𝐦(𝑟, 𝜗𝑤) ⋅ 𝛥𝐮(𝑟, 𝜗𝑤) = 0, (C.13)

with 𝛥𝐮(𝑟, 𝜗𝑤) = 𝐮𝑤(𝑟, 𝜗𝑤) − 𝐮𝑤+1(𝑟, 𝜗𝑤) for the relative displacements,
which in matrix form writes as

[

−𝐦𝑇 (𝜗𝑤, 𝜔𝑘) 𝟎1×3 𝐦𝑇 (𝜗𝑤, 𝜔𝑘) 𝟎1×3
]

⎡

⎢

⎢

⎢

⎢

⎣

𝐮𝑤(𝑟, 𝜗𝑤)
𝝋𝑤(𝑟, 𝜗𝑤)
𝐮𝑤+1(𝑟, 𝜗𝑤)
𝝋𝑤+1(𝑟, 𝜗𝑤)

⎤

⎥

⎥

⎥

⎥

⎦

= 0, (C.14)

and for the tangential stress vector

𝐦(𝑟, 𝜗𝑤) ⋅ 𝝉(𝑟, 𝜗𝑤) = 0. (C.15)

As before, taking into account that the stress components have the
same values at both sides of the contact interface, for the sake of
symmetry, we use the sum of these values to impose the collinearity
of the tangential stress vector with the tangential relative displacement
vector. Then, in matrix form, the condition (C.15) remains as

[

𝟎1×3 𝐦𝑇 (𝜗𝑤, 𝜔𝑘) 𝟎1×3 𝐦𝑇 (𝜗𝑤, 𝜔𝑘)
]

⎡

⎢

⎢

⎢

⎢

⎣

𝐮𝑤(𝑟, 𝜗𝑤)
𝝋𝑤(𝑟, 𝜗𝑤)
𝐮𝑤+1(𝑟, 𝜗𝑤)
𝝋𝑤+1(𝑟, 𝜗𝑤)

⎤

⎥

⎥

⎥

⎥

⎦

= 0. (C.16)

Collecting all expressions (C.4), (C.8), (C.12), (C.14) and (C.16) we
have seven prescribed equations schematically summarised as

1 equation 𝛥𝑢𝑛 = 0,

1 equation
∑

𝜑𝑠𝜇 = 0,

3 equations 𝛥𝝋 = 0,

1 equation 𝛥𝑢𝑚 = 0,

1 equation
∑

𝜑𝑚 = 0.

(C.17)

These expressions, multiplied by a factor 1
√

2
to ensure orthonormal-

ty, results in the matrices 𝐃1 and 𝐃2 in Table 2. Now we can apply the
following five expressions to define the unknown variables that form
𝐰U(𝑟, 𝜗𝑤) similarly as in (B.12)
∑

𝑢𝑛 =?,
∑

𝜑𝑛𝜇 =?,

𝛥𝑢𝑘 =?,
∑

𝑢𝑘 =?,
∑

𝑢𝑚 =?.

(C.18)

In (C.4), it is imposed that the displacement value in the normal
direction takes the same value for both materials in contact, 𝑢𝑤(𝑟, 𝜗) =
𝜃
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𝑢

i

R

𝑢𝑤+1
𝜃 (𝑟, 𝜗), but this value is unknown and can be defined by applying
he expression (C.18)1 as
𝑤
𝜃 (𝑟, 𝜗𝑤) + 𝑢𝑤+1

𝜃 (𝑟, 𝜗𝑤) = 𝐧𝑇 (𝜃)𝐮𝑤(𝑟, 𝜗𝑤) + 𝐧𝑇 (𝜃)𝐮𝑤+1(𝑟, 𝜗𝑤) =

𝐧𝑇 (𝜗𝑤)𝐮𝑤(𝑟, 𝜗𝑤) + 𝟎1×3𝝋𝑤(𝑟, 𝜗𝑤) + 𝐧𝑇 (𝜗𝑤)𝐮𝑤+1(𝑟, 𝜗𝑤)

+ 𝟎1×3𝝋𝑤+1(𝑟, 𝜗𝑤) = 𝑤corner_U1

(C.19)

and in matrix form

[

𝐧𝑇 (𝜗𝑤) 𝟎1×3 𝐧𝑇 (𝜗𝑤) 𝟎1×3
]

⎡

⎢

⎢

⎢

⎢

⎣

𝐮𝑤(𝑟, 𝜗𝑤)
𝝋𝑤(𝑟, 𝜗𝑤)
𝐮𝑤+1(𝑟, 𝜗𝑤)
𝝋𝑤+1(𝑟, 𝜗𝑤)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑤corner_U1
. (C.20)

It is known that the stress field must fulfil the Coulomb law, but the
value of each component and, therefore, the value of the stress function
vector is unknown. To determine the value of the stress function vector
it is necessary to know its value corresponding to the 𝐧𝜇(𝜗𝑤) direction.
As the stress function value is the same in the wedges 𝑤 and 𝑤 + 1,
expression (C.18)2 is rewritten as

[

𝟎1×3 𝐧𝑇𝜇 (𝜗𝑤) 𝟎1×3 𝐧𝑇𝜇 (𝜗𝑤)
]

⎡

⎢

⎢

⎢

⎢

⎣

𝐮𝑤(𝑟, 𝜗𝑤)
𝝋𝑤(𝑟, 𝜗𝑤)
𝐮𝑤+1(𝑟, 𝜗𝑤)
𝝋𝑤+1(𝑟, 𝜗𝑤)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑤corner_U2
. (C.21)

As both the difference and the sum of the tangential resultant dis-
placement in the 𝐤(𝜗𝑤, 𝜔𝑘) direction are unknowns, expressions (C.18)3
and (C.18)4 respectively, the value of the displacement in the direction
𝐤(𝜗𝑤, 𝜔𝑘) for wedge 𝑤 is

𝐤𝑇 (𝜗𝑤, 𝜔𝑘)𝐮𝑤(𝑟, 𝜗𝑤) = 𝑤corner_U3
, (C.22)

and in matrix form

[

𝐤𝑇 (𝜗𝑤, 𝜔𝑘) 𝟎1×3 𝟎1×3 𝟎1×3
]

⎡

⎢

⎢

⎢

⎢

⎣

𝐮𝑤(𝑟, 𝜗𝑤)
𝝋𝑤(𝑟, 𝜗𝑤)
𝐮𝑤+1(𝑟, 𝜗𝑤)
𝝋𝑤+1(𝑟, 𝜗𝑤)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑤corner_U3
, (C.23)

and similar for wedge 𝑤 + 1,

[

𝟎1×3 𝟎1×3 𝐤𝑇 (𝜗𝑤, 𝜔𝑘) 𝟎1×3
]

⎡

⎢

⎢

⎢

⎢

⎣

𝐮𝑤(𝑟, 𝜗𝑤)
𝝋𝑤(𝑟, 𝜗𝑤)
𝐮𝑤+1(𝑟, 𝜗𝑤)
𝝋𝑤+1(𝑟, 𝜗𝑤)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑤corner_U4
. (C.24)

The last expression defines the displacement vector as the sum of
the displacements in the 𝐦(𝑟, 𝜗𝑤) direction (C.18)5

[

𝐦(𝜗𝑤, 𝜔𝑘) 𝟎1×3 𝐦(𝜗𝑤, 𝜔𝑘) 𝟎1×3
]

⎡

⎢

⎢

⎢

⎢

⎣

𝐮𝑤(𝑟, 𝜗𝑤)
𝝋𝑤(𝑟, 𝜗𝑤)
𝐮𝑤+1(𝑟, 𝜗𝑤)
𝝋𝑤+1(𝑟, 𝜗𝑤)

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑤corner_U5
,

(C.25)

By collecting the previous expressions of unknown variables in
(C.18) in matrix form, the matrices �̃�1 and �̃�2 in Table 2 are con-
structed by means of the expressions (C.20), (C.21) and (C.23)–(C.25),
and once again adding a factor 1

√

2
or

√

2 to ensure their orthonormal-
ty.
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