
Master’s Thesis
"Master in Microelectronics:
Design and Applications of
Micro/Nanoscale Systems"

Design and implementation of a low-power
low-cost smart embedded system for remote

animal monitoring

Víctor Galvín Coronil

Advisors: Jorge Fernández Berni

Delia Velasco Montero

Date: November 6, 2023

iii

Declaration of Authorship
I, Víctor Galvín Coronil, declare that this thesis titled, “Design and implementation
of a low-power low-cost smart embedded system for remote animal monitoring”
and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

UNIVERSIDAD DE SEVILLA

Abstract
Master in Microelectronics: Design and Applications of Micro/Nanoscale Systems

Design and implementation of a low-power low-cost smart embedded system for
remote animal monitoring

by Víctor Galvín Coronil

This Master’s thesis serves as the foundation for an innovative wildlife monitoring
system, encompassing hardware design, firmware and software development, and
offering insights into future directions. Leveraging the research group’s extensive
experience in research, development, and field deployment of wildlife technology
solutions, the thesis has culminated in a device with versatile capabilities suitable for
a wide range of applications. A central focus of this work is on energy efficiency, pri-
oritizing low-power operation to facilitate extended field deployments and reduce
maintenance requirements. The integration of AI capabilities is a core component,
enabling real-time data analysis within the embedded system. The system’s archi-
tecture is thoughtfully designed to seamlessly integrate data from diverse sources,
including visual, acoustic, and environmental inputs, providing comprehensive in-
sights into the natural world. Modularity in communication networks empowers
the system to adapt to varying project requirements and network environments.
The successful integration of hardware and software components enhances system
performance, ensuring seamless data flow and efficient communication between
different modules. The thesis underscores the importance of comprehensive test-
ing, performance characterization, and real-world field testing for future research.
In summary, this work represents a crucial step in the development of a versatile,
energy-efficient, and AI-enhanced wildlife monitoring system with the potential to
make substantial contributions to the field of conservation technology.

HTTPS://WWW.US.ES/

vii

Acknowledgements
I would like to extend my sincere appreciation to Jorge and Delia for their invaluable
guidance and support throughout the process of this Master’s thesis. I also extend
my gratitude to the dedicated members of the research group I have the privilege to
work with, their camaraderie and support have transformed my work into a fulfill-
ing and joyful experience in recent years.

To my biologist friends at the EBD, I am deeply grateful for your warm welcome
and for granting me insight into the intersection of engineering and your field.

To my family, for their unwavering support and unconditional encouragement
in all my pursuits.

To Ana Belén, for being a constant companion and a source of assistance during
another significant chapter of my life.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Background . 2
1.2 State of the art . 5
1.3 Motivation and Objectives . 9

2 Hardware Development 11
2.1 Requirements Analysis and Specifications 11
2.2 Hardware architecture . 15
2.3 Data acquisition and low-power processing unit 16
2.4 AI processing unit . 21
2.5 Network communication unit . 23
2.6 Power management unit . 24
2.7 Shared SD storage . 31

3 Software Development 33
3.1 Software architecture . 33
3.2 Firmware design . 35
3.3 Remote Procedure Call (RPC) Service 38

4 Critical Analysis and Future Directions 41
4.1 Critical Analysis . 41
4.2 Future Directions . 41

5 Conclusions 45

A Microcontroller Pin Allocation 47

B Schematics 49

C Firmware code 57
C.1 Main process - main.cpp . 57
C.2 Time module - time.cpp . 59
C.3 Communication module (GSM transceptor) - communication.cpp 60
C.4 Sensors module (temperature) - sensors.cpp 63
C.5 SD utils module - sd-utils.cpp . 64
C.6 OTA module - ota.cpp . 65

Bibliography 67

xi

List of Figures

1.1 Cloud-based platform deployed in SUMHAL to visualize information
in dashboards. 2

1.2 Modular custom embedded hardware system designed in project SUMHAL
[3]. 3

1.3 Deployment preparation of devices for bat boxes (a) and smart nest
for kestrel (b) . 4

1.4 Conventional conservation technology devices. 5
1.5 Parts of the Audiomoth smart datalogger PCB. 6
1.6 Overview of the latest embedded platforms on the market and their

applications (Imagine 2022, Conference for Edge AI by Edge Impulse). . . . 7

2.1 Functional diagram of the full system. 15
2.2 Schematics of the microcontroller unit 17
2.3 Schematics of the temperature and humidity internal sensor. 19
2.4 Schematic of the internal accelerometer. 20
2.5 Functional block diagram from the SPI camera module of [29]. 21
2.6 Raspberry Pi Compute Module 4 [30]. 22
2.7 MikroBus pinout specification [7] . 24
2.8 Diagram of the power management unit of the proposed wildlife mon-

itoring system. 24
2.9 Schematic of the charging manager circuit. 26
2.10 Battery-powered device solar charging test. 27
2.11 Schematic for the 3.3V buck converter circuit based on LM3671. 28
2.12 Typical performance of MP3437 in terms of efficiency vs. load current

extracted from the datasheet. 29
2.13 Schematic of the 5V DC/DC boost converter based on MP3437. 29
2.14 Schematic of the two-channel load switch to control 3.3V loads in the

circuit. It is based on TPS22976. 31
2.15 Schematic of the SD shared storage circuit. 32

3.1 Block diagram of the software architecture of the system. 34
3.2 State machine performed in the main firmware process. 36
3.3 Block diagram representing the RPC interactions between the MCU

and AI processing unit. 39

xiii

List of Tables

2.1 Specifications based on requirements analysis. 14
2.2 Distribution and functionallity of each SERCOM port used in the MCU. 18

1

Chapter 1

Introduction

The lost of biodiversity is one of the most critical problems nowadays. Ecosystems
and their inhabitants face increasing challenges due to human activity, environmen-
tal changes and habitat loss. In order to reverse this trajectory and stop biodiversity
loss, data acquisition and analysis is crucial to document the status of species and
ecosystems, discern the root causes of extinction and environmental decline, evalu-
ate the efficacy of mitigation efforts, and monitor the evolution of our natural sur-
roundings and species to design functional strategies. In this context, technology
can play a fundamental role in achieving all these tasks.

In the last few years, several devices available in the market like conventional
data-loggers, camera traps or audio-loggers, included within the term conservation
technologies, have been used by conservationists to collect data and then interpret
information mostly using manual data analysis or conventional statistics techniques
aided by software. As sensor technology has progressed and reduced its cost, these
devices are now extensively employed and the amount and types of data collected
have increased significantly. Consequently, manual data processing has become a
principal obstacle to realizing the full potential of these technological advancements.
Even leveraging on recent developments in cloud-based services, which can simplify
the processes on data collection and off-site analysis, the bottleneck of transmitting
extensive data flows to the cloud persists, specially for devices operating at remote
locations with few network connection options.

Developing "smarter" devices by using artificial intelligence (AI) and specifically
deep neural networks (DNNs) can be the solution to this bottleneck. In this way, a
device deployed in the field could collect all the information from the natural en-
vironment that surrounds it, perform automatically on-site analysis of these data
collected and send just the information of interest that is going to be useful to re-
searchers, managers and conservationists. Achieving these characteristics in a ro-
bust way in such changing environments, with reduced access to power and com-
munication networks, and for solutions as variable as those we can find in the study
of biodiversity, is a great challenge. The vast majority of embedded platforms that
exist on the market for these tasks are designed for specific applications and focused
on the industry, so their use in this area is not always favorable.

In this Master’s thesis, a custom embedded device design is presented, designed
to fulfill the features described above, that is, data collection and on-site analysis,
and subsequent transmission of information through the available communication
infrastructure. The system is configurable enough to be adapted to different applica-
tions and environments with the ultimate goal of implementing smarter monitoring
of biodiversity.

2 Chapter 1. Introduction

1.1 Background

The advisors of this thesis are part of a research group of the Institute of Microelec-
tronics of Sevilla (IMSE) that has been working for over 15 years on ultra-low-power
embedded devices and artificial intelligence applied to environmental monitoring.
An example of their contributions in this area is the V-MOTE project [1], where a
power-efficient hardware chip was designed to implement vision in the nodes of a
wireless sensor network (WSN). This chip was applied into a system for early forest
fire detection. More recently, the research was focused on the integration of artificial
intelligence at the edge for applications such as smart camera trapping, as reported
in [2].

To develop this kind of projects is crucial a strong collaboration with the experts
in this area who are potential adopters of this technology. In this regard, several
collaborations have been carried out with the Doñana Biological Station (EBD) in the
last few years. The most recent one, in which the author of this Master’s thesis
was involved as an engineer, is the project SUMHAL (Sustainability for Mediterraneam
Hotspots in Andalusia integrating LifeWatch ERIC) [3], specifically in WP4, dedicated to
Combining field data, citizen science and IoT to monitor anthropogenic impacts on Andalu-
sian biodiversity and society. In this project, a complete solution for remote monitoring
of species was designed including developments in hardware, software, network ar-
chitecture and algorithms, everything integrated in an IoT cloud platform deployed
in the EBD servers. The specific aim of these solutions was the advance monitoring
of two species: The great noctule bat (Nyctalus lasiopterus) and the lesser kestrel (Falco
naumanni). Both are listed as endangered species, vulnerable and "least concern", re-
spectively, by the International Union for Conservation of Nature (IUCN) [4].

(A) Kestrels dashboard. (B) Bats dashboard.

FIGURE 1.1: Cloud-based platform deployed in SUMHAL to visual-
ize information in dashboards.

As a key component of this solution, smart nests and boxes equipped with sen-
sors were developed. These sensors allow monitoring temperature, humidity, pres-
ence (utilizing PIR technology), image capture, animal weight via load cells, and
RFID (Radio Frequency Identification) readers to identify individual animals. The
collected data are processed on-site by a microcontroller, thereby detecting the pres-
ence of individuals and selectively transmitting only the pertinent information. Fur-
thermore, these data are seamlessly integrated into a cloud-based service alongside
other input sources, such as live video streams from CCTV cameras. Off-site process-
ing is then applied to summarize information over time and display only the most
relevant events. Under this approach, information collected by different sources –

http://www2.imse-cnm.csic.es/vmote/english_version/

1.1. Background 3

including the sensors – is aggregated and easily accessible through user-friendly
dashboards (Figure 1.1) featuring graphical elements, mobile notifications configu-
ration, periodic email reports, etc. This provides biologists with valuable informa-
tion about the species they are studying.

Concerning the hardware, which is the principal focus of this thesis, a first proto-
type of custom embedded system for animal monitoring was designed; it is shown
in Figure 1.2. Due to timeline restrictions of the project, which required a functional
system to be deployed in the field in the short-term, commercial off-the-shell embed-
ded hardware was employed to design this first prototype. The processing core is an
embedded development board called Adafruit Feather M0 Adalogger [5]. This device
comprises a ATSAMD21G18 ARM Cortex M0 microcontroller [6] and additional fea-
tures that met the conditions needed for this system, such as a micro SD card socket,
built-in lithium battery charger circuit and enough GPIO pins and communication
protocol interfaces.

FIGURE 1.2: Modular custom embedded hardware system designed
in project SUMHAL [3].

The designed board contains a LDO regulator to accept power inputs up to 12V
and can alternatively be powered from a 5V input. Regarding communication, an
standard connector called mikroBUS [7] was used. This standard has more than 140
communication transceivers available at market, which gives a huge range of pos-
sibilities. Following the same strategy for the sensor interface, five Grove [8] con-
nectors were added to the board. Around 150 sensor modules complying with this
standard are available in the market. The RFID reader modules being used at the
moment for registering ISO animal transponders implement the RS232 communica-
tion protocol, so a RS232 to UART TTL 3.3V circuit was added to the design of the
system to interface with these readers. Finally, given that image capture is an impor-
tant source of information for biologists, and taking into account that for a low-level
microcontroller as the one used in the system is difficult to deal with image acqui-
sition and processing while performing other tasks, an interface to a Raspberry Pi

4 Chapter 1. Introduction

board was provided in the system. Raspberry Pi boards feature powerful process-
ing capabilities. As an additional advantage, the research group has experience in
employing them to build smart monitoring systems. A drawback of these platforms
is their high energy consumption even when idle. This interface in the modular
system designed was intended to be used with an add-on board to the Raspberry
Pi called Witty Pi [9]. This board includes a power management circuit that can be
externally controlled. This will give the possibility to completely turn on or off the
powerful capabilities of the Raspberry Pi board when needed to capture and process
images.

Several units of this system were deployed at different locations adapted to smart
nests for kestrels and boxes for bats, as seen in Figure 1.3. One of the deployment lo-
cations was the ICTS-RBD (Singular Scientific-Technical Infraestructure of Doñana),
where a large infrastructure of communications and power facilities is available in
certain areas of the Doñana National Park. For instance, Ethernet wire connection or
WiFi are available for the deployment of the devices, as well as 12V power supplies.
On the other hand, the study location for kestrels is a remote area close to the town
of la Palma del Condado, where there is only weak mobile coverage and no power
options. These scenarios exemplify the great configurability required in the system,
and the variety of sensors for each specie under study.

(A) Preparation of devices. (B) Device deployed in smart nest.

FIGURE 1.3: Deployment preparation of devices for bat boxes (a) and
smart nest for kestrel (b)

The operation of the system shown in Figure 1.2 turned out to be very fruitful,
providing a large set of valuable data during the project. Nevertheless, several im-
provement opportunities were found, such as the capability of processing additional
sources of sensor information, increasing the power efficiency of the system, and ex-
tra processing capabilities to perform on-device DNN-based algorithms. With these
objectives among others, the group started the project ULTIMATE (smart mULTI-
sensor eMbedded platform for advanced nATurE monitoring), under which this thesis has
been developed. Passive acoustic monitoring using low-power DNN-based audio
analysis for identification of bird calls, an automatic system for weighing and iden-
tifying the Scottish wildcats and a full remote and monitored trap system for feral
cats are some of the application scenarios covered in this project.

1.2. State of the art 5

1.2 State of the art

This section provides an overall view of the state-of-the-art of existing hardware
technologies for wildlife monitoring. First, the focus is put on commercial devices
available in the market associated to the term conservation technologies. Subsequently,
some of the embedded platforms that could potentially be used in the development
of these types of solutions are analyzed.

The term conservation technologies includes a huge variety of hardware and soft-
ware solutions, ranging from camera traps, data-loggers, and radio location tracking
to UAVs, desktop and smartphone applications, geospatial data tools, and environ-
mental DNA analysis, among others [10]. The survey conducted in [11] analyzes the
most frequently used conservation technologies. Among these, those that involve
the deployment of devices in the field, that is, camera trapping, passive acoustic
monitoring and networked sensors, can be considered flagship conservation tech-
nologies.

(A) Conventional camera trap. (B) Conventional Audiologger.

FIGURE 1.4: Conventional conservation technology devices.

Camera traps represent the dominant segment in the market of available wildlife
monitoring devices. These devices typically feature high-resolution image sensors
and leverage passive infrared motion sensors (PIR) to initiate recording upon motion
detection. Additionally, they employ infrared LED arrays for nocturnal recording,
ensuring minimal disturbance to the environment and collecting a great deal of in-
formation on the behaviour of species under study. The vast majority of camera
traps are designed primarily for data storage, capturing bursts of images or videos
sequences once the PIR is triggered, but without on-site data processing. Recent ad-
vancements have seen the integration of wireless communication capabilities into
specific models. This innovation allows users to remotely access data and reconfig-
ure devices, reducing the need for physical intervention.

Audio-loggers represent another prominent technology within passive acoustic
monitoring (PAM). These devices are designed ad-hoc for collecting acoustic data
in natural habitats, mirroring the non-invasive approach of camera traps. Audio-
loggers typically feature sensitive microphones positioned to record ambient sounds,
including vocalizations and acoustic signals emitted by wildlife, which gives a lot of

6 Chapter 1. Introduction

information, especially for species that communicate through acoustic signals. Ex-
amples of common conservation devices available in the market, including a con-
ventional camera trap and an audiologger, are illustrated in Figure 1.4.

A significant challenge associated with conventional conservation technologies
is the huge volume of data they generate, which represent a substantial administra-
tive and processing burden on users. While these technologies have proven valu-
able for wildlife monitoring, the manual handling and analysis of vast datasets can
be labor-intensive and time-consuming. To address this challenge, a new trend of
"smart" conservation technologies is emerging, offering innovative solutions that
streamline data management and analysis, thereby revolutionizing the field.

One widely-spread solution of this new approach is the Audiomoth project [12],
an academic work published and commercialized under an open-source philosophy.
Audiomoth introduces a cost-effective and efficient device for passive acoustic mon-
itoring, with the key feature of being open-source and well-documented to be pro-
grammed, which emphasizes the implementation of solutions for automated data
processing and analysis. This device has been widely-used in the aforementioned
IMSE’s group for several projects, such as the work presented in [13], where a neural
network was implemented in the Audiomoth itself for the identification of the most
characteristic call of the lesser kestrel, discerning other sounds and calls of other
species. This device features a EFM32 Gecko 32-bit Microcontroller based on the
ARM Cortex-M3 core with features oriented to battery-operated applications, such
as very low sleep current with RTC (0.9µA) and short wake-up time from energy-
saving modes. Figure 1.5 provides additional details about the components com-
prising the Audimoth system.

(A) Top view. (B) Front view.

FIGURE 1.5: Parts of the Audiomoth smart datalogger PCB.

In the domain of camera traps, while devices as prevalent as Audiomoth are yet
to emerge, the landscape is witnessing a surge in emerging projects, stemming from
both academic research and industry. An illustrative case of a device poised for com-
mercialization is Sentinel [14], a product developed by Conservation X Labs, currently
in its pre-release phase. The Sentinel system empowers standard commercial camera
traps with AI capabilities, automating data analysis and facilitating real-time alert
generation. Another project, emerging from the academic sphere, is detailed in [15].
This project introduces a "smart bridge" hardware system, specifically designed to
interface with a commercial camera trap, thereby integrating artificial intelligence

1.2. State of the art 7

FIGURE 1.6: Overview of the latest embedded platforms on the mar-
ket and their applications (Imagine 2022, Conference for Edge AI by Edge

Impulse).

processing. The resultant system excels in the generation of real-time alerts trans-
mitted via satellite networks. Numerous analogous projects in this niche domain
harness the potential of AI to autonomously classify camera trap images directly at
the data collection point. These developments are well-documented in the literature,
including studies by the research group in which this thesis has been developed [16–
18].

Collectively, these initiatives highlight the growing traction in the direction of
intelligent, data-efficient, and automated conservation technologies, marking an ex-
citing frontier in the realm of wildlife monitoring.

Following the above overview on both commercial and academic initiatives in
wildlife monitoring solutions, embedded platforms, vital for the development of
such solutions, are examined from a technical point of view. Figure 1.6, presented at
[19] provides a clear picture of the intricate landscape of embedded platforms within
the realm of edge AI. It effectively categorizes various types of embedded platforms
along the x-axis based in its power consumption, from ultra-low-power devices to
high-end CPU platforms going through the different levels of microcontroller-based
systems (MCU). Simultaneously, it maps a diverse spectrum of applications along
the y-axis, including sensors, audio processing, image analysis, video processing,
and transformer-based tasks. This graphical representation, which highlights the
latest solutions from leading silicon manufacturers, offers valuable insights into the
dynamic interplay between platform types and their corresponding applications in
the context of edge AI. By leveraging this graphical baseline, a detailed analysis of
these embedded platforms is done. In this analysis, the pivotal role these platforms
play in the development of cutting-edge wildlife monitoring solutions is underlined,
and their their diverse capabilities and suitability for distinct project requirements
are clarified.

Ultra-low-power devices that specialize in analog signal processing represent

8 Chapter 1. Introduction

a significant stride in the pursuit of energy-efficient solutions. One notable exam-
ple is Polyn Technology’s Neuromorphic Analog Signal Processing (NASP) [20], a
groundbreaking approach that mimics the human brain’s neural network to process
analog signals. These devices stand out due to their unparalleled ability to mini-
mize power consumption while performing real-time signal processing tasks. These
ultra-low-power devices are particularly well-suited for specialized sensing tasks,
such as monitoring the physiological states of animals through biologgers. When
attached to wildlife, these devices can efficiently collect and process analog signals
from various sensors, offering insights into the animals’ behaviors, health, and en-
vironmental interactions.

The embedded system exemplified in SUMHAL project, presented in the back-
ground section, serves as a prime example of a low-end MCU- (Microcontroller Unit)
based embedded platform. These MCUs, predominantly part of the ARM Cortex-M
processor family, are renowned for their energy efficiency and adaptability, mak-
ing them particularly well-suited for specific applications in wildlife monitoring.
This platform excels at collecting and processing low-level sensor data, including
basic audio processing, while simultaneously minimizing power consumption. The
proper use of timers and sleep modes inherent to these microcontrollers allows for
efficient energy management, thereby extending the battery life and prolonging field
operation. However, it is worth noting that low-end MCUs may not be ideal for
handling resource-intensive tasks such as deep neural network (DNN)-based algo-
rithms or image processing, which require more robust computational capabilities.
Yet, within the Cortex-M processor family, we encounter variants like the Cortex-M4,
which introduce more powerful cores with added capabilities, including a Floating-
Point Unit (FPU) and Digital Signal Processing (DSP) Extension. This enhancement
constitutes a significant leap, enabling the group of MCU+FPU devices to imple-
ment advanced artificial intelligence techniques. Moreover, in terms of software
compatibility, these devices are often compatible with frameworks like TensorFlow
Lite for microcontrollers, which significantly streamlines the development process.
It is within this category that devices like Audiomoth find their niche, aligning with
more advanced AI capabilities and offering a streamlined development pathway for
wildlife monitoring applications.

High-end MCUs represent a significant advancement in computational power,
memory capacity, and additional capabilities, making them well-suited for wildlife
monitoring. These devices excel in complex tasks, including AI and image process-
ing, thanks to integrated graphical hardware accelerators. They offer higher levels
of development abstraction, enabling programming in languages like Python (with
MicroPython) and the use of machine learning frameworks such as TensorFlow Lite.
The research group behind this thesis has dedicated efforts to harness the potential
of high-end MCUs. These devices balance computational strength with low power
consumption, crucial for extended wildlife observation. The group has tested de-
vices like openMV H7 Plus [21], Sony Spresense [22], and Arduino Portenta H7 [23],
which often feature multi-core architectures for enhanced processing capabilities,
such as the dual Cortex-M7+M4 configuration in the STM32H747XI (Arduino Por-
tenta H7) and the six Cortex-M4F cores in the Sony Spresense.

In the realm of CPU-based devices, Raspberry Pi boards have emerged as the
most prominent and widely-adopted choice for prototyping AI algorithms at the
edge. Complementing the Raspberry Pi, a set of similar single-board computers

1.3. Motivation and Objectives 9

populate the landscape of edge computing. These devices consistently feature mi-
croprocessors from the Cortex-A series, offering a versatile spectrum of solutions for
handling complex computational tasks. Their capabilities extend to hosting rich op-
erating system platforms and seamlessly supporting a multitude of software appli-
cations. This versatility empowers developers to harness the full potential of high-
level AI development and implementation, significantly broadening the horizons of
wildlife monitoring applications. Notably, these systems offer impressive process-
ing power and capabilities without imposing excessively high power consumption.
Nevertheless, it is vital to acknowledge that they lack low-power characteristics,
meaning that even in idle states, a system like the Raspberry Pi may still consume
power on the order of hundreds of milliamperes (mA), a consideration that becomes
significant in field deployments where reduced energy consumption is a fundamen-
tal specification to be met. Finally, high-end CPU devices like the NVIDIA Jetson
family [24] leverage powerful GPU capabilities to tackle the most advanced AI tasks.
However, in the context of wildlife applications, the significantly higher power con-
sumption of these devices often makes them less practical for field deployments.

1.3 Motivation and Objectives

The development process for embedded systems used in the field of wildlife moni-
toring is both extensive and resource-intensive, requiring various domains of exper-
tise and substantial time investment. Adapting and redeveloping systems for the
diverse needs of wildlife observation projects can pose a significant challenge. To ad-
dress this challenge and facilitate the expansion of conservation efforts, the research
group recognizes the imperative need for a highly configurable device that can be
easily tailored for different specifications, environments, and network requirements.
This flexibility is pivotal for the group to efficiently engage in more substantial and
diverse conservation initiatives, amplifying their contribution to biodiversity preser-
vation.

Building upon the experience garnered from the development of the original em-
bedded system in the SUMHAL project and subsequent wildlife monitoring projects
detailed in the background sections, the research group is primed for a comprehen-
sive redesign of their embedded system. This evolution aims to produce a more ca-
pable, low-power, and cost-effective smart embedded system designed specifically
for remote animal monitoring.

This Master’s thesis serves as the initial phase of the embedded system devel-
opment process, focusing on requirements analysis, architectural design, hardware
development, hardware-software integration. The research objectives for this thesis
encompass five critical dimensions:

1. Energy Efficiency: Prioritizing low-power operation to extend field deploy-
ment capabilities and minimize maintenance needs.

2. AI-Enhanced Architecture: Develop a hardware framework that enables ad-
vanced AI capabilities, allowing real-time data analysis and decision-making
within the embedded system.

10 Chapter 1. Introduction

3. Multi-Modal Data Integration: Designing the system to be able to collect, pro-
cess, and fuse data from various sensors, including visual, acoustic, and envi-
ronmental inputs, to provide comprehensive insights into wildlife and habitat
conditions.

4. Communication Networks Modularity: Enabling modularity in communica-
tion networks to be easily adapted to diverse project requirements and net-
work environments.

5. HW-SW Integration and Compatibility with AI Frameworks: Ensuring seam-
less integration between hardware and software components and providing
compatibility with AI frameworks, such as TensorFlow.

11

Chapter 2

Hardware Development

2.1 Requirements Analysis and Specifications

The initial phase of embedded system design involves requirements analysis, a criti-
cal step in which a comprehensive understanding of the system’s functional needs is
acquired. The goal is extracting essential technical specifications from these require-
ments, thereby setting the foundational basis for the system’s design. In this subsec-
tion, various requirements, derived from the research group’s experience working
with conservation organizations and past development endeavors, are meticulously
examined and translated into precise technical specifications that the system must
adhere to.

2.1.1 Processing capabilities

The requirement for advanced image and audio processing, as described in Sec-
tion 1.2, is associated to the need for devices with robust AI capabilities. While
high-end MCUs demonstrated their suitability for specific applications, it becomes
evident that achieving powerful AI capabilities within an embedded device – in-
cluding, for instance, seamless integration with the TensorFlow Lite framework –
requires a CPU-based system running a Linux embedded operating system.

To optimize the fusion of extensive processing capabilities and low-power opera-
tion, the proposed solution involves a hybrid architecture comprising both an MCU
and a CPU. In this architectural model, the MCU takes charge of data acquisition,
preprocessing, and network data management, excelling in efficiency. Meanwhile,
the CPU serves as a dedicated processing acceleration module, stepping in once en-
vironmental data are acquired to execute in-depth processing tasks employing AI-
based methodologies. This collaborative division of labor ensures high-performance
levels while maintaining energy efficiency.

Interestingly, some deployment scenarios, contingent on their specific data and
processing needs, may not demand the full-scale processing power offered by the
CPU. In such instances, the MCU’s capabilities may suffice. Therefore, incorporat-
ing a modular approach that facilitates the attachment or detachment of the CPU
module emerges as a versatile feature for the device. This modularity offers adapt-
ability, enabling the system to cater to a spectrum of deployment scenarios, from
those necessitating extensive AI processing to those where MCU capabilities align
with the requirements. This design choice harmonizes with the device’s adaptability
to changing field conditions and conservation project needs.

12 Chapter 2. Hardware Development

2.1.2 Multi-modal data integration

One of the critical requirements of the system is to establish a robust framework for
accommodating a diverse range of input data sources encountered in the field, en-
compassing visual, acoustic, and environmental data. To attain this level of versatil-
ity, the system will leverage the Grove interface utilized in the prior developments,
thereby offering support for a broad spectrum of digital interfaces, including I2C,
UART, and SPI. The Grove interface is compatible with over 150 sensor modules
available in the market, addressing various physical parameters. This foundational
choice facilitates seamless expansion and customization according to specific field
requirements.

In addition to the Grove interface, supplementary interfaces tailored to enhance
compatibility with visual and acoustic data sources will be explored. Notably, the
Camera Serial Interface (CSI), a standard defined by the Mobile Industry Processor
Interface (MIPI) Alliance, will be considered as a pivotal addition, potentially serv-
ing as the bridge between the system and camera-based deployments. This interface
allows the connection of a camera to the host processor, enabling the acquisition of
high-quality visual data.

For acoustic data integration, analog interfaces must be considered, potentially
featuring pre-amplifier opamp-based circuitry followed by analog-to-digital con-
verters (ADCs) to accommodate both stereo and mono standard analog microphones.
Furthermore, support for digital-ready microphones with direct digital interfaces
like I2S will be explored. The inclusion of these options underscores the commit-
ment to flexibility and adaptability in capturing and processing acoustic data, cater-
ing to various field scenarios and project requirements.

2.1.3 Data storage

Considering the prolonged deployments of the system in remote areas, where ro-
bust network connections are not guaranteed for transmitting the collected data, it
is imperative to incorporate an efficient data storage solution. A preferred choice
within the realm of conservation technology devices is the utilization of SD cards.
It offers notable advantages, allowing users to extract and replace them for data re-
trieval when network communication is unavailable. Moreover, they can serve as a
dependable back-up solution in the event of potential data loss due to environmen-
tal circumstances prevalent in these challenging field environments. Therefore, one
potential data storage option to be included in the device is a micro SD card slot.

Communication modularity

Continuing from previous successful developments, the MikroBus standard will be
employed to endow the system with communication modularity. This approach
ensures compatibility with a wide range of sensor modules and accessories, offering
flexibility in adapting the system to varying field conditions and research objectives.

2.1. Requirements Analysis and Specifications 13

2.1.4 Power supply

Power supply requirements are fundamental to the functionality and performance of
the field-deployed device, as they determine its autonomy, reliability, and adaptabil-
ity to the diverse environmental conditions. In this context, several power supply
considerations are relevant:

Battery power: Given that this device will likely operate in remote field locations
without access to an electrical grid, the ability to rely on battery power is crucial.
Among the available battery technologies, lithium polymer (LiPo) batteries stand
out due to their high energy density, making them the preferred choice. These bat-
teries offer a dependable and readily-accessible source of power, ensuring uninter-
rupted operation.

Variable DC input: Field deployments often necessitate flexibility in power sources.
The device should be compatible with variable DC inputs, allowing operation in
deployments where there is an existing power infrastructure. This adaptability is
essential for seamless integration into diverse deployment scenarios.

Solar panel integration: To further enhance the device’s autonomy and reduce its
reliance on traditional power sources, the incorporation of solar panels is a practical
solution.

USB power: The inclusion of a USB port is essential for facilitating system pro-
gramming and debugging. This port not only serves as a communication interface
but also acts as a power source for these activities. Therefore, ensuring that the de-
vice can receive direct power through this port is a critical aspect of its design.

Efficient charging circuit: Given the reliance on LiPo batteries and the potential for
solar panel usage, an efficient charging circuit is a vital component. This circuit is
instrumental in achieving self-sufficiency from solar panels and maintaining battery
health by ensuring optimal charging. It offers a practical solution for extended field
deployments and recharging between missions.

Stable Voltage Levels: The device’s internal and external components, including
the MCU, CPU, sensors, and communication modules, require stable voltage levels
to operate effectively. Both 3.3V and 5V power supplies are essential for these com-
ponents. Incorporating high-efficiency circuits into the power supply unit is neces-
sary to maintain consistent and reliable voltage levels, which, in turn, contribute to
the device’s overall performance.

Power control: To maximize energy efficiency and achieve ultra-low power con-
sumption during idle periods, the power supply unit should feature control mech-
anisms. These mechanisms enable the selective activation and deactivation of com-
ponents, minimizing power consumption when specific elements of the system are
not in use.

14 Chapter 2. Hardware Development

2.1.5 Environmental considerations

Wildlife monitoring often involves the deployment of devices in challenging envi-
ronmental conditions. It is therefore mandatory to carefully consider the operational
temperature ranges and humidity tolerance of the components used in the device’s
design. To ensure the device’s robustness, internal sensors, such as temperature and
humidity sensors, or accelerometers, can be integrated into the device’s board. These
sensors serve to monitor the device’s condition, detect extreme environmental fac-
tors, and alert about potential harm.

Furthermore, it is essential to account for the need to enclose the device in a
waterproof box for most deployments. Therefore, the design of the PCB should in-
clude specific considerations regarding the dimensions and placement of connectors.
These aspects play a crucial role in simplifying the attachment and manipulation of
the device within the waterproof enclosure, making it easier to adapt it to varying
field conditions and ensuring the device’s long-term functionality and reliability.

In summary, the requirements analysis and specifications phase has provided a
comprehensive understanding of the technical needs and environmental consider-
ations for the development of the embedded system. Table 2.1 outlines the speci-
fications derived from this analysis, which will guide the subsequent phases of the
design process.

Category Specification

Power Supply USB, Battery, Solar Panel, Variable DC Input
LiPo Charging Circuit
3.3V and 5V Power Supply
Controlled load switch

Processing AI Capabilities
Low-Power Hybrid Architecture (MCU+CPU)

Multi-Modal Data Integration Grove Interface
Camera Serial Interface (CSI)
Audio Interfaces (Analog and Digital)

Data Storage Micro SD Card Slot

Communication Modularity MikroBus Standard

Environmental Considerations Internal temperature-humidity sensor to measure con-
dition
Internal accelerometer for free-fall detection
PCB Design for Easy attachment and manipulation
within the enclosure

TABLE 2.1: Specifications based on requirements analysis.

Keeping these specifications in mind, the hardware development and software
design phases will be undertaken to transform these requirements into a fully func-
tional, efficient, and versatile embedded system for wildlife monitoring.

2.2. Hardware architecture 15

2.2 Hardware architecture

This section describes the hardware architecture of the proposed embedded system,
highlighting the components and their interconnections. Figure 2.1) provides a func-
tional diagram of the full system, showcasing all the elements and their interconnec-
tions, as well as specifying the interfaces required for each component.

FIGURE 2.1: Functional diagram of the full system.

Within this diagram, several key elements and connections are highlighted. The
system follows a hybrid architecture, combining a microcontroller unit (MCU) and
a central processing unit (CPU) – being the CPU module optional as a plug-in. The
primary MCU selected for the system is the SAMD51 microcontroller, featuring an
ARM Cortex-M4 core with a floating-point unit. This MCU can manage the vari-
ous interfaces and elements connected to it and even perform lightweight machine-
learning (ML) tasks with input data. Consequently, it is well-suited for handling
scalar inputs from sensors and for realizing basic audio and image acquisition and
filtering.

For applications demanding more robust AI-based processing, the CPU mod-
ule can be attached to enhance the system’s capabilities. The chosen CPU module
is the Compute Module 4 (CM4), which is a System-on-Module (SoM) providing
the computational power of the Raspberry Pi 4 within a compact form factor de-
signed for deeply embedded applications. To facilitate communication between the
two modules, the system includes programmer connections, a serial communica-
tion interface, and an SD card interface shared through a multiplexer/demultiplexer
(mux/demux) circuit. These interfaces enable seamless data sharing and bilateral
communication, making the entire system capable of acting as a whole.

The complete device – with the CM4 module connected in particular – offers
ample resources to handle a wide range of data sources, processing tasks, and AI
capabilities. The design’s modularity enables easy adaptation to less demanding

16 Chapter 2. Hardware Development

projects, allowing on-the-fly adjustments in terms of features and costs. This adapt-
ability makes it an ideal hardware system for various applications within the field
of wildlife monitoring.

The subsequent sections provide details about each element of the system, giving
insights into the electronic design process and component selection. This offers a
comprehensive understanding of the hardware development and how the system’s
architecture aligns with the technical requirements specified before.

2.3 Data acquisition and low-power processing unit

2.3.1 Microcontroller

The selection of the microcontroller for an embedded system is critical to achieve the
right balance between power efficiency and processing capacity. In this context, the
ARM Cortex cores emerge as the default choice for MCU-based devices, particularly
the Cortex-M family, which is well-optimized for low-cost and energy-efficient inte-
grated circuits.

In the previous version of the embedded system developed for the SUMHAL
project [3], a Cortex M0+ core – featured in the SAMD21 microcontroller – was em-
ployed. While this microcontroller offers a suite of useful interfaces, it lacks the
processing capabilities required for implementing ML tasks. To accommodate ML
processing in the selected MCU, an upgrade within the Cortex-M family became es-
sential.

The subsequent models within the Cortex-M family, such as the Cortex M4, intro-
duce features like the Floating-Point Unit (FPU) and Digital Signal Processing (DSP)
Extension. The inclusion of an FPU is particularly significant as it eliminates the
need for emulating floating-point instructions in software, substantially reducing
processing overhead. These features are instrumental in facilitating more advanced
processing capabilities in the microcontroller.

Upon selecting the Cortex M4 as the core model, the next step involves identi-
fying specific microcontrollers that incorporate this core. Multiple models are avail-
able from various manufacturers, with many of them sharing similar characteris-
tics. The differentiating factor often lies in the development tools and ecosystem
provided by each manufacturer. Given our prior experience with the development
process using the SAMD21, the ATSAMD51J20A [25], which leverages the Cortex
M4 core, was chosen as the primary microcontroller for the system. This selection
aligns with the goal of enhancing processing capabilities while maintaining a power-
efficient profile. When considering ML capabilities, several devices featuring the
ATSAMD51J20A MCU are supported by TensorFlow Lite for Microcontrollers [26],
emphasizing its compatibility with advanced AI and ML frameworks. In terms of
power consumption, this MCU offers a robust array of low-power modes, including
idle, standby, hibernate, and back-up. The device can operate with minimal power
draw, even reaching values as low as 3µA in hibernate mode, where the internal
real-time clock (RTC) continues to run.

Regarding the circuit design around the microcontroller, Figure 2.2 shows sev-
eral key components and connections. Notably, an inductor is strategically placed

2.3. Data acquisition and low-power processing unit 17

FIGURE 2.2: Schematics of the microcontroller unit

between VSW and VDDCORE, serving the purpose of using the internal regula-
tor in Switching mode. This particular mode offers the highest level of power effi-
ciency when both the CPU and peripherals are operational. Decoupling capacitors
are integrated into the design, primarily serving the role of noise filtering. These ca-
pacitors help maintain a stable and clean power supply for the microcontroller and
associated components, ensuring the reliability of data processing and functional-
ity. Moreover, an LC (inductor-capacitor) filter is employed for VDDANA, which
represents the analog power input. This filter serves the essential function of reduc-
ing high-frequency noise and interference in the analog components of the system.
Maintaining a clean and noise-free analog power source is crucial for accurate data
acquisition. Additionally, a reset button in pull-up configuration is incorporated into
the design. This allows for the device to be reset and placed in boot mode, facilitat-
ing ease of debugging, programming, and reconfiguration when necessary.

When designing the microcontroller’s pin allocation for the SAMD51J20, careful
consideration is given to the 64 available pins, each serving various functionalities.
A notable feature of this microcontroller is its internal multiplexing capability. By
default, each pin can be controlled by the PORT as a general-purpose input/output
(I/O). Additionally, these pins can be alternatively assigned to one of the peripheral
functions, offering a high degree of configurability.

The peripheral functions encompass a wide range of options, including common

18 Chapter 2. Hardware Development

TABLE 2.2: Distribution and functionallity of each SERCOM port
used in the MCU.

SERCOM Interface Function

SERCOM 0 UART0 Communication between MCU and CPU (CM4)

SERCOM 1 UART1 MikroBus network communication module

SERCOM 2 SPI0 MikroBus network communication module
SPI camera connector

SERCOM 4 SPI1 SD Card

SERCOM 5 I2C MikroBus network communication module
Internal/external I2C sensors

SERCOM 7 UART Externals sensor or other modules in Grove connector

digital interfaces like UART, SPI, and I2C, as well as more specialized functions such
as timer signals, RTC, USB, CAN, I2S, and more. These functions can be allocated to
specific pins as per the pinout directions specified in the microcontroller’s datasheet.

For clarity and reference, Table 2.2 highlights the interface selected for each Serial
Communication (SERCOM) module and the intended function for each SERCOM. A
comprehensive allocation table detailing the distribution of interfaces and the func-
tion of each group of pins is provided in Appendix A, providing a thorough resource
for understanding the complete pin allocation strategy.

This pin allocation process ensures that the microcontroller can effectively and
efficiently manage its various functions and interfaces, meeting the specific needs of
a wildlife monitoring system.

2.3.2 Internal sensors

In order to monitor the system’s state in response to environmental disturbances
that might affect its operation, internal sensors are incorporated. These sensors are
responsible for tracking temperature, humidity, and movement, with the primary
purpose of identifying critical environmental conditions within the device’s enclo-
sure. Examples of such conditions include water leaks, extreme weather events, or
temperature fluctuations that could impact the performance and integrity of the em-
bedded system. Furthermore, the ability to detect motion is essential for identifying
instances of free falls, accidental disturbances, or potential tampering, which is a
significant concern for devices deployed in the wild.

For these monitoring functions, high-precise sensor data are not required, as
the sensors are primarily utilized to trigger alerts when specific thresholds are sur-
passed. The selection of sensors, therefore, prioritizes factors such as cost effective-
ness and ease of integration into the electronic design to maintain simplicity without
unnecessary complexity in the circuitry. Simplifying integration is facilitated by sen-
sors with a digital I2C interface, which enables the control of multiple devices with
only two communication signals.

Regarding temperature and humidity monitoring, the Sensirion SHT40I [27] has
been chosen. This sensor offers both temperature and humidity sensing capabilities

2.3. Data acquisition and low-power processing unit 19

in a single integrated circuit (IC). It’s important to note that the SHT40I is specifi-
cally designed for challenging industrial applications, making it an excellent fit for
wildlife monitoring. Notable features include a wide operating voltage range, small
form factor, and robust housing. Its low-power consumption (22µA) ensures that it
minimally impacts the device’s overall energy consumption. Figure 2.3a shows the
integration of the sensor into the electronic design, requiring only two signals for the
I2C interface that are appropriately pulled up using 4.7Ω resistors.

(A) Schematics. (B) Functional block diagram.

FIGURE 2.3: Schematics of the temperature and humidity internal
sensor.

The LIS3DHTR [28] 3-axis MEMS accelerometer was selected for movement de-
tection. It offers an array of features that perfectly aligns with the requirements of
wildlife monitoring. The "nano" family of accelerometers excels in ultra-low-power
operational modes, an essential characteristic for a device intended for extended
deployments in the field. One of the most noteworthy features is its ability to gener-
ate programmable interrupt signals based on inertial wake-up/free-fall events and
device orientation. This capability is crucial for the system as it offloads the micro-
controller from the task of continuous event monitoring, allowing it to efficiently
operate by reacting only to interrupt signals transmitted by the sensor. This not
only conserves energy but also streamlines the system’s response to critical events in
wildlife monitoring environments. As depicted in Figure 2.4, the integration of this
sensor into the system is straightforward from an electronic design perspective. The
implementation merely involves incorporating pull-up resistors for the I2C commu-
nication and connecting the interrupt pins of the sensor (INT1 and INT2) to their
respective microcontroller digital inputs designated as FALL-INT and MOV-INT for
free-fall and movement detection, respectively.

2.3.3 Grove connectors

Five Grove standard [8] connectors have been integrated. Each Grove standard con-
nector has four pins: two for power (VCC and GND) and two for signals. These
connectors serve different purposes: two are designated for digital communications,
two for analog inputs, and one is reserved for the I2C interface. Note that the mi-
crocontroller’s signal multiplexing functionality allows for further configuration of

20 Chapter 2. Hardware Development

FIGURE 2.4: Schematic of the internal accelerometer.

these interfaces, making it possible to adapt them for UART or SPI if needed. Fur-
thermore, all these connectors operate at the standard 3.3V voltage level, which is
well-suited for low-power sensors. However, there is one exception, as one of the
connectors is specifically reserved for 5V sensors or more power-hungry actuators
that may be employed in the system for certain applications. These Grove connectors
enhance the versatility of the embedded system, ensuring its seamless connection to
a variety of sensors modules and devices available at market.

2.3.4 SPI camera connector

While the AI acceleration unit, which will be discussed in the subsequent subsection,
primarily handles advanced image processing tasks, some projects may demand
straightforward image acquisition without the need for intricate computations. In
such cases, utilizing the MCU in isolation, without the AI accelerator module, can
provide cost-effective and energy-efficient image solutions.

There are SPI cameras [29] compatible with microcontrollers like the SAMD51.
These cameras employ an FPGA-based camera controller responsible for managing
the intricate and high-speed timing of camera video signals. This controller directly
interfaces with the image sensor, handling the entire image capture process. By of-
floading the processing tasks from the MCU to the FPGA, the MCU only needs to
issue a capture command and retrieve images byte by byte as time permits. The
captured images are stored in an off-chip frame buffer, ensuring they are preserved
until explicitly flushed. This architecture addresses the challenge of lacking a dedi-
cated camera interface. This architectural configuration is depicted in Figure 2.5.

The SPI camera modules are designed to utilize SPI for image data acquisition
and I2C for configuring image sensor register settings. To accommodate these SPI
camera modules and other devices potentially requiring a full SPI interface or em-
ploying non-standard digital interfaces with more than the two signal pins provided
by the Grove standard, a specialized connector is included in the system.

2.4. AI processing unit 21

FIGURE 2.5: Functional block diagram from the SPI camera module
of [29].

2.3.5 I2S microphone connector

Audio is a vital source of data in conservation technology, particularly for passive
acoustic monitoring, which provides essential information about biodiversity, in-
cluding birds and bats, especially ultrasounds. To accommodate these requirements,
the SAMD51 microcontroller features an I2S (Inter-IC Sound) interface, a widely
used protocol for transmitting high-quality digital audio data. I2S MEMS micro-
phones have become prevalent in the market due to their ability to deliver high-
quality, noise-free digital audio input. The I2S protocol simplifies the process of
capturing audio data, minimizing the need for external circuitry compared to ana-
log microphones, which require amplifiers and filtering circuits, in addition to the
MCU’s analog-to-digital converter (ADC).

To ensure flexibility in the selection from the variety of microphone models avail-
able in the market, the system includes an I2S interface. It is important to note that
microphones themselves are not provided as part of the system; instead, the inter-
face is made available to accommodate different models. This approach allows users
to select the most suitable microphone for their specific needs and environmental
conditions. Moreover, external connection of the microphone is preferred over in-
board options, as it avoids issues related to audio signal attenuation when the device
is enclosed in a waterproof housing, even with dedicated vent holes. The external
microphone interface opens up possibilities for customization and adaptability, en-
hancing the versatility of the system.

2.4 AI processing unit

To fulfill the critical role of advanced AI processing capabilities, particularly for han-
dling high-level audio and image data, the system incorporates the Compute Mod-
ule 4 (CM4) [30]. This versatile System-on-Module (SoM) harnesses the substantial
processing power of the Raspberry Pi 4, making it an ideal choice for this applica-
tion. The Raspberry Pi 4 provides a suitable balance between high processing capa-
bilities and a fully developed AI environment, including extensive software support
and widespread popularity. The CM4’s compact form factor, tailored for deeply

22 Chapter 2. Hardware Development

embedded applications, serves as a highly suitable solution for the system’s require-
ments. While the Raspberry Pi 4 offers a lot of interfaces and features, including
multiple HDMI ports, USB connections, and Ethernet capabilities, many of them are
not needed for the system’s specific needs. By leveraging the CM4 with the mini-
mal number of components required from the Raspberry Pi 4 in a SoM format, the
system benefits from the Raspberry Pi’s computational power without the overhead
of unnecessary interfaces, resulting in a streamlined and efficient solution tailored
to the project’s unique demands. This strategic selection of the CM4 endows the
system with the processing capabilities necessary for advanced AI tasks, while also
optimizing efficiency and conserving hardware resources.

Furthermore, the CM4’s pinout and physical connector constitute a standard in-
terface for various SoM designs offered by different manufacturers, largely due to
the widespread adoption and versatility of the Raspberry Pi ecosystem. This stan-
dardization ensures that the system’s carrier board, which features CM4 connec-
tions, can seamlessly interface with alternative SoMs that incorporate different CPU
solutions. This adaptability and compatibility open up a wide range of possibilities,
enabling the system to evolve in response to shifting requirements, explore diverse
CPU architectures, and address any potential supply chain constraints that may arise
in the future. Some examples of this compatible SoM available at this moment are:

• SOQUARTZ Compute Module. Featuring a QUAD 64-bit ARM Cortex-A55
CPU and 0.8 TOPS Neural Network Acceleration Engine.

• Radxa CM3. Based on the Rockchip RK3566 SoC, a 64bit Quad Cortex A55.

• BPI-CM4. with Amlogic A311D Quad core ARM Cortex-A73 and dual core
ARM Cortex-A53 CPU, ARM G52 MP4(6EE) GPU, NPU for AI at 5.0 TOPS.

• ARVSOM. Based on RISC-V StarFive 71x0 SoC.

The CM4 (Figure 2.6) comprises a quad-core ARM Cortex-A72 processor, LPDDR4-
3200 SDRAM options ranging from 2GB to 8GB, and a VideoCore VI graphics core.
This combination provides substantial computational power and memory capacity
to handle demanding AI tasks effectively.

(A) Top view. (B) Bottom view.

FIGURE 2.6: Raspberry Pi Compute Module 4 [30].

2.5. Network communication unit 23

The system interfaces with the CM4 through two 100-pin connectors, providing
an extensive range of connections for seamless integration. The first connector (pins
1 to 100) encompasses a variety of interfaces, including Ethernet for networking ca-
pabilities, GPIO (General-Purpose Input/Output) pins for flexible digital connectiv-
ity, and SD card signals for storage and data transfer. This connector includes inter-
faces such as HDMI for high-definition video output, CSI (Camera Serial Interface)
for connecting camera modules, DSI (Display Serial Interface) for interfacing with
displays, and PCIe (Peripheral Component Interconnect Express) for high-speed ex-
pansion options.

Critical for the operation of the AI accelerator module is establishing effective
communication between the MCU system and the CPU within this module. This
communication is facilitated through a Remote Procedure Call (RPC) mechanism,
enabling both cores to invoke functions on the other processor without interruptions
or further complications. Details on how this integration is achieved at software and
firmware level will be provided in the following section. Concerning hardware, a
serial UART communication channel has been included to serve as the interface be-
tween the MCU and the CM4. This UART channel ensures reliable and efficient data
exchange, making it possible for the two processing units to collaborate effectively
and execute their respective tasks in a coordinated manner.

Another interface employed in the system is the direct connection of the CM4
to an CSI (Camera Serial Interface) port. The CSI port is specifically designed for
camera modules and is well-suited for capturing high-speed image signals. This
connection enables the system to be fully compatible with high-speed image acqui-
sition, a fundamental requirement for tasks such as real-time image processing.

The CM4 is also equipped with a substantial capacity of RAM and eMMC flash
memory, making it well-suited for hosting the system’s operating system file sys-
tem and temporary data spaces required during processing. This built-in memory
provides ample storage and processing capabilities for a wide range of applications.
However, to enhance data sharing and minimize the need for continuous data trans-
fers between the CM4 and the MCU system, a dedicated solution has been imple-
mented to share SD storage; this solution is described in a subsequent subsection.
An SDIO interface available on the CM4 module is employed to access data stored
in the shared storage system, offering a practical and optimized way to access, pro-
cess, and manage data without the need for constant data transmission.

2.5 Network communication unit

To ensure adaptability and versatility in terms of network communication, the sys-
tem leverages the MikroBus standard [7], a widely used interface employed by an
extensive set of commercially available communication transceiver modules. The
MikroBus standard defines a unified socket, shown in Figure 2.7, that consists of a
pair of 1×8 female headers with a proprietary pin configuration. This standardized
pinout, always presented in the same order, comprises three main groups of commu-
nication pins (SPI, UART, and I2C), along with six additional pins: PWM, Interrupt,
Analog input, Reset, and Chip select. Furthermore, the MikroBus socket includes
two power groups, providing both +3.3V and 5V, to accommodate a wide range of

24 Chapter 2. Hardware Development

communication modules.

FIGURE 2.7: MikroBus pinout specification [7]

The utilization of the MikroBus standard simplifies the process of incorporating
commercial communication transceiver modules, making it easy for the developer
to select and integrate the most suitable modules to meet particular requirements
of wildlife monitoring projects. These modules may encompass Wi-Fi, GSM, LoRa,
and Zigbee, among others.

2.6 Power management unit

The power management unit of the proposed wildlife monitoring system is a critical
component responsible for efficiently managing and distributing power to various
elements within the system. The power requirements for the system were carefully
analyzed in previous sections. Figure 2.8 provides a detailed power diagram show-
casing the diverse power input sources, including solar, DC, USB, and LiPo batteries,
along with all the components required to control the power.

FIGURE 2.8: Diagram of the power management unit of the proposed
wildlife monitoring system.

2.6. Power management unit 25

To ensure the reliable and efficient operation of the system, the power manage-
ment unit comprises several key elements, each designed to fulfill specific func-
tions. These essential components include a charging manager, LDO 3.3V regulator,
DC/DC 5V boost converter, and power switch controller.

2.6.1 Charging manager

Given that the system relies on LiPo batteries for power, the choice of an appropriate
charging controller ensures optimal battery performance and long lifetime. The two
primary categories of charging controllers, namely linear and switch-mode charg-
ers, were considered in the selection process. Furthermore, given the utilization of
solar panels for recharging, Maximum Power Point Tracking (MPPT) controllers can
be integrated to extract maximum energy from these sources.

MPPT controllers are instrumental in optimizing solar panel-based charging sys-
tems. They operate by continuously tracking the voltage and current characteristics
of solar panels to maximize power output. This approach necessitates an efficient
DC/DC converter to deliver optimal power conversion. However, adopting a gen-
uine MPPT solution in this system introduces a series of challenges and trade-offs.
Integrating a DC/DC converter into a LiPo charger circuit increases both the cost
and the complexity of the circuit. For smaller solar panels and low-current circuits
drawing under 1A, the potential efficiency gains from MPPT may not be substantial.
In such cases, the increased cost associated with the implementation of a DC/DC
converter often outweighs the efficiency improvements that MPPT offers. At low
voltages and currents, where the panel voltage remains marginally higher than the
battery charging voltage, DC/DC converters do not consistently outperform linear
converters. The wildlife monitoring system has been designed to work with small
6V solar panels and 1-cell LiPo battery packs with nominal voltage of 3.7V. Accord-
ing to the specific operational parameters commented, the choice of a linear charger
for the LiPo batteries offers a cost-efficient and proficient charging solution.

The chosen charger is the BQ24074 [31], which is a 1-cell 1.5A linear battery
charger, providing an ample charging current suitable for the battery capacities typi-
cally used in wildlife monitoring projects. One of its notable features is its wide input
operating voltage range, spanning from 4.5V to 10V. This broad range ensures com-
patibility with various power sources, such as small 6V solar panels, USB adapters
operating at 5V, and DC wall chargers delivering up to 9V.

The BQ24074 incorporates dynamic power path management (DPPM), which is
particularly valuable for the system’s operation. This function intelligently allocates
the source current between the system and battery charging processes, automati-
cally reducing the charging current if the system load increases. When charging
from a DC port, the input dynamic power management (VIN-DPM) circuit reduces
the input current when the input voltage falls below a specific threshold, effectively
preventing the DC port from crashing. This power-path architecture is versatile,
allowing the battery to supplement the system’s current requirements when the in-
put source cannot provide the peak system currents. These capabilities make the
BQ24074 an excellent choice for the system, effectively addressing the various oper-
ating conditions and ensuring efficient solar charging, even when effectively func-
tioning close to an MPPT solar charger.

26 Chapter 2. Hardware Development

FIGURE 2.9: Schematic of the charging manager circuit.

The schematic shown in Figure 2.9 contains the charging manager circuit. The
EN1 and EN2 pins have been configured with 0 and 1, respectively, to set the maxi-
mum input current through the use of an external resistor connecting ILIM to VSS. A
1k resistor was selected following the provided formula RILIM = KILIM/IIMAX to es-
tablish an input current limit of up to 1A. Likewise, the maximum charging current
has been set to 1.5A using a 590-ohm resistor, using the formula RISET = KISET/ICHG
to guide the selection. To provide clear visual indications of system status, LEDs
have been positioned at the PGOOD and CHG pins. These LEDs serve as visual
indicators, with one signaling when a valid input source is connected and the other
conveying the charging status.

2.6.2 3.3V power supply

The 3.3V power supply, as illustrated in the power diagram shown in Figure 2.8, pro-
vide power to the MCU, internal and external sensors, and communication module
within the system, which constitute the low-power system components. The sys-
tem can operate in various modes, each with its own power consumption profile.
In sleep mode, power consumption should ideally be in the range of microamperes
(µA), while power consumption of the sensor acquisition mode depends on the spe-
cific sensors used; generally, for low-power sensors, it should not exceed 100mA.
The highest power consumption is encountered in network communication mode,
where, depending on the type of communication, peak currents of up to 350-400mA
can be reached.

The power supply source for this unit is derived from the output of the charging
manager circuit, which can vary from a regulated 4.4V when powered from an ex-
ternal USB or DC source to levels below that when solely reliant on the 1-cell LiPo
battery. The voltage of this battery ranges from 4.2V at full capacity to a cutoff level
of 2.5V. However, this voltage range is non-linear, with the battery typically oper-
ating at a nominal voltage of 3.7V for 80% of the discharge curve. Manufacturers

2.6. Power management unit 27

recommend not discharging batteries below 3V to extend charge/discharge lifecy-
cles and prevent permanent damage.

Considering these design parameters, the power supply should offer a maximum
output current of over 500mA, support input voltage in the range of 3V to 4.5V, and
maintain a fixed output voltage of 3.3V. The quiescent current, which represents the
current consumed by the internal control circuitry of the power supply, is another
important parameter, especially since the system consumes only microamperes in
sleep mode. High quiescent current could significantly impact the efficiency of this
mode of operation.

In terms of efficiency, the choice between a low-dropout linear regulator (LDO)
and a switch-mode DC/DC converter does not significantly impact this application
due to the very low typical power consumption of the system and the minimal volt-
age drop between the input and output of the power supply. However, the key
consideration is the minimum dropout voltage, a parameter often associated with
LDOs in this application, which tends to be around 300mA. This implies that the
power supply would require a minimum input voltage of 3.6V, resulting in a signif-
icant loss of the battery’s total discharge curve.

To determine the appropriate minimum input voltage for the power supply, an
analysis of experimental data obtained during a battery-powered device test was
conducted. During this test, the device was deployed with high load charging and
transmitted its battery level every minute. The system was also powered by a small
solar panel. As depicted in the plot illustrating the collected data (Figure 2.10b),
the solar panel recharged the battery during the day but could not fully recover it
to 100%. Consequently, after a period of time, the battery reached its cutoff volt-
age. The total discharge period of the battery was observed to be 110 hours and 30
minutes.

(A) Device deployed. (B) Discharge plot of the battery during the conducted test.

FIGURE 2.10: Battery-powered device solar charging test.

If the cutoff voltage were set at 3.6V, as would be the case when using an LDO,
the total discharge period would be reduced to 65 hours, resulting in a significant
capacity loss of 41.18%. On the other hand, by setting the cutoff voltage at 3.3V,

28 Chapter 2. Hardware Development

the discharge period extended to 109 hours, incurring only a minor capacity loss of
1.36%.

Based on these results, the use of an LDO was discarded due to the inefficiency it
would introduce into the system. Consequently, considering a switch-mode DC/DC
converter, it can be concluded that a buck converter can be the most suitable choice
for maintaining the ideal cutoff voltage at 3.3V. This decision ensures that the system
can make the most of the battery’s capacity without compromising battery degrada-
tion.

The LM3671 [32] step-down converter is an ideal choice for the power supply in
the wildlife monitoring system. It boasts a maximum output current of 600mA and
operates within the desired input and output voltage ranges. What makes it particu-
larly suitable for this application is its unique mode-switching capability, optimizing
power consumption during system sleep mode, a crucial feature for energy-efficient
operation.

FIGURE 2.11: Schematic for the 3.3V buck converter circuit based on
LM3671.

The LM3671 offers automatic intelligent switching between PWM low-noise and
PFM low-current modes, providing enhanced system control. In PWM mode, the
device operates at a fixed frequency of 2MHz, ensuring stable power delivery. Dur-
ing periods of light load and standby operation, the hysteretic PFM mode comes into
play, reducing the quiescent current to just 16µA. This feature significantly extends
the battery life during low-power operation. Moreover, the internal synchronous
rectification enhances efficiency during PWM mode operation, making the LM3671
an excellent choice for wildlife monitoring, where power efficiency is critical, espe-
cially in sleep mode. The schematic in Figure 2.11 illustrates that the design for the
3.3V power supply using this controller is remarkably straightforward.

2.6.3 5V power supply

The 5V power supply provides power to the AI processing unit, based on the Com-
pute Module 4 (CM4), and external interfaces for sensors or additional modules op-
erating at 5V. The power consumption of the CM4 varies depending on the process-
ing tasks it performs but can reach approximately 1.4A. Considering possible exter-
nal modules connected as well, the power supply must be capable of delivering a
maximum output current of at least 2A. Even though these elements are intended
for use during short periods, it is imperative that the power supply operates with
high efficiency to minimize additional battery capacity losses. Therefore, maximum
output current and efficiency are the primary considerations in the design of this

2.6. Power management unit 29

power supply.

FIGURE 2.12: Typical performance of MP3437 in terms of efficiency
vs. load current extracted from the datasheet.

The MP3437 [33] was selected as the foundation for designing the 5V boost con-
verter. This boost converter features an input voltage range starting as low as 2.7V
and supports up to 20W of load power from a 1-cell battery, making it highly suit-
able for this application. Referring to the efficiency vs. load current performance
plot shown in Figure 2.12, which was extracted from the datasheet, we can observe
that for the anticipated range of input voltages in this circuit, the efficiency remains
around 95% for loads of 1A and above, with over 90% efficiency for loads up to 2A.
Note that these results are for an output voltage of 8V, meaning that the efficiency
will be slightly better for a 5V output. These efficiency characteristics align perfectly
with the system requirements, ensuring optimal performance and minimal energy
waste.

FIGURE 2.13: Schematic of the 5V DC/DC boost converter based on
MP3437.

When delving into the design details of this power supply (Figure 2.13), it be-
comes evident that special attention is warranted, especially due to its capacity to
handle moderately high output currents up to 2A. The selection of input and out-
put capacitors and inductors is of paramount importance in ensuring the system’s
proper functionality. The boost converter, due to its discontinuous output current,
necessitates the presence of an output capacitor to supply a consistent DC current to

30 Chapter 2. Hardware Development

the load. It is imperative to maintain the output voltage within a tight range, ideally
within ±0.1V despite allowed variations of ±0.25V in the input voltage of the CM4
module [30].

To assess the output voltage ripple and ensure it falls within acceptable limits, the
following formula is provided in the datasheet, taking various factors into account:

∆VOUT =
VOUT

fSW × RL × C2
×

(
1 − VIN

VOUT

)
(2.1)

Considering the use of three 22 µF parallel capacitors, as indicated in the schemat-
ics, a load of 2A, and an input voltage from a typical 1-cell LiPo battery (3.7V), the
calculated output voltage ripple remains within acceptable bounds at 0.013V. The
datasheet recommends the use of ceramic capacitors with X5R or X7R dielectrics
due to their low equivalent series resistance (ESR) and minimal temperature coeffi-
cients.

Turning to the inductor, its primary role is to transfer energy between the in-
put source and the output capacitors. Selecting an appropriate inductor value im-
pacts the ripple current and peak inductor current, thus influencing the stress on the
power MOSFET. The datasheet provides the following equation for inductor value
calculation:

L =
VIN × (VOUT − VIN)

fSW × VOUT × ∆IL
(2.2)

Assuming a 50% ripple current of the maximum 2A output, in line with the volt-
age considerations mentioned earlier, a 1.6 µH inductor value is derived. For added
prudence, a 2.2 µH inductor can be considered. It is essential to choose an inductor
with low series resistance (DCR) to minimize resistive power losses.

2.6.4 Power switch controller

The power switch controller is responsible for regulating the activation and deacti-
vation of loads such as external sensors, the AI processing unit, and the communi-
cation module. Every integrated circuit has a quiescent current consumption, even
when powered off, typically measured in microamperes. While this consumption
may initially appear insignificant, in a system with sleep mode functions, where it’s
crucial for the system to operate over extended periods while waiting for specific
events, these residual currents can become critical in terms of preserving autonomy.
To address this concern, a switch-controlled system has been implemented to phys-
ically disconnect these loads from the power supply when they are not in use.

Load switches represent a simple and cost-effective solution for toggling power
rails on and off. The design incorporates two TPS22976 [34] dual-channel load
switches, each equipped with controlled turn-on capabilities. One switch man-
ages the 3.3V loads, including sensors and the communication module, while the
other handles the 5V loads, such as the CM4 and 5V sensor modules. Each switch
can be independently controlled through dedicated on and off inputs (ON1 and
ON2), which can interface directly with control signals from the MCU. When these
switches power off a load, the internal consumption of each switch is only 0.002
µA, almost negligible in practical terms. Additionally, when the switches are in the
powered-on state, the typical consumption of both channels reduces to 37µA, fur-
ther minimizing the energy loss. This efficient load switching design helps extend

2.7. Shared SD storage 31

the system’s autonomy during sleep mode and inactive periods. Figure 2.14 dis-
plays the circuit for one of the two load switches responsible for controlling the 3.3V
loads. The other load switch employs a similar design but with a 5V input and is re-
sponsible for managing the load of the AI processing unit and the external 5V Grove
connector.

FIGURE 2.14: Schematic of the two-channel load switch to control
3.3V loads in the circuit. It is based on TPS22976.

2.7 Shared SD storage

The shared SD storage component is essential for efficient data handling, particu-
larly when managing moderate amounts of data, such as audio or image inputs. In
the context of the system’s architecture, transferring all this collected information
from the acquisition and low-power processing unit based on the MCU to the AI
processing unit via the UART serial interface can be highly inefficient. To address
this issue, a shared storage unit has been integrated. As mentioned in the require-
ments analysis, SD cards are the preferred storage choice for conservation technol-
ogy devices. Consequently, a multiplex/demultiplex circuit has been integrated into
the system to create a shared storage unit that can store data collected and processed
by both parts of the system. Achieving this functionality is not only a matter of
hardware but also a firmware-level implementation, involving a dedicated Remote
Procedure Call mechanism. This mechanism serves as the coordination link for writ-
ing and reading operations between both processing cores, ensuring efficient data
sharing and synchronization between the MCU and AI processing unit.

The TS3A27518E [35] is a component that serves as a bidirectional, 6-channel, 1:2
multiplexer-demultiplexer. Its primary function is to enable the expansion of any
SD, SDIO, and multimedia card host controllers to accommodate multiple cards or
peripherals. This functionality is particularly valuable in the context of the system
because the SDIO interface relies on 6-bits, which include CMD, CLK, and Data[0:3]
signals. Given this characteristic, the TS3A27518E is an ideal choice for this appli-
cation, where efficient management and switching of these signals are essential for
proper system operation. Figure 2.15 illustrates the circuit design of the shared SD
storage system employing this component.

32 Chapter 2. Hardware Development

FIGURE 2.15: Schematic of the SD shared storage circuit.

The schematics detailing the hardware designs presented and discussed in the
preceding sections are available in Appendix B. It’s noteworthy that the schematic
design process was accomplished using the open-source software KiCad. Hierar-
chical sheets were thoughtfully employed to structure the schematics into different
modules, enhancing accessibility and simplifying the process of making any neces-
sary adjustments or modifications.

33

Chapter 3

Software Development

The proposed wildlife monitoring system exhibits a heterogeneous embedded sys-
tem architecture. This architecture encompasses multiple cores that differ in terms
of both architecture and processing capabilities. It combines a microprocessor core
with a microcontroller-class core to provide a balanced solution. Additionally, the
system features a mix of peripherals, some exclusively interfacing with the MCU
core, while others are shared between both cores through the shared SD card stor-
age system. This heterogeneous design offers several advantages in terms of con-
figurability, processing optimization, and power efficiency. However, it introduces
complexity to the software development process. Consequently, it is essential to de-
sign a robust software architecture to manage this intricacy effectively.

This section begins with an overview of the designed software architecture for
the system. Subsequently, it delves into the various software components that com-
prise this architecture, encompassing firmware, the Linux operating system (OS),
and embedded software, among others. Note that developing a software solution
for a system of this nature necessitates a multidisciplinary approach, combining ex-
pertise in firmware design, Linux kernel knowledge, high-level programming lan-
guages like Python, AI workflow development using frameworks such as Tensor-
Flow, and UI design. While this Master’s thesis focuses primarily on the low-level
firmware aspect, the foundation is laid for other elements of the software system in
terms of architectural design, without delving into the specifics of software develop-
ment.

3.1 Software architecture

The software architecture has been designed to accommodate various levels of in-
teraction and system configuration. This design is visually represented in the ar-
chitecture block diagram shown in Figure 3.1, which illustrates the interconnection
of different software layers: firmware, embedded software, and user interface (UI)
application.

At the primary level of software development, the firmware resides within the
MCU of the system. This firmware plays a pivotal role in managing low-level hard-
ware interfaces. Its primary functions encompass real-time data acquisition from
connected sensors and modules, preprocessing of collected data, data structuring
and storage on the SD card, configuration of low-power modes using internal timers,
RTC (Real-Time Clock), external interrupts, communication with transceivers for
data transmission to the cloud, and setting of communication with the AI process-
ing unit through the remote procedure call (RPC) mechanism. To ensure flexibility

34 Chapter 3. Software Development

FIGURE 3.1: Block diagram of the software architecture of the system.

and ease of updates and configuration, the firmware binaries can be uploaded to the
microcontroller’s program memory through various methods, including USB, SD
card, or network-based "Over the Air Programming" (OTA) mechanisms.

At the core of the AI processing unit lies the embedded Linux operating system,
which comprises a bootloader, the Linux kernel, and the root filesystem. This Linux-
based system is responsible for resource management, task scheduling, hardware
access, and various operations that shield the user from low-level aspects of the
hardware. The Linux kernel plays a crucial role in managing hardware resources,
such as the CPU, memory, and I/O operations. It provides a range of Application
Programming Interfaces (APIs) that abstract these resources, simplifying the deploy-
ment of user applications and libraries. In the context of the Raspberry Pi CM 4, the
embedded Linux OS utilized is a customized version of Raspbian, which is derived
from Debian and tailored to suit the specific requirements of this board.

3.2. Firmware design 35

Within the root filesystem of the embedded Linux OS, which is stored in the
internal eMMC Flash memory of the CM4, various software programs run. This in-
cludes system programs, utilities, and configurations, among other components. A
primary program within this block is responsible for retrieving the data, collected
by the firmware and stored in the SD card, and executing inference tasks using a
pre-trained AI model. The preferred programming language for developing soft-
ware at this level, particularly for AI applications, is Python. An essential aspect
within this block of embedded software is the interface between the firmware and
the AI processing unit through Remote Procedure Call (RPC). In the architecture
diagram, this interface is represented as a Python library called "rpc.py." This li-
brary should encompass all the necessary functions for seamless collaboration with
the firmware. It serves as a critical bridge in the development process, ensuring that
high-level AI developers working with languages like Python do not need to possess
specific knowledge about the underlying hardware or the intricacies of firmware
operations. Both the "rpc.py" library and the corresponding "rpc.h" library at the
firmware level should provide an abstraction layer that simplifies communication
and data exchange between the low-power MCU and the AI processing unit. This
abstraction enhances development efficiency and allows for transparent information
flow between these system components.

The aforementioned software elements set the basis for the development of soft-
ware tailored to the proposed wildlife monitoring system. These tools and com-
ponents provide the necessary infrastructure to implement various functionalities
within the system. However, given that this is a versatile device designed for de-
ployment across different field applications, the inclusion of a user interface (UI) for
configuration purposes is critical. This UI can serve a dual purpose, benefiting not
only end-users but also system engineers, because it facilitates the configuration of
specific operational parameters, allowing the system to be easily adapted for differ-
ent applications and deployment scenarios.

3.2 Firmware design

The firmware is developed in C++, a common choice for modern microcontroller
architectures. Although the Arduino framework is employed, it is not the primary
development environment; rather, it is utilized to leverage the bootloader and core
libraries. This approach allows the system to take advantage of the extensive com-
patibility offered by the Arduino framework with a wide array of available libraries
for sensors, network communication modules, and other components. However,
it does not restrict the system to the more basic features often associated with the
Arduino IDE. Instead, the PlatformIO IDE [36] serves as the primary development
platform. PlatformIO provides advanced features such as debugging, unit testing,
and static code analysis, enhancing the firmware development process. Internally,
PlatformIO utilizes the GNU Arm Embedded Toolchain as the code compiler for the
SAMD51 microcontroller and other tools like the Basic Open Source SAM-BA Ap-
plication (BOSSA) for uploading binary files to the MCU.

The firmware code comprises a central main.cpp file that defines the fundamen-
tal structure and operation of the device. In addition to this core file, the code in-
cludes multiple specific modules, each responsible for managing different interfaces

36 Chapter 3. Software Development

and functions within the system. This primary file manages a finite state machine
that transitions through various operation modes. These modes encompass data ac-
quisition, processing, network communication, and sleep mode. The flow between
these modes is determined by a set of flags and parameters, ensuring the device
functions efficiently. Figure 3.2 illustrates this state machine.

FIGURE 3.2: State machine performed in the main firmware process.

Setup The code in this section is executed only once at the start of device opera-
tion. It initializes all the microcontroller interfaces required for the proper function-
ing of connected hardware components. These interfaces include those for the SD
card, sensor interfaces, internal RTC, timers, and network communication interfaces.
Configuration is based on predefined parameters specific to the device’s operation.

Sensor Acquisition During this mode, each sensor interface or data input source
connected to the system is individually initialized and instructed to acquire raw data
through their respective interfaces. The MCU then decodes and pre-processes these
data before storing them in the micro SD card in a structured format.

Processing In the processing mode, raw sensor data are transformed into valu-
able information. The processing can be executed solely by the MCU, leveraging
its low-power capabilities, or in collaboration with the AI processing unit. In some
cases, initial filtering and preprocessing are carried out by the MCU, followed by
more sophisticated processing by the dedicated AI unit. Further details on how this
coordination between both units occurs will be explained later.

Communication In the communication mode, the information available for report-
ing is transmitted via the selected network communication module to designated
cloud servers responsible for data storage and visualization. It includes configura-
tion routines of the modules and the use of network communication protocols such
as HTTP or MQTT.

The firmware’s operation varies depending on the state of different flags, allow-
ing for a wide range of device behaviors to suit various applications. The key flags
and their corresponding functions are:

3.2. Firmware design 37

• proc (Processing): This flag determines whether data processing is performed.
When set, the firmware will engage in processing activities.

• com (Communication): The communication flag controls the execution of data
communication. If enabled, the firmware will initiate communication tasks.

• contMode (Continuous Mode): When this flag is set, the device operates con-
tinuously without entering the sleep mode. There is no wait time between the
different operational modes.

These flags provide flexibility and configurability to adapt the device’s behavior
based on specific application requirements. For instance, a conventional data log-
ger may loop between acquisition and sleep states, while a connected data logger
includes the communication state between them. In contrast, a device with full ca-
pabilities will complete the entire loop of acquisition, processing, communication,
and sleep modes as determined by the flag settings.

The settings of these flags are controlled by independent RTC alarms, each of
which is configured with the desired time frequency for acquisition, processing, and
communication. When configured, these RTC alarms trigger an interruption in the
MCU, causing it to exit the sleep mode and set the corresponding flag to 1. This
approach allows for complete configurability in terms of timing within the different
operational states. For example, a device could be collecting data every 10 minutes,
processing data on an hourly basis, and transmitting results twice a day.

The RTC alarms can be changed at runtime, providing the system with dynamic
adaptability. This capability allows a self-powered device to monitor its battery level
and switch between different modes of operation based on the available power ca-
pacity. When the battery level is low, the system can reduce the frequency of pro-
cessing and communication to lower the average power consumption, thus extend-
ing its runtime. Conversely, when the battery level is high, the device can increase
the frequency of processing and communication to take advantage of the available
power resources. This dynamic adjustment of operational modes based on real-time
battery status is a smart and efficient approach to power management, particularly
for self-powered devices equipped with solar panels. It optimizes power utilization
while ensuring continuous functionality under varying conditions.

In certain applications, data acquisition may be initiated by an external event,
such as the detection of animal movement. In such cases, an additional interrupt can
be configured to trigger the system’s exit from sleep mode and initiate an operation.
Unlike the RTC-based interruptions, which are time-driven, these external sensor-
triggered interruptions are event-driven and are generated in response to specific
conditions detected by external sensors. This allows the system to respond to real-
time events or stimuli, making it suitable for a wide range of monitoring and data
collection scenarios.

The software code is organized into different modules, each responsible for a
specific aspect of the device’s operation. These modules provide functions to per-
form various tasks within their respective areas. Here is an overview of the code
modules and their functionalities:

38 Chapter 3. Software Development

sensors.cpp: This module handles the initialization of sensors connected to the
system and collects raw data from these sensors. It serves as the interface between
the microcontroller and the various sensors, facilitating data acquisition.

time.cpp: Functions related to real-time clock (RTC) configuration and alarm
setup are found in this module. It enables the device to manage time and sched-
ule operations based on the configured alarm triggers.

sd-utils.cpp: The SD card utility module offers functions to simplify the initial-
ization of the SD card and to write and read information in a structured manner.

communication.cpp: This module deals with the configuration of transceiver
modules and provides functions for establishing connections with cloud servers to
transmit data collected by the device. It manages the communication aspect of the
system.

rpc.cpp: This module is used to establish communication between the MCU and
the AI processing module through Remote Procedure Call (RPC).

ota.cpp: Over-the-air (OTA) updates are handled in this module. It allows for
firmware updates without the need for physical access to the device, ensuring that
the device can be kept up to date.

logs.cpp: The logging module is responsible for recording log messages related
to the device’s operation. These logs can be valuable for debugging and monitoring
the device’s performance during deployments.

config.h: This header file contains configuration parameters, such as those that
determine the frequencies of different operational states.

By structuring the code into modules, the software architecture becomes modu-
lar and maintainable, allowing for efficient development, testing, and debugging of
the system. Each module focuses on a specific aspect of the device’s functionality,
making it easier to manage and extend the software as needed. For reference, the
code for most of the modules described herein is available in Appendix C, which
provides a comprehensive overview of the codebase.

3.3 Remote Procedure Call (RPC) Service

Within the embedded software layer, the crucial component responsible for enabling
seamless interactions between the firmware and the AI processing unit is the Remote
Procedure Call Service.

This service is intended to be initiated automatically by the Linux OS at the sys-
tem’s startup and consistently run in the background, regardless of other processes
or configurations. It acts as a mediator for communication between the MCU unit
and the AI processing unit, with the MCU typically functioning as the master and
the AI processing unit as the slave. In this typical operation, RPC commands are dis-
patched from the MCU to the AI processing unit, which then responds accordingly.

3.3. Remote Procedure Call (RPC) Service 39

FIGURE 3.3: Block diagram representing the RPC interactions be-
tween the MCU and AI processing unit.

Figure 3.3 provides a breakdown of the interactions between these units through
the RPC service, specifying the necessary commands and responses when the de-
vice undergoes an AI inference process in the AI processing unit. These interactions
include:

• Power On Command: Initiates the AI processing unit.

• Allow SD Storage Access Command: Authorizes access to the shared SD stor-
age.

• Processing Command: Triggers the AI inference process.

• Check Processing Status Command: Monitors the status of the inference pro-
cess.

• Power Off Command: Shuts down the AI processing unit.

Note that when the AI processing unit is engaged in the inference process, the
MCU unit remains unblocked and can continue its normal data acquisition loop in

40 Chapter 3. Software Development

parallel. This is achieved by storing data from the shared SD card in the internal
memory of the AI processing unit. The only time the MCU unit is momentarily
blocked is during the transfer of substantial data to the internal memory of the AI
unit. To mitigate this, data can be divided into manageable blocks, ensuring that the
MCU unit is not blocked for an extended period.

41

Chapter 4

Critical Analysis and Future
Directions

4.1 Critical Analysis

The development process of a complex embedded system, such as the proposed
wildlife monitoring device, is inherently multifaceted and spans numerous domains.
While this Master’s thesis mainly lays the groundwork for the architecture, hard-
ware design, and basic firmware, it is important to acknowledge that the remaining
steps required to realize a fully functional device of this nature will demand sig-
nificant effort and time. These steps encompass a spectrum of distinct areas of de-
velopment needed to deploy a device in the field, including hardware engineering,
firmware development, software design, and product development. The work pre-
sented in this Master’s thesis can be viewed as the initial foundational steps in this
comprehensive development process.

Taking the aforementioned challenges into consideration, we are aware that this
Master’s thesis does not include experimental testing or results of the system’s op-
erational performance. The primary reason for this omission is the time constraints
associated with the extensive process of manufacturing the physical device, which,
regrettably, fell beyond the scope of this thesis. However, it is crucial to highlight
that prior experiences in the SUMHAL project did involve the creation and field
testing of a system with comparable, though more modest, functionalities. The in-
sights and expertise gained from these earlier endeavors serve as a robust base for
the present development efforts.

Owing to the absence of field deployment, a comprehensive evaluation of the
performance of the wildlife monitoring system in real-world scenarios remains un-
explored. This highlights the need for several future tasks.

4.2 Future Directions

Recognizing the extensive and varied nature of embedded system development,
future directions are proposed for the evolution and realization of the proposed
wildlife monitoring system.

4.2.1 Test Plan

A thorough test plan should encompass various aspects, including:

42 Chapter 4. Critical Analysis and Future Directions

• Electrical Testing: In particular, testing of the power management unit will be
conducted to validate its efficiency and reliability. This will involve assessing
the unit’s ability to regulate power sources, charge the battery, and supply
power to different components of the system. Efficiency and consistency will
be key evaluation criteria.

• Functional Testing: Functional testing will focus on the different interfaces of
the system. The primary objective is to ensure seamless integration with the
firmware and hardware-software interface. This testing phase will validate
the proper operation of sensors, data acquisition, storage, and communication
interfaces. It will also include evaluations of sensor accuracy, data integrity,
and data transmission reliability.

• Hardware-Software Integration: Rigorous hardware-software integration tests
will be conducted to assess compatibility and data flow between the hardware
components and the AI processing unit. This phase aims to confirm that the
AI unit can effectively process the data collected by the firmware and that data
are transmitted accurately. This testing will address compatibility, data trans-
fer rates, and data preprocessing.

4.2.2 Characterization

The process of characterization is essential for gaining a comprehensive understand-
ing of the wildlife monitoring system and creating a detailed specifications datasheet.

• Power Consumption Characterization: Measurements of its power consump-
tion in various operating modes will be carried out. Specialized laboratory
instruments will be employed to provide accurate and reliable data.

• Performance Characterization: An important aspect of characterization in-
volves assessing performance metrics, particularly in terms of processing ef-
ficiency. This entails evaluating the system’s computational capabilities and
its ability to process data in a timely and efficient manner. The results of per-
formance characterization will inform the specifications related to processing
capacity, speed, and performance under different workloads.

• Comparative Analysis: A comparative study will be conducted to assess the
power consumption and performance metrics of the wildlife monitoring sys-
tem when using AI models. This comparison will include reference to AI mod-
els previously tested at [17], providing valuable insights into potential power
efficiency improvements.

4.2.3 Field testing and validation

Field testing is a critical phase in the development process. It involves deploying the
wildlife monitoring system in real-world environments to evaluate its performance
under actual operating conditions. Field testing serves multiple purposes, including:

• Performance Validation: This is particularly important to ensure that the sys-
tem functions as intended and can withstand the challenges and variations
encountered in natural environments.

4.2. Future Directions 43

• Environmental Adaptability: Real-world deployment allows for assessing the
system’s adaptability to diverse environmental conditions. It is essential to
confirm that the device can operate reliably across a range of temperatures,
humidity levels, and other environmental factors commonly found in wildlife
habitats. The device’s internal temperature and humidity sensor will facilitate
this analysis.

• Durability and Reliability: The wildlife monitoring system must demonstrate
durability and reliability during field testing. It should withstand exposure to
environmental elements, potential physical impacts, and extended operation
periods. This phase helps identify any weaknesses and areas for improvement
in the system’s design and materials.

• Data Validation: Field testing also serves to validate the quality and integrity
of the data collected by the system. It allows for comparison of the data gen-
erated by the device with real-world observations thanks to the validation of
biologists, helping to ensure the accuracy and reliability of the collected infor-
mation.

45

Chapter 5

Conclusions

Building on the insights gained during the development of a basic system within
the SUMHAL project, which included extensive field deployment and collabora-
tive data validation alongside biologists, this Master’s thesis undertook a mission
to address a series of objectives in the creation of an innovative wildlife monitoring
system. These objectives have been methodically explored, setting the basis for a
versatile, energy-efficient, and AI-enhanced embedded system.

Energy efficiency has been at the forefront of the design process. The thesis rec-
ognized the critical role of low-power operation in extending the field deployment
capabilities of wildlife monitoring systems. By carefully selecting components and
implementing advanced power management techniques, the system has been en-
gineered to minimize energy consumption and reduce maintenance requirements.
The architecture, power management unit, and choice of components, such as LiPo
battery charger and efficient switch-mode power supplies controllers, collectively
work to ensure efficient energy utilization, making the system capable of prolonged
autonomous operation.

The development process placed a strong emphasis on designing a hardware
framework that supports advanced AI capabilities. This framework facilitates real-
time data analysis and decision-making directly within the embedded system. Through
the seamless integration of AI processing units, the system is capable of executing
complex video and audio analytics, recognizing patterns, and providing valuable
insights into wildlife and habitat conditions. The versatility of the device is further
enhanced by the ability to enable or disable the AI processing unit as needed, cou-
pled with the low-power MCU’s capacity for basic AI implementations. This adapt-
ability makes the device cost-effective and suitable for a wide range of applications.

The system has been designed to seamlessly integrate data from a diverse array
of sources, encompassing visual, acoustic, and environmental inputs. This multi-
modal data integration capability empowers the system to efficiently collect, process,
and combine various data streams, leveraging a variety of sensors that comply with
the Grove standard and other provided interfaces, including I2S microphones, SPI
cameras, and CSI advanced image sensors. With its versatile architecture, the system
can be effectively employed across a wide spectrum of applications in conservation
technology, including smart camera trapping, passive acoustic monitoring, and en-
vironmental or individual activity detection.

Given the varying network environments in which the proposed system can op-
erate, communication network modularity has been another major design aspect.
The system has been engineered to offer adaptability in communication networks

46 Chapter 5. Conclusions

through the MikroBus standard, making it easily configurable to meet the require-
ments of different projects. This modularity enables a seamless connection to a va-
riety of network environments, ensuring that the system can operate efficiently in
diverse contexts.

The successful integration of hardware and software components is a key el-
ement in achieving a highly functional device and streamlining the development
process, facilitating configuration for future projects. The proposed software archi-
tecture establishes a symbiotic relationship between hardware and software, guar-
anteeing smooth data flow and enabling efficient communication and processing
between various system components, from the low-level firmware to the embedded
software running on the Linux OS, through the RPC method. This integration not
only enhances system performance but also paves the way for future advancements
and adaptability.

Finally, recognizing the several steps that remain to be completed outside of this
Master’s thesis due to time restrictions, a roadmap has been devised for the next
phases of development. This roadmap outlines the necessary tasks and milestones
to progress toward the ultimate goal of a fully operational wildlife monitoring sys-
tem.

In summary, considering the research group’s focused efforts on the develop-
ment of smart conservation technologies, encompassing novel AI algorithm design
and implementation, new sensor technology designs, and efficient IoT communica-
tion flows, the proposed wildlife monitoring system is anticipated to play a funda-
mental role in future studies. It will become the centerpiece for conducting cutting-
edge research in the field based on advanced technology. This will enhance the
group’s capacity to make more significant contributions to the critical issue of mas-
sive biodiversity loss.

47

Appendix A

Microcontroller Pin Allocation

Pin Allocation

Page 1

GPIO SERCOM PAD NAME PURPOSE ALT NAME ALT PURPOSE
PA00 Oscillator Oscillator
PA01 Oscillator Oscillator
PA02 BAT_LVL BATTERY LEVEL
PA03 Aref
PA04 A0

CON_A1
PA05 A1
PA06 A2

CON_A2
PA07 A3
PA08 SERCOM0 PAD[0] TXD_UART1

COM_CM4
PA09 SERCOM0 PAD[1] RXD_UART1
PA10 CS_SPI0_CAM SPI CAMERA
PA11 MIKRO_INT

MIKROBUS

PA12 SERCOM2 PAD[0] MOSI_SPI0 MOSI_SPI0
SPI CAMERAPA13 SERCOM2 PAD[1] SCK_SPI0 SCK_SPI0

PA14 SERCOM2 PAD[2] MISO_SPI0 MISO_SPI0
PA15 SERCOM2 PAD[3] CS_SPI0
PA16 SERCOM1 PAD[0] TXD_UART0
PA17 SERCOM1 PAD[1] RXD_UART0
PA18 D2

CON_D2
PA19 D3
PA20 I2S_FS

I2S MICROPHONEPA21 I2S_SDO
PA22 I2S_SDI
PA23 BUT_CONF1
PA24 USB_D-

USB
PA25 USB_D+
PA27 BUT_CONF2
PA30 SWDCLK

PROGRAMMER
PA31 SWDIO
PB00 FALL_INT
PB01 MOV_INT
PB02 SERCOM_ALTPAD[0] SDA_I2C0

MIKROBUS

SDA_I2C0
PB03 SERCOM_ALTPAD[1] SCL_I2C0 SCL_I2C0
PB04 RST
PB05 PWM
PB06 LOAD1_ON1
PB07 LOAD1_ON2
PB08 LOAD2_ON1
PB09 LOAD2_ON2
PB10 BUT_CONF3
PB11 SD_MUX_SEL

SD CARD

FLASH_CS
PB12 SERCOM4 PAD[0] SPI1_MISO
PB13 SERCOM4 PAD[1] SP1_SCK
PB14 SERCOM4 PAD[2] SP1_CS
PB15 SERCOM4 PAD[3] SP1_MOSI
PB16 I2S_SCK

I2S MICROPHONE
PB17 I2S_MCK
PB22 CHG_STAT
PB23 PGOOD
PB30 SERCOM7 PAD[0] D0

CON_D2
SWO

PB31 SERCOM7 PAD[1] D1

ACCELEROMETE
R INTERRUPT.

INTERNAL
SENSORS

LOAD SWITCHED
CONTROLL

CHARGER
STATUS

49

Appendix B

Schematics

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2023-07-14
KiCad E.D.A. kicad 7.0.7

Rev: v01Size: A4
Id: 1/7

Title: Wildlife Monitoring System

File: biodaimod.kicad_sch
Sheet: /

Author: þÿ�V�í�c�t�o�rþÿ�G�a�l�v�í�nCoronil

Microcontroller

Archivo: microcontroller.kicad_sch

Power Circuit

Archivo: power.kicad_sch

Communication Module

Archivo: mikrobus-module.kicad_sch

internal-sensors

Archivo: internal-sensors.kicad_sch

CM4 GPIO

Archivo: cm4-gpio.kicad_sch

CM4 High Speed

Archivo: cm4-high-speed.kicad_sch

LOW-POWER MCU MODULAR BOARD
AI PROCESSING UNIT (CM4)

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2023-07-14
KiCad E.D.A. kicad 7.0.7

Rev: v01Size: A4
Id: 3/7

Title: Wildlife Monitoring System

File: cm4-gpio.kicad_sch
Sheet: /CM4 GPIO/

Author: þÿ�V�í�c�t�o�rþÿ�G�a�l�v�í�nCoronil

GPIO

600mA Max

600mA Max

NB SD signals are only available
on modules without eMMC

GND
1

Ethernet_Pair0_N
10

nEXTRST
100

Ethernet_Pair2_P
11

Ethernet_Pair0_P
12

GND
13

GND
14

Ethernet_nLED3(3.3v)
15

Ethernet_SYNC_IN(1.8v)
16

Ethernet_nLED2(3.3v)
17

Ethernet_SYNC_OUT(1.8v)
18

Ethernet_nLED1(3.3v)
19

GND
2

EEPROM_nWP
20

PI_nLED_Activity
21

GND
22

GND
23

GPIO26
24

GPIO21
25

GPIO19
26

GPIO20
27

GPIO13
28

GPIO16
29

Ethernet_Pair3_P
3

GPIO6
30

GPIO12
31

GND
32

GND
33

GPIO5
34

ID_SC
35

ID_SD
36

GPIO7
37

GPIO11
38

GPIO8
39

Ethernet_Pair1_P
4

GPIO9
40

GPIO25
41

GND
42

GND
43

GPIO10
44

GPIO24
45

GPIO22
46

GPIO23
47

GPIO27
48

GPIO18
49

Ethernet_Pair3_N
5

GPIO17
50

GPIO15
51

GND
52

GND
53

GPIO4
54

GPIO14
55

GPIO3
56

SD_CLK
57

GPIO2
58

GND
59

Ethernet_Pair1_N
6

GND
60

SD_DAT3
61

SD_CMD
62

SD_DAT0
63

SD_DAT5
64

GND
65

GND
66

SD_DAT1
67

SD_DAT4
68

SD_DAT2
69

GND
7

SD_DAT7
70

GND
71

SD_DAT6
72

SD_VDD_Override
73

GND
74

SD_PWR_ON
75

Reserved
76

+5v_(Input)
77

GPIO_VREF(1.8v/3.3v_Input)
78

+5v_(Input)
79

GND
8

SCL0
80

+5v_(Input)
81

SDA0
82

+5v_(Input)
83

+3.3v_(Output)
84

+5v_(Input)
85

+3.3v_(Output)
86

+5v_(Input)
87

+1.8v_(Output)
88

WiFi_nDisable
89

Ethernet_Pair2_N
9

+1.8v_(Output)
90

BT_nDisable
91

RUN_PG
92

nRPIBOOT
93

AnalogIP0
94

nPI_LED_PWR
95

AnalogIP1
96

Camera_GPIO
97

GND
98

Global_EN
99

Module1A
ComputeModule4-CM4

Hirose
2x DF40C-100DS-0.4V

GND GND

CM4_SCL0
+5V

CM4_RX

CM4_SD_CMD
CM4_SD_DAT0

CM4_TX

+1.8V

+3.3V

CM4_SD_DAT1

CM4_SD_DAT2

CM4_SDA0

CM4_SD_DAT3
CM4_SD_CLK

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2023-07-14
KiCad E.D.A. kicad 7.0.7

Rev: v01Size: A4
Id: 3/7

Title: Wildlife Monitoring System

File: cm4-high-speed.kicad_sch
Sheet: /CM4 High Speed/

Author: þÿ�V�í�c�t�o�rþÿ�G�a�l�v�í�nCoronil

1

10
11
12
13
14
15

2
3
4
5
6
7
8
9

J7
Conn_01x15_Socket

High Speed Serial

USB_OTG_ID
101

PCIe_CLK_nREQ
102

USB2_N
103

Reserved
104

USB2_P
105

Reserved
106

GND
107

GND
108

PCIe_nRST
109

PCIe_CLK_P
110

VDAC_COMP
111

PCIe_CLK_N
112

GND
113

GND
114

CAM1_D0_N
115

PCIe_RX_P
116

CAM1_D0_P
117

PCIe_RX_N
118

GND
119

GND
120

CAM1_D1_N
121

PCIe_TX_P
122

CAM1_D1_P
123

PCIe_TX_N
124

GND
125

GND
126

CAM1_C_N
127

CAM0_D0_N
128

CAM1_C_P
129

CAM0_D0_P
130

GND
131

GND
132

CAM1_D2_N
133

CAM0_D1_N
134

CAM1_D2_P
135

CAM0_D1_P
136

GND
137

GND
138

CAM1_D3_N
139

CAM0_C_N
140

CAM1_D3_P
141

CAM0_C_P
142

HDMI1_HOTPLUG
143

GND
144

HDMI1_SDA
145

HDMI1_TX2_P
146

HDMI1_SCL
147

HDMI1_TX2_N
148

HDMI1_CEC
149

GND
150

HDMI0_CEC
151

HDMI1_TX1_P
152

HDMI0_HOTPLUG
153

HDMI1_TX1_N
154

GND
155

GND
156

DSI0_D0_N
157

HDMI1_TX0_P
158

DSI0_D0_P
159

HDMI1_TX0_N
160

GND
161

GND
162

DSI0_D1_N
163

HDMI1_CLK_P
164

DSI0_D1_P
165

HDMI1_CLK_N
166

GND
167

GND
168

DSI0_C_N
169

HDMI0_TX2_P
170

DSI0_C_P
171

HDMI0_TX2_N
172

GND
173

GND
174

DSI1_D0_N
175

HDMI0_TX1_P
176

DSI1_D0_P
177

HDMI0_TX1_N
178

GND
179

GND
180

DSI1_D1_N
181

HDMI0_TX0_P
182

DSI1_D1_P
183

HDMI0_TX0_N
184

GND
185

GND
186

DSI1_C_N
187

HDMI0_CLK_P
188

DSI1_C_P
189

HDMI0_CLK_N
190

GND
191

GND
192

DSI1_D2_N
193

DSI1_D3_N
194

DSI1_D2_P
195

DSI1_D3_P
196

GND
197

GND
198

HDMI0_SDA
199

HDMI0_SCL
200

Module1B
ComputeModule4-CM4

Hirose
2x DF40C-100DS-0.4V

GNDGND

GND

3V3
CM4_SDA0
CM4_SCL0

CAM_GPIO

CSI CAMERA CONNECTOR

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2023-07-14
KiCad E.D.A. kicad 7.0.7

Rev:Size: A4
Id: 4/7

Title: Wildlife Monitoring System

File: power.kicad_sch
Sheet: /Power Circuit/

Author: þÿ�V�í�c�t�o�rþÿ�G�a�l�v�í�nCoronil

TS
1

OUT
10

ILIM
12

IN
13

TMR
14

ITERM
15

ISET
16

BAT
2

~{CE}
4

EN2
5

EN1
6

~{PGOOD}
7

V
S

S
8

~{CHG}
9

U1
BQ24074RGT

C7
22u

C5
22u

C4
22u

GND

C3
22u

BST
1

VOUT
2

SW
3

GND
4

FB
5

VDD
6

EN
7

VIN
8

IC1
MP3437GJ-P

C1
0.1u

GND

R2
1k

GND

L1
L

C8
1uF

GND
R3 1k

1
2

J3
Conn_01x02

GND

GND

1
2

JP1
1A charge

R4 1k

R81k GND

D2
D_Schottky

G
N

D
A

1

VBUS
A4

CC1
A5

D+
A6

D-
A7

SBU1
A8

CC2
B5

D+
B6

D-
B7

SBU2
B8

S
H

IE
LD

S
1

J2
USB_C_Receptacle_USB2.0

GND

1

2

J1
Jack-DC

GND

GND

D1
D_Schottky

D3
RED

D4
GREEN

GND

R11
100k

R17
100k

R7
590

R6
590

GND

C2
4.7u

GND

C6
22u

R
5

1k

GND

GND

R10
154k

GND

R9
620k

GND

Vin
1

G
N

D
2

EN
3

FB
4

SW
5

U5
LM3670MF

C9
2.2uF

GND
GND

VIN1_1
1

CT2
10

GND
11

CT1
12

VOUT1_1
13

VOUT1_2
14

E
P

15

VIN1_2
2

ON1
3

VBIAS
4

ON2
5

VIN2_1
6

VIN2_2
7

VOUT2_1
8

VOUT2_2
9

PS2
TPS22976DPUR

C19 1n

GND

GND

C20

1n

GND

L4
L

C16
1u

C17
1u

GND

C15
1u

GND

C26

1n

GND

GND

C24
1u

C23
1u

GND

C25 1n

GND

R1
590

GND

C21
1u

VIN1_1
1

CT2
10

GND
11

CT1
12

VOUT1_1
13

VOUT1_2
14

E
P

15

VIN1_2
2

ON1
3

VBIAS
4

ON2
5

VIN2_1
6

VIN2_2
7

VOUT2_1
8

VOUT2_2
9

PS1
TPS22976DPUR

C18
1u

C22
1u

LOAD1_ON2

3V3_COM

VBUS

3V3

3V3_GROVE

VBAT

V
B

U
S

USB_D+

5V

P
G

O
O

D

C
H

G
_S

T
A

T

VBAT

5V

LOAD2_ON1

5V_CM4

USB_D-

VBUS

BAT_LVL

VBAT

5V_GROVE

3V3
5V

LOAD2_ON2

LOAD1_ON1

CHR_OUT

CHR_OUTCHR_OUT

CHR_OUT

CHR_OUT

CHR_OUT

LDO REGULATOR 3V3

LOAD SWITCHES

Solar / DC

DC/DC BOOST 5V

Li-Ion Battery

CHARGING MANAGER

USB-C

POWER INPUTS

GNDR81k

C21
1u

PS1
TPS22976DPUR

VIN1_1
1

CT2
10

GND
11

CT1
12

VOUT1_1
13

VOUT1_2
14

E
P

15

VIN1_2
2

ON1
3

VBIAS
4

ON2
5

VIN2_1
6

VIN2_2
7

VOUT2_1
8

VOUT2_2
9

C22
1u

C18
1u

PS2
TPS22976DPUR

VIN1_1
1

CT2
10

GND
11

CT1
12

VOUT1_1
13

VOUT1_2
14

E
P

15

VIN1_2
2

ON1
3

VBIAS
4

ON2
5

VIN2_1
6

VIN2_2
7

VOUT2_1
8

VOUT2_2
9

C16
1u

C15
1u

C23
1u

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2023-07-14
KiCad E.D.A. kicad 7.0.7

Rev:Size: A4
Id: 5/7

Title: Wildlife Monitoring System

File: microcontroller.kicad_sch
Sheet: /Microcontroller/

Author: þÿ�V�í�c�t�o�rþÿ�G�a�l�v�í�nCoronil

L2
10uH

GND

GND

C
28

10
0n

C
27

10
u

GND

1
1

2
2

3
3

4
4

CON_A1
110990030

L3
10uH

C30
10u

PB03
64

PA00
1

PB07
10

PB08
11

PB09
12

PA04
13

PA05
14

PA06
15

PA07
16

PA08
17

PA09
18

PA10
19

PA01
2

PA11
20

V
D

D
IO

B
21

G
N

D
22

PB10
23

PB11
24

PB12
25

PB13
26

PB14
27

PB15
28

PA12
29

PA02
3

PA13
30

PA14
31

PA15
32

V
D

D
IO

34

PA16
35

PA17
36

PA18
37

PA19
38

PB16
39

PA03
4

PB17
40

PA20
41

PA21
42

PA22
43

PA23
44

PA24
45

PA25
46

V
D

D
IO

48

PB22
49

PB04
5

PB23
50

PA27
51

~{RESET}
52

V
D

D
C

O
R

E
53

V
S

W
55

V
D

D
IO

56

PA30
57

PA31
58

PB30
59

PB05
6

PB31
60

PB00
61

PB01
62

PB02
63

G
N

D
A

N
A

7

V
D

D
A

N
A

8

PB06
9

U3
ATSAMD51J20A-M

GND

COM1
1

NO2
10

IN2
11

NO3
12

NO6
13

NO4
14

NO5
15

NC5
16

~{EN}
17

NC4
18

NC6
19

G
N

D
2

NC3
20

IN1
21

NC2
22

NC1
23

COM2
3

COM3
4

V
C

C
5

COM4
6

COM5
7

NO1
8

COM6
9

U2
TS3A27518ERTW

C
14

10
u

GND

C31
10u

1
1

2
2

3
3

4
4

CON_I2C1
110990030

1
1

2
2

3
3

4
4

CON_A2
110990030

GND

GND

GND

C
12

0.
1u

C
13

1u

1
1

2
2

3
3

4
4

CON_D1
Grove connector

1
2
3
4
5
6
7
8

J6
SPI Camera

GND

GND

GND

1
2
3
4
5
6
7

J5
I2S Microphone

1
1

2
2

3
3

4
4

CON_D2
Grove Connector

Y1
32.768kHz

R12
R

GND

C
32

0.
1u

GND

GND

C10
22p

GNDGND

GND

1
2 3

4

SW2
SW_MEC_5E

C
29

1u

DAT2
1

DET_A
10

SHIELD
11

DAT3/CD
2

CMD
3

VDD
4

CLK
5

VSS
6

DAT0
7

DAT1
8

DET_B
9

J4
Micro_SD_Card_Det2

GND

C11
22p

CS_SPI0_CAM

A3

TXD_UART0

3V3_GROVE

I2S_FS

A2

SDA_I2C0
SCL_I2C0

CM4_TX

D2

MOSI_SPI0

BAT_LVL

MISO_SPI0

I2S_MCK

CM4_RX

CS_SPI0

MIKRO_INT

RXD_UART0

A1

SCK_SPI0

AREF
A0

SD_SCK

I2S_MCK

D1

PGOOD
CHG_STAT

SD_SEL

SD_CS

I2S_SCK

SD_MISO

D0

SD_MOSI

LOAD2_ON2

RST

LOAD1_ON1
PWM

LOAD2_ON1
LOAD1_ON2

BUT_CONF3

3V3

A2
5V_GROVE

3V3_GROVE

D1
D0

D3

3V3_GROVE
D2

A3

A1

3V3_GROVE
A0

3V3

FALL_INT

SCL_I2C0

MOV_INT

SDA_I2C0

SWDIO

SD_CS

I2S_SDI
I2S_SDO

I2S_FS
D3

BUT_CONF2

BUT_CONF1

USB_D+

SWDCLK

3V3_GROVE

3V3_GROVE

3V
3

SDA_I2C0

USB_D-

MISO_SPI0
MOSI_SPI0

CS_SPI0_CAM

SCK_SPI0

CM4_SD_DAT0

CM4_SD_DAT3

I2S_SDO

CM4_SD_DAT1

CM4_SD_CLK

3V3

SCL_I2C0

I2S_SDI

CM4_SD_DAT2

CM4_SD_CMD

SD_SEL

3V3SD_SCK

SD_MISO

I2S_SCK

SD_MOSI

I2S MICROPHONE CONNECTOR

MICRO SD SHARED STORAGE

EXTERNAL INTERFACES

SPI CAMERA CONNECTOR

MCU (SAMD51)

G
R

O
V

E
C

O
N

N
E

C
T

O
R

S

U3
ATSAMD51J20A-M

PB03
64

PA00
1

PB07
10

PB08
11

PB09
12

PA04
13

PA05
14

PA06
15

PA07
16

PA08
17

PA09
18

PA10
19

PA01
2

PA11
20

V
D

D
IO

B
21

G
N

D
22

PB10
23

PB11
24

PB12
25

PB13
26

PB14
27

PB15
28

PA12
29

PA02
3

PA13
30

PA14
31

PA15
32

V
D

D
IO

34

PA16
35

PA17
36

PA18
37

PA19
38

PB16
39

PA03
4

PB17
40

PA20
41

PA21
42

PA22
43

PA23
44

PA24
45

PA25
46

V
D

D
IO

48

PB22
49

PB04
5

PB23
50

PA27
51

~{RESET}
52

V
D

D
C

O
R

E
53

V
S

W
55

V
D

D
IO

56

PA30
57

PA31
58

PB30
59

PB05
6

PB31
60

PB00
61

PB01
62

PB02
63

G
N

D
A

N
A

7

V
D

D
A

N
A

8

PB06
9

C11
22p

C10
22p

Y1
32.768kHz

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2023-07-14
KiCad E.D.A. kicad 7.0.7

Rev:Size: A4
Id: 6/7

Title: Wildlife Monitoring System

File: mikrobus-module.kicad_sch
Sheet: /Communication Module/

Author: þÿ�V�í�c�t�o�rþÿ�G�a�l�v�í�nCoronil

GNDGND

AN

5V

SDA

SCL

TX

RX

INT

PWM

RST

CS

SCK

MISO

MOSI

3V3

GND1 GND2

CON1
MIKROBUS_HOST_CONN

3V3_COM

SDA_I2C0

SCL_I2C0MISO_SPI0

SCK_SPI0

CS_SPI0

RST

MOSI_SPI0

TXD_UART0

PWM

MIKRO_INT

RXD_UART0

MIKROBUS CONNECTOR

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2023-07-14
KiCad E.D.A. kicad 7.0.7

Rev:Size: A4
Id: 7/7

Title: Wildlife Monitoring System

File: internal-sensors.kicad_sch
Sheet: /internal-sensors/

Author: þÿ�V�í�c�t�o�rþÿ�G�a�l�v�í�nCoronil

R14
4.7K

GND

R13
4.7K

VDDIO
1

RES
10

INT1
11

GND_2
12

ADC3
13

V
D

D
14

A
D

C
2

15
A

D
C

1
16

NC_1
2

NC_2
3

SCL/SPC
4

GND_1
5

S
D

A
/S

D
I/S

D
O

6

S
D

O
/S

A
0

7

C
S

8

INT2
9

AC1
LIS3DHTR

GND

C33
100nF

R15
4.7K

GND

R16
4.7K

GND

SDA
1

SCL
2

V
D

D
3

V
S

S
4

U4
SHT4x

3V
3

3V
3

3V
3

SCL_I2C0

3V
3

FALL_INT

MOV_INT
SCL_I2C0

SDA_I2C0

SDA_I2C0

3V
3

3V
3

ACCELEROMETER

TEMPERATURE/HUMIDITY

R14
4.7K

AC1
LIS3DHTR

VDDIO
1

RES
10

INT1
11

GND_2
12

ADC3
13

V
D

D
14

A
D

C
2

15
A

D
C

1
16

NC_1
2

NC_2
3

SCL/SPC
4

GND_1
5

S
D

A
/S

D
I/S

D
O

6

S
D

O
/S

A
0

7

C
S

8

INT2
9

R16
4.7K

U4
SHT4x

SDA
1

SCL
2

V
D

D
3

V
S

S
4

57

Appendix C

Firmware code

C.1 Main process - main.cpp

1 #include "config.h"
2 #include "logs.h"
3 #include "communication.h"
4 #include "ota.h"
5 #include "time.h"
6 #include "rfid_acq.h"
7 #include "sd_utils.h"
8 #include "sensors.h"
9

10 uint8_t mode = 0;
11

12 extern char fechaChar [20];
13

14 const char* title = "fw";
15 const char* version = "1";
16

17 bool continuous_mode = true;
18 bool connection_status;
19 float battery_level;
20 float temperature;
21

22 void connectionStatus ();
23

24 // SD
25 String lineBackup;
26 boolean initSD = false;
27

28 void setup() {
29 delay (5000);
30

31 // ================== Serial Port setup ==================
32 Serial.begin (115200);
33 Serial.println("Start debug serial");
34

35 pinMode(A5, OUTPUT);
36

37 pinMode(A1, OUTPUT);
38 digitalWrite(A1 , HIGH);
39

40 // ================== SD setup ==================
41 initSD = initializeSD ();
42

43 // ================ Communication setup =============
44 Serial.println("Initialize Connection");
45 beginConnection ();
46 delay (1000); // give the Ethernet shield a second to initialize:

58 Appendix C. Firmware code

47

48 // ================== RTC setup ================
49 RTCsetUp ();
50

51 // ================== Logs setup ================
52 // SD initialization logs
53 SDinitLogs ();
54

55 // Ethernet initialization logs
56 EthernetInitLogs ();
57

58 // ================== Cloud Connection =============
59 TBconnection ();
60

61 // setAlarmRTC ();
62 initServo ();
63 }
64

65 void loop() {
66

67 switch (mode)
68 {
69 case SENSOR_ACQ:
70 Serial.println("____SENSOR ACQUISITION MODE____");
71 battery_level = getBatteryVoltage ();
72

73 initTempSensor ();
74 temperature = getTemperature ();
75 mode = RFID_ACQ;
76 break;
77

78 case PROCESSING:
79 Serial.println("____PROCESSING MODE____");
80 break;
81

82 case COMMUNICATION:
83 Serial.println("____COMMUNICATION MODE____");
84

85 if (! continuous_mode)
86 {
87 beginConnection ();
88 TBconnection ();
89 }
90 sendBakcupDataToTB ();
91 sendSensorDataTB("vbat", battery_level);
92 sendSensorDataTB("temp", temperature);
93 if (! continuous_mode) {
94 powerOffModule ();
95 }
96 mode = SLEEP;
97 break;
98

99 case SLEEP:
100 Serial.println("____SLEEP MODE____");
101

102 if (! continuous_mode) {
103 setAlarmRTC (0);
104 enableSleepMode ();
105 }
106 else {
107 delay (10000);
108 mode = SENSOR_ACQ;
109 }

C.2. Time module - time.cpp 59

110 break;
111

112 default:
113 break;
114 }
115 }

C.2 Time module - time.cpp

1 #include "time.h"
2 #include "communication.h"
3

4 //RTC
5 RTCZero rtc;
6 String fechaString;
7 String fechaBackup;
8 String ts_millis;
9

10 extern HttpClient httpclient;
11 int timeFromServer = 0;
12 char fechaChar [20]= "1/1/1";
13 extern uint8_t mode;
14

15 String getFormatedDate (){
16

17 fechaString = rtc.getDay ();
18 fechaString += "/";
19 fechaString += rtc.getMonth ();
20 fechaString += "/";
21 fechaString += rtc.getYear ();
22 fechaString += " ";
23 fechaString += rtc.getHours (); //UTC hour
24 fechaString += ":";
25 fechaString += rtc.getMinutes ();
26 fechaString += ":";
27 fechaString += rtc.getSeconds ();
28 return fechaString;
29 }
30

31 void RTCsetUp (){
32

33 rtc.begin ();
34 timeFromServer = getServerTime ();
35

36 rtc.setEpoch(timeFromServer);
37 }
38

39 void setAlarmRTC(uint8_t seconds) {
40 // Configure RTC alarm to upload connection status
41 //rtc.setAlarmMinutes(minutes);
42 rtc.setAlarmSeconds(seconds);
43 rtc.enableAlarm(rtc.MATCH_SS);
44 rtc.attachInterrupt(alarmMatch);
45 delay (50);
46 Serial.println("Alarm set");
47 }
48

49 void alarmMatch () {
50 Serial.println("Alarm match produced");
51 mode = SENSOR_ACQ;

60 Appendix C. Firmware code

52 }
53

54 void enableSleepMode () {
55 Serial.println("Entering sleep mode");
56 rtc.standbyMode ();
57 }

C.3 Communication module (GSM transceptor) - communi-
cation.cpp

1 #include "communication.h"
2 #include "time.h"
3 #include "logs.h"
4 #include "config.h"
5 #include "rfid_acq.h"
6 #include "sd_utils.h"
7

8 TinyGsm modem(Serial2);
9 TinyGsmClient client(modem);

10 PubSubClient mqtt(client);
11

12 ThingsBoard tb(client);
13 HttpClient httpclient = HttpClient(client , "10.15.1.217", 8080);
14

15 // GPRS credentials , if any
16 // const char apn[] = "orangeworld ";
17 const char apn[] = "airtelnet.es";
18 const char gprsUser [] = "";
19 const char gprsPass [] = "";
20

21 // MQTT parameters
22 const char* broker = "161.111.232.198"; //MQTT broker EBD
23 const char* tb_topic = "/sensor/data"; // Topic telemetries Thingsboard
24 const char* mqtt_client = "GSMdevice";
25 const char* mqtt_user = "user";
26 const char* mqtt_pass = "hS4H4JmjzAW@9x";
27

28 extern String fechaBackup;
29 extern String fechaString;
30 extern String ts_millis;
31 extern char fechaChar [20];
32 extern char mensajeLogTB_KO [35];
33 extern char mensajeLogTB_OK [35];
34 extern char mensajeLogBackupToTB [35];
35 extern char rfid_code [12];
36 extern String lineBackup;
37 extern bool connection_status;
38 char rfid_json_char [120];
39 bool subscribed = false;
40 String rfid_json_string;
41

42 bool tbDataSendCheck = true;
43 bool dataSentCheck = true;
44

45 extern RTCZero rtc;
46

47

48 void beginConnection () {
49 digitalWrite(A5 , HIGH);

C.3. Communication module (GSM transceptor) - communication.cpp 61

50 delay (1000);
51 digitalWrite(A5 , LOW);
52 delay (1500);
53 SerialAT.begin (9600);
54

55

56 Serial.println("Initializing GMS modem ...");
57

58 modem.init();
59

60 String modemInfo = modem.getModemInfo ();
61 Serial.print("Modem Info: ");
62 Serial.println(modemInfo);
63

64 if (GSM_PIN && modem.getSimStatus () != 3) {
65 Serial.println("Unlocking SIM with PIN ...");
66 modem.simUnlock(GSM_PIN);
67 }
68

69 Serial.print("Waiting for network ...");
70 if (!modem.waitForNetwork ()) {
71 Serial.println(" fail");
72 delay (10000);
73 return;
74 }
75 Serial.println(" success");
76

77 if (modem.isNetworkConnected ()) { Serial.println("Network connected")
; }

78

79 // GPRS connection parameters are usually set after network
registration

80 Serial.print(F("Connecting to "));
81 Serial.print(apn);
82 if (!modem.gprsConnect(apn , gprsUser , gprsPass)) {
83 Serial.println(" fail");
84 delay (10000);
85 return;
86 }
87 Serial.println(" success");
88

89 if (modem.isGprsConnected ()) { Serial.println("GPRS connected"); }
90

91 // MQTT Broker setup
92 mqtt.setServer(broker , 1883);
93 // mqtt.setCallback(mqttCallback); TODO: include for biderectional

communication
94 }
95

96 bool checkServerConnection () {
97

98 // Make sure we’re still registered on the network
99 if (!modem.isNetworkConnected ()) {

100 Serial.println("Network disconnected");
101 if (!modem.waitForNetwork (180000L, true)) {
102 Serial.println(" fail");
103 delay (10000);
104 return false;
105 }
106 if (modem.isNetworkConnected ()) {
107 Serial.println("Network re-connected");
108 return true;
109 }

62 Appendix C. Firmware code

110

111 // and make sure GPRS/EPS is still connected
112 if (!modem.isGprsConnected ()) {
113 Serial.println("GPRS disconnected!");
114 Serial.print(F("Connecting to "));
115 Serial.print(apn);
116 if (!modem.gprsConnect(apn , gprsUser , gprsPass)) {
117 Serial.println(" fail");
118 delay (10000);
119 return false;
120 }
121 if (modem.isGprsConnected ()) {
122 Serial.println("GPRS reconnected");
123 return true;
124 }
125 }
126 }
127 }
128

129 void sendBakcupDataToTB (){
130

131 //bool connection_status = checkServerConnection ();
132 bool connection_status = true;
133 Serial.print("Estado de la conexion: ");
134 Serial.println(connection_status);
135

136 if (connection_status == true) {
137 lineBackup = readLine("backup.csv", false , true);
138

139 while(lineBackup != "" && tbDataSendCheck == true){ // TODO:
tbDataSendCheck

140

141 Serial.println("Backup data: ");
142 Serial.println(lineBackup);
143

144 getValuesFromSDLine ();
145

146 ts_millis = rtc.getEpoch ();
147 Serial.println("TS GET EPOCH");
148 Serial.println(ts_millis);
149

150 rfidJsonFormat ();
151

152 Serial.println("Sending backup data: ");
153 writeFile("log.txt",mensajeLogBackupToTB , fechaChar);
154

155 mqtt.publish(tb_topic , rfid_json_char);
156

157 lineBackup = readLine("backup.csv", false , false);
158

159 //Once everything is sent , delete de backup file
160 if(lineBackup == ""){
161 SD.remove("backup.csv");
162 }
163

164 //if(tbDataSendCheck == false){ TO DO: Check from TB the
reception of the packages

165 //
166 //}
167 delay (3000);
168 }
169 }
170 }

C.4. Sensors module (temperature) - sensors.cpp 63

171

172 void TBconnection (){ // TODO: return bool with connection status
173

174 Serial.print("Connecting to ");
175 Serial.print(broker);
176

177 // Connect to MQTT Broker
178 boolean status = mqtt.connect(mqtt_client , mqtt_user , mqtt_pass);
179

180 if (status == false) {
181 Serial.println(" fail");
182 // return false;
183 }
184 Serial.println(" success");
185

186 mqtt.connected ();
187 }
188

189 void powerOffModule () {
190 modem.gprsDisconnect ();
191 delay (5000L);
192 if (!modem.isGprsConnected ()) {
193 Serial.println("GPRS disconnected");
194 } else {
195 Serial.println("GPRS disconnect: Failed.");
196 }
197 modem.poweroff ();
198 Serial.println("Poweroff.");
199 digitalWrite(A5 , HIGH);
200 delay (1000);
201 digitalWrite(A5 , LOW);
202 delay (1500);
203 }
204

205 void tbLoop () {
206 //tb.loop();
207 }
208

209 int getServerTime () {
210

211 DBG("Retrieving time again as a string");
212 String time = modem.getGSMDateTime(DATE_FULL);
213 DBG("Current Network Time:", time);
214

215 }

C.4 Sensors module (temperature) - sensors.cpp

1 #include "sensors.h"
2

3 OneWire oneWire(ONE_WIRE_BUS);
4 DallasTemperature sensors (& oneWire);
5

6 Servo myservo;
7

8 float getBatteryVoltage () {
9 float measuredvbat = analogRead(VBATPIN);

10 measuredvbat *= 2; // we divided by 2, so multiply back
11 measuredvbat *= 3.3; // Multiply by 3.3V, our reference voltage
12 measuredvbat /= 1024; // convert to voltage

64 Appendix C. Firmware code

13 Serial.print("VBat: "); Serial.println(measuredvbat);
14

15 return measuredvbat;
16 }
17

18 void initTempSensor () {
19 sensors.begin ();
20 delay (50);
21 }
22

23 float getTemperature () {
24 sensors.requestTemperatures ();
25 float temp = sensors.getTempCByIndex (0);
26 Serial.print("Temperature: "); Serial.println(temp);
27 return temp;
28 }

C.5 SD utils module - sd-utils.cpp

1 #include "sd_utils.h"
2

3 File myFile;
4

5 boolean initializeSD () {
6

7 int CHIPSELECT = 4; //Pin for the SD card
8 pinMode(CHIPSELECT ,OUTPUT);//Pin to initialize SD card
9 // Open serial communications and wait for port to open:

10 Serial.begin (9600);
11 if (!SD.begin(CHIPSELECT)) {
12 Serial.println("SD initialization failed!");
13 return false;
14 } else {
15 Serial.println("SD initialization done.");
16 return true;
17 }
18 }
19

20 String readLine(char *name , bool close_file , bool open_file) {
21 String lineRead;
22

23 if (open_file){
24 myFile = SD.open(name , FILE_READ);
25 Serial.print("Open file ");
26 Serial.println(name);
27 Serial.println(myFile.available ());
28 }
29 if (myFile) {
30 // read one line of the file
31 Serial.println(myFile.available ());
32 lineRead = myFile.readStringUntil(’\n’);
33

34 // close the file:
35 if (close_file) {
36 myFile.close();
37 Serial.print("Close file ");
38 Serial.println(name);
39 }
40 }
41 return lineRead;

C.6. OTA module - ota.cpp 65

42 }
43

44

45 String stringSplitRFID(String line , int index1 , int index2){
46 String dato = line.substring(index1 ,index2);
47 return dato;
48 }
49

50 boolean writeFile(char *name , char *lectura , char *fecha){
51 myFile = SD.open(name , FILE_WRITE);
52 // if the file opened okay , write to it:
53 if (myFile) {
54 Serial.print("Writing to: ");
55 Serial.print(name);
56 myFile.print(fecha);
57 myFile.print(",");
58 myFile.println(lectura);
59 // close the file:
60 myFile.close();
61 Serial.println(" done.");
62 return true;
63 } else {
64 // if the file didn’t open , print an error:
65 Serial.print("error opening ");
66 Serial.println(name);
67 return false;
68 }
69 }

C.6 OTA module - ota.cpp

1 #include "ota.h"
2 #include "config.h"
3 #include "communication.h"
4

5 extern HttpClient httpclient;
6 extern EthernetClient client;
7

8 //OTA
9 const char* BIN_FILENAME = "update.bin"; // expected by the SDU library

10 const short VERSION = 1;
11 bool enviado = false;
12 bool actualizacionFirmware = false;
13 String tbFirmwareVersion = "";
14 const char* charToken = "C1_TEST_TOKEN";
15

16 void handleSketchDownload(const char* title , const char* version) {
17 Serial.println("UPDATING FIRMWARE CRACK");
18 //const char* SERVER = "10.15.1.217"; // must be string for

HttpClient
19 //const unsigned short SERVER_PORT = 8080;
20 SD.remove(BIN_FILENAME);
21 String path = "/api/v1/";
22 path.concat(charToken);
23 path.concat("/firmware?title=");
24 path.concat(title);
25 path.concat("&version=");
26 path.concat(version);
27 char buff [64];
28 char* pathChar;

66 Appendix C. Firmware code

29 path.toCharArray(pathChar ,64,0);
30 snprintf(buff , sizeof(buff), pathChar , VERSION + 1);
31 Serial.print("Check for update file ");
32 Serial.println(buff);
33 httpclient.get(path);
34 int statusCode = httpclient.responseStatusCode ();
35 Serial.print("Update status code: ");
36 Serial.println(statusCode);
37 if (statusCode != 200) {
38 client.stop();
39 return;
40 }
41 long length = httpclient.contentLength ();
42 if (length == HttpClient :: kNoContentLengthHeader) {
43 client.stop();
44 Serial.println("Server didn’t provide Content -length header. Can’t

continue with update.");
45 return;
46 }
47 Serial.print("Server returned update file of size ");
48 Serial.print(length);
49 Serial.println(" bytes");
50 File file = SD.open(BIN_FILENAME , O_CREAT | O_WRITE);
51 if (!file) {
52 client.stop();
53 Serial.println("Could not create bin file. Can’t continue with

update.");
54 return;
55 }
56 byte b;
57 while (length > 0) {
58 if (! client.readBytes (&b, 1)) // reading a byte with timeout
59 break;
60 file.write(b);
61 length --;
62 }
63 file.close();
64 client.stop();
65 if (length > 0) {
66 SD.remove(BIN_FILENAME);
67 Serial.print("Timeout downloading update file at ");
68 Serial.print(length);
69 Serial.println(" bytes. Can’t continue with update.");
70 return;
71 }
72 // sd_utils.writeFile ("log.txt",mensajeLogSD_newFirmware , fechaChar

);
73 Serial.println("Update file saved. Reset.");
74 Serial.flush();
75 NVIC_SystemReset ();
76 }

67

Bibliography

[1] R. Carmona-Galán. V-MOTE project. 2010. URL: http://www2.imse-cnm.csic.
es/vmote/english_version/ (visited on 2023).

[2] Delia Velasco-Montero, Jorge Fernández-Berni, and Angel Rodríguez-Vázquez.
Visual Inference for IoT Systems: A Practical Approach. Springer International
Publishing, 2022. DOI: 10.1007/978-3-030-90903-1.

[3] SUMHAL. 2022. URL: https://lifewatcheric-sumhal.csic.es/en/.

[4] International Union for Conservation of Nature. International Union for Conser-
vation of Nature Web. 2023. URL: https://www.iucn.org/ (visited on 2023).

[5] Adafruit Feather M0 Adalogger. SAMD21. Adafruit. Dec. 2015. URL: https://
learn.adafruit.com/adafruit-feather-m0-adalogger/overview.

[6] Low-Power, 32-bit Cortex-M0+ MCU. ATSAMD21G18. Microchip Technology
Inc. 2021. URL: https://ww1.microchip.com/downloads/aemDocuments/
documents/MCU32/ProductDocuments/DataSheets/SAM-D21-DA1-Family-
Data-Sheet-DS40001882H.pdf.

[7] Standard specifications. MikroBus. MikroElektronika. 2015. URL: https://download.
mikroe.com/documents/standards/mikrobus/mikrobus-standard-specification-
v200.pdf.

[8] Grove Ecosystem. Seeed Technology Co. URL: https://wiki.seeedstudio.
com/Grove_System/.

[9] Realtime Clock and Power Management for Raspberry Pi. Witty Pi 4. UUGear. URL:
https://www.uugear.com/doc/WittyPi4_UserManual.pdf.

[10] Andrew K. Schulz et al. “Conservation tools: the next generation of engi-
neering–biology collaborations”. In: Journal of the Royal Society Interface 20.205
(Aug. 2023). DOI: 10.1098/rsif.2023.0232.

[11] Talia Speaker et al. “A global community-sourced assessment of the state of
conservation technology”. In: Conservation Biology 36.3 (Feb. 2022). DOI: 10.
1111/cobi.13871.

[12] Andrew P. Hill et al. “AudioMoth: A low-cost acoustic device for monitoring
biodiversity and the environment”. In: HardwareX 6 (Oct. 2019), e00073. DOI:
10.1016/j.ohx.2019.e00073.

[13] Carmen Lozano Pons. “Cyber-Physycal Systems for Remote Animal Monitor-
ing”. MA thesis. University of Sevilla, 2020. URL: https : / / idus . us . es /
handle/11441/127955.

[14] Conservation X Labs. Sentinel. URL: https://conservationxlabs.com/sentinel.

[15] Robin C. Whytock et al. “Real-time alerts from AI-enabled camera traps us-
ing the Iridium satellite network: A case-study in Gabon, Central Africa”. In:
Methods in Ecology and Evolution 14.3 (Jan. 2023), pp. 867–874. DOI: 10.1111/
2041-210x.14036.

http://www2.imse-cnm.csic.es/vmote/english_version/
http://www2.imse-cnm.csic.es/vmote/english_version/
https://doi.org/10.1007/978-3-030-90903-1
https://lifewatcheric-sumhal.csic.es/en/
https://www.iucn.org/
https://learn.adafruit.com/adafruit-feather-m0-adalogger/overview
https://learn.adafruit.com/adafruit-feather-m0-adalogger/overview
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D21-DA1-Family-Data-Sheet-DS40001882H.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D21-DA1-Family-Data-Sheet-DS40001882H.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D21-DA1-Family-Data-Sheet-DS40001882H.pdf
https://download.mikroe.com/documents/standards/mikrobus/mikrobus-standard-specification-v200.pdf
https://download.mikroe.com/documents/standards/mikrobus/mikrobus-standard-specification-v200.pdf
https://download.mikroe.com/documents/standards/mikrobus/mikrobus-standard-specification-v200.pdf
https://wiki.seeedstudio.com/Grove_System/
https://wiki.seeedstudio.com/Grove_System/
https://www.uugear.com/doc/WittyPi4_UserManual.pdf
https://doi.org/10.1098/rsif.2023.0232
https://doi.org/10.1111/cobi.13871
https://doi.org/10.1111/cobi.13871
https://doi.org/10.1016/j.ohx.2019.e00073
https://idus.us.es/handle/11441/127955
https://idus.us.es/handle/11441/127955
https://conservationxlabs.com/sentinel
https://doi.org/10.1111/2041-210x.14036
https://doi.org/10.1111/2041-210x.14036

68 Bibliography

[16] Delia Velasco-Montero, Jorge Fernández-Berni, and Angel Rodríguez-Vázquez.
“A Case Study: Remote Animal Monitoring”. In: Visual Inference for IoT Sys-
tems: A Practical Approach. Springer International Publishing, 2022, pp. 125–
159. ISBN: 978-3-030-90903-1. DOI: 10.1007/978-3-030-90903-1.

[17] Delia Velasco-Montero et al. “Performance analysis of real-time DNN infer-
ence on Raspberry Pi”. In: Real-Time Image and Video Processing 2018. Ed. by
Nasser Kehtarnavaz and Matthias F. Carlsohn. SPIE, May 2018. DOI: 10.1117/
12.2309763.

[18] Delia Velasco-Montero et al. “Towards an efficient smart camera trap for wildlife
monitoring”. In: 3rd International Workshop Camera Traps, AI and Ecology. Jena,
Germany, Sept. 2023.

[19] Edge Impulse. Imagine 2022: Edge AI Conference.

[20] Polyn Technology. Neuromorphic Analog Implementation for Tiny AI Applications.
URL: https://www.polyn.ai/wp-content/uploads/2022/05/neuromorphic-
analog-signal-processing-white-paper.pdf.

[21] OpenMV Cam H7 Plus. OpenMV. URL: https://openmv.io/products/openmv-
cam-h7-plus.

[22] Spresense 6-core microcontroller board with ultra-low power consumption. CXD5602PWBMAIN1.
Sony. URL: https://developer.sony.com/spresense/product-specifications#
secondary-menu-desktop.

[23] Portenta H7. Arduino. URL: https://docs.arduino.cc/resources/datasheets/
ABX00042-ABX00045-ABX00046-datasheet.pdf.

[24] Jetson Modules. NVIDIA. URL: https://developer.nvidia.com/embedded/
jetson-modules.

[25] 32-bit ARM® Cortex®-M4F MCU. ATSAMD51J20A. Microchip Technology Inc.
URL: https://ww1.microchip.com/downloads/aemDocuments/documents/
MCU32/ProductDocuments/DataSheets/SAM-D5x-E5x-Family-Data-Sheet-
DS60001507.pdf.

[26] TensorFlow. TensorFlow Lite for Microcontrollers. URL: https://www.tensorflow.
org/lite/microcontrollers.

[27] Digital humidity and temperature sensor. SHT40I-AD1B. Sensirion. URL: https:
//sensirion.com/media/documents/1D662E57/64D3B086/Sensirion_Datasheet_
SHT4xI-Digital.pdf.

[28] 3-axis MEMS accelerometer. LIS3DH. STMicroelectronics. URL: https://www.
st.com/resource/en/datasheet/lis3dh.pdf.

[29] 5MP Plus OV5642 Mini Module Camera Shield SPI. ArduCam. URL: https://
www.arducam.com/product/arducam-5mp-plus-spi-cam-arduino-ov5642/.

[30] Compute Module 4: A Raspberry Pi for deeply embedded applications. Raspberry Pi
Ltd. URL: https://datasheets.raspberrypi.com/cm4/cm4-datasheet.pdf.

[31] Standalone 1-cell 1.5-A linear battery charger. BQ24074. Texas Instruments. URL:
https://www.ti.com/lit/ds/symlink/bq24074.pdf?ts=1699114561355.

[32] 2MHz, 600mA Step-Down DC-DC Converter. LM3671. Texas Instruments. URL:
https://www.ti.com/lit/ds/symlink/lm3671.pdf?ts=1699132926550&
ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fes- mx%
252FLM3671.

https://doi.org/10.1007/978-3-030-90903-1
https://doi.org/10.1117/12.2309763
https://doi.org/10.1117/12.2309763
https://www.polyn.ai/wp-content/uploads/2022/05/neuromorphic-analog-signal-processing-white-paper.pdf
https://www.polyn.ai/wp-content/uploads/2022/05/neuromorphic-analog-signal-processing-white-paper.pdf
https://openmv.io/products/openmv-cam-h7-plus
https://openmv.io/products/openmv-cam-h7-plus
https://developer.sony.com/spresense/product-specifications#secondary-menu-desktop
https://developer.sony.com/spresense/product-specifications#secondary-menu-desktop
https://docs.arduino.cc/resources/datasheets/ABX00042-ABX00045-ABX00046-datasheet.pdf
https://docs.arduino.cc/resources/datasheets/ABX00042-ABX00045-ABX00046-datasheet.pdf
https://developer.nvidia.com/embedded/jetson-modules
https://developer.nvidia.com/embedded/jetson-modules
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D5x-E5x-Family-Data-Sheet-DS60001507.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D5x-E5x-Family-Data-Sheet-DS60001507.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-D5x-E5x-Family-Data-Sheet-DS60001507.pdf
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://sensirion.com/media/documents/1D662E57/64D3B086/Sensirion_Datasheet_SHT4xI-Digital.pdf
https://sensirion.com/media/documents/1D662E57/64D3B086/Sensirion_Datasheet_SHT4xI-Digital.pdf
https://sensirion.com/media/documents/1D662E57/64D3B086/Sensirion_Datasheet_SHT4xI-Digital.pdf
https://www.st.com/resource/en/datasheet/lis3dh.pdf
https://www.st.com/resource/en/datasheet/lis3dh.pdf
https://www.arducam.com/product/arducam-5mp-plus-spi-cam-arduino-ov5642/
https://www.arducam.com/product/arducam-5mp-plus-spi-cam-arduino-ov5642/
https://datasheets.raspberrypi.com/cm4/cm4-datasheet.pdf
https://www.ti.com/lit/ds/symlink/bq24074.pdf?ts=1699114561355
https://www.ti.com/lit/ds/symlink/lm3671.pdf?ts=1699132926550&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fes-mx%252FLM3671
https://www.ti.com/lit/ds/symlink/lm3671.pdf?ts=1699132926550&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fes-mx%252FLM3671
https://www.ti.com/lit/ds/symlink/lm3671.pdf?ts=1699132926550&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252Fes-mx%252FLM3671

Bibliography 69

[33] 16VOUT, 9.5A, High-Efficiency, Fully Integrated, Synchronous Boost Converter.
MP3437. Monolithic Power Systems, Inc. URL: https://www.monolithicpower.
com/en/documentview/productdocument/index/version/2/document_type/
Datasheet/lang/en/sku/MP3437/document_id/6889/.

[34] 2-ch, 5.7-V, 6-A, 14-mΩ, load switch. TPS22976. Texas Instruments. URL: https:
//www.ti.com/lit/ds/symlink/tps22976.pdf?ts=1699125999042&ref_url=
https%253A%252F%252Fwww.ti.com%252Ftool%252FTIDA-01451.

[35] 3.3-V, 2:1 (SPDT), 6-channel analog multiplexer. TS3A27518E. Texas Instruments.
URL: https://www.ti.com/lit/gpn/ts3a27518e.

[36] PlatformIO IDE. URL: https://platformio.org/.

https://www.monolithicpower.com/en/documentview/productdocument/index/version/2/document_type/Datasheet/lang/en/sku/MP3437/document_id/6889/
https://www.monolithicpower.com/en/documentview/productdocument/index/version/2/document_type/Datasheet/lang/en/sku/MP3437/document_id/6889/
https://www.monolithicpower.com/en/documentview/productdocument/index/version/2/document_type/Datasheet/lang/en/sku/MP3437/document_id/6889/
https://www.ti.com/lit/ds/symlink/tps22976.pdf?ts=1699125999042&ref_url=https%253A%252F%252Fwww.ti.com%252Ftool%252FTIDA-01451
https://www.ti.com/lit/ds/symlink/tps22976.pdf?ts=1699125999042&ref_url=https%253A%252F%252Fwww.ti.com%252Ftool%252FTIDA-01451
https://www.ti.com/lit/ds/symlink/tps22976.pdf?ts=1699125999042&ref_url=https%253A%252F%252Fwww.ti.com%252Ftool%252FTIDA-01451
https://www.ti.com/lit/gpn/ts3a27518e
https://platformio.org/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Background
	State of the art
	Motivation and Objectives

	Hardware Development
	Requirements Analysis and Specifications
	Hardware architecture
	Data acquisition and low-power processing unit
	AI processing unit
	Network communication unit
	Power management unit
	Shared SD storage

	Software Development
	Software architecture
	Firmware design
	Remote Procedure Call (RPC) Service

	Critical Analysis and Future Directions
	Critical Analysis
	Future Directions

	Conclusions
	Microcontroller Pin Allocation
	Schematics
	Firmware code
	Main process - main.cpp
	Time module - time.cpp
	Communication module (GSM transceptor) - communication.cpp
	Sensors module (temperature) - sensors.cpp
	SD utils module - sd-utils.cpp
	OTA module - ota.cpp

	Bibliography

