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A B S T R A C T

The recent literature on event-triggered control has demonstrated the potential of dynamic
periodic event-triggered control. Compared to continuous-time event-triggering rules, the ben-
efit of considering periodic event-triggered control is to avoid the Zeno phenomenon, which
refers to the situation when there are an infinite number of updates in a bounded interval of
time. The idea of periodic event-triggered control is to trigger the control law only at known
allowable periodic sampling instants. In this paper, our objective is to relax the constraint on
the periodicity of the allowable sampling instants and to adapt this framework to the dynamic
event-triggered control, which has not been considered in the literature, as far as we are aware
of. Following the successful efforts to assess the stability of aperiodic sampled-data control,
here we propose a generic framework to emulate aperiodic dynamic event-triggered control law
for linear systems, for which the allowable sampling instants are not necessarily equidistant.
Such an analysis is made possible thanks to the looped-functionals framework, which gives the
flexibility to consider the periodic/aperiodic static/dynamic event-triggered control in a single
formulation. Finally, the efficiency of the proposed results is illustrated through the study of
two academic examples.

. Introduction

With the rapid development of computer and network technologies, networked control systems (NCSs) have attracted consider-
ble attention. When designing networked control loops, it is essential to consider the limited communication and/or computation
apabilities of the system. The event-triggered (ET) strategy offers an effective tool which can balance the available system resources
ith the closed-loop system performances better than the classical periodic or aperiodic time-triggered control schemes [1,2].

n event-triggered control (ETC) systems, when the control input has to be updated is determined by a triggering rule which is
redefined. That means control inputs are updated only when necessary, namely when an event is generated, rather than time-
riggered periodically or aperiodically. Thus, as an effective way to balance system performance and limited network resources, ETC
ystems have attracted increasing interests of researchers in the last decade. Since an ET feedback controller that asymptotically
tabilizes the plant is proposed in [3], various analyses and designs for ETC systems have been proposed [3–21].

Most existing ET strategies can be divided into continuous- and discrete-time strategies based on their time sets, and the controlled
lant is generally considered to have the same time nature [4]. However, with the increasing popularity of sampled-data systems in
CSs, it is more interesting to find a ‘‘sampled-data’’-like approach to break the parallels between the continuous-time ET approaches
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and the discrete-time counterparts. This means that a discrete-time ET scheme based on sampled data operates on a continuous-
time plant. To name a few, a periodic event-triggered strategy (PETS) in a quadratic form is proposed in [5], and the approaches
of impulsive systems, piece-wise linear systems, perturbed linear systems are presented to analyze the stability and the 2-gain
properties of resulting periodic event-triggered control (PETC) systems. More PETC problems for linear and nonlinear systems can
be found in [7–11]. Another very popular method for ETC of sampled-data systems is the time-delay system approach [12,13]. By
introducing an artificial piece-wise linear delay function, a delay system model can be constructed for the ETC system based on
sampled data [12,13]. Nevertheless, almost all the above mentioned results are based on the technique of the Lyapunov–Krasovskii
functional and only address related ET problems for periodic samplings without much attention to aperiodic cases.

Sampled-data systems have been widely investigated in recent decades [22,23]. The stability of the system under periodic
samplings has been extensively discussed and still attracting a lot of attentions [24]. When the difference between two successive
sampling instants is time-varying, several methods are used to analyze system dynamics [25–34]. Discrete time models are adopted in
[34] for aperiodic samplings and an input-delay approach based on the Lyapunov–Krasovskii theorem is provided in [25,26]. Small
gain theorem is adopted to make some improvement [27] and the impulsive systems method is proposed in [28]. Although thanks
to the time-dependent Lyapunov–Krasovskii functionals, the input delay approach and the impulsive system approach can deal with
time-varying sampling periods as well as with uncertain systems in a simple way, these sufficient stability conditions are still more
conservative than the discrete-time methods. However, due to the exponential term of the transition matrix, it is not an easy task to
find an efficient extension of the discrete-time approach to include robustness with respect to the uncertainties of sampling periods
and parameters. Another popular way to deal with asynchronous samplings of the system is the looped-functional approach [29,30].
By introducing a looping condition, the equivalence between the discrete-time and continuous-time approaches for the stability
analysis is disclosed in [29]. The constraint on the positivity of the Lyapunov functional in continuous-time approaches can be
relaxed. Based on the discrete-time Lyapunov theory and the proposed looped-functionals method, the asymptotic and exponential
stability analyses for the cases of synchronous, asynchronous, and multiple samplings are discussed in a unified framework [29].
It is worth noting that the looped-functional method provides the missing link between discrete-time approaches and continuous
counterparts. The main advantages of this framework with respect to the context of this paper is that the inclusion of additional
features such as the triggering variable of a dynamical event-triggered control scheme can be performed in a very elegant manner,
without invoking an S-procedure.

In this paper, a novel framework is proposed to extend static and dynamic periodic ETC to the case of aperiodic sampled-data
systems. To do so, we introduce a discrete-time dynamic event-triggering rule, which includes several existing ET strategies as its
special cases. This rule is formulated in quadratic form, which only uses the sampled data from the system. The stability analysis of
the continuous-time ETC system is performed using the looped-functional framework. Sufficient conditions for asymptotic stability
of the closed-loop system are derived in terms of LMIs, which can be applied to the cases of periodic and aperiodic samplings for
nominal and polytopic uncertain systems.
Notation.Throughout the paper, the sets N, R, R𝑛, R𝑛×𝑛 and S𝑛 denote the sets of non-negative integers, real numbers, 𝑛-dimensional
vectors, 𝑛× 𝑛 matrices and symmetric matrices of R𝑛×𝑛, respectively. The notation | ⋅ | and the superscript ⊤ stand for the Euclidean
norm and for matrix transposition, respectively. The notation 𝑃 ≻ 0 for 𝑃 ∈ S𝑛 means that 𝑃 is positive definite. For any matrix
𝐴 ∈ R𝑛×𝑛, the notation He{𝐴} refers to 𝐴 + 𝐴𝑇 . The symbols 𝐼 and 0 represent the identity and zero matrices of appropriate
dimensions.

2. Problem statement

2.1. System data

Consider the following linear sampled-data system

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡𝑘), ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), (1)

where 𝑥(𝑡) ∈ R𝑛 and 𝑢(𝑡) ∈ R𝑚 represent the state and the control input vectors, respectively. Matrices 𝐴 and 𝐵, of appropriate
dimensions, are assumed to be either constant and known, or possibly uncertain and time-varying. The sampling is assumed to be
aperiodic. This means that there exists a minimal and maximal dwell times 1 > 0 and 2 ≥ 1 such that the distance between two
successive sampling instants 𝑡𝑘+1 − 𝑡𝑘 = 𝑇𝑘 verifies

1 ≤ 𝑇𝑘 ≤ 2, ∀𝑘 ∈ N. (2)

In this paper, the objective is the design of aperiodic event-triggered rules such that a given state feedback control law asymptotically
stabilizes the closed-loop system, corresponding to an emulation problem. In order to solve this problem, we will formulate the
dynamics of the system using the looped-functional framework, which will be proven to be well suited for this study. To do so, in
the following subsections, we define the control law and the event-triggering rule that will be employed hereafter.
2
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2.2. Event-triggered state-feedback control law

In this paper, we are looking for a linear state feedback control gain 𝐾 ∈ R𝑚×𝑛, such that the control input to be implemented
s given by

𝑢(𝑡𝑘) =
{

𝐾𝑥(𝑡𝑘), if the control law is updated,
𝑢(𝑡𝑘−1), otherwise. (3)

One can understand the previous expression as a ‘double’ sampling effect. The continuous-time sampling makes that the control
nput remains constant during the sampling interval [𝑡𝑘, 𝑡𝑘+1). Then, a discrete-time sampling is performed depending on whether
r not the previous control input has to be updated.

In order to complete the implementation rules of the control law, one has to provide a specific rule to impose a control update.
o do so, let 𝜅 be a strictly increasing function from N to N, with condition 𝜅(0) = 0. This function defines triggering instants, that

s, when the control input has to be updated, in a more formal manner. It means that the triggering instants 𝑡𝜅(𝓁) are all instants of
ontrol updates such that

𝑢(𝑡𝜅(𝓁)) = 𝐾𝑥(𝑡𝜅(𝓁)).

o determine these 𝜅(𝓁), static and dynamic event-triggered control algorithms will be provided in the next subsections.

.2.1. Static event-triggering rule
Let us introduce the static event-triggering rule defined as follows

𝑡𝜅(𝓁+1) = min
𝑚∈N

{

𝑡𝜅(𝓁)+𝑚 ≥ 𝑡𝜅(𝓁)+1 | 𝜑
(

𝑥(𝑡𝜅(𝓁)+𝑚), 𝑥(𝑡𝜅(𝓁))
)

≥ 0
}

, (4)

here 𝜑 ∶ R𝑛 × R𝑛 → R is called the triggering function to be defined. The only requirement so far, is that the function 𝜑 verifies
the following constraint:

𝜑(𝑥, 𝑥) ≤ 0, ∀𝑥 ∈ R𝑛. (5)

emark 1. The previous event-triggering rule excludes the Zeno phenomenon since the minimal distance between two successive
ampling instants is at least 1 > 0. It is also important to mention that the event-triggering rule (4) is only evaluated at the
periodic sampling instants {𝑡𝑘}𝑘∈N. Compared to the usual periodic event-triggering rules introduced in [5,14,15], the assumption
n the periodicity of the sampling instants is not required.

.2.2. Dynamic event-triggering rule
Let us now introduce the following dynamic event-triggering rule defined as an extended version of the previous static rule. This

ynamic rule is formulated as follows:

𝑡𝜅(𝓁+1) = min
𝑚∈N

{

𝑡𝜅(𝓁)+𝑚 ≥ 𝑡𝜅(𝓁)+1 | 𝜑
(

𝑥(𝑡𝜅(𝓁)+𝑚), 𝑥(𝑡𝜅(𝓁))
)

≥ 𝜌𝜂𝜅(𝓁)+𝑚
}

, (6)

here, again, 𝜑 ∶ R𝑛×R𝑛 → R is the triggering function to be defined which must also verify (5). The above rule is called a dynamic
vent-triggering rule because it relies on the construction of a new dynamic variable 𝜂𝑘, that is driven by the following discrete-time
ynamic equation:

{

𝜂𝑘+1 = (𝜆 + 𝜌)𝜂𝑘 − 𝜑
(

𝑥(𝑡𝑘), 𝑥(𝑡𝜅(𝓁))
)

, ∀𝑘 ∈ [𝜅(𝓁), 𝜅(𝓁 + 1))N , ∀𝓁 ∈ N,
𝜂0 ≥ 0,

(7)

where the parameters 𝜆 and 𝜌 are such that 𝜌 ≥ 0 and (𝜆+ 𝜌) ∈ [0, 1). Compared to the classical ‘‘continuous-time’’ dynamic variable
provided in [6], the dynamic here is written as a discrete-time equation because we are considering a periodic (or aperiodic) event-
triggered control. Here, Eq. (7) means that the update of 𝜂𝑘 is only performed at the sampling instant 𝑡𝑘. Between two successive
sampling instants, the value of 𝜂𝑘 remains constant, i.e.,

d
d𝑡
𝜂𝑘 = 0, ∀𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1), ∀𝑘 ∈ N. (8)

Remark 2. It is worth mentioning that the static event-triggering rule is retrieved by imposing 𝜌 = 0 in (6), whatever the value of
𝜆.

Following classical methods of the continuous-time dynamic ETC design [6,7], one has to guarantee that the variable 𝜂𝑘 is
non-negative for all 𝑘 in N. The following lemma addresses this issue.

Lemma 1. Consider scalar parameters (𝜆, 𝜌) such that 𝜌 ≥ 0 and (𝜆+𝜌) ∈ [0, 1) and assume that 𝜂0 > 0. Then, the dynamic event-triggered
3

variable is non-negative for any sampling instants 𝑡𝑘, i.e., 𝜂𝑘 ≥ 0 for all 𝑘 ∈ N.
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Proof. Consider the dynamic of 𝜂𝑘 provided in (7) together with the event-triggering rule (6). Assume that 𝜌 ≥ 0, (𝜆 + 𝜌) ∈ [0, 1)
nd 𝜂0 > 0. The proof is then made by recursion.
Initialization (𝑘 = 1): Assume that 𝜂0 > 0. According to the dynamic Eq. (7) with 𝑘 = 0, it holds that

𝜂1 = (𝜆 + 𝜌)𝜂0 − 𝜑
(

𝑥(𝑡0), 𝑥(𝑡𝜅(0))
)

,

here obviously 𝑡𝜅(0) = 𝑡0. Recalling condition (5), it yields

𝜑
(

𝑥(𝑡0), 𝑥(𝑡𝜅(0))
)

= 𝜑
(

𝑥(𝑡0), 𝑥(𝑡0)
)

≤ 0.

s (𝜆 + 𝜌) ∈ [0, 1), 𝜂0 > 0 and 𝜑
(

𝑥(𝑡0), 𝑥(𝑡𝜅(0))
)

≤ 0, it is clear that 𝜂1 ≥ 0, which concludes the initialization.
Recursion (𝑘 ∈ N): Assume that the variable 𝜂𝑘 is positive and the associated value of 𝜅(𝓁), is an integer lower than 𝑘. Then, we

ay face the following two cases.
If the triggering condition is satisfied, that is, 𝜑

(

𝑥(𝑡𝑘), 𝑥(𝑡𝜅(𝓁))
)

≥ 𝜌𝜂𝑘, then, the value of the control law as well as 𝜅(𝓁) is updated,
.e., 𝜅(𝓁 +1) = 𝑘. In this situation, 𝜑

(

𝑥
(

𝑡𝜅(𝓁)
)

, 𝑥(𝑡𝜅(𝓁))
)

≤ 0 still holds since we get the same constraint (5) of the triggering function
as in the case 𝑘 = 0 above. Consequently, 𝜂𝑘+1 ≥ 0.
If the event-triggered condition is violated, that is, 𝜑

(

𝑥(𝑡𝑘), 𝑥(𝑡𝜅(𝓁))
)

≤ 𝜌𝜂𝑘, then, according to the discrete-time Eq. (7) it holds

𝜂𝑘+1 = (𝜆 + 𝜌)𝜂𝑘 − 𝜑
(

𝑥(𝑡𝑘), 𝑥(𝑡𝜅(𝓁))
)

.

ince 𝜆 ≥ 0, 𝜂𝑘 ≥ 0, it holds

𝜂𝑘+1 = (𝜆 + 𝜌)𝜂𝑘 − 𝜑
(

𝑥(𝑡𝑘), 𝑥(𝑡𝜅(𝓁))
)

= 𝜆𝜂𝑘
⏟⏟⏟

≥0

+
(

𝜌𝜂𝑘 − 𝜑
(

𝑥(𝑡𝑘), 𝑥(𝑡𝜅(𝓁))
))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

.

Hence, 𝜂𝑘+1 ≥ 0 holds for all 𝑘 ∈ N, which concludes the recursion. □

Remark 3. In the literature on the dynamic event-triggered control [6,7], an additional dynamic variable 𝜂 is usually defined using
a differential equation of the form 𝜂̇ = −𝜆̄𝜂+ 𝜌̄𝜑 for some positive scalars 𝜆̄ and 𝜌̄. Here, we use the particular feature of the periodic
(or aperiodic) event-triggered algorithm to notice that 𝜑 is constant over the sampling interval. Therefore, it is easy to derive the
solution of the differential equation that leads to the discrete-time Eq. (7), with particular values of 𝜆 and 𝜌. In this paper, we have
adopted a selection of constant parameters 𝜆 and 𝜌 for simplicity, noting that it is still possible to use the time-varying but known
values of 𝜆 and 𝜌 for the sampling interval 𝑇𝑘.

2.2.3. Definition of the triggering function 𝜑
In this paper, we will consider a triggering function that is quadratic with respect to its arguments and given by

𝜑
(

𝑥(𝑡𝜅(𝓁)+𝑚), 𝑥(𝑡𝜅(𝓁))
)

=
[

𝑥
(

𝑡𝜅(𝓁)+𝑚
)

𝑥
(

𝑡𝜅(𝓁)
)

]⊤

𝛷
[

𝑥
(

𝑡𝜅(𝓁)+𝑚
)

𝑥
(

𝑡𝜅(𝓁)
)

]

, ∀𝑘 ∈ [𝜅(𝓁), 𝜅(𝓁 + 1))N ,∀𝓁 ∈ N, (9)

where 𝛷 satisfies
[

𝐼
𝐼

]⊤

𝛷
[

𝐼
𝐼

]

⪯ 0. (10)

This above inequality is required to ensure that once an update is performed, the event-triggering condition does not hold any
onger until the next update, which ensures 𝜑(𝑥, 𝑥) ≤ 0 for all 𝑥 in R𝑛.

The intuition behind this condition is the following. If the triggering condition is violated, this necessarily means that inequality
(

𝑥(𝑡𝑘), 𝑥(𝑡𝜅(𝓁))
)

≥ 𝜌𝜂𝑘 holds. As 𝜂𝑘 is positive for all 𝑘 thanks to Lemma 1, this means that 𝜑
(

𝑥(𝑡𝑘), 𝑥(𝑡𝜅(𝓁))
)

is necessarily positive.
mposing condition (10) implies that, once the memory vector 𝑥(𝑡𝜅(𝓁)) has been updated, 𝜑

(

𝑥(𝑡𝑘), 𝑥(𝑡𝜅(𝓁+1))
)

= 𝜑
(

𝑥(𝑡𝑘), 𝑥(𝑡𝑘)
)

is
egative, which ensures that the triggering condition (before applying the new control input) is not violated anymore. Intuitively,
his condition can be interpreted as the avoidance of Zeno and enforce enlarging the interval between two successive control updates.
ndeed, by continuity of the systems, the quantity 𝜑(𝑥(𝑡𝜅(𝓁)+𝑚), 𝑥(𝑡𝜅(𝓁))), for small values of 𝑚 is intuitively not so far away from
(𝑥(𝑡𝜅(𝓁)), 𝑥(𝑡𝜅(𝓁))), which is negative. This aims at giving more margin before the next triggering instant.

emark 4. The previous triggering function (9) that was already considered in papers [16–18] has the benefit of encompassing
he rules usually considered in the literature as particular cases. For instance, consider the following selections

• Case A: Selecting a matrix 𝛷, which is only required to verify

𝛷 with
[

𝐼
𝐼

]⊤

𝛷
[

𝐼
𝐼

]

⪯ 0, (11)
4

leads to the generic triggering function (9) in this paper.
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• Case B: Selecting a matrix 𝛷 as

𝛷 =
[

𝛷1 −𝛷1
−𝛷1 (1 − 𝛼)𝛷1

]

with 𝛷1 > 0, 𝛼 > 0, (12)

leads to the particular triggering function

𝜑
(

𝑥(𝑡𝜅(𝓁)+𝑚), 𝑥(𝑡𝜅(𝓁))
)

∶=
(

𝑥(𝑡𝜅(𝓁)+𝑚) − 𝑥(𝑡𝜅(𝓁))
)⊤ 𝛷1

(

𝑥(𝑡𝜅(𝓁)+𝑚) − 𝑥(𝑡𝜅(𝓁))
)

− 𝛼𝑥⊤(𝑡𝜅(𝓁))𝛷1𝑥(𝑡𝜅(𝓁)),

which was considered in papers [12,13].
• Case C: Selecting a matrix 𝛷 as

𝛷 =
[

𝛷2 −𝛷2
−𝛷2 𝛷2 −𝛷1

]

with 𝛷1 > 0, 𝛷2 > 0, (13)

leads to the particular triggering function

𝜑
(

𝑥(𝑡𝜅(𝓁)+𝑚), 𝑥(𝑡𝜅(𝓁))
)

∶=
(

𝑥(𝑡𝜅(𝓁)+𝑚) − 𝑥(𝑡𝜅(𝓁))
)⊤ 𝛷2

(

𝑥(𝑡𝜅(𝓁)+𝑚) − 𝑥(𝑡𝜅(𝓁))
)

− 𝑥⊤(𝑡𝜅(𝓁))𝛷1𝑥(𝑡𝜅(𝓁)),

which was considered, for instance, in papers [20,35].

Recalling (10), the constraint of 𝛷 is required for all cases of triggering functions mentioned above to guarantee 𝜑(𝑥, 𝑥) non-
ositive. The matrix 𝛷 of the triggering rule plays a major role both in the solvability of the LMIs and in the event-triggered
echanism. As it thus appears that the proposed event-triggering rule encompasses the above usual rules with parameters (𝛷1, 𝛷2, 𝛼).

n the next developments, we will present the conditions for finding a matrix 𝛷 as a candidate.

.2.4. Modeling of the closed-loop system
As is discussed in previous sections, the control law (3) can be rewritten as

𝑢(𝑡𝑘) =
{

𝐾𝑥(𝑡𝑘), if 𝜑
(

𝑥(𝑡𝑘), 𝑥(𝑡𝜅(𝓁))
)

≥ 𝜌𝜂𝑘, 𝑘 = 𝜅(𝓁 + 1),
𝐾𝑥(𝑡𝜅(𝓁)), if 𝜑

(

𝑥(𝑡𝑘), 𝑥(𝑡𝜅(𝓁))
)

≤ 𝜌𝜂𝑘, 𝑘 ∈ [𝜅(𝓁), 𝜅(𝓁 + 1)) .
(14)

The closed-loop system composed of (1), (6), (14), can be reformulated as

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝐾𝑥(𝑡𝜅(𝓁)), ∀𝑡 ∈
[

𝑡𝑘, 𝑡𝑘+1
)

,∀𝑘 ∈ [𝜅(𝓁), 𝜅(𝓁 + 1)) , ∀𝓁 ∈ N. (15)

he plant (15) can be seen as a particular sampled-data system for which several theoretical tools can be applied to study its stability
roperties, see the survey paper [24,36]. In this paper, we will focus on the looped functional framework introduced in [29,37] to
ssess the stability of the closed-loop system.

. Preliminaries and looped-functional

.1. Preliminary lemmas

In the next development of the paper, we will use the following lemmas:

emma 2 (Wirtinger-based Inequality [38]). For a given matrix 𝑅 ≻ 0, the following inequality holds for all continuously differentiable
unction 𝜔 in [𝑎, 𝑏] → R𝑛:

∫

𝑏

𝑎
𝜔̇𝑇 (𝑢)𝑅𝜔̇(𝑢)d𝑢 ≥ 1

𝑏 − 𝑎
(𝜔(𝑏) − 𝜔(𝑎))𝑇𝑅(𝜔(𝑏) − 𝜔(𝑎)) + 3

(𝑏 − 𝑎)
𝛺̃𝑇𝑅𝛺̃, (16)

here 𝛺̃ = 𝜔(𝑏) + 𝜔(𝑎) − 2
𝑏−𝑎 ∫

𝑏
𝑎 𝜔(𝑢)d𝑢.

Lemma 3. For all matrices 𝑋, 𝑌 and 𝑅 of appropriate dimensions and positive scalar 𝜖 > 0, the following inequality holds:

−1
𝜖
𝑋𝑇𝑅𝑋 ≤ −2𝑋𝑇 𝑌 + 𝜖𝑌 𝑇𝑅−1𝑌 . (17)

3.2. Lifting of sampled-data systems trajectories

The looped functional approach [29] is based on the characterization of the system trajectories (1) in a lifted domain [37,39].
Define K𝑛 as

K𝑛 ∶=
⋃

 ∈[1 ,2]
([0,  ] → R𝑛).

Then, we therefore view the entire state-trajectory as a sequence of functions
{

𝑥(𝑡𝑘 + 𝜏), 𝜏 ∈ (0, 𝑇𝑘]
}

𝑘∈N with elements having a
nique continuous extension to [0, 𝑇𝑘] defined as

𝜒𝑘(𝜏) ∶= 𝑥(𝑡𝑘 + 𝜏) with 𝜒𝑘(0) = lim𝑠↓𝑡𝑘 𝑥(𝑠).

uch that the system (1) can be rewritten as
𝑛

5

𝜒̇𝑘(𝜏) = 𝐴𝜒𝑘(𝜏) + 𝐵𝐾𝜒𝜅(𝓁)(0), ∀(𝜏, 𝑘,𝓁) ∈ H𝜅 (𝑇𝑘) ∶= [0, 𝑇𝑘] × [𝜅(𝓁), 𝜅(𝓁 + 1)) × N. (18)
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3.3. Definition and results about looped-functionals

Let us first define looped-functionals following the principles of the paper [37].

efinition 1 ([37]). A functional

𝑓 ∶ [0,  ] ×K𝑛 × R𝑛 × [1, 2] → R,

is said to be a looped-functional if

1. the equality

𝑓 (0, 𝑧, 𝑧0,  ) = 𝑓 ( , 𝑧, 𝑧0,  ) (19)

holds for all functions 𝑧 ∈ K𝑛, for all vectors 𝑧0 ∈ R𝑛 and all  ∈ [1, 2].
2. it is differentiable with respect to the first variable with the standard definition of the derivative.

The set of all these functionals is denoted by 𝑛([1, 2]).

Note that in the above definition, we have lightly modified the argument of the looped functional to include an additional
component 𝑧0, which is a vector in R𝑛.

The idea of proving the stability of (18) under the proposed ET scheme (6) is to look now for a Lyapunov function 𝑉 such that
̄ is monotonically decreasing along the sampling instants. The novelty with respect to previous results on looped-functionals and
vent-triggered control relies on the particular construction of the Lyapunov function 𝑉 . In this paper, 𝑉 is composed of :

(i) the non-negative discrete-time variable 𝜂𝑘, which is the additional state that has been built to include a dynamic event-triggering
scheme,

(ii) a classical quadratic Lyapunov function 𝑉 ∶ R𝑛 → R+.

This is formalized through the following functional existence result:

heorem 1. For given 0 < 1 ≤ 2 and 𝜌 ∈ [0, 𝜆) ⊂ [0, 1], consider 𝑉 ∶ R𝑛 → R+ a quadratic form satisfying

𝜇1|𝑥|
2 ≤ 𝑉 (𝑥) ≤ 𝜇2|𝑥|

2, ∀𝑥 ∈ R𝑛, (20)

or some scalars 0 < 𝜇1 ≤ 𝜇2 and the non-negative discrete-time event-triggering variable 𝜂𝑘 defined in (7). Assume further that one of the
ollowing equivalent statements hold:

1. The sequence {𝑉 (𝜒𝑘(0), 𝜂𝑘) ∶= 𝑉 (𝜒𝑘(0)) + 𝜂𝑘}𝑘∈N is decreasing along the trajectories of closed-loop system (18) with the dynamic
event-triggering rule (6).

2. There exists a looped-functional  ∈ 𝑛( ) such that the functional 𝑘 defined as

𝑘(𝜏, 𝜒𝑘, 𝜒𝜅(𝓁)) ∶= 𝑉 (𝜒𝑘(𝜏)) + (𝜏, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘) +
𝜏
𝑇𝑘

[𝜂𝑘+1 − 𝜂𝑘], ∀(𝜏, 𝑘,𝓁) ∈ H𝑛
𝜅 (𝑇𝑘), (21)

is decreasing along the trajectories of the system (18) under the proposed dynamic event-triggering scheme (6), i.e.,
𝑑
𝑑𝜏

𝑘(𝜏, 𝜒𝑘, 𝜒𝜅(𝓁)) ∶= 𝑑
𝑑𝜏

𝑉 (𝜒𝑘(𝜏)) +
𝑑
𝑑𝜏

(𝜏, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘) +
𝜂𝑘+1 − 𝜂𝑘

𝑇𝑘
< 0, ∀(𝜏, 𝑘,𝓁) ∈ H𝑛

𝜅 (𝑇𝑘). (22)

Then, the aperiodic sampled-data system (18) under the proposed dynamic event-triggering scheme (6) is asymptotically stable.

Proof. The proof strictly follows the lines of the proof derived in [31]. However a sketch of the proof is provided to better understand
that the inclusion of the triggering variable 𝜂𝑘 does not imply critical modifications.

Assume that the first statement in Theorem 1 holds. Then, functional  = −𝑉 (𝜒𝑘(𝜏)) +
𝜏
𝑇𝑘
𝛥𝑉 (𝑘) verifies the looping condition

and the associated functional 𝑘 straightforwardly verifies condition (22).
Assume now that the second statement in Theorem 1 is satisfied, that is there exists a looped-functional  such that  verifies

ondition (22). Then, integrating ̇ over the interval [0, 𝑇𝑘], we get

𝑘(𝑇𝑘, 𝜒𝑘, 𝜒𝜅(𝓁))−𝑘(0, 𝜒𝑘, 𝜒𝜅(𝓁)) = 𝑉 (𝜒𝑘(𝑇𝑘))+(𝑇𝑘, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘)+
𝑇𝑘
𝑇𝑘

[𝜂𝑘+1 − 𝜂𝑘]−𝑉 (𝜒𝑘(0))−(0, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘)

= 𝑉 (𝜒𝑘(𝑇𝑘)) − 𝑉 (𝜒𝑘(0)) + (𝜂𝑘+1 − 𝜂𝑘) + (𝑇𝑘, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘) − (0, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘)
= 𝛥̄(𝜒𝑘, 𝜂𝑘) + (𝑇𝑘, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘) − (0, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘).

As  verifies the looping condition, the previous expression resumes to

𝑘(𝑇𝑘, 𝜒𝑘, 𝜒𝜅(𝓁))−𝑘(0, 𝜒𝑘, 𝜒𝜅(𝓁)) = 𝛥̄(𝜒𝑘, 𝜂𝑘) < 0,

which is exactly the first statement. Hence, both statement are equivalent.
The proof is then concluded by noting that the inter-sampling trajectories are uniformly bounded by the 𝜒𝑘(0) and 𝜒𝜅(𝓁) and

2 because of the linear differential equation that defines 𝜒𝑘(𝜏). Therefore, the asymptotic convergence of the discrete sequence
𝑉 (𝜒𝑘(0), 𝜂𝑘) to the origin as 𝑘 tends to infinity ensures the asymptotic convergence of 𝑉 (𝜒𝑘(𝜏), 𝜂𝑘) to the origin as 𝑘 tends to infinity,
6

for any 𝜏 ∈ [0, 2]. □
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4. Main results

In this section, we will first present the main result of this paper, dealing with the emulation of aperiodic dynamic ETC. Then,
everal more or less direct corollaries will be derived to address relevant particular cases.

.1. Aperiodic dynamic event-triggered control

heorem 2. Let 0 < 1 ≤ 2 be two positive scalars and consider the scalar parameters (𝜆, 𝜌, 𝜂0) such that 𝜌 ∈ [0, 𝜆) ⊂ [0, 1] and 𝜂0 > 0.
Assume that there exist matrices 𝑃 = 𝑃⊤ ≻ 0, 𝑅 = 𝑅⊤ ≻ 0, 𝑆 = 𝑆⊤, 𝛷 = 𝛷⊤, the controller gain 𝐾, and matrices 𝑄, 𝑀 of appropriate
dimensions such that the following LMIs are satisfied

⎡

⎢

⎢

⎣

𝛺1

(

𝑖,
1 − 𝜆
𝜌2

, 𝐴, 𝐵,𝑀
)

𝑖𝑀⊤

∗ −𝑖𝑅̃

⎤

⎥

⎥

⎦

≺ 0, 𝛺1

(

𝑖,
1 − 𝜆
𝜌2

, 𝐴, 𝐵,𝑀
)

+ 𝑖𝛺2(𝐴,𝐵) ≺ 0,
[

𝐼
𝐼

]⊤

𝛷
[

𝐼
𝐼

]

⪯ 0, (23)

for 𝑖 = 1, 2, where

𝛺1

(

𝑖,
1 − 𝜆
𝜌2

, 𝐴, 𝐵,𝑀
)

= He
(

𝐺⊤
2 (𝐴,𝐵)𝑃𝐺1 − 𝐺⊤

3 𝑄𝐻1 − 𝐺⊤
𝑤𝑀

)

− 𝑖𝐹⊤
1 𝑆𝐹1 −

1 − 𝜆
𝜌2

𝐺⊤
𝜑𝛷𝐺𝜑,

𝛺2(𝐴,𝐵) = 𝐺⊤
2 (𝐴,𝐵)𝑅𝐺2(𝐴,𝐵) + 2𝐹⊤

1 𝑆𝐹1 + He
(

𝐹⊤
2 𝑆𝐹1 + 𝐺⊤

2 (𝐴,𝐵)𝑄𝐻1 + 𝐺⊤
3 𝑄𝐻2(𝐴,𝐵)

)

,
(24)

and
𝐺1 =

[

𝐼 0 0 0
]

, 𝐺2(𝐴,𝐵) =
[

𝐴 0 𝐵𝐾 0
]

, 𝐺3 =
[

𝐼 −𝐼 0 0
]

,

𝐺𝜑 =
[

0 𝐼 0 0
0 0 𝐼 0

]

, 𝐻1 =
⎡

⎢

⎢

⎣

𝐼 0 0 0
0 𝐼 0 0
0 0 𝐼 0

⎤

⎥

⎥

⎦

, 𝐻2(𝐴,𝐵) =
⎡

⎢

⎢

⎣

𝐴 0 𝐵𝐾 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

,

𝐹1 =
⎡

⎢

⎢

⎣

0 𝐼 0 0
0 0 𝐼 0
0 0 0 𝐼

⎤

⎥

⎥

⎦

, 𝐹2 =
⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
𝐼 0 0 −𝐼

⎤

⎥

⎥

⎦

, 𝐺𝑤 =
[

𝐼 −𝐼 0 0
𝐼 𝐼 0 −2𝐼

]

,

𝑅̃ =
[

𝑅 0
0 3𝑅

]

.

(25)

Then, the system (18) with the aperiodic dynamic event-triggered control (6) is asymptotically stable.

Proof. Consider the Lyapunov function 𝑉 (𝑥) = 𝑉 (𝑥)+𝜂𝑘, where 𝑉 (𝑥) = 𝑥⊤𝑃𝑥 for ∀𝑥 ∈ R𝑛 and 𝜂𝑘 is the discrete-time dynamic event-
triggered variable governed by (7). Let us introduce an appropriate looped functional for this problem. The proposed functional finds
its origin in paper [38] with a few modifications to account for the memory variable 𝜒𝜅(𝓁). It is defined as follows

(𝜏, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘) = 2(𝑇𝑘 − 𝜏)(𝜒𝑘(𝜏) − 𝜒𝑘(0))⊤𝑄𝜁𝑘(𝜏) + (𝑇𝑘 − 𝜏)𝜏𝜌⊤𝑘 (𝜏)𝑆𝜌𝑘(𝜏) + (𝑇𝑘 − 𝜏)∫

𝜏

0
𝜒̇𝑘

⊤(𝑠)𝑅𝜒̇𝑘(𝑠)d𝑠,

where

𝜁𝑘 =
⎡

⎢

⎢

⎣

𝜒𝑘(𝜏)
𝜒𝑘(0)

𝜒𝜅(𝓁)(0)

⎤

⎥

⎥

⎦

, 𝜌𝑘 =
⎡

⎢

⎢

⎣

𝜒𝑘(0)
𝜒𝜅(𝓁)(0)

1
𝜏 ∫

𝜏
0 𝜒𝑘(𝑠)d𝑠

⎤

⎥

⎥

⎦

.

Note that the argument ‘(𝜏)’ has been deliberately omitted in these notations to ease the reading of the latter developments. It is
easy to verify that the functional  verifies the conditions of the looped-functional, since (0, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘) = (𝑇𝑘, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘) = 0.
Therefore, following the statement of Theorem 1, the stability of the closed-loop system can be assessed by studying the constructed
functional

(𝜏, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘) = 𝑉 (𝜒𝑘(𝜏)) + (𝜏, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘) +
𝜏
𝑇𝑘

(𝜂𝑘+1 − 𝜂𝑘). (26)

ifferentiation of  along the trajectories of the system leads to

̇(𝜏, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘) = 2𝜒⊤
𝑘 (𝜏)𝑃 𝜒̇𝑘(𝜏) + (𝑇𝑘 − 2𝜏)𝜌⊤𝑘𝑆𝜌𝑘 + 2𝜏(𝑇𝑘 − 𝜏)𝜌̇⊤𝑘𝑆𝜌𝑘

−2(𝜒𝑘(𝜏) − 𝜒𝑘(0))⊤𝑄𝜁𝑘 + 2(𝑇𝑘 − 𝜏)𝜒̇⊤
𝑘 (𝜏)𝑄𝜁𝑘 + 2(𝑇𝑘 − 𝜏)(𝜒𝑘(𝜏) − 𝜒𝑘(0))⊤𝑄𝜁̇𝑘

+ (𝑇𝑘 − 𝜏)𝜒̇⊤
𝑘 (𝜏)𝑅𝜒̇𝑘(𝜏) − ∫

𝜏

0
𝜒̇𝑘

⊤(𝑠)𝑅𝜒̇𝑘(𝑠)d𝑠 +
𝜂𝑘+1 − 𝜂𝑘

𝑇𝑘
.

Recalling (7), for ∀𝑘 ∈ [𝜅(𝓁), 𝜅(𝓁 + 1))N ,∀𝓁 ∈ N, no sampled data is triggered so that 𝜌𝜂𝑘 ≥ 𝜑(𝜒𝑘(0), 𝜒𝜅(𝓁)(0)). Further considering
𝜆 ∈ [0, 1), it yields

𝜂𝑘+1 − 𝜂𝑘
𝑇𝑘

=
𝜆 + 𝜌 − 1

𝑇𝑘
𝜂𝑘 −

1
𝑇𝑘

𝜑(𝜒𝑘(0), 𝜒𝜅(𝓁)(0)) (27)

≤ 𝜆 + 𝜌 − 1
𝜑(𝜒𝑘(0), 𝜒𝜅(𝓁)(0)) −

1 𝜑(𝜒𝑘(0), 𝜒𝜅(𝓁)(0)) (28)
7

𝜌𝑇𝑘 𝑇𝑘
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≤ −
(

1 − 𝜆
𝜌𝑇𝑘

)

𝜑(𝜒𝑘(0), 𝜒𝜅(𝓁)(0)) (29)

≤ −
(

1 − 𝜆
𝜌2

)

𝜑(𝜒𝑘(0), 𝜒𝜅(𝓁)(0)). (30)

Furthermore, based on Lemmas 2 and 3, the following inequality holds for any matrix 𝑀 of appropriate dimensions

−∫

𝜏

0
𝜒̇⊤
𝑘 (𝑠)𝑅𝜒̇𝑘(𝑠)d𝑠 ≤ 𝜏𝜉⊤𝑘 (𝜏)𝑀

⊤
[

𝑅 0
0 3𝑅

]−1

𝑀𝜉𝑘(𝜏) − 2

[

𝜒𝑘(𝜏) − 𝜒𝑘(0)
𝜒𝑘(𝜏) + 𝜒𝑘(0) −

2
𝜏 ∫

𝜏
0 𝜒𝑘(𝑠)d𝑠

]⊤

𝑀𝜉𝑘(𝜏), (31)

here we define the augmented vector 𝜉𝑘(𝜏) as follows

𝜉𝑘 =
[

𝜒⊤
𝑘 (𝜏) 𝜒⊤

𝑘 (0) 𝜒⊤
𝜅(𝓁)(0)

1
𝜏 ∫

𝜏
0 𝜒⊤

𝑘 (𝑠)d𝑠
]⊤

, (32)

and by noting that

𝜒𝑘(𝜏) = 𝐺1𝜉𝑘, 𝜒̇𝑘(𝜏) = 𝐺2(𝐴,𝐵)𝜉𝑘, 𝜒𝑘(𝜏) − 𝜒𝑘(0) = 𝐺3𝜉𝑘,
[

𝜒𝑘(0)
𝜒𝜅(𝓁)(0)

]

= 𝐺𝜑𝜉𝑘,

𝜁𝑘 = 𝐻1𝜉𝑘, 𝜁̇𝑘 = 𝐻2(𝐴,𝐵)𝜉𝑘, 𝜌𝑘 = 𝐹1𝜉𝑘, 𝜌̇𝑘 = 1
𝜏
𝐹2𝜉𝑘.

(33)

In addition, the following identity holds:
[

𝜒𝑘(𝜏) − 𝜒𝑘(0)
𝜒𝑘(𝜏) + 𝜒𝑘(0) −

2
𝜏 ∫

𝜏
0 𝜒𝑘(𝑠)d𝑠

]

= 𝐺𝑤𝜉𝑘.

As mentioned above all, an upper bound of the derivative of  expression is given by

̇(𝜏, 𝜒𝑘, 𝜒𝜅(𝓁)) ≤ 𝜉⊤𝑘 (𝜏)

(

𝛺1

(

𝑖,
1 − 𝜆
𝜌2

, 𝐴, 𝐵,𝑀
)

+ 𝜏𝑀⊤
[

𝑅 0
0 3𝑅

]−1

𝑀 + (𝑇𝑘 − 𝜏)𝛺2(𝐴,𝐵)

)

𝜉𝑘(𝜏), (34)

where matrices 𝛺1 and 𝛺2 have been defined in (24). Therefore, the derivative of functional  is negative definite if the following
ondition holds:

𝛺1

(

𝑖,
1 − 𝜆
𝜌2

, 𝐴, 𝐵,𝑀
)

+ 𝜏𝑀⊤
[

𝑅 0
0 3𝑅

]−1

𝑀 + (𝑇𝑘 − 𝜏)𝛺2(𝐴,𝐵) ≺ 0, ∀𝜏 ∈ [0, 𝑇𝑘].

ince the previous condition is convex with respect to 𝜏 ∈ [0, 𝑇𝑘], an equivalent condition writes

⎡

⎢

⎢

⎣

𝛺1

(

𝑇𝑘,
1 − 𝜆
𝜌2

, 𝐴, 𝐵,𝑀
)

𝑇𝑘𝑀⊤

∗ −𝑇𝑘𝑅̃

⎤

⎥

⎥

⎦

≺ 0, 𝛺1

(

𝑇𝑘,
1 − 𝜆
𝜌2

, 𝐴, 𝐵,𝑀
)

+ 𝑇𝑘𝛺2(𝐴,𝐵) ≺ 0. (35)

We use a convexity argument with respect to the inter-sampling time 𝑇𝑘 that belongs to the interval [1, 2] to conclude that
Theorem 2 ensures ̇(𝜏, 𝜒𝑘, 𝜒𝜅(𝓁), 𝑇𝑘) < 0, which guarantees the stability of the closed-loop system with the event-triggering rule
(6). □

The above theorem presents a stability condition for closed-loop systems under dynamic aperiodic event-triggered control (6).
This theorem is based on the use of the Wirtinger-based inequality, which can be further refined by using a less conservative integral
inequality such as Bessel’s inequality but this is not the objective of this paper.

Similarly, the number of decision variables involved in the previous stability condition is a crucial issue when dealing with LMIs.
Here Theorem 2 introduce an LMI condition whose complexity is measured by the total number of decision variables (18.5𝑛2 +3.5𝑛)
and the dimension of the condition is 11𝑛 × 11𝑛. Altogether, the complexity of the problem is reasonable for systems of dimension
lower than 𝑛 = 20. While the parameters of the Lyapunov function and of the looped-functional must remain free to allow flexibility,
it has been shown in [40] that particular cases of the slack variable 𝑀 , with fewer decision variables, can be considered to reduce the
complexity of the LMI. These particular cases refer, for instance, to the (parameter dependent) reciprocally convexity combination
lemma but, again, this is not the objective of this paper.

If one is dealing with systems of large dimension, it is possible to reduce the complexity by removing the last components of 𝜉𝑘
(e.g 1

𝜏 ∫
𝜏
0 𝜒⊤

𝑘 (𝑠)d𝑠), which will reduce the number of decision variables as well as the dimension of the LMI, of course at the price
f introducing conservatism.

.2. Relevant corollaries

It is important to stress that particular cases can be stated to demonstrate the generality of our proposed theorem. The first one is
or the case of periodic dynamic event-triggered control. The second deals with aperiodic static event-triggered control. The last one
resents an extension to uncertain plants. The other possible combinations, for instance the uncertain case with periodic sampling
8

nd static rule, can be easily stated and are therefore omitted.
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4.2.1. Periodic event-triggered control
The following corollary addresses the case of periodic event-triggered control, i.e., when 1 = 2 =  > 0.

orollary 1. Let  be a strictly positive scalar and consider scalar parameters (𝜆, 𝜌, 𝜂0) such that 𝜌 ∈ [0, 𝜆) ⊂ [0, 1] and 𝜂0 > 0. Assume
that there exist matrices 𝑃 = 𝑃⊤ ≻ 0, 𝑅 = 𝑅⊤ ≻ 0, 𝑆 = 𝑆⊤, 𝛷 = 𝛷⊤, the controller gain 𝐾 and matrices 𝑄, 𝑀 of appropriate dimensions
such that the conditions (23) are satisfied with 1 = 2 =  , that is

⎡

⎢

⎢

⎣

𝛺1

(

 , 1 − 𝜆
𝜌

, 𝐴, 𝐵,𝑀
)

 𝑀⊤

∗ − 𝑅̃

⎤

⎥

⎥

⎦

≺ 0, 𝛺1

(

 , 1 − 𝜆
𝜌

, 𝐴, 𝐵,𝑀
)

+  𝛺2(𝐴,𝐵) ≺ 0,
[

𝐼
𝐼

]⊤

𝛷
[

𝐼
𝐼

]

⪯ 0. (36)

hen the system (18) with the periodic dynamic event-triggered control (6) is asymptotically stable.

roof. The proof is derived by simply imposing 1 = 2 =  , which makes the sampling periodic. □

4.2.2. Static event-triggered control
Following Remark 2, the following corollary is stated to address the case of aperiodic static event-triggered control.

Corollary 2. Let 0 < 1 ≤ 2 be two positive scalars and consider scalar parameters (𝜆, 𝜌) = (1 − 𝜖, 0), with an arbitrarily small 𝜖 > 0
and 𝜂0 > 0. Assume that there exist matrices 𝑃 = 𝑃⊤ ≻ 0, 𝑅 = 𝑅⊤ ≻ 0, 𝑆 = 𝑆⊤, 𝛷 = 𝛷⊤, the controller gain 𝐾, and matrices 𝑄, 𝑀 of
appropriate dimensions such that the following LMIs are satisfied

⎡

⎢

⎢

⎣

𝛺1

(

𝑖,
1
2

, 𝐴, 𝐵,𝑀
)

𝑖𝑀⊤

∗ −𝑖𝑅̃

⎤

⎥

⎥

⎦

≺ 0, 𝛺1

(

𝑖,
1
2

, 𝐴, 𝐵,𝑀
)

+ 𝑖𝛺2(𝐴,𝐵) ≺ 0,
[

𝐼
𝐼

]⊤

𝛷
[

𝐼
𝐼

]

⪯ 0, (37)

for 𝑖 = 1, 2, where 𝛺1 and 𝛺2 are given in (24).
Then, system (18) with the aperiodic static event-triggered control (4) is asymptotically stable.

Proof. The proof is performed by selecting the particular case of the dynamic event-triggered variable 𝜂𝑘 in (7) with 𝜆 = 1 − 𝜖
and the event-triggering rule (6) with 𝜌 = 0. It is worth noting that selecting 𝜆 = 1 − 𝜖 is mandatory to guarantee that variable 𝜂𝑘
converges to zero even though the computation of this variable is not required to compute the control law in the static case but is
still required for the proof. These selections of (𝜆, 𝜌) lead us to the definition of 𝛺̄1(𝑖) in (24), by eliminating 𝜂𝑘 in (27). □

.2.3. Uncertain and time-varying systems
Consider now that 𝐴 and 𝐵 are uncertain and/or time varying. A possible way to represent such uncertain systems is to include

and 𝐵 in a polytope of 𝐽 ∈ N vertices, which is defined by some positive scalars 𝛼𝑗 ≥ 0, 𝑗 = 1,… , 𝐽 such that ∑𝐽
𝑗=1 𝛼𝑗 = 1 and

[𝐴 𝐵𝐾] =
𝐽
∑

𝑗=1
𝛼𝑗 [𝐴𝑗 𝐵𝑗𝐾]. (38)

n extension of Theorem 2 to this class of uncertain systems is proposed below.

orollary 3. Let 0 < 1 ≤ 2 be two positive scalars and consider scalar parameters (𝜆, 𝜌, 𝜂0) such that 𝜌 ∈ [0, 𝜆) ⊂ [0, 1] and 𝜂0 > 0.
Assume that there exist matrices 𝑃 = 𝑃⊤ ≻ 0, 𝑅 = 𝑅⊤ ≻ 0, 𝑆 = 𝑆⊤, 𝛷 = 𝛷⊤, the controller gain 𝐾, and matrices 𝑄, 𝑀𝑗 with 𝑗 = 1,… , 𝐽
f appropriate dimensions such that the following LMIs are satisfied

⎡

⎢

⎢

⎣

𝛺1

(

𝑖,
1 − 𝜆
𝜌2

, 𝐴𝑗 , 𝐵𝑗 ,𝑀𝑗

)

𝑖𝑀⊤
𝑗

∗ −𝑖𝑅̃

⎤

⎥

⎥

⎦

≺ 0, 𝛺1

(

𝑖,
1 − 𝜆
𝜌2

, 𝐴𝑗 , 𝐵𝑗 ,𝑀𝑗

)

+ 𝑖𝛺2(𝐴𝑗 , 𝐵𝑗 ) ≺ 0,
[

𝐼
𝐼

]⊤

𝛷
[

𝐼
𝐼

]

⪯ 0, (39)

for 𝑖 = 1, 2, and 𝑗 = 1,… , 𝐽 , where 𝛺1 and 𝛺2 are given in (24).
Then the system (18) with uncertain matrices (38) and the aperiodic dynamic event-triggered control (6) is asymptotically stable.

Proof. To perform the proof, we first need to introduce the flexibility in the matrix 𝑀 to account for the uncertain case. Let us
define a time-varying or uncertainty-dependent matrix 𝑀 =

∑𝐽
𝑗=1 𝛼𝑗𝑀𝑗 , where the 𝛼𝑗 are the weights of the polytopic representation

and where the 𝑀𝑗 are 𝐽 matrices of the same size as 𝑀 . The proof is performed by noting that conditions (23) of Theorem 2 are
convex with respect to 𝐴 and 𝐵 but also with respect to 𝑀 . Consequently, it holds that

⎡

⎢

⎢

⎢

⎣

𝛺1

(

𝑖,
1 − 𝜆
𝜌2

,
𝐽
∑

𝑗=1
𝛼𝑗𝐴𝑗 ,

𝐽
∑

𝑗=1
𝛼𝑗𝐵𝑗 ,

𝐽
∑

𝑗=1
𝛼𝑗𝑀𝑗

)

𝑖
∑𝐽

𝑗=1 𝛼𝑗𝑀
⊤
𝑗

∗ −𝑖𝑅̃

⎤

⎥

⎥

⎥

⎦

≤
𝐽
∑

𝑗=1
𝛼𝑗

⎡

⎢

⎢

⎣

𝛺1

(

𝑖,
1 − 𝜆
𝜌2

, 𝐴𝑗 , 𝐵𝑗 ,𝑀𝑗

)

𝑖𝑀⊤
𝑗

∗ −𝑖𝑅̃

⎤

⎥

⎥

⎦

,

and the same calculations hold for the second inequality of (23), which concludes the proof. □
9
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Table 1
Table showing the numerical values of the ET matrixes 𝛷 for periodic static/dynamic ETC obtained by solving the optimization
problem 1 for Example 1.
Periodic sampling Case A Case B Case C

𝛷𝑠𝑡𝑎

[ 0.0000 0.4934 −0.0536 −0.1644
0.4934 0.1723 −0.2174 −0.6665
−0.0536 −0.2174 0.0392 0.1203
−0.1644 −0.6665 0.1203 0.3690

] [ 0.0835 0.2561 −0.0835 −0.2561
0.2561 0.7854 −0.2561 −0.7854
−0.0835 −0.2561 0.0668 0.2049
−0.2561 −0.7854 0.2049 0.6283

] [ 0.0880 0.2698 −0.0880 −0.2698
0.2698 0.8273 −0.2698 −0.8273
−0.0880 −0.2698 0.0582 0.1783
−0.2698 −0.8273 0.1783 0.5468

]

𝛷𝑑𝑦𝑛

[ 0.0000 0.2467 −0.0268 −0.0822
0.2467 0.0861 −0.1087 −0.3333
−0.0268 −0.1087 0.0196 0.0602
−0.0822 −0.3333 0.0602 0.1845

] [ 0.0418 0.1281 −0.0418 −0.1281
0.1281 0.3929 −0.1281 −0.3929
−0.0418 −0.1281 0.0334 0.1025
−0.1281 −0.3929 0.1025 0.3143

] [ 0.0440 0.1349 −0.0440 −0.1349
0.1349 0.4136 −0.1349 −0.4136
−0.0440 −0.1349 0.0291 0.0892
−0.1349 −0.4136 0.0892 0.2734

]

5. Optimization

Theorem 2 and its corollaries provide stability conditions for the closed-loop system and the existence of a dynamic or static
vent triggering rule. However, at this stage, there is no optimization process to select the ‘best’ event-triggering rule. In this section,
he objective is to provide a possible method to optimize the selection of the matrix 𝛷 to reduce the number of control updates.

To do so, let us first note that the solutions of the LMI conditions are scalable in the sense that if there exists a solution
1 ∶= {𝑃 ,𝑅, 𝑆,𝑄,𝑀,𝛷} to the LMIs, then for any positive scalar 𝜇 > 0, 𝜇 ∶= {𝜇𝑃 , 𝜇𝑅, 𝜇𝑆, 𝜇𝑄, 𝜇𝑀, 𝜇𝛷} is also a solution to the same
roblem. Therefore, when optimizing the solution, using for instance the minimization criteria, it will be necessary to introduce an
dditional constraint to ensure the well-conditioning of the solution. Among the possible ways to do include an optimization process,
resented in [18,20], was to minimize Trace (𝛷) to enforce the reduction of the number of control updates. Therefore, a possible
ptimization process to be included to the LMI condition is the one presented in the following statement:

ptimization 1. Consider the following optimization problem

min
𝑃 ,𝑅,𝑆,𝑄,𝑀,𝛷,

Trace 𝛷

subject to (23) and 𝑃0 ⪯ 𝑃 ⪯ 𝑃1
(40)

or given matrices 𝑃0 ≻ 0, 𝑃1 ≻ 0.

emark 5. The previous optimization problem aims at minimizing the trace of 𝛷, as a similar optimization problem that has
lready been employed in [18,20]. This optimization problem can be adapted to the various conditions in Section 4.2 via replacing
onditions (23) by (36), (37), or (39) to deal with the problems of periodic dynamic event-triggered control, aperiodic static
vent-triggered control or aperiodic dynamic event-triggered control for uncertain systems, respectively.

emark 6. In this optimization problem, constraint 𝑃0 ⪯ 𝑃 ⪯ 𝑃1 was included to avoid the conditioning problem in optimization.
ndeed, as the solutions of the LMIs are scalable, i.e. if  is a solution then 𝜇 is also solution for any positive scalars 𝜇 > 0,
minimization process without such additional constraint could simply make 𝜇 goes to zero to solve the problem. By imposing
0 ⪯ 𝑃 ⪯ 𝑃1, the scaling parameter 𝜇 cannot tend to zero and the minimization becomes more efficient, with acceptable values of
ecision variables such as 𝛷.

In practice, one can simply choose 𝑃0 = 𝐼, 𝑃1 = 10𝑃0 to find the appropriate solution.

. Numerical application and evaluation

.1. Study of the case of a nominal system

xample 1. Consider the sampled-data system borrowed from [25] with following constant and known matrices:

𝐴 =
[

0 1
0 −0.1

]

, 𝐵𝐾 =
[

0
−0.1

] [

3.75
11.5

]⊤

. (41)

For the above nominal system, the parameters in the proposed dynamic equation of the variable 𝜂𝑘 are chosen as 𝜆 = 0.6, 𝜌 = 0.2,
0 = 2 and set 𝛼 = 0.2 in (12). The initial condition is selected as 𝑥(0) =

[ 5
0
]

. It should be remarked that the static ET rule can be
etrieved by setting 𝜌 = 0 whatever the value of (𝜆, 𝜂0, 𝛼). Then, let us define the following indexes:

• the average release interval length given by

ℎ̄ =
Operation time
Triggered times

• the average transmission rate given by

𝑓 =
Average number of data transmission
10

Average number of sampling
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Fig. 1. The simulation of the system (18) with static ETC for the periodic sampling.

Table 2
Table showing the numerical values of the ET matrixes 𝛷 for aperiodic static/dynamic ETC obtained by solving the optimization
problem 1 for Example 1.
Aperiodic sampling Case A Case B Case C

𝛷𝑠𝑡𝑎

[ 0.1348 0.8099 −0.1588 −0.4870
0.8099 0.5784 −0.4605 −1.4123
−0.1588 −0.4605 0.1255 0.3848
−0.4870 −1.4123 0.3848 1.1800

] [ 0.1905 0.5840 −0.1905 −0.5840
0.5840 1.7911 −0.5840 −1.7911
−0.1905 −0.5840 0.1524 0.4672
−0.5840 −1.7911 0.4672 1.4328

] [ 0.1588 0.4869 −0.1588 −0.4869
0.4869 1.4934 −0.4869 −1.4934
−0.1588 −0.4869 0.1584 0.4854
−0.4869 −1.4934 0.4854 1.4885

]

𝛷𝑑𝑦𝑛

[ 0.0674 0.4050 −0.0794 −0.2435
0.4050 0.2892 −0.2303 −0.7061
−0.0794 −0.2303 0.0627 0.1924
−0.2435 −0.7061 0.1924 0.5900

] [ 0.0952 0.2920 −0.0952 −0.2920
0.2920 0.8956 −0.2920 −0.8956
−0.0952 −0.2920 0.0762 0.2336
−0.2920 −0.8956 0.2336 0.7165

] [ 0.0794 0.2435 −0.0794 −0.2435
0.2435 0.7467 −0.2435 −0.7467
−0.0794 −0.2435 0.0792 0.2427
−0.2435 −0.7467 0.2427 0.7443

]

In the following, we will perform several simulations for the periodic and aperiodic samplings, respectively. In order to show
he generality and effectiveness of our proposed ETC design, all cases of the proposed ET rule will be considered. It should be noted
gain that as mentioned in Remark 4, Case A represents the generic case of the proposed ET rule with a generic 𝛷 as in (11). Case
and Case C represent some existing ET rules in other work [12,13,20,35], which can be obtained by selecting a special 𝛷 as in

12) and (13). They can be seen as special cases of Case A and we will give simulations for all them. Furthermore, both static and
ynamic ETC will be considered, respectively.

.1.1. Periodic sampling
For the periodic sampling with constant period ℎ = 0.5𝑠, define 𝛷𝑠𝑡𝑎 and 𝛷𝑑𝑦𝑛 representing the solutions of the static and dynamic

ET conditions, respectively. The corresponding results of the three cases mentioned above can be obtained by solving the LMIs (36)
and are given in Table 1.

Then with the same sequence of sampling instants and the same constant initial conditions, using the solutions in the table, we
get simulation results of the static and dynamic ETC systems in Fig. 1 and Fig. 2, respectively. The trajectories of the system, the
sampling and triggering instants, and the value of the corresponding triggering functions for all three cases are included in one
figure. It is shown from the trajectories of the system that the stability of the system is guaranteed with our static and dynamic ETC
design in the proposed looped-functional framework. It can be found from the sampling and triggering instants that our ETC design
is very beneficial in reducing the amount of transmitted data. Our proposed ETC design provides an effective and more general
solution to cover some existing periodic ET rules. However, the dynamic ET condition does not seem to work better than the static
one for periodic sampling.

6.1.2. Aperiodic sampling
For the aperiodic sampling, the sampling period varying in time belongs to [1, 2] = [0.1, 0.8]. The other parameters are the same

as before. By solving the LMIs (23) and (37), we can obtain ET matrices 𝛷𝑠𝑡𝑎 and 𝛷𝑑𝑦𝑛 of the proposed ET rule in Table 2. Under
these solutions, the trajectories of the system, the sampling and triggering instants, and the value of the corresponding triggering
functions of each case are illustrated in Fig. 3 for the static ETC system.

Fig. 4 shows the results for the dynamic ETC system. From the figures, we can see that for the aperiodic sampling, the trajectories
of the system still convergence fast with our static and dynamic ETC design. The network resources can be effectively saved due
11

to the obvious decrease of the control updates. The results show that our design also provides an effective and general solution to
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Fig. 2. The simulation of the system (18) with dynamic ETC for the periodic sampling.

Fig. 3. The simulation of the system (18) with static ETC for the aperiodic sampling.

the aperiodic ETC problem. Moreover, it seems that the dynamic ET condition performs better than the static one in reducing the
transmission as is shown in the figures.

However, it is not intuitive enough to show the efficiency of our proposed ETC design. To make a deep analysis explicitly, for
each case of our ETC design, we calculate the evaluation indexes ℎ̄ and 𝑓 which have been defined before. Select initial conditions as
(0) = 10

[

𝑐𝑜𝑠(2𝜋𝜃∕𝑁)
𝑠𝑖𝑛(2𝜋𝜃∕𝑁)

]

, where 𝜃 takes the integer values between 1 and 𝑁 and 𝑁 = 50. With the same sequence of sampling instants,
e do 𝑁 = 50 times of simulations to get the average value of ℎ̄ and 𝑓 .

The results for the three cases of the ET rule are given in Table 3. From Table 3, we can make a quantitative analysis that for the
ettings of the given parameters, our design provides a better solution, namely Case A, for the periodic/aperiodic and static/dynamic
12

TC problem to include some existing ET rules, namely Case B and Case C. Moreover, the dynamic ET condition performs better
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Fig. 4. The simulation of the system (18) with dynamic ETC for the aperiodic sampling.

Table 3
Evaluation indexes for the proposed ET rule.
Periodic sampling ℎ̄ 𝑓

ℎ = 0.5 Static Dynamic Static Dynamic

Case A 1.8094 1.9557 27.63% 25.57%
Case B 1.6760 1.7943 29.83% 27.87%
Case C 1.9685 1.6873 25.40% 29.63%

Aperiodic sampling ℎ̄ 𝑓

[1 , 2] = [0.1, 0.8] Static Dynamic Static Dynamic

Case A 1.4272 1.7483 31.19% 25.51%
Case B 1.6026 1.6556 27.77% 26.93%
Case C 0.5196 1.5385 85.67% 28.98%

than the static one in most cases except Case C of the periodic sampling. However, it should be noted that the results could be
influenced by many factors, such as the initial state of the system, the parameters of the dynamic condition, the selection of the
sampling period, etc. How to make our proposed ET rule work more effectively by selecting the ‘best’ values of 𝜆 and 𝜌 is still an
open problem.

6.2. Study of the case of an uncertain system

Example 2. Next, consider the uncertain system taken from [29]:

𝐴 =
[

1 0.5
𝑔1 −1

]

, 𝐵𝐾 =
[

1 + 𝑔2
−1

] [

−2.688
−0.664

]𝑇

. (42)

where |

|

𝑔1|| ≤ 0.1 and |

|

𝑔2|| ≤ 0.3. For the aperiodic sampling [1, 2] = [0.1, 0.5], the other parameters are the same as those of
Example 1. By solving the (39), solutions of the proposed main E-T rule, namely Case A of (4) and (6), are obtained as follows:

𝛷𝑠𝑡𝑎 =

⎡

⎢

⎢

⎢

⎢

⎣

47.0291 11.4746 −46.0302 −11.3718
11.4746 2.2019 −10.3407 −2.5573
−46.0302 −10.3407 43.7257 10.7982
−11.3718 −2.5573 10.7982 2.6722

⎤

⎥

⎥

⎥

⎥

⎦

, 𝛷𝑑𝑦𝑛 =

⎡

⎢

⎢

⎢

⎢

⎣

11.7574 2.8687 −11.5076 −2.8430
2.8687 0.5506 −2.5852 −0.6394
−11.5076 −2.5852 10.9316 2.6995
−2.8430 −0.6394 2.6995 0.6681

⎤

⎥

⎥

⎥

⎥

⎦

. (43)

Then, the system trajectories, the sampling and triggering instants, and the triggering functions of the static and dynamic ETC
systems for Case A are given in Fig. 5. From the figure we can see that, in our proposed novel framework for the aperiodic ETC,
13
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Fig. 5. The simulation of the system (18) for Case A of the aperiodic static (a) and dynamic (b) ETC.

Table 4
Evaluation indexes for Case A of the proposed ET rule.
Aperiodic sampling Static ETC Dynamic ETC

ℎ̄ 0.8528 1.0267
𝑓 35.22% 30.58%

a good balance between the system performance and resources is obtained for linear systems with polytopic uncertainties, which
shows the generality and efficiency of our design. Furthermore, the evaluation indexes are given in Table 4. The values of ℎ̄ and 𝑓
demonstrate that the dynamic ET condition usually works better than the static one.

7. Conclusion

In this manuscript, we have extended the concept of periodic dynamic event-triggered control for linear sampled-data systems
to encompass the aperiodic case. To do so, we introduced a discrete-time dynamic triggering rule and provide a stability
analysis of the closed-loop system within a novel looped-functional framework. Leveraging the lifting technique and the proposed
looped functionals, we have established a unified framework to derive asymptotic stability conditions for periodic/aperiodic and
static/dynamic event-triggered control systems, expressed in terms of a set of feasible Linear Matrix Inequalities. The efficacy of the
proposed design is demonstrated through simulation results. Future endeavors will explore the extension of our design methodology
to discrete-time sampled-data systems, nonlinear systems, and similar domains.
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