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Resumen

A medidada que los robots se van integrando en la vida diaria de las personas, se
les pide que realicen tareas cada vez mas complejas. Muchas de estas tareas se
podrian ejecutar mas eficientemente por un grupo de robots, en vez de por uno sélo.
Trabajando conjuntamente, el equipo de robots puede completar tareas de forma més
rapida, incrementando la robustez del sistema e incluso llevando a cabo tareas que
son imposibles por un tnico robot. Sin embargo, coordinar un equipo de robot ain

requiere superar importantes retos a nivel cientifico.

Dentro del campo de estudio de los sistemas multirobot, esta tesis se enfoca en el
problema de la asignacion de tareas. Este problema intenta responder a la pregunta:
.qué robot deberia ejecutar cada una de las tareas? Este problema tiene una gran
importancia en misiones de exploraciéon que hacen uso de varios robots. Por ejemplo,
en futuras misiones cientificas, se quiere mandar distintos robots instrumentados a
lugares de interés cientifico, que nos permita ampliar nuestro conocimiento sobre el
origen de la vida. A la hora de establecer las configuraciones de estos robots, hay
que determinar como asignar las posiciones de éstos para que finalmente se obtenga
la topologia deseada. Este mismo objetivo también se trata cuando se estudia el

problema de la asignacién de tareas con multiples robots.

Esta tesis presenta recientes contribuciones en el campo de la cooperacién entre
multiples robots. En particular, la investigacién llevada a cabo se centra en algorit-
mos distribuidos de asignacion de tareas basados en reglas de mercado. Con mayor
detalle, las aportaciones de la tesis se pueden resumir en cuatro puntos fundamen-
tales. En primer lugar, se ha desarrollado un nuevo concepto denominado servicios,

que permite asignar tareas de las que se desconoce el ntimero de robots necesarios
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para ser ejecutadas. El ntimero final de robots necesario es decidido durante un pro-
ceso de negociacion y depende de las capacidades de los robots. Con respecto a los
algoritmos MRMT (Multiple Robots Multiple Tasks), esta tesis presenta un nuevo
algoritmo distribuido de asignacion de tareas que combina la resasignacién y com-
binaciéon de pujas, que posee tanto una alta eficiencia como tolerancia a fallos. Por
otra parte, se han desarrollado mejoras de los algoritmos MRST (Multiple Robots
Single Task) ya existentes. La principal diferencia es que se aumenta la informacién
compartida, de manera que los robots eligen tareas que, no sélo son mejores para
ellos, sino para el grupo en general. Finalmente, esta tesis desarrolla un marco de
trabajo probabilistico para calcular medidas de eficiencia en algoritmos MRST. El
analisis consiste en el calculo del valor esperado de la funcién objetivo, que es usado
mas tarde como métrica para comparar diferentes algoritmos. Como el valor esper-
ado de una variable aleatoria indica su valor en media, éste supone una medida méas
informativa que las utilizadas usualmente en la literatura para medir la eficiencia del

algoritmo, como por ejemplo el peor caso posible con respecto a la soluciéon 6ptima.

Por otra parte, la tesis estd organizada de la siguiente manera. El primer capitulo
introduce y motiva el problema a tratar. A continuacién, el Capitulo 2 aborda el
problema de la asignacién de tareas que necesitan un nimero desconocido de robots
para ser ejecutadas. El ntimero de robots depende de sus capacidades y se calcula
durante un proceso de negociacion. El concepto de servicio, es definido en este punto.
Un servicio se genera a partir de una tarea con la que esté relacionado, y éste puede
generar otro servicio creandose una relacion jerarquica entre las tareas y los servicios.
En este capitulo también se estudia el impacto sobre la ejecucién de las tareas que

dicha relacién provoca.

En el caso en el que la eficiencia de la asignacién sea de interés, ésta se puede
aumentar, como se muestra en el Capitulo 3, mediante la combinacion de los conceptos
de reasignacién con el de pujas combinatorias. Las tareas se agrupan y se asignan
como si fueran una tnica, en lugar de asignar cada tarea por separado. La eficiencia
de la asignacién se ve aumentada puesto que los robots calculan sus costes con un
horizonte de ejecucion maés largo y se benefician de las sinergias entre las tareas. Como

contrapartida, se necesita un nivel de confianza mas alto en los costes de las tareas.



La ultima parte del Capitulo 3 estudia problemas de sincronizacién para algoritmos
de asignacién de tareas basados en reglas de mercado.

En el Capitulo 4 se describen diferentes algoritmos MRST de asignacién de tar-
eas. Este tipo de algoritmos no usan planes de ejecucion locales, y por tanto, son
apropiados para aplicaciones donde los costes pueden cambiar con el tiempo. En el
mismo capitulo se discuten varias estrategias para la obtencién de soluciones mas efi-
cientes que las usuales. Por otra parte, el Capitulo 5 desarrolla un marco de trabajo
probabilistico que permite comparar diferentes algoritmos MRST de asignacion de
tareas. Dentro de este analisis probabilistico, el objetivo es calcular el valor esperado
del la funcién objetivo, que proporciona una medida de la eficiencia del algoritmo.
Los resultados tedricos obtenidos son validados mediante simulaciones y experimentos
con robots reales. También en este capitulo, se desarrolla un estudio de la eficiencia
de un algoritmo en comparacion con el valor éptimo. Este capitulo finaliza con una
extension de la metodologia propuesta, mediante el calculo de la distribucién prob-
abilistica estimada de la funcién objetivo. Finalmente, las conclusiones y el futuro

trabajo a desarrollar de esta tesis se exponen en el Capitulo 6.
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Abstract

As robots become an integral part of human life they are charged with increasingly
difficult tasks. Many of these tasks can be better achieved by a team of robots than
by a single one. By working together, robots can complete tasks faster, increase
system robustness, improve solution quality, and achieve tasks impossible for a single
robot. Nevertheless, coordinating such a team requires overcoming many formidable

research challenges.

Within the multi-robot field of study, this thesis focus on the task allocation
problem which tries to answer the question: which robot should execute each task?
This problem has a mayor impact in exploration applications using multiple robots.
For example, in future science exploration missions, there is a desire to send multiple,
instrumented rovers to scientific sites of interest to expand our understanding of both
the history and future of life. Establishment of the sensor configurations involves
determining how to allocate sensor positions to mobile sensor agents in order to
achieve a desired topology, a similar research objective is found when focusing on the

task allocation problem with teams of robots.

This thesis proposes different distributed algorithms to solve the multi-robot task
allocation (MRTA) problem. These algorithms must be as efficient as possible trying
to obtain solutions close to the optimal. Also, the algorithms have to be robust
enough to be highly fault tolerant. In order to fulfill the commented characteristics,
the market-based approach has been chosen to develop the novel algorithms presented

in this thesis.

These algorithms are divided into two categories: MRMT (Multiple Robots Mul-
tiple Tasks) and MRST (Multiple Robots Single Task). The former makes use of

xiil



local execution plans, and it obtains more efficient solutions. While the latter only
allocates one task per robot, and it is suited for applications where task cost may
change through time. For MRST algorithms, this thesis presents a novel approach
to study the performance of task allocation algorithms. This theoretical analysis is
based on a probabilistic approach which is used to obtain metrics that model the
algorithm performance.

Finally, the thesis is supported by an extensive experimental work where the

proposed algorithms have been tested and validated using real robots.
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Chapter 1
Introduction

This thesis presents contributions in the field of cooperation within robot teams. More
precisely, this research has focused on distributed task allocation algorithms based on
market approaches.

This first chapter presents the motivation and the main objectives of the research
carried out. The task allocation problem is localized within the multi-robot problem
domain. Next, an overview of existing works related to the multi-robot task allocation
problem is described.

On the other hand, the fundamentals of market-based approaches are explained.
These concepts are used through the rest of this thesis. Moreover, a summary of
previous works that have used this approach to solve the task allocation problem is
exposed. Next, the scope of this research is limited by explaining the characteris-
tics and assumptions considered in the multi-robot system and the task allocation

problem. Finally, the thesis outline and main contributions are presented.

1.1 Motivation and objectives

In the following years, it is predicted that systems based on robots will have to solve
more complex problems and in a more efficient manner. Although, in the current
situation, the majority of these systems are composed of only one robot, this is not

necessarily the best solution when a high fault tolerance level is needed or tasks



4 Introduction

present an important grade of diversity. For these reasons, multi-robot systems has
gained popularity as a research topic in the last decade. In (Parker, 2008), it is
shown how research works related to the multi-robot field has significantly increased

recently.

Multi-robot systems are preferable for tasks that are inherently distributed in
space, time, or functionality. For problems that can be separated in independent
subproblems, the use of a multi-robot system offers the potential of reducing the
overall task completion time. Moreover, multi-robot systems offer the possibility to
increase the robustness and reliability of the solution combining redundant systems.
This is possible due to the ability for one robot to replace the role or activities of a
failing one. A multi-robot system offers a greater flexibility on the system design since
each robot does not have to perform all the possible tasks. For many applications,
a single robot approach can lead to the design of a very complex and expensive
system. However, a multi-robot system can be composed of more specialized units
that offer the possibility of reducing the complexity of each robot. Finally, a number
of robots can share information and improve their perception of the environment
using cooperative perception techniques (Merino, 2008). In the last decade, several
successful multi-robot systems have demonstrated the viability and effectiveness of
this approach for some specific tasks, for example: logistics on warehouses (Wurman
et al., 2008), data recollection in natural environments (Report, 2002), and the ability
to play team sports such as soccer (Veloso et al., 1999) and (Vecht and Lima, 2004).

Within the multi-robot field of study, this thesis focus on the task allocation
problem which tries to answer the question: which robot should execute each task?
This problem has a mayor impact in exploration applications using multiple robots.
For example, in future science exploration missions, there is a desire to send multiple,
instrumented rovers to scientific sites of interest to expand our understanding of
both the history and future of life. Mars exploration missions are focused on finding
signs of life to expand our comprehension of where life began. Earth exploration
missions are focused on resolving theories on how life evolved and how it might be
effected in the future. These mission examples all have one common theme; scientists

and autonomous rovers must work together to navigate in extreme environments in



1.2 Task allocation within the multi-robot problem domain )

order to collect scientific measurements of interest. Establishment of these sensor
configurations involves determining how to allocate sensor positions to mobile sensor
agents in order to achieve a desired topology, a similar research objective is found
when focusing on the task allocation problem with teams of robots. These exploration
applications require to have a special attention to two main factors: robots energy
consumption and fault tolerance. For example, if a group of robot