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Quantum correlations from simple assumptions
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We address the problem of deriving the set of quantum correlations for every Bell and Kochen-Specker (KS)
contextuality scenario from simple assumptions. We show that the correlations that are possible according to
quantum theory are equal to those possible under the assumptions that there is a nonempty set of correlations
for every KS scenario and a statistically independent realization of any two KS experiments. The proof uses
tools of the graph-theoretic approach to correlations and deals with Bell nonlocality and KS contextuality in a
unified way.
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I. INTRODUCTION

The problem of whether quantum theory (QT) allowed an
explanation in terms of hidden variables arose at the precise
instant that Born proposed the probabilistic interpretation of
the wave function [1]. The two most famous results on the
problem of hidden variables in QT are two theorems. Bell’s
theorem [2,3] asserts that it is impossible to explain, using
local hidden-variable theories, the quantum correlations aris-
ing in experiments in which two or more spatially separated
parties perform measurements on different subsystems of a
composite system. The Kochen-Specker (KS) theorem [4–6]
states that it is impossible to explain the predictions of QT
for ideal measurements assuming that they reveal preexisting
results that are independent on which other compatible ideal
measurements are carried out. The theories in which this is the
case are called KS noncontextual hidden-variable theories.

The proof of Bell’s theorem is based on identifying quan-
tum correlations that violate inequalities that must be satis-
fied by local hidden-variables theories. These inequalities are
called Bell’s inequalities and their violation is called Bell non-
locality [7]. It took a surprising amount of time until someone
asked a natural question: What is the maximum violation of
Bell’s inequalities that QT permits? [8]. It took even more
time until someone asked another natural question: What
prevents larger violations? [9]. It was surprising to discover
that the no-signaling principle allows for larger-than-quantum
violations of Bell’s inequalities [9]. The answer was sought
examining the implications of Bell nonlocality for distributed
computation [10,11]. Then, two different principles, infor-
mation causality [12] and macroscopic locality [13], were
able to account for the maximum quantum violation of the
simplest Bell inequality. However, it was soon found that the
problem was more complex as there were correlations that do
not violate Bell’s inequalities beyond the maximum quantum
bound but are still forbidden by QT, although they seem to
satisfy all proposed principles [14].
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In parallel, it was found that the KS theorem can be proven
using Bell-like inequalities involving the correlations between
the outcomes of sequential compatible ideal measurements
[15,16]. These inequalities are called KS noncontextuality
(NC) inequalities and their violation is called KS contex-
tuality. Bell inequalities with ideal measurements are KS
NC inequalities. Also in the case of KS NC inequalities, it
was found that larger than quantum violations were possible,
raising the question of what prevents nonquantum correlations
[17]. It was proven that the so-called exclusivity principle
explains the maximum quantum violation of the simplest KS
NC inequality violated by the simplest quantum systems [18].

If we combine both perspectives, we can ask what is the
principle that explains why, according to QT, some forms of
Bell nonlocality and KS contextuality are possible while oth-
ers are not? The aim of this article is to address this problem
and show that the perspective that unifies Bell nonlocality and
KS contextuality is actually useful to solve it. The solution we
propose benefits from this unifying perspective and uses tools
of the so-called graph-theoretic approach to quantum corre-
lations introduced in Refs. [17,19]. The article is, however,
self-contained and does not require previous knowledge of the
graph-theoretic approach.

The structure of the article is the following. In Sec. II we
define Bell and KS contextuality scenarios, explain what is
meant by “correlations,” and recall which are the correlations
that are physically possible according to QT. In Sec. III we
present our result: A derivation of the quantum correlations
for Bell and KS contextuality scenarios based on two assump-
tions. The proof is developed in Sec. IV. In Sec. V we present
our conclusions. In addition, we include in two Appendixes
the proofs of two lemmas used in Sec. IV.

II. QUANTUM CORRELATIONS IN BELL
AND KS SCENARIOS

A. Compatibility, nondisturbance, and ideal measurements

In this article we consider physical theories that assign
probabilities to the outcomes of measurements. We will use
P(x = a|ψ ) to denote the probability of outcome a after
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measuring x on state ψ . By “state” we mean the object
that encodes the expectations about the outcomes of future
measurements. We do not assume any particular mathematical
representation for the states, measurements, and outcomes.

Definition 1. A measurement z with outcomes c ∈ C is a
coarse graining of a measurement x with outcomes a ∈ A if,
for all c ∈ C, there is Ac ⊆ A such that, for all states ψ ,

P(z = c|ψ ) =
∑
a∈Ac

P(x = a|ψ ) (1)

and Ac ∩ Ac′ = ∅ if c �= c′.
Definition 2. Two measurements are compatible if they are

coarse grainings of the same measurement.
Definition 3. Two sets of measurements, X = {xi}, with

respective outcomes ai ∈ Ai, and Y = {y j}, with respective
outcomes b j ∈ Bj , such that every pair (xi, y j ) are compatible,
are mutually nondisturbing if, for all xi ∈ X , ai ∈ Ai, and
y j, yk ∈ Y ,∑
b j∈Bj

P(xi = ai, y j = b j |ψ ) =
∑

bk∈Bk

P(xi = ai, yk = bk|ψ ),

(2)

and, for all yi ∈ Y , bi ∈ Bi, and x j, xk ∈ X ,∑
a j∈Aj

P(x j = a j, yi = bi|ψ ) =
∑

ak∈Ak

P(xk = ak, yi = bi|ψ ).

(3)

Therefore, the marginal probabilities P(xi = ai|ψ ) are in-
dependent of the choice of measurement y j ∈ Yj and the
marginal probabilities P(yi = bi|ψ ) are independent of the
choice of measurement x j ∈ Xj .

Definition 4. A measurement is ideal (or sharp [20]; see
also [21,22]) if (i) it gives the same outcome when performed
consecutive times on the same physical system, (ii) it does
not disturb compatible measurements, and (iii) all its coarse
grainings satisfy (i) and (ii).

B. Bell scenarios

In a Bell nonlocality experiment [2,3] there are two (or
more) spatially separated parties, typically called Alice and
Bob. Each of them acts on a different subsystem of a compos-
ite system. In each round of the experiment, Alice performs a
freely chosen measurement x ∈ X and Bob performs a freely
chosen measurement y ∈ Y . The two measurements are space-
like separated in the sense that the region of space-time from
one party’s choice to the recording of its outcome is spacelike
separated from the corresponding region for the other party.
Therefore, assuming that faster-than-light communication is
impossible, measurements performed by different parties are
mutually nondisturbing.

Each Bell scenario is characterized by the number of par-
ties, the number of measurements each party can perform, the
number of outcomes of each measurement, and the relations
of compatibility between the measurements. For example,
the simplest Bell scenario is the Clauser-Horne-Shimony-
Holt (CHSH) or (2, 2, 2) Bell scenario [2,3], in which there
are two parties, each of them can perform one out of two
measurements, each of them has two outcomes, and every

measurement of Alice is compatible with every measurement
of Bob.

C. KS contextuality scenarios

KS contextuality scenarios (hereafter KS scenarios for
brevity) extend Bell scenarios to cover situations in which
compatible measurements are not necessarily spacelike sep-
arated. As in the case of Bell scenarios, a KS scenario is char-
acterized by a number of measurements (each of them with
a number of outcomes) and their relations of compatibility.
However, in KS scenarios measurements are assumed to be
ideal. The restriction to ideal measurements (restriction that
does not exist in Bell scenarios) makes compatible measure-
ments automatically mutually nondisturbing (as occurs in Bell
scenarios). Any Bell scenario with ideal measurements is a
KS scenario, but Bell scenarios with nonideal measurements
are not KS scenarios. However, as we shall see in Sec. II H,
all quantum correlations that can be attained in Bell scenarios
with nonideal measurements can also be attained with ideal
measurements.

In classical physics, ideal measurements reveal preexisting
outcomes that are independent of which other compatible
measurements are performed. Therefore, if by “context” we
mean a set of compatible measurements, it is reasonable
to make the assumption that the hypothetical hidden vari-
able explanations of QT satisfy, for ideal measurements,
that measurement outcomes are independent of the context
[4–6,15,16]. However, this assumption is, in general, not
justified if we remove the restriction to ideal measurements
[23].

The simplest KS scenario in which qutrits (which are
the simplest quantum systems producing KS contextuality)
produce KS contextuality is the Klyachko-Can-Binicioğlu-
Shumovsky (KCBS) KS scenario [15], involving five mea-
surements xi, with i = 1, . . . , 5 (with two possible outcomes),
such that xi and xi+1 (with the sum taken modulo five) are
compatible.

D. Contexts and graphs of compatibility

Definition 5. A context in a Bell or KS scenario is a subset
of compatible (and mutually nondisturbing) measurements.

Any subset of a context is also a context.
The relations of compatibility between the measurements

in a Bell or KS scenario S can be represented by a graph (see,
e.g., Refs. [24,25]) in which vertices represent measurements
and edges relations of compatibility. A graph with this inter-
pretation is called the graph of compatibility (or compatibility
graph) of S.

In a graph of compatibility, contexts are represented by
cliques. A clique is a set of vertices every pair of which are
adjacent. For example, the graph of compatibility of CHSH
Bell scenario [2,3] is a square (and has four cliques of size
two) and the graph of compatibility of the KCBS KS scenario
[15] is a pentagon (and has five cliques of size two).

E. Mutually exclusive events and graphs of exclusivity

The possible events of scenario S correspond to all possible
combinations of outcomes of the compatible measurements in
S. For example, in the CHSH Bell scenario [2,3], there are
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16 events (x = a, y = b|ψ ) with x, y, a, b ∈ {0, 1}. In some
places, for brevity, we will use (ab|xy) to represent (x =
a, y = b|ψ ).

Definition 6. Two events of S are mutually exclusive if
there is a measurement M such that each event corresponds
to a different outcome of M.

Measurement M must be constructed using the measure-
ments, outcomes, and compatibility relations available in
S. For example, in the CHSH Bell scenario, (ab|xy) and
(a′b′|x′y′) are mutually exclusive in the following cases.

(i) When x = x′, a �= a′, y = y′, and b �= b′. Then, M is
the four-outcome measurement in which Alice measures x
and Bob measures y. That is, the measurement that produces
events (00|xy), (01|xy), (10|xy), and (11|xy).

(ii) When x = x′, a �= a′, and y �= y′. Then, M is the
measurement that produces events (a0|xy), (a1|xy), (a′0|xy′),
and (a′1|xy′). This M is defined by suitably selecting Alice’s
and Bob’s events. By definition of Bell scenario there is
no causal relation between one party’s choice and the other
party’s outcome.

(iii) When x �= x′, y = y′, and b �= b′. Then, M is the
measurement that produces events (0b|xy), (1b|xy), (0b′|x′y),
and (1b′|x′y). This M is defined by suitably selecting Alice’s
and Bob’s events. By definition of Bell scenario there is
no causal relation between one party’s choice and the other
party’s outcome.

The relations of mutual exclusivity between events can be
represented by a graph [17,19] in which vertices represent
events and edges represent relations of mutual exclusivity. A
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FIG. 1. Graph of exclusivity of the 16 elementary events of the
CHSH Bell scenario. Each node represents an event (x = a, y =
b|ψ ) denoted for brevity ab|xy. Each color represents one mea-
surement: Red and yellow for Alice’s measurements zero and 1,
respectively. Cyan and purple for Bob’s measurements zero and 1,
respectively. Each event is defined by the outcomes of two compati-
ble measurements, one of Alice and one of Bob. This is represented
by dividing each node in two semicircles. An empty (full) semicircle
indicates that the outcome of the corresponding measurement is zero
(respectively, 1).

graph with this interpretation is called a graph of exclusivity
(or exclusivity graph).

Given a set of events of a Bell or KS scenario S, the
measurements and outcomes that define each event and the
measurements that made some of the pairs of events mutually
exclusive can be represented within the graph of exclusivity
by representing each measurement in S by a different color
and each outcome by a different symbol. For the 16 elemen-
tary events of the CHSH Bell scenario this graph of exclusivity
is shown in Fig. 1.

F. Correlations

What we informally refer to as “correlations” for a partic-
ular Bell or KS scenario S is a set p(S) ∈ P (S) of probability
distributions, one for each context. Following the terminology
introduced in Ref. [26] (and used in, e.g., Ref. [7]), we will
refer to p(S) as a “behavior” for S and to P (S) as the set
of behaviors for S. In the literature p(S) is also called an
“empirical model” [27] or a “probability model” [28,29].

For a given Bell or KS scenario S, every initial state and
set of measurements produce one behavior. For example,
for the CHSH Bell scenario, if we denote the probabilities
P(x = a, y = b|ψ ) as P(ab|xy), a behavior can be represented
by the following matrix:

p(SCHSH)

=

⎡
⎢⎣

P(00|00) P(01|00) P(10|00) P(11|00)
P(00|01) P(01|01) P(10|01) P(11|01)
P(00|10) P(01|10) P(10|10) P(11|10)
P(00|11) P(01|11) P(10|11) P(11|11)

⎤
⎥⎦,

(4)

where each row contains the probabilities of the events of a
maximal context.

G. Constraints

The behaviors for a given Bell or KS scenario S must
satisfy three constraints.

(A) Normalization: For every context {x, . . . , z} (with re-
spective outcomes a ∈ A, . . . , c ∈ C) in S,∑

a∈A,...,c∈C

P(x = a, . . . , z = c|ψ ) = 1. (5)

(B) Nondisturbance: Every pair (X,Y ) of mutually nondis-
turbing sets of measurements in S must satisfy conditions (2)
and (3).

(C) The probability of each event of S must only be a
function of the state and measurement outcomes that define
this event. For example, P(x = a, y = b|ψ ) must only be a
function of ψ , x = a, and y = b.

H. Quantum correlations

According to QT, the only possible behaviors for a Bell or
KS scenario S are those that admit a mathematical representa-
tion given by the following conditions.

(I) The initial state ψ of the system can be associated with
a vector with unit norm |ψ〉 in a vector space V with an inner
product.
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(II) The state of the system after performing a set {x(i)} of
compatible measurements in S with respective outcomes {ai}
can be associated with a vector in V with unit norm

|ψ ′〉 = Ni

∏
i

E (i)
ai

|ψ〉, (6)

where Ni is a normalization constant and {E (i)
ai

} are projection
operators. E (i)

a j
corresponds to measurement x(i) in S with

outcome a j . Different outcomes of the same measurement
must be represented by orthogonal projectors. That is,

E (i)
a j

E (i)
ak

= δ j,kE (i)
ak

. (7)

The sum of the projectors corresponding to all outcomes is the
identity, i.e., ∑

k

E (i)
ak

= I. (8)

If two measurements x(i) and x(k) are compatible, then[
E (i)

a j
, E (k)

am

] = 0 ∀ j, m, (9)

where [. . .] denotes the commutator.
(III) The probability of obtaining {ai} when measuring

{x(i)} on state ψ satisfies |〈ψ ′|ψ〉|2, where |ψ ′〉 is given by
Eq. (6).

The mathematical characterization of the quantum behav-
iors is identical for Bell scenarios (in which we do not assume
that measurements are ideal) and for KS scenarios (in which
all measurements are ideal by definition). This reflects the
fact that any quantum behavior for a Bell scenario can be at-
tained with ideal measurements. This follows from Neumark’s
dilation theorem [30–32] that shows that every generalized
measurement in QT [represented by a positive-operator valued
measure (POVM)] can be implemented as an ideal quantum
measurement [represented by a projection-valued measure
(PVM)] on a larger Hilbert space. In a Bell scenario, any local
POVM x admits a local dilation to a PVM that is common to
every context in which x appears.

The mathematical characterization of quantum correlations
for Bell and KS scenarios given by (I)–(III) provides no clue
of what is the physical reason that selects some behaviors and
forbids others. The problem of the physical origin of quantum
correlations is precisely identifying what leads to (I)–(III).

I. Independent experiments

Definition 7. Two experiments A and B are statistically
independent if the occurrence of any of the events of A (B)
does not affect the probability of occurrence of any of the
events of B (respectively, A).

Therefore, if experiment A occurs in scenario SA and
produces a behavior p(SA), and a statistically independent
experiment B occurs in scenario SB and produces a behavior
p′(SB), then an observer can define an experiment (A,B)
producing a behavior given by the matrix

p′′(S(A,B) ) = p(SA) ⊗ p′(SB), (10)

where ⊗ denotes tensor product. Each row in p′′(S(A,B) )
contains the probabilities of the events of a maximal context.

If GA and GB are the graphs of compatibility of
scenarios SA and SB, respectively, then the graph of

compatibility of scenario S(A,B) is the graph join of GA

and GB, denoted GA�GB, that is, the graph with vertex set
V (GA�GB) = V (GA) ∪ V (GB) and edge set E (GA�GB) =
E (GA) ∪ E (GB) ∪ {(vA, vB) : vA ∈ V (GA), vB ∈ V (GB)}.

Two events (i, i′) and ( j, j′) are mutually exclusive in
S(A,B) if i and j are mutually exclusive in SA or i′ and
j′ are mutually exclusive in SB. Therefore, if GSA and
GSB are the graphs of exclusivity of the events of SA

and SB, respectively, then the graph of exclusivity of the
events of S(A,B) is the OR product of GSA and GSB , de-
noted GSA ∗ GSB , that is, the graph with vertex set V (GSA ∗
GSB ) = V (GSA ) × V (GSB ) and edge set E (GSA ∗ GSB ) =
{((i, i′), ( j, j′)) : (i, j) ∈ E (GSA ) or (i′, j′) ∈ E (GSB )}.

III. RESULT

Assumption 1. There is a nonempty set of behaviors for
any KS scenario.

Assumption 2. There is a statistically independent joint
realization of any two KS experiments.

Theorem 1. The set of behaviors P (S) allowed by quantum
theory for any Bell or KS scenario S is equal to the largest set
allowed by Assumptions 1 and 2.

Assumption 1 also applies to Bell scenarios with ideal
measurements. Assumption 2 also applies to Bell experiments
with arbitrary measurements.

Assumption 1 emphasizes ideal measurements. However,
it does not require that ideal measurements are physically
achievable. Even though actual measurement processes would
fail to exactly satisfy conditions (i), (ii), and (iii) in Def-
inition 4, Assumption 1 only requires the theory to assign
probabilities to the outcomes of these idealized measurement
processes. Arguably, Assumption 1 is inescapable in any
theory that contains classical physics as a particular case.
This is so because, in classical physics, a measurement is an
interaction between a physical system and a measuring de-
vice that reveals preexisting, persistent, context-independent
properties of the physical system and that allows subsequent
interactions revealing fine-grained (or coarse-grained) preex-
isting, persistent, context-independent properties of the same
physical system.

Assumption 2 emphasizes statistical independence. How-
ever, it does not preclude the existence of a universe massively
interconnected through causal chains and full of strongly
correlated experiments. It only assumes that, even within such
a universe, there is a statistically independent joint realization
of any two KS experiments. Arguably, this form of statistical
independence holds in every physical theory.

IV. PROOF

A. Exclusivity principle

Lemma 1. The behaviors for any KS scenario must satisfy
the exclusivity principle (EP).

Lemma 2. The behaviors for any bipartite Bell scenario
must satisfy the EP.

A behavior for scenario S satisfies the EP [17–20,29,33–
36] if, for every subset of events {ei} in S such that every two
events in {ei} are mutually exclusive in S, their probabilities
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satisfy ∑
i

P(ei ) � 1. (11)

The EP is also called the principle of global exclusivity
[18,33] or consistent exclusivity [29,36].

The EP does not follow from the axioms of probability
[namely: (a) the probability of an event is a non-negative
real number, (b) the probability that at least one of the
elementary events in the entire sample space will occur is
1, and (c) the probability of the union of any countable
sequence of mutually exclusive events is the sum of
their probabilities]. Notice the difference between a set
of mutually exclusive events {e1, e2, . . . , en} and a set
of events {e′

1, e′
2, . . . , e′

n} in which every two events are
mutually exclusive. In the first case, there is a single
measure M that produces e1, e2, . . . , en, each of them
associated to a different outcome of M. In the second case,

there are (
n
2) different measurements Mi j , with (i, j) ∈

{(1, 2), (1, 3), . . . , (1, n), (2, 3), . . . , (2, n), . . . , (n − 1, n)},
such that Mi j produces e′

i and e′
j , each of them associated to a

different outcome of Mi j .
It is important to stress that, although we will continue to

refer to the EP as a “principle,” in the proof of Theorem 1 we
do not assume the EP. Instead, we will invoke Lemmas 1 and
2. Lemma 1 follows from a result in Ref. [20]. Other proof of
this result can be found in Ref. [37]. For completeness’ sake,
we include a proof of Lemma 1 in Appendix A. Lemma 2 was
proven in Ref. [17]. Other proof can be found in Ref. [38].
For completeness’ sake, we include a proof of Lemma 2 in
Appendix B.

B. Combining Assumption 2 and Lemmas 1 and 2

Assumption 2 assures that there is a statistically inde-
pendent joint realization of any two KS experiments A and
B (including Bell experiments). This allows us to define
experiments of the type (A,B) described in Sec. II I.

(a)

preparation ideal measurement ideal measurementideal measurement ideal measurement

(b)

preparation Bob's measurementAlice's measurement

(c)

preparationAlice's measurement Bob's measurement

FIG. 2. (a) Experiment (A,B) defined from the joint realization of two statistically independent KS experiments A and B seen as a single
KS experiment. The purple boxes represent experiment A and the green boxes experiment B. Experiments in different horizontal lines are
statistically independent. The yellow boxes represent (A,B). Pressing the button at the top of a preparation box releases a physical system.
Pressing a button at the top of a measurement box selects a measurement. The outcome of this measurement is represented by the bulb that
flashes at the bottom. Pressing a button of a yellow box corresponds to pressing a button of the small box that is inside it. The outcome of the
yellow box corresponds to an outcome of the small box inside it. (b) Experiment (A,B) defined from the joint realization of two statistically
independent bipartite Bell experiments A (in purple) and B (in green) seen as a single bipartite Bell experiment (in yellow). The meaning of
the symbols is the same as in case (a). Here, measurements are not necessarily ideal. (c) Experiment (A,B) defined from the joint realization
of a KS experiment A (in purple) and a bipartite Bell experiment B (in green) seen as a single bipartite Bell experiment (in yellow).
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If A and B are KS experiments, then (A,B) can be seen
as a single KS experiment. See Fig. 2(a). Therefore, Lemma 1
assures that the behaviors for (A,B) must satisfy the EP.

If A and B are bipartite Bell experiments, then (A,B)
can be seen as a bipartite Bell experiment. See Fig. 2(b).
Therefore, Lemma 2 assures that the behaviors for (A,B)
must satisfy the EP.

If A is a KS experiment and B a bipartite Bell experiment,
then (A,B) can be seen as a bipartite Bell experiment. See
Fig. 2(c). Therefore, Lemma 2 assures that the behaviors for
(A,B) must satisfy the EP.

The same reasoning can be applied to n statistically inde-
pendent experiments. A particularly interesting case is when
the same behavior p(SA) for a Bell or KS experiment is
composed with itself n times. If p(SA) occurs in n statisti-
cally independent experiments Ai, then, by Lemmas 1 and 2,
the behavior for the corresponding experiment (A1, . . . ,An),
that is,

p
(
S(A1,...,An )

) = p(SA)⊗n, (12)

where p(SA)⊗n denotes the tensor product of n copies of
p(SA), must satisfy the EP for any n ∈ N.

C. Assignments of probabilities for a graph of exclusivity

Here is where the unified treatment of different KS and Bell
scenarios allowed by the graph-theoretic approach [17,19]
enters into the proof of Theorem 1. Given any graph G with
vertex set V (G), we can consider the following set.

Definition 8. The set P (G) of assignments of probabilities
to the vertices of graph G is the set of vectors p(G) ∈
[0, 1]|V (G)| such that the components of p(G) are the probabili-
ties of |V (G)| events with graph of exclusivity G in a behavior
for some Bell or KS scenario.

That is, P (G) contains the vectors of probabilities with
|V (G)| components corresponding to events that have G as
graph of exclusivity produced in all Bell and KS scenarios.
Hereafter, we will refer to p(G) as an assignment of proba-
bilities to the vertices of G (or, for brevity, an assignment of
probabilities for G).

As shown before, the behaviors for KS scenarios must
satisfy the EP. Therefore, for any G, P (G) must be a subset
of

QSTAB(G)

=
{

p(G) ∈ [0, 1]|V (G)| :
∑
i∈c

pi � 1 ∀c ∈ C(G)

}
, (13)

where C(G) is the set of cliques of G [19]. QSTAB(G) is a
famous set in graph theory called the fractional vertex packing
polytope [39], or clique-constrained stable set polytope [40],
or fractional stable set polytope [40] of G.

For any theory, P (G) for each G captures a fundamental
signature of the theory. For example, in QT, P (G) is the set of
assignments that satisfy the following.

(I′) The initial state of the system can be associated with a
vector with unit norm |ψ〉 in a vector space V with an inner
product.

(II′) The state of the system after performing a mea-
surement x(i) and obtaining outcome ai on state ψ can be

associated with a vector with unit norm |x(i)
ai

ψ〉 in V . Postmea-
surement states corresponding to mutually exclusive events
are associated with mutually orthogonal vectors.

(III′) The probability of event (x(i)
ai

|ψ ) can be obtained as
|〈x(i)

ai
ψ |ψ〉|2.

Surprisingly, this set is a well-known convex set in graph
theory [19]: The theta body of G, denoted TH(G) [39–41].
Using Dirac’s notation,

TH(G) = {p(G) ∈ [0, 1]|V (G)| : pi = ∣∣〈x(i)
ai

ψ
∣∣ψ 〉∣∣2

,

|〈ψ |ψ〉| = 1,
∣∣〈x(i)

ai
ψ

∣∣x(i)
ai

ψ
〉∣∣ = 1,〈

x(i)
ai

ψ
∣∣x( j)

a j
ψ

〉 = 0 ∀(i, j) ∈ E (G)},
(14)

where E (G) is the set of edges of G.
A famous result in graph theory is that TH(G) =

QSTAB(G) if and only if G does not contain odd cycles with
five or more vertices (i.e., pentagons, heptagons, etc.) or their
complements as induced subgraphs. These graphs are called
perfect graphs [40,41]. This means that the EP, by itself, se-
lects the quantum set of assignments for perfect graphs. Recall
that, given a graph G, the complement of G, denoted G, is the
graph with the same vertices as G such that two distinct ver-
tices of G are adjacent if and only if they are not adjacent in G.

A fundamental problem proposed in Ref. [19] is
identifying the principle that selects TH(G) for arbitrary
graphs. The next step in the proof of Theorem 1 is precisely
showing that Assumptions 1 and 2 select TH(G) for any G.

D. EP applied to independent copies of an assignment

Assignments of probabilities that might look possible at
a first sight can be excluded by Assumption 2 and Lemmas
1 and 2. Here we illustrate this with an example. We will
consider an increasing number of statistically independent
copies of an assignment p(G) and identify an increasing set
of assignments that are incompatible with Assumptions 1
and 2.

Consider the following set of assignments of probabilities
to the events of an experiment A whose graph of exclusivity
is the pentagon (denoted C5) shown in Fig. 3(a):

p(C5) = {
1
3 , 2

3 , x, 2
3 , 1

3

}
, (15)

where the components are ordered following the labeling of
the vertices in Fig. 3(a). If we apply the EP to the clique {3, 4}
in red in Fig. 3(a), then the EP enforces that

x + 2
3 � 1. (16)

Therefore, the EP excludes any assignment with

x > 1
3 ≈ 0.333. (17)

That is, none of these assignments can be produced under
Assumptions 1 and 2.

Now let’s consider the joint realization of two statisti-
cally independent copies of p(C5) as seen from the observer
contemplating experiment (A,A). Recall that the graph of
exclusivity corresponding to two copies of an experiment
whose graph of exclusivity is G is given by the OR product
G ∗ G. In Fig. 3(b) we show the OR product of two copies of
the pentagon in Fig. 3(a).
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FIG. 3. (a) Graph of exclusivity of five events of experiment A. (b) Graph of exclusivity of the corresponding 25 events of experiment
(A,A). (c) Graph of exclusivity of the corresponding 125 events of experiment (A,A,A). The red edges join the events that are mutually
exclusive pairwise that are used for the arguments in the text.
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If we apply the EP to the clique {(1, 4), (2, 2),
(3, 5), (4, 3), (5, 1)} in red in Fig. 3(b), then the EP
enforces that

x + 7
9 � 1. (18)

Therefore, the EP excludes any assignment with

x > 2
9 ≈ 0.222. (19)

No other clique of the graph in Fig. 3(b) allows us to further
restrict the values of x using the EP.

Now let’s consider the joint realization of three statistically
independent copies of p(C5) as seen from the observer con-
templating experiment (A,A,A). The graph of exclusivity
corresponding to three copies of an experiment whose graph
of exclusivity is G is given by G ∗ G ∗ G. In Fig. 3(c) we show
the OR product of three copies of the pentagon in Fig. 3(a).

If we apply the EP to the clique {(1, 1, 1), (1, 2, 4),
(2, 3, 3), (2, 4, 1), (2, 5, 4), (3, 2, 3), (3, 3, 2), (4, 1, 2),
(4, 2, 5), (5, 4, 2)} in red in Fig. 3(c), then the EP enforces
that

2x2 + 25
27 � 1. (20)

Therefore, the EP excludes any assignment with

x >
1

3
√

3
≈ 0.192. (21)

No other clique of the graph in Fig. 3(c) allows us to further
restrict the values of x using the EP.

The EP excludes more assignments as we consider more
independent copies of p(G). The problem is that finding which
assignments are excluded is increasingly hard as we consider
more copies. In fact, finding the largest clique of G∗n for n � 4
is a very difficult problem even for very small graphs (see,
e.g., Ref. [42]). Interestingly, for some special graphs we can
characterize the set of assignments that survive after we apply
the EP to any number of independent copies.

E. Characterizing the quantum assignments for
self-complementary graphs of exclusivity

A graph G is self-complementary if G and its complement
G are isomorphic. In this case we will write that G = G. For
example, the pentagon and its complement, the pentagram, are
isomorphic; therefore, the pentagon is self-complementary.

The fact that any assignment p(G) must satisfy the EP ap-
plied to any number n of independent copies of p(G) implies
that p(G)⊗n must satisfy the EP for any n ∈ N. Therefore, for
any n ∈ N, the set of assignments for G must satisfy

P (G) ⊆ En(G), (22)

where

En(G) = {p(G) ∈ [0, 1]|V (G)| : p(G)⊗n ∈ QSTAB(G∗n)}.
(23)

On the other hand, any p(G), p′(G) ∈ P (G) must satisfy
the EP applied to one copy of p(G) and one independent copy
of p′(G). This implies that

P (G) ⊆ abl[P (G)], (24)

where abl[P (G)] is the antiblocker of P (G), defined as

abl[P (G)] = {p′(G) � 0 : p(G) · p′(G) � 1 ∀p(G) ∈ P (G)},
(25)

where · is the dot product [39–41].
Lemma 3. For any self-complementary graph of exclusiv-

ity G, the theta body of G, TH(G), is the largest set of
assignments of probabilities P (G) such that every p(G) ∈
P (G) satisfies the EP applied to any number of independent
copies of p(G) and such that p(G) ⊗ p′(G) satisfies the EP for
every p(G), p′(G) ∈ P (G).

Proof. If G = G, then, for any n ∈ N [40,41],

abl[En−1(G)] ⊆ abl[En(G)] ⊆ En(G) ⊆ En−1(G). (26)

Therefore, Eq. (22) implies that

P (G) ⊆ lim
n→∞ En(G) (27)

and (24) implies that

P (G) ⊆ abl[ lim
n→∞ En(G)]. (28)

All sets satisfying (27) and (28) are subsets of TH(G). Notice
that, if G = G, then TH(G) = abl[TH(G)] [39–41]. �

Lemma 3 is a very interesting result as it explains why
vector spaces and the Born rule appear, and is capable of
identifying the origin of some quantum sets of assignments.
The problem is that Lemma 3 only covers the case of graphs
of exclusivity that are self-complementary.

F. Characterizing the quantum assignments for arbitrary
graphs of exclusivity

Our next result solves that problem.
Lemma 4. For any graph of exclusivity G, TH(G) is the

largest set P (G) of assignments of probabilities such that
every p(G) ∈ P (G) satisfies the EP applied to any number
of independent copies of p(G) and such that p(G) ⊗ p′(G)
satisfies the EP for every p(G), p′(G) ∈ P (G).

Proof. For any graph of exclusivity G, there is a larger
graph H (G) with the following two properties.

(i) H (G) is self-complementary and therefore Lemma 3
gives the largest P[H (G)] allowed by Assumptions 1 and 2.

(ii) The largest P[H (G)] allowed by Assumptions 1 and 2
determines the largest P (G) allowed by these assumptions.

Let us see how H (G) is defined. Consider an experiment E
producing n events {ek}n

k=1 whose graph of exclusivity is G.
See Fig. 4(a) for an example. Intentionally, in the example,
G (the heptagon) is not perfect and not self-complementary.
Then, consider three additional statistically independent ex-
periments: X , producing events {xk}n

k=1 whose graph of ex-
clusivity is G, Y , producing events {yk}n

k=1 whose graph
of exclusivity is G, and Z producing events {zk}n

k=1 whose
graph of exclusivity is G. See Fig. 4(b). Suppose an observer
contemplating the four experiments and who, in addition, has
three independent coins A, B, and C, each of them producing
two mutually exclusive events: A producing events a0 or a1, B
producing b0 or b1, and C producing c0 or c1. Suppose that this
observer uses all these experiments and defines the following
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FIG. 4. Details of the construction of graph H (G) used in the
proof of Lemma 4. (a) Graph of exclusivity G whose set of assign-
ments we are interested in. (b) Graphs of exclusivity of the events of
the experiments E , X , Y , and Z . (c) H (G). (d) Graph G such that
H (G) = G[G, G, G, G]. See details in the text.

4n events:

{(a0, ek ), (a1, b0, xk ), (b1, c0, yk ), (c1, zk )}n
k=1, (29)

where, e.g., (a0, e1) is the event in which coin A gives a0 and
experiment E gives e1. H (G) is the graph of exclusivity of
these 4n events. See Fig. 4(c).

H (G) is the generalized composition G[G, G, G, G], where
G, G, G, and G are the graphs in Fig. 4(b) and G is the graph
in Fig. 4(d) [43]. If G is a graph with n vertices, then the graph
G[G1, . . . , Gn] is constructed by taking the disjoint graphs
G1, . . . , Gn and joining every vertex of Gi with every vertex
of Gj whenever vi and v j are adjacent vertices in G.

The first property of H (G), namely that, for any G, H (G) is
self-complementary, is proven in Fig. 5. Then, Lemma 3 gives
the largest P[H (G)] allowed by Assumptions 1 and 2.

FIG. 5. (a) Simplified representation of H (G) as a graph of
graphs (i.e., a graph which has a graph in each of its vertices;
G1 − G2 denotes that every vertex of G1 is connected to every vertex
of G2). (b) Simplified representation of H (G) as a graph of graphs. It
is easy to see that H (G) and H (G) are isomorphic.

The second property of H (G) comes from the fact that the
graph G in Fig. 4(d) is perfect (because it does not have odd
cycles of size five or larger or their complements as induced
subgraphs). For perfect graphs it has been proven [19] that the
set of assignments of probabilities satisfying the EP is equal to
the set of assignments for classical (noncontextual) theories.
This implies that any assignment h[H (G)] ∈ P[H (G)] that
satisfies the EP can be implemented by suitably choosing an
assignment p(G) for {ek}n

k=1, an assignment x(G) for {xk}n
k=1,

an assignment y(G) for {yk}n
k=1, an assignment z(G) for

{zk}n
k=1, an assignment a(K2) for {a0, a1} (K2 is the complete

graph on two vertices; the graph of exclusivity of the events
of tossing a coin), an assignment b(K2) for {b0, b1}, and an
assignment c(K2) for {c0, c1}. In other words,

P[H (G)] = convex hull{h[H (G)]

= (p(G), x(G), y(G), z(G))

∈ {(P (G), 0|V (G)|, 0|V (G)|,P (G)),

(P (G), 0|V (G)|,P (G), 0|V (G)|),

(0|V (G)|,P (G), 0|V (G)|,P (G))}}, (30)

where P (G) is the set of assignments for G such that p(G) ∈
P (G) satisfies the EP applied to any number of statistically in-
dependent copies of p(G) and p(G)p′(G), with p(G), p′(G) ∈
P (G), satisfies the EP. Notice that the convex hull plays the
role of a(K2), b(K2), and c(K2). Therefore, the largest P (G)
allowed by Assumptions 1 and 2 can be obtained from the
largest P[H (G)] allowed by these assumptions by suitably
tracing out its elements. �

Therefore, Lemma 4 solves the problem proposed in
Ref. [19]: Assumptions 1 and 2 select the quantum sets of
probability assignments for any graph of exclusivity.

G. Characterizing the quantum correlations for KS scenarios
(and Bell scenarios with ideal measurements)

In the previous subsections we have not made any refer-
ence to any specific scenario. We have simply shown that
Assumptions 1 and 2 select the quantum set of assignments for
any graph of exclusivity. In this subsection we will see which
are the implications of this result for the sets of behaviors for
specific scenarios.

Lemma 4 implies that the set of behaviors for any Bell or
KS scenario S must be a subset of TH(GS ), where GS is the
graph of exclusivity of the events of S. For example, GS for
the CHSH Bell scenario is shown in Fig. 6.

In addition, the behaviors for S must satisfy constraints
(A), (B), and (C) for S defined in Sec. II G. It is easy to
see how constraints (A) and (B) exclude some elements of
TH(GS ). However, the way constraint (C) acts is more subtle.
Constraint (C) demands that the mathematical representation
of each event of S must be associated to the mathematical rep-
resentation of the initial state, measurements, and outcomes
that define the event. The following Lemma [19] helps us to
understand how constraint (C) removes elements of TH(GS )
that satisfy constraints (A) and (B).

Lemma 5. Every element of TH(GS ) can be produced in a
particular KS scenario SKS defined by a set of two-outcome

032120-9



ADÁN CABELLO PHYSICAL REVIEW A 100, 032120 (2019)

FIG. 6. Graph of exclusivity GS associated to the CHSH Bell
scenario. Intentionally, unlike the graph in Fig. 1, this graph has
no colors or symbols in the nodes. Other sets of events produced
in different KS scenarios also have GS as graph of exclusivity.

measurements whose graph of compatibility is isomorphic
to GS .

The proof follows from the definition of TH(GS ) in
Eq. (14). Lemma 5 tells us that every assignment in TH(GS )
can be produced in a suitable KS scenario. However, in
general, the KS (or Bell) scenario S that we are interested in
differs from SKS and has a smaller number of measurements
and (maximal) contexts. Then is when constraint (C) becomes
relevant. To illustrate how (C) excludes elements of TH(GS ),
we will focus on a particular type of scenario in which all
the events are defined by the outcomes of two two-outcome
measurements, i.e., all the events are of the type (x = a, y =
b|ψ ).

Any element of TH(GS ) must satisfy conditions (I′), (II′),
and (III′) in Sec. IV C. According to (I′), the initial state of
the system must be associated to a vector with unit norm |ψ〉.
According to (II′), the state of the system after two compatible
measurements x and y with respective outcomes a and b on
state ψ must be associated to a vector with unit norm |x =
a, y = b|ψ〉. Since x and y can be measured by measuring x,
first, and measuring y later on,

|x = a, y = b|ψ〉 = |y = b|x = a, ψ〉, (31)

where |x = a, ψ〉 is the state after measuring x and obtaining
a on state ψ .

Also by (II′), the state of the system after measuring x and
obtaining a on state ψ must be associated to another vector
with unit norm, |x = a|ψ〉. To see how |x = a, y = b|ψ〉, |x =
a|ψ〉, and |ψ〉 are related to each other we have to take into
account the following.

Any additional measurement of x after event (x = a|ψ )
does not disturb x. This is so because x is an ideal mea-
surement. Therefore, this additional measurement should not

change event (x = a|ψ ). This implies that

|x = a, ψ〉 = N (x)
a E (x)

a |ψ〉, (32)

where N (x)
a is a normalization constant and E (x)

a is a projector
(i.e., a linear transformation from the vector space V to itself
such that whenever it is applied twice gives the same result as
if it were applied once) associated to the act of measuring x
and obtaining a. Similarly,

|y = b|x = a, ψ〉 = N (y)
b E (y)

b |x = a, ψ〉, (33)

where N (y)
b is a normalization constant and E (y)

b is a projector
associated to the act of measuring y and obtaining b.

(II′) says that, for fixed x, {|x = a|ψ〉} must be a set of
orthogonal unit vectors. Therefore,

E (x)
a E (x)

a′ = δa,a′E (x)
a . (34)

Similarly, for fixed x and y, {|x = a, y = b|ψ〉} must be a set
of orthogonal unit vectors. Therefore,

E (y)
b E (y)

b′ = δb,b′E (y)
b . (35)

(III′) and (A) imply that, for fixed x,∑
a∈A

|〈x = a|ψ |ψ〉|2 = 1. (36)

Therefore, ∑
a∈A

E (x)
a = I. (37)

Similarly, for fixed x, y,∑
a∈A,b∈B

|〈x = a, y = b|ψ |ψ〉|2 = 1. (38)

Therefore, ∑
b∈B

E (y)
b = I. (39)

Finally, in Bell and KS scenarios, the order in which x and
y are performed must be irrelevant. Therefore,

|x = a, y = b|ψ〉 = |y = b, x = a|ψ〉, (40)

which implies that [
E (x)

a , E (y)
b

] = 0 ∀a, b, (41)

whenever x and y are compatible.
Therefore, event (x = a|ψ ) is associated to projector E (x)

a

applied to vector |ψ〉, event (y = b|ψ ) to E (y)
b applied to |ψ〉,

event (x = a, y = b|ψ ) to E (x)
a and E (y)

b (which commute)
applied to |ψ〉, and P(x = a, y = b|ψ ) = |〈ψ ′|ψ〉|2, where
|ψ ′〉 = NiE (x)

a E (y)
b |ψ〉, where Ni is a normalization constant.

The fact that each scenario S only has a limited number of
measurements and that each event of S can only be obtained
using some specific projectors implies that not all the elements
of TH(GS ) satisfying constraints (A) and (B) can be attained.

This example can be easily extended to any other type
of scenario and then we can see that, for any Bell or KS
scenario S, conditions (I′), (II′), and (III′), which characterize
the elements of TH(GS ), and constraints (A), (B), and (C)
for S imply conditions (I), (II), and (III) for S (as defined in
Sec. II H). This finishes the proof of Theorem 1.
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V. CONCLUSIONS

A. Characterizing quantum correlations
from simple assumptions

Here we have proven that, for Bell and for KS scenar-
ios, no physical theory satisfying Assumptions 1 (there is
a nonempty set of behaviors for any KS scenario) and 2
(there is a statistically independent joint realization of any
two KS experiments) can provide correlations different than
those of QT. QT produces all correlations satisfying these
assumptions.

In a nutshell, the proof runs as follows. Assumption 1
forces the theory to assign behaviors to any KS (and therefore
Bell) scenario. Lemmas 1 and 2 state that the EP should hold
for any KS and bipartite Bell scenario. Assumption 2 assures
that there is a statistically independent joint realization of any
two KS (including Bell) experiments. This joint realization
can be seen as a single KS experiment or as a single bipartite
Bell experiment and, therefore, their behaviors must satisfy
the EP. Behaviors assign probabilities to the vertices of graphs
of exclusivity. Therefore, assignments of probabilities to the
graphs of exclusivity should satisfy the EP. Lemmas 4 and
5 show that TH(G) is, for every graph G, the largest set
of assignments satisfying Assumptions 1 and 2. Therefore,
TH(G) is the set of potential assignments of probability for
any set of events that have G as graph of exclusivity. The
last part of the proof consists of showing that, for each KS
(or Bell) scenario, constraints (A), (B), and (C) remove the
nonquantum behaviors from TH(G).

Assumptions 1 and 2 are almost inevitable in any phys-
ical theory. Therefore, the fact that every correlation that
is possible under Assumptions 1 and 2 is actually possible
according to QT can be taken as an indication that our universe
lacks laws restricting correlations for certain experiments.
This argument is further developed in Ref. [44].

Theorem 1 provides a solution to the problem of what
selects the quantum correlations for Bell and KS scenarios
and why higher-than-quantum correlations are impossible.
For example, it provides an explanation of why the nonquan-
tum behaviors in the set of almost quantum behaviors for
Bell scenarios [14] are impossible: Each of them belongs to
TH(GS ), where GS is the graph of exclusivity of the events of
the corresponding Bell scenario S, and satisfy constraints (A)
and (B). However, they fail to satisfy (C) [44].

B. Different perspective on mathematically unpleasant aspects
of quantum correlations

Given a Bell or KS scenario S, whether or not p(S) is
allowed by QT is, in general, undecidable [45]. In addition,
the set of quantum correlations for a given bipartite Bell
scenario S is, in general, not closed [45,46]. In Ref. [14], the
authors ask the following question: “Do we really believe that
correlations in nature have these properties?”

The approach followed in this article provides a different
perspective. Quantum correlations can be separated into cor-
relations for different scenarios, but also can be separated into
correlations for different graphs of exclusivity. Given a graph
of exclusivity G, deciding whether or not p(G) is allowed by
QT is the solution of a single semidefinite program [39,40].

Moreover, the set of quantum probabilities for any graph of
exclusivity G is closed [39–41].

Therefore, quantum correlations have beautiful mathemat-
ical properties when they are separated into sets for different
graphs of exclusivity: Decidability within each set is simple
and each of the sets is closed. The lack of these properties
when quantum correlations are separated into sets for different
scenarios can then be attributed to the separation in scenarios
rather than taken as an indication that something is wrong with
the present understanding of correlations in nature.

Another interesting observation is that while, for some
particular Bell (or KS) scenarios, P (S) is conjectured to
require a Hilbert space that is the tensor product one two
infinite dimensional Hilbert spaces [47], we can prove that,
for any graph G, P (G) can be produced with a Hilbert space
of dimension |V (G)| + 1.

C. Implications for quantum information and computation

Quantum correlations produced in Bell and KS experi-
ments are behind fundamental applications in quantum infor-
mation and computation such as device-independent secure
communication [48–50], randomness amplification [51,52],
distributed computation [53] (for Bell experiments), and some
forms of quantum computation [54–59] (for KS experiments).
Any of these applications is thus affected by the limitations
that, according to QT, these correlations have. Understanding
where do these limitations come from is therefore both a fun-
damental and a practical problem. Specifically, it is important
to know whether hypothetical physical theories beyond QT
would allow for correlations different than the ones allowed
by QT.

The result presented in this article allows us to change the
rating of some protocols based on correlations. A protocol
that was declared secure against adversaries limited by QT
can now be declared secure against adversaries limited by
resources satisfying Assumptions 1 and 2. This will be further
elaborated elsewhere.
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APPENDIX A: PROOF OF LEMMA 1

In KS scenarios, by definition, measurements are ideal.
Here we prove that events produced by ideal measurements
satisfy the EP. That is, for any set T of events produced by
ideal measurements and such that every two events of T are
mutually exclusive, the sum of the probabilities of all the
events of T is bounded by one.

The set of events can be written as T = {(xi = ai|ψ )}n
i=1,

where {xi}n
i=1 is a set of ideal measurements and {ai}n

i=1 their
respective outcomes. By condition (iii) in the definition of
ideal measurement in Sec. II C, for each event (xi = ai|ψ ) ∈
T , there is an ideal two-outcome coarse graining of xi in
which all the outcomes different than ai are coarse grained
into outcome ai. We can write this two-outcome coarse
graining as

xi = {(xi = ai ) := (xi = ai ), (xi = ai )}. (A1)

Since every two events (xi = ai|ψ ) and (x j = a j |ψ ) in
T are mutually exclusive, there is a measurement xi j that
produces both events so that each of the events is associated
to a different outcome of xi j . Consider the following three-
outcome coarse graining of xi j :

xi j = {(xi j = ai ) := (xi = ai ), (xi j = a j ) := (x j = a j ),

(xi j = ai j )}. (A2)

From the definition of xi j in Eq. (A2), ∀ψ ,

P(xi j = a j |ψ ) = P(x j = a j |ψ ). (A3)

Therefore,

P(xi = ai, xi j = a j |ψ ) = P(xi = ai, x j = a j |ψ ), (A4)

where (xi = ai, xi j = a j |ψ ) is the event in which xi and xi j

are measured on state ψ and outcomes ai and a j are obtained,
respectively. Since xi is ideal and a coarse graining of xi j ,
then, ∀ψ ,

P(xi j = a j |ψ ) = P(xi = ai, xi j = a j |ψ ). (A5)

Therefore, from Eqs. (A3)–(A5),

P(xi = ai, x j = a j |ψ ) = P(x j = a j |ψ ). (A6)

Now we can define the following (n + 1)-outcome mea-
surement x with outcomes {oi}n+1

i=1 :

(x = o1) := (x(1) = a1), (A7a)

(x = o2) := (x(1) = a1, x(2) = a2), (A7b)

(x = oi ) := (x(1) = a1, . . . , x(i−1) = ai−1, x(i) = ai ),

(A7c)

(x = on+1) := (x(1) = a1, . . . , x(n−1) = an−1, x(n) = an),

(A7d)

where i = 3, . . . , n. Figure 7 illustrates how x is constructed.
Then, ∀ψ ,

P(x = oi|ψ ) = P(x(1) = a1, . . . , x(i−1) = ai−1, x(i) = ai|ψ )

= P(x(i−1) = ai−1, x(i) = ai|ψi−2)

× P(x(1) = a1, . . . , x(i−2) = ai−2|ψ ), (A8)

FIG. 7. Measurement x used in the proof of Lemma 1.

where ψ j is the state after (x(1) = a1, . . ., x( j) = a j |ψ ).
Taking into account that, by Eq. (A1), (x(i) = ai ) = (x(i) =

ai ), then

P(x = oi|ψ ) = P(x(i−1) = ai−1, x(i) = ai|ψi−2)

× P(x(1) = a1, . . . , x(i−2) = ai−2|ψ ). (A9)

Taking Eq. (A6) into account,

P(Moiψ |ψ ) = P(x(i) = ai|ψi−2)

× P(x(1) = a1, . . . , x(i−2) = ai−2|ψ )

= P(x(1) = a1, . . . , x(i−2) = ai−2, x(i) = ai|ψ ).

(A10)

Applying a similar factorization, the right-hand side of
Eq. (A10) becomes

P(x(i) = ai|ψi−3)P(x(1) = a1, . . . , x(i−3) = ai−3|ψ ). (A11)

Repeating this process, we obtain that, ∀ψ ,

P(x = oi|ψ ) = P(x(i) = ai|ψ ). (A12)

By definition, {oi}n
i=1 are different outcomes of x. Therefore,

n∑
i=1

P(x = oi|ψ ) � 1. (A13)

Hence, taking Eq. (A12) into account,

n∑
i=1

P(x(i) = ai|ψ ) � 1. (A14)

APPENDIX B: PROOF OF LEMMA 2

Behaviors in Bell scenarios must satisfy normalization
and the nonsignaling principle (i.e., nondisturbance). In the
following, we will prove that, for bipartite Bell scenarios, the
set of behaviors satisfying the EP (applied to a single copy) is
equal to the set of behaviors that satisfy normalization and the
nonsignaling principle.

Using the same notation used in Sec. II F, the events of any
bipartite Bell scenario can be written as (ab|xy), where x ∈ X
is Alice’s measurement, y ∈ Y is Bob’s, a ∈ A is the outcome
of x, and b ∈ B is the outcome of y. For fixed x, y, and y′, the
following set of events:

{(ab|xy) : b ∈ B} ∪ {(a′b′|xy′) : a′ ∈ A \ a, b′ ∈ B} (B1)
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is such that every pair contains mutually exclusive events.
Therefore, the EP implies that∑

b∈B

P(ab|xy) +
∑

a′∈A\a,b′∈B

P(a′b′|xy′) � 1, (B2)

which, taking into account that, by normalization,∑
a∈A,b′∈B

P(ab′|xy′) = 1, (B3)

implies ∑
b∈B

P(ab|xy) �
∑
b′∈B

P(ab′|xy′) (B4)

for arbitrary y and y′. By symmetry, the equality in (B4) must
hold. Therefore,

∀a ∈ A, x ∈ X,∀y, y′ ∈ Y
∑
b∈B

P(ab|xy) =
∑
b′∈B

P(ab′|xy′).

(B5)

Similarly, for fixed x, x′, and y, we obtain that

∀b ∈ B, y ∈ Y,∀x, x′ ∈ X
∑
a∈A

P(ab|xy) =
∑
a′∈A

P(a′b|x′y).

(B6)

However, conditions (B5) and (B6) characterize the set of
behaviors that satisfy the nonsignaling principle.
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