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ABSTRACT 

As it is well known, , beams vibrations with large oscillations cause nonlinear effects. 

One of the main observed nonlinear effects is the dependence of the natural frequencies 

on the amplitude, what is usually represented with backbone curves showing either a 

softening or a hardening behaviour, being such softening or hardening behaviour highly 

dependent on the boundary conditions. This paper aims at studying the influence of the 

different support types on the vibration frequency of a beam, both by analytical and 

numerical approaches. First, an analytical study of two cases of simply supported beams 

is carried out by using the nonlinear normal modes (NNM) and the multiple scale methods 

to obtain the analytical expressions of the nonlinear frequencies as a function of the 

vibration amplitude. Such results have been compared and discussed with other authors’ 

results. In addition, a nonlinear finite element model of these two cases showed that the 

analytical and numerical results are in good agreement. Additionally, several numerical 

studies have been carried out for different support types. A total of seven different 

boundary conditions have been numerically analysed and the corresponding frequency-

amplitude relations have been obtained and compared. In addition, the effect of the axial 

inertial forces has been enhanced by adding concentrated masses at one end of the beam. 

It was found for instance that the pinned-pinned beam shows a hardening behaviour, 

which depends on the beam slenderness, or that the pinned-roller beam results in the 

largest softening behaviour. The fundamental causes of nonlinearity are, on one hand the 

coupling of the midline deformation and bending and, on the other hand, the coupling of 

axial inertial forces and bending. The significance of the first of these effects depends on 

the beam material and geometrical properties.  
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1. Introduction 

The demand for enhancing the dynamic performance of structures in terms of weight, 

comfort, safety, noise and durability continuously increases. At the same time, there is a 

demand for longer operating life, minimisation of inspection and maintenance, and cost 

reduction. Such structural elements may be beams subjected to dynamic loads, for 

example, of aircraft (propellers, wings, etc.), high speed rotors, or superstructure 

elements. A beam is a basic element in any real structure and its dynamic behaviour may 

influence that of the complete structure. A real beam does not always behave linearly, 

that is, in the linear regime. When the vibration amplitudes achieve significant values, an 

increase or decrease in the natural frequency as compared with the linear frequency can 

be observed. There are two main causes for the mentioned nonlinear behaviour: the 

coupling of midline stretching with bending and the coupling of axial inertial forces with 

bending, being both effects extensively studied in the literature. As it is known, the type 

of support of the vibration of a beam influences such nonlinear effects. To understand the 

described dynamical behaviour, an analytical and numerical study is carried out in order 

to show the effect of the type of support on non-linear frequencies when the amplitude of 

vibration is large enough. 

 

The main goal of this work is to analyse the effect of different boundary conditions on 

the nonlinear frequency-amplitude relationship of beams vibrating with large amplitudes. 

It has been carried out using two approaches. On the one hand, the development of an 

analytical solution for the nonlinear differential equation of motion for the pinned-roller 

and the roller-roller beam. The Nonlinear Normal Modes (NNMs) and the multiple scales 

methods have been used on that purpose. In order to make clear the mathematical 

approach many details are given. On the other hand, a finite element numerical study of 

beam vibration in the nonlinear regime is carried out for seven cases with different 

support types. Previously, the numerical procedure has been validated by comparison 

with the results of the analytical models. A concluding plot is included in which the 

hardening and softening behaviours are visible with the help of the backbone natural 

frequency curves. 

 

The analytical treatment of beam problems allows finding a relation between nonlinear 

frequency and amplitude for the different modes of vibration of the beam. In the context 

of analytical methods, different authors have contributed to the study of beam large 

oscillations, in particular of the unsymmetrical case of a pinned-roller beam. For instance, 

Thomsen [1] and Han [2] used an Eulerian description of the motion in which time and 

horizontal position in the deformed beam were utilized as independent variables. In their 

work, the longitudinal inertia was neglected a priori. In addition, Lacarbonara [3] obtained 

an integro-differential equation in terms of the transverse deflection depending both on 

geometric and inertial terms. On the other hand, the symmetrical case of the roller-roller 

beam has been less extensively studied in the literature, where the numerical analyses 

performed by Woodall [4] are remarkable. He obtained a softening behavior by using 

Galerkin and finite differences methods, and a hardening behavior, which shows a very 

good accordance with the results of the present work, by means of a perturbation 

technique. Woodall [4] suggests that his perturbation solution might not be accurate 

enough, because it is out of tune with the other two results. However, the difference 

between the three approaches is most likely attributed to the formulation of the boundary 

conditions.  Atluri [5] did evaluate the nonlinear inertial term in the simply supported 

unsymmetrical case (pinned-roller) as proposed in the present work, but arrived at a 



 

 

different expression for the geometric term. This was due to a less detailed formulation 

of the equilibrium equations, as it was already pointed out by Lungo in [6].  

 

The analytical treatment used in this research is based on the concept of Nonlinear Normal 

Modes (NNMs). The procedure proposed by Nayfeh [7]-[8] for obtaining the NNMs of 

beams has also been used in the present work, too. The NNMs introduced by Rosenberg 

in the 60s [9] has experienced a great development since 1990 due to the works of Shaw 

and Pierre [10], Vakakis [11], etc. In short, for an unforced conservative system, a NNM 

can be defined as a family of periodic motions which occur onto a 2D invariant manifold 

in the phase space of the system. This manifold passes through a stable equilibrium point 

and, at that point, is tangent to one of the Linear Normal Modes (LNMs) of the linearized 

system. Then, NNMs are a natural generalization of LNMs, suitable to Nonlinear 

Systems. For a detailed exposition on NNMs, the reader is referred to [12]. The most 

straightforward definition of NNM is a vibration in unison of the system (i.e., a 

synchronous oscillation).  

 

The recent work by Kloda et al. [13] presents analytical and numerical results for a beam 

with an elastic boundary condition modeled by using a spring. This work carries out a 

study of the effect of the spring stiffness on the non-linear frequencies. In the analytical 

study, they used the multiple scales method to obtain an analytical solution, too. In 

addition, they include a FEM numerical study in which, the system frequency response is 

obtained by modifying the frequency of the forcing excitation until the system resonates. 

This methodology has been inspirational for the present work since it is very intuitive, 

although it presents a certain level of uncertainty and a large computational cost. The 

present work proposes a similar FEM methodology in which the beam is released from 

the deformed shape that corresponds to the first linear mode of vibration and it is left to 

vibrate freely. Then the frequency of the free bending vibration is measured directly on 

the response.  

 

The paper is organized as follows. Section 2 introduces the material and methods for the 

analytical and numerical study. The analytical study includes the beam model description, 

and the application of the NNM and the multiple time scales methods. The numerical 

analysis procedure is also included in this section. Section 3, shows and discusses the 

results. On the one hand, the comparison between analytical and numerical results is 

treated; and on the other hand, the comparison between the seven studied cases with 

different types of support is treated. Finally, Section 4 shows the main conclusions of this 

work based on the results obtained. 
 

2. Material and methods 

This section describes the beam model studied and the hypotheses considered. 

Subsequently, the equation of motion is discretized by using the NNMs, the multiple time 

scales method is applied, eliminating secular terms and obtaining the analytical solution 

for two cases of simply supported beams (pinned-roller and roller-roller). Finally, the 

finite element procedure followed for the identification of the nonlinear vibration 

frequency of the seven cases with different types of support is described. The analytical 

developments are used in this section to validate the numerical procedure.  



 

 

 Analytical study 

2.1.1 Beam model equation 

 

The equation of motion of the beam is obtained with the following assumptions 

  

• The beam is initially straight, with a uniform cross section. 

• The beam experiences planar motion. 

• During the motion plane sections remain plane. 

• Shear deformations and rotational inertia of the cross section are negligible.  

• Strains are small and the material shows a linear elastic behavior. 

• No damping or external excitation are considered. 

 

Since shear deformations are not considered, the cross-section angular rotation coincides 

with rotation of the beam’s midline. The beam has initial length, L, constant cross-section 

area, A, and constant moment of inertia of the beam’s cross-section, I. In addition, the 

beam is homogeneous with a constant Young modulus, E, a shear modulus, G, and a mass 

density per unit length, ρ. Fig. 1a) shows a section, refereed as 1, without deformation 

and a section named 2, representing the same cross-section after deformation. In the 

figure, M, N and Q are bending moment, axial and shear forces, respectively. Internal 

forces N and Q can be projected onto the global frame in terms of a horizontal and a 

vertical components (𝐻 and 𝑉). The displacement in X direction (global frame) is defined 

as u, the displacement in the Y direction is defined as v, and the elongation of the midline 

is defined as s. Angular variable 𝜃 represents the angle rotated by the cross-section. The 

equilibrium equations in horizontal and vertical directions, together with the moment 

equilibrium equation are, respectively: 
 
 

𝜌𝐴�̈� = (𝑁 𝑐𝑜𝑠 𝜃)′ − (𝑄 𝑠𝑖𝑛 𝜃)′ (1) 

𝜌𝐴�̈� = (𝑁 𝑠𝑖𝑛 𝜃)′ + (𝑄 𝑐𝑜𝑠 𝜃)′ (2) 

𝑀′ + 𝑄𝑠′ = 0 (3) 

 
 
where a lagrangian description is assumed, a prime corresponds to spatial derivatives with 

respect to 𝑋, while a dot denotes a partial derivative with respect to time 𝑡. 
 



 

 

 

Fig.  1 Forces and displacements at the beam cross-section a) undefordmed beam; b) 

deformed beam; c) midline elongation; d) equilibrium of an infinitesimal section. 

 
 
Assuming a linear elastic constitutive model, the following axial and bending relations 

can be used: 
 

𝑁 = 𝐸𝐴(𝑠′ − 1) (4) 

𝑀 = 𝐸𝐼𝜃′ (5) 

 
Then problem is closed with the addition of the following appropriate geometric relations. 

According to Fig. 1b), the elongation of the beam midline yields the following relations: 
 

{
𝑠𝑖𝑛 𝜃 = 𝑣′/𝑠′

𝑐𝑜𝑠 𝜃 = (1 + 𝑢′)/𝑠′
} ⇒ (𝑠′ − 1) ≈ 𝑢′ +

1

2
(𝑢′

2
+ 𝑣′

2
) (6) 

 
𝜕𝜃

𝜕𝑠
=

𝜕2𝑣 𝜕𝑠2⁄

1 + 𝜕𝑢 𝜕𝑠⁄
⇒ 𝜃′ ≈

𝑣′′

1 + 𝑢′
 (7) 

 
Combining the previous equations, one gets: 
 

𝜌𝐴�̈� = 𝑁′(1 + 𝑢′) − 𝑄′𝑣′ −
𝑣′′

1 + 𝑢′
[𝑁𝑣′ + 𝑄(1 + 𝑢′)] (8) 

𝜌𝐴�̈� = 𝑁′𝑣′ + 𝑄′(1 + 𝑢′) +
𝑣′′

1 + 𝑢′
[𝑁(1 + 𝑢′) − 𝑄𝑣′] (9) 

𝑀′ + 𝑄𝑠′ = 0 (10) 

𝑁 = 𝐸𝐴 [𝑢′ +
1

2
(𝑢′2 + 𝑣′2)] (11) 

𝑀 = 𝐸𝐼
𝑣′′

1 + 𝑢′
 (12) 

 
 



 

 

which is a nonlinear system of 5 equations in partial derivatives with 5 unknown functions 

𝑢(𝑋, 𝑡), 𝑣(𝑋, 𝑡), 𝑁(𝑋, 𝑡), 𝑄(𝑋, 𝑡), 𝑀(𝑋, 𝑡). The previous system of equations was 

simplified by using that 𝑠𝑖𝑛𝜃 ≈ 𝑣′, 𝑐𝑜𝑠𝜃 ≈ 1 + 𝑢′ and 𝑠′ ≈ 1. 

 

2.1.2 Equations of the pinned-roller simply supported beam 

 
The system (8)-(12)  needs 6 boundary conditions and 4 initial conditions, 

𝑢(𝑋, 0), 𝑣(𝑋, 0), �̇�(𝑋, 0), �̇�(𝑋, 0). It is valid for arbitrarily large deflections and for any 

boundary conditions.  

 

At this point, the assumption of moderately large deflections is introduced. This allows 

for two new simplifications, 
 𝑢′2 ≪ 𝑣′2 ⇒ 𝑠′ − 1 ≈ 𝑢′ + 𝑣′2 2⁄  and,  

 only nonlinearities up to order three will be considered.  

Moreover, for beams with unrestrained axial displacements, it is usual to assume the 

middle line of the beam to be inextensional [6], [5], [3] and [7]. This is analogous to the 

Euler-Bernoulli assumption of shear strains being negligible, which is also being used 

here. Let us stress that neglecting axial deformations does not mean neglecting the axial 

force 𝑁. Rather, it is being assigned an infinite value to the axial stiffness 𝐸𝐴, so that the 

axial force can take the necessary value to maintain the beam equilibrium. Once these 

additional assumptions have been made, it is convenient to rewrite equations (8)-(12) in 

terms of forces 𝐻 and 𝑉, see the equilibrium of an infinitesimal section of the beam in 

Fig. 1c): 
 

𝜌𝐴�̈� = 𝐻′ (13) 

𝜌𝐴�̈� = 𝑉′ (14) 

𝑀′ + 𝑉(1 + 𝑢′) − 𝐻𝑣′ = 0 (15) 

𝑀 = 𝐸𝐼
𝑣′′

1 + 𝑢′
 (16) 

𝑢′ = −
𝑣′2

2
 (17) 

 

Dividing Equations (15) by (1 + 𝑢′) and deriving Equations (15) and (16) with respect 

to 𝑋, using relation (17), it is possible combine both results with Equation (14) to obtain  
 

[𝑀′/(1 + 𝑢′)]′ + 𝑉′ − [𝐻𝑣′/(1 + 𝑢′)]′ = 0 (18) 

Which leads to 
 

[
 
 
 
 𝐸𝐼 (

𝑣′′

1−
𝑣′2

2

)

′

1 −
𝑣′2

2

]
 
 
 
 
′

+ 𝜌𝐴�̈� − [𝐻
𝑣′

1 −
𝑣′
2

2

]

′

= 0 (19) 

 
 



 

 

It is possible to expand the nonlinear terms as Taylor series, retaining only terms up to 

order 3. In the same way, order 2 has been selected for horizontal force H. 
 

1

1 −
𝑣′2

2

= 1 +
𝑣′2

2
+
𝑣′4

4
≈ 1 +

𝑣′2

2
 (20) 

 
What leads to 
 

𝐸𝐼

[
 
 
 
 (

𝑣′′

1−
𝑣′2

2

)

′

1 −
𝑣′2

2

]
 
 
 
 
′

= 𝐸𝐼 [(𝑣′′(1 +
𝑣′2

2
))

′

(1 +
𝑣′2

2
)]

′

=

= 𝐸𝐼 [(1 + 𝑣′2 +
1

4
𝑣′4) 𝑣𝐼𝑉 + 𝑣′′′(4𝑣′𝑣′′ + 2𝑣′3𝑣′′) + 𝑣′′3]

≈ 𝐸𝐼[(1 + 𝑣′2)𝑣𝐼𝑉 + 4𝑣′𝑣′′𝑣′′′ + 𝑣′′3] = 𝐸𝐼[𝑣𝐼𝑉 + [𝑣′(𝑣′𝑣′′)′]′] 

(21) 

 

Where it was used that 

 [𝐻
𝑣′

1−
𝑣′
2

2

]

′

= [𝐻𝑣′(1 +
𝑣′2

2
)]
′

= [𝐻𝑣′]′ + [𝐻𝑣′]′
𝑣′2

2
+𝐻𝑣′𝑣′′ ≈ [𝐻𝑣′]′ (22) 

 

Including the previous terms in the equation ¡Error! No se encuentra el origen de la 

referencia., one gets 
 

𝜌𝐴�̈� + 𝐸𝐼[𝑣𝐼𝑉 + [𝑣′(𝑣′𝑣′′)′]′] − [𝐻𝑣′]′ = 0 (23) 

 
In order to attain an equation where the only unknown is 𝑣(𝑋, 𝑡), it is required to write 𝐻 

as a function of 𝑣, as follows (where 𝑧 and 𝑦 are internal variables for the integration) 
 
 

𝐻′ = 𝜌𝐴�̈� (24) 

�̈�′ =
𝜕2

𝜕𝑡2
[−
𝑣′2

2
] = −(𝑣′�̈�′ + �̇�′2) ⟹ �̈� = ∫(𝑣′�̈�′ + �̇�′2)𝑑𝑦

𝑧

0

 (25) 

𝐻 = −𝜌𝐴∫∫(𝑣′�̈�′ + �̇�′2)𝑑𝑦

𝑧

0

𝑑𝑧

𝑋

𝐿

 
(26) 

[𝐻𝑣′]′ = [−𝜌𝐴𝑣′∫∫(𝑣′�̈�′ + �̇�′2)𝑑𝑦

𝑧

0

𝑑𝑧

𝑋

𝐿

]

′

 
(27) 

 
 

 

Including the previous terms in Equation (23) the following is achieved 
 



 

 

𝜌𝐴�̈� + 𝐸𝐼[𝑣𝐼𝑉 + [𝑣′(𝑣′𝑣′′)′]′] + [𝜌𝐴𝑣′∫∫(𝑣′�̈�′ + �̇�′2)𝑑𝑦

𝑧

0

𝑑𝑧

𝑋

𝐿

]

′

= 0 (28) 

 
 
To simplify the analysis, the following dimensionless parameters are used: 

 

𝑣∗ =
𝑣

𝐿
, 𝑢∗ =

𝑢

𝐿
, 𝜉 =

𝑋

𝐿
, 𝜏 = √

𝐸𝐼

𝜌𝐴𝐿4
𝑡 (29) 

 
For the sake of simplicity, from now on, a prime will be used for partial derivatives with 

respect to 𝜉 and a dot will be used for partial derivatives with respect to 𝜏. It will also be 

omitted the use of the asterisk in 𝑣∗ and 𝑢∗. Although longitudinal displacement 𝑢 does 

not appear explicitly in the equation of motion, it will be needed for representing the 

deformed shapes of the beam. 

Then, after combining (28) with the dimensionless parameters in Equation (29), one 

arrives at 
 
 

�̈� +
𝐸𝐼

𝜌𝐴
[𝑣𝐼𝑉 + [𝑣′(𝑣′𝑣′′)′]′] + [𝑣′∫∫(𝑣′�̈�′ + �̇�′2)𝑑𝛾

𝜂

0

𝑑𝜂

𝜉

1

]

′

= 0 (30) 

 
In order to find a meaningful and simple equation, the following terms are defined: 
 

𝑁𝐺 = [𝑣
′(𝑣′𝑣′′)′]′ (31) 

 

𝑁𝐼 = [𝑣
′∫∫(𝑣′�̈�′ + �̇�′2)𝑑𝛾

𝜂

0

𝑑𝜂

𝜉

1

]

′

 (32) 

 

where 𝑁𝐺  is a geometric nonlinear term while 𝑁𝑖 is an inertial nonlinear term. Substituting 

one gets 

 

�̈� + 𝑣𝐼𝑉 +𝑁𝐺(𝑣(𝜉, 𝜏)) + 𝑁𝐼(𝑣(𝜉, 𝜏)) = 0 (33) 

 

with boundary conditions  

 

𝑣(0, 𝜏) = 𝑣′′(0, 𝜏) = 𝑣(1, 𝜏) = 𝑣′′(1, 𝜏) = 0 (34) 

𝑢(0, 𝑡) = 𝐻(𝐿, 𝑡) = 0 (35) 

 

Equation (33) highlights the presence of two kinds of nonlinearities in the problem. 

There exists a geometric term, which does not depend on the longitudinal boundary 

conditions and an inertial term, which does depend on them. By reviewing the previous 

mathematical development, it is easy to see the physical meaning of both nonlinear terms. 

The geometric one comes from the nonlinear expression for the curvature and the fact 



 

 

that the moment arm associated to vertical force 𝑉 depends on the beam deformation, see 

Eq. (31). On the other hand, the inertial term comes from the bending moment generated 

by the horizontal force, 𝐻, which in turn is produced by the horizontal inertia of sections, 

see Eq. (33). An integro-differential equation has been derived for 𝑣(𝜉, 𝜏) which is valid 

for any initial condition 𝑣(𝜉, 0), �̇�(𝜉, 0). In the next section, some important solutions of 

Eq. (33), namely those corresponding to the NNMs of the beam, are discussed. 

 

2.1.3 Discretization by nonlinear normal modes 

 

The procedure followed by Nayfeh in [7], [8] for obtaining the NNMs of continuous 

systems has been used to discretize the equations of motion. To this end, displacement 𝑣 

is expanded by means of the linear modes of vibration of the beam and is approximated 

to an infinite series of linear eigenfunction of the form:  
 

𝑣(𝜉, 𝜏) =∑𝜙𝑗(𝜉)𝑞𝑗(𝜏)

∞

𝑗=1

 (36) 

 

Note, that the sine function is generally used for simply supported beams by the 

Rayleigh-Ritz method. The following definition will also be used 

 

𝜙𝑗(𝜉) = 𝑠𝑖𝑛(𝑗𝜋𝜉)          𝑗 = 1,2, … (37) 

 

The inner product operator, for continuous functions in 𝜉 between 0 and 1, is defined 

as: 

 

〈𝑓1(𝜉), 𝑓2(𝜉)〉 = ∫𝑓1(𝜉)𝑓2(𝜉)

1

0

𝑑𝜉 (38) 

 

Following Galerkin’s method, the orthogonality condition for the residual of the 

differential equation and the space of assumed basis functions results in 

 

〈𝜙𝑗, �̈�〉 + 〈𝜙𝑗 , 𝑣
𝐼𝑉〉 + 〈𝜙𝑗, 𝑁𝐺(𝑣(𝜉, 𝜏))〉 + 〈𝜙𝑗, 𝑁𝐼(𝑣(𝜉, 𝜏))〉 = 0 (39) 

 

As it is well known, linear modes satisfy the next expressions:  

 

〈𝜙𝑘(𝑥), 𝜙𝑗(𝑥)〉 = 𝛿𝑘𝑗 2⁄ ,      〈𝜙𝑘(𝑥), 𝜙𝑗
𝐼𝑉(𝑥)〉 = 𝜔𝑗

2𝛿𝑘𝑗 2⁄ ,      

 𝜔𝑗 = (𝑘𝜋)
2  , 𝜔𝑘 = (𝑘𝜋)

2     𝑗, 𝑘 = 1,2, …  
(40) 

 

Applying the inner product to each member of Eq. (39) and integrating in 𝜉, yields 

 

〈𝜙𝑗 , �̈�〉 = ∫ 𝜙𝑗(𝜉)�̈�(𝜉, 𝜏)𝑑𝜉
1

0

= ∫ 𝜙𝑗(𝜉)∑𝜙𝑘(𝜉)�̈�𝑘(𝜏)

∞

𝑘=1

𝑑𝜉
1

0

= 

=∑ �̈�𝑘(𝜏)∫ 𝜙𝑗(𝜉)𝜙𝑘(𝜉)𝑑𝜉
1

0

∞

𝑘=1

=∑ �̈�𝑘(𝜏)

∞

𝑘=1

[
𝛿𝑘𝑗

2
] =

�̈�𝑗(𝜏)

2
 

(41) 



 

 

 

〈𝜙𝑗 , 𝑣𝑗
𝐼𝑉〉 = ∫ 𝜙𝑗(𝜉)𝑣𝑗

𝐼𝑉(𝜉, 𝜏)𝑑𝜉
1

0

= ∫ 𝜙𝑗(𝜉)(∑𝜙𝑗
𝐼𝑉(𝜉)𝑞𝑘(𝜏)

∞

𝑘=1

)𝑑𝜉
1

0

=

=∑𝑞𝑘(𝜏)

∞

𝑘=1

∫ 𝜙𝑗(𝜉)𝜙𝑗
𝐼𝑉(𝜉)𝑑𝜉

1

0

=∑𝑞𝑘(𝜏)

∞

𝑘=1

[
𝜔𝑗
2𝛿𝑘𝑗

2
] = 𝑞𝑗(𝜏)

𝜔𝑗
2

2
 

 
 

(42) 

 

Introducing (41) and (42) in (39) one has 

 

�̈�𝑗

2
+ 𝑞𝑗

𝜔𝑗
2

2
+ 𝐺𝑗 = 0, 𝑗 = 1,2,… (43) 

 

with 

 

𝐺𝑗 = 2 〈𝜙𝑗, 𝑁𝐺 (∑ 𝜙𝑚(𝜏)𝑞𝑚(𝜉)

∞

𝑚=1

 )〉 + 2 〈𝜙𝑗 , 𝑁𝐼 (∑ 𝜙𝑚(𝜏)𝑞𝑚(𝜉)

∞

𝑚=1

 )〉 (44) 

 

Equations (43) are completely equivalent to (33), since any deformed shape of the beam 

can be expressed as a linear combination of functions 𝜙𝑗. In other words, Equations (43) 

represent the same problem that Equation (33), but written in modal coordinates. Then, 

the state of the system at a particular instant is given by variables 𝑞𝑗, 𝑞�̇� (𝑗 = 1,2, … ). The 

main difficulty in Equations (43) is that they are coupled by means of terms 𝐺𝑗, i.e. the 

evolution of each modal coordinate 𝑞𝑗 depends on the rest of them. However, for motions 

corresponding to a NNM of the beam, with small deflections, this can be overcome. The 

NNMs of the system are defined as tangent to the linear modes at the equilibrium point 

given by 𝑣(𝜉) = �̇�(𝜉) = 0. For the NNM associated to the 𝑘-th linear mode, 𝑞𝑘 and 𝑞�̇� 

will be used as master variables, the rest being written as functions of them. As a NNM 

must be tangent to a linear mode, variables 𝑞𝑗, 𝑞�̇� (𝑗 ≠ 𝑘) must be functions of order 2 or 

higher in 𝑞𝑘 and 𝑞�̇�. Actually, they will be shown later to be of order 3. Therefore, for 

sufficiently small values of 𝑞𝑘 and 𝑞�̇�, 𝐺𝑗 can be expanded as 

 

𝐺𝑗 = 2〈𝜙𝑗, 𝑁𝐺(𝜙𝑘𝑞𝑘 )〉 + 2〈𝜙𝑗, 𝑁𝐼(𝜙𝑘𝑞𝑘  )〉 + ⋯ (45) 

 

where, as usual, the dots represent higher order terms. 

 

Now the terms 𝑁𝐺  and 𝑁𝐼 will be calculated for k = j where the series of the equation (36) 

becomes the equation: 

 

𝑣(𝜉, 𝜏) =∑𝜙𝑗(𝜉)𝑞𝑗(𝜏)

∞

𝑗=1

= 𝜙𝑘(𝜉)𝑞𝑘(𝜏) (46) 

 

The expression for 𝑁𝐺 , Equation (31), can be derived to get 

 

𝑁𝐺 = [𝑣
′(𝑣′𝑣′′)′]′ = 𝑣′2𝑣𝐼𝑉 + 4𝑣′𝑣′′𝑣′′′ + 𝑣′′3 (47) 



 

 

Making the derivatives using Equation (46) and simplifying the notation, where 𝑞𝑘 does 

not depend on 𝜉 and comes out common factor, on gets 

 

𝑁𝐺(𝜙𝑘(𝜉)𝑞𝑘(𝜏) ) = 𝑞𝑘
3[𝜙𝑘

′2𝜙𝑘
𝐼𝑉 + 4𝜙𝑘

′𝜙𝑘
′′𝜙𝑘

′′′ + 𝜙𝑘
′′3] = 

= 𝑞𝑘
3[𝜙𝑘

′(𝜙𝑘
′𝜙𝑘

′′)′]′ 
(48) 

 

Then, the inner product results in 

 

2〈𝜙𝑗, 𝑁𝐺(𝜙𝑘𝑞𝑘 )〉 = 2〈𝜙𝑗, 𝑞𝑘
3[𝜙𝑘

′(𝜙𝑘
′𝜙𝑘

′′)′]′〉 = 𝑞𝑘
3 2〈𝜙𝑗, [𝜙𝑘

′(𝜙𝑘
′𝜙𝑘

′′)′]′〉

= 𝑞𝑘
3 𝑔1𝑗𝑘 

(49) 

 

Where  𝑔1𝑗𝑘 is defined as 

 

𝑔1𝑗𝑘 = 2〈𝜙𝑗, [𝜙𝑘
′ (𝜙𝑘

′𝜙𝑘
′′)′]′〉 (50) 

 

Following a similar approach for term 𝑁𝐼 
 

𝑣(𝜉, 𝜏) = 𝜙𝑘(𝜉)𝑞𝑘(𝜏); 𝑣
′ = 𝜙𝑘

′𝑞𝑘;  �̇�
′2 = 𝜙𝑘

′2𝑞�̇�
2; �̈�′ = 𝜙𝑘

′𝑞�̈�   (51) 

 

Then, Eq. (32) can be written as 

 

𝑁𝐼 = [𝑣
′∫∫(𝑣′�̈�′ + �̇�′2)𝑑𝛾

𝜂

0

𝑑𝜂

𝜉

1

]

′

= 

= [𝜙𝑘
′𝑞𝑘∫∫(𝜙𝑘

′𝑞𝑘𝜙𝑘
′𝑞�̈� + 𝜙𝑘

′2𝑞�̇�
2)𝑑𝛾

𝜂

0

𝑑𝜂

𝜉

1

]

′

= (𝑞𝑘�̇�𝑘
2 + 𝑞𝑘

2�̈�𝑘) [𝜙𝑘
′ ∫∫𝜙𝑘

′2𝑑𝛾

𝜂

0

𝑑𝜂

𝜉

1

] 

(52) 

 

The corresponding inner product can be written in terms of 𝑞𝑘 as 

 

2〈𝜙𝑗, 𝑁𝐼(𝜙𝑘𝑞𝑘 )〉 = 2 〈𝜙𝑗, (𝑞𝑘�̇�𝑘
2 + 𝑞𝑘

2�̈�𝑘) [𝜙𝑘
′ ∫∫𝜙𝑘

′2𝑑𝛾

𝜂

0

𝑑𝜂

𝜉

1

]〉 = 

= (𝑞𝑘�̇�𝑘
2 + 𝑞𝑘

2�̈�𝑘) · 2 〈𝜙𝑗, [𝜙𝑘
′ ∫∫𝜙𝑘

′2𝑑𝛾

𝜂

0

𝑑𝜂

𝜉

1

]〉 = 

 
= (𝑞𝑘�̇�𝑘

2 + 𝑞𝑘
2�̈�𝑘) · 𝑔2𝑗𝑘 

 

(53) 

 

where 𝑔2𝑗𝑘 is calculated as 

 



 

 

𝑔2𝑗𝑘 = 2 〈𝜙𝑗, [𝜙𝑘
′ ∫∫𝜙𝑘

′2𝑑𝛾

𝜂

0

𝑑𝜂

𝜉

1

]

′

〉 (54) 

 

The use of terms “large” and “small” is emphasized at this point in order to avoid 

confusion during the subsequent developments. That is, deflections are being assumed to 

be large enough for the effect on nonlinearity to be significant, yet small enough for our 

approximations to work. 

Introducing (49) and (53) in (45) yields 

 

𝐺𝑗 = 𝑔1𝑗𝑘 · 𝑞𝑘
3 + 𝑔2𝑗𝑘 · (𝑞𝑘�̇�𝑘

2 + 𝑞𝑘
2�̈�𝑘) +⋯ (55) 

with 

𝑔1𝑗𝑘 = 2〈𝜙𝑗, [𝜙𝑘
′ (𝜙𝑘

′𝜙𝑘
′′)′]′〉 (56) 

𝑔2𝑗𝑘 = 2 〈𝜙𝑗, [𝜙𝑘
′ ∫∫𝜙𝑘

′2𝑑𝛾

𝜂

0

𝑑𝜂

𝜉

1

]

′

〉 (57) 

 

 Next, the terms in Eqs. (54) and (55) are evaluated by carrying out the required 

derivatives with respect to 𝜉  and the corresponding integration between 0 and 1 leading 

to the following results 
 

𝑔1𝑗𝑘 = 2〈𝜙𝑗 , [𝜙𝑘
′ (𝜙𝑘

′𝜙𝑘
′′)′]′〉 = 2∫𝜙𝑘

1

0

· [𝜙𝑘
′ (𝜙𝑘

′ 𝜙𝑘
′′)′]′𝑑𝜉 = 

= 2∫𝜙𝑘

1

0

· [𝜙𝑘
′2𝜙𝑘

𝐼𝑉 + 4𝜙𝑘
′𝜙𝑘

′′𝜙𝑘
′′′ + 𝜙𝑘

′′3]𝑑𝜉 =
(𝑘𝜋)6

2
 

 

(58) 

𝑔2𝑗𝑘 = 2∫𝜙𝑘

1

0

· [𝜙𝑘
′ ∫∫ 𝜙𝑘

′ 2𝑑𝛾
𝜂

0

𝑑𝜂

𝜉

1

]

′

𝑑𝜉 =

= 2∫[𝑠𝑖𝑛(𝑘𝜋𝜉) [(𝑘𝜋)𝑐𝑜𝑠(𝑘𝜋𝜉) ∫∫ (𝑘𝜋)2𝑐𝑜𝑠2(𝑘𝜋𝛾) 𝑑𝛾
𝜂

0

𝑑𝜂

𝜉

1

]

′

]

1

0

𝑑𝜉 = 

=
(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
 

 

(59) 

 

Substituting equation (55) into (43) and using (58) and (59) one obtains the discretized 

equation of motion for vibration mode k  

 

�̈�𝑘 +𝜔𝑘
2𝑞𝑘 +

(𝑘𝜋)6

2
𝑞𝑘
3 + [

(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] [𝑞𝑘�̇�𝑘

2 + 𝑞𝑘
2�̈�𝑘] = 0 (60) 

  

 

2.1.4 Analytical solution based on the multiple scales methods 

 



 

 

This section presents the application of the multiple scale method to solve the nonlinear 

equation of motion. The nonlinear term is assumed to be weak or small compared to the 

linear term. The parameter 휀 ≪ 1 has to be introduced in the nonlinear term as follows 
 

�̈�𝑘 +𝜔𝑘
2𝑞𝑘 + 휀 [

(𝑘𝜋)6

2
𝑞𝑘
3 + [

(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] [𝑞𝑘�̇�𝑘

2 + 𝑞𝑘
2�̈�𝑘]] = 0 (61) 

By straightforward expansion, the solution is assumed to be expandable in terms of 

parameter 휀. 

𝑞𝑘(𝜏) = 𝑞𝑘0(𝜏) + 휀𝑞𝑘1(𝜏) + 휀
2𝑞𝑘2(𝜏) +··· (62) 

 
As it is known, for large amplitude oscillations the straightforward expansion technique 

generates secular terms and fails to correctly provide a proper relation between amplitude 

and frequency. The multiple scales method avoids this shortcoming by allowing a solution 

to be obtained independently of the time scales. For example, the fast scale can be used 

for frequencies near to the linear system, while the slow scale for slow modulations of 

amplitudes and phases. According to the multiple scale method, the solution can be 

expressed in terms of different time scales, 𝑇0 and 𝑇1 for first order expansion as follows. 
 

𝑞𝑘(𝑇0, 𝑇1 ) = 𝑞𝑘0(𝑇0, 𝑇1) + 휀𝑞𝑘1(𝑇0, 𝑇1) +··· 
𝑇0 = 𝜏, 𝑇1 = 휀𝜏,   휀 ≪ 1 

(63) 

𝑞 = 𝑞0 + 휀𝑞1 +··· (64) 

�̇� = 𝐷0𝑞0 + 휀𝐷0𝑞1 + 휀𝐷1𝑞0 
(65) 

�̈� = 𝐷0
2𝑞0 + 휀𝐷0

2𝑞1 + 2휀𝐷0𝐷1𝑞0 
(66) 

 

Equations (64), (65) and (66) show the displacement, velocity and acceleration, 

respectively, where 𝐷0 and 𝐷1 denote the derivate respect to 𝑇0 and 𝑇1 respectively. 

Including Equations (64), (65) and (66) into equation (61), one has 

 

[
 
 
 
 
 

(𝐷0
2𝑞0 + 휀𝐷0

2𝑞1 + 2휀𝐷0𝐷1𝑞0) +

+𝜔𝑘
2(𝑞0 + 휀𝑞1) + 휀

(𝑘𝜋)6

2
(𝑞0 + 휀𝑞1)

3 +

+휀 [
(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] [
(𝑞0 + 휀𝑞1)[𝐷0𝑞0 + 휀𝐷0𝑞1 + 휀𝐷1𝑞0]

2 +

(𝑞0 + 휀𝑞1)
2[𝐷0

2𝑞0 + 휀𝐷0
2𝑞1 + 2휀𝐷0𝐷1𝑞0]

]
]
 
 
 
 
 

= 0 (67) 

 

According to Equation (64), it is necessary to obtain 𝑞0 and 𝑞1. To obtain 𝑞0, 휀 = 0 is 

assumed in equation (67), obtaining the following homogeneous differential equation  

 

�̈�𝑘 +𝜔𝑘
2𝑞𝑘 + 0 = 0 (68) 

𝑞 = 𝑞0;  �̇� = 𝐷0𝑞0;  �̈� = 𝐷0
2𝑞0 (69) 

𝐷0
2𝑞0 +𝜔𝑘

2𝑞0 = 0 (70) 

 

with harmonic solution as follows  

𝑞0 = 𝑎𝑘  𝑐𝑜𝑠 (𝜔𝑘𝑇0 +𝜑𝑘) (71) 



 

 

 

This solution can be expressed in complex notation as follows 
 

𝑞0𝑘 = 𝐴(𝑇1)𝑒
𝑖𝜔𝑘𝑇0 + �̅�(𝑇1)𝑒

−𝑖𝜔𝑘𝑇0 (72) 

 

For the first order solution (𝑞1) the terms of order zero are eliminated leading to 
 

[
 
 
 
 𝐷0

2𝑞1 +𝜔𝑘
2𝑞1 − 2𝐷0𝐷1𝑞0 −

(𝑘𝜋)6

2
𝑞0
3 +

+[
(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] [𝑞0(𝐷0𝑞0)

2 + (𝑞0)
2(𝐷0

2𝑞0)]
]
 
 
 
 

= 0 

(73) 

 
Using the linear solution for 𝑞0, Eq. (73) can be further developed. In what follows, some 

important terms are presented, where cc denotes de complex conjugates. 
 

−2𝐷0𝐷1𝑞0 = −2𝑖𝜔𝑘𝐴´𝑒
𝑖𝜔𝑘𝑇0 + 𝑐𝑐 

(74) 

−
(𝑘𝜋)6

2
(𝑞0)

3 = −
(𝑘𝜋)6

2
(𝐴3𝑒𝑖3𝜔𝑘𝑇0 + 3𝐴2�̅�𝑒𝑖𝜔𝑘𝑇0 + 𝑐𝑐) (75) 

(𝑞0)(𝐷0𝑞0)
2 + (𝑞0)

2(𝐷0
2𝑞0) = −2𝐴

3𝜔𝑘
2𝑒𝑖3𝜔𝑘𝑇0 − 2𝐴2�̅�𝜔𝑘

2𝑒𝑖𝜔𝑘𝑇0 + 𝑐𝑐 
 

(76) 

 

Including the previous terms in equation (73) one finds  
 

 

[
 
 
 
 
 

𝐷0
2𝑞1 +𝜔𝑘

2𝑞1 − 2𝑖𝜔𝑘𝐴´𝑒
𝑖𝜔𝑘𝑇0 + 𝑐𝑐 −

−
(𝑘𝜋)6

2
(𝐴3𝑒𝑖3𝜔𝑘𝑇0 + 3𝐴2�̅�𝑒𝑖𝜔𝑘𝑇0 + 𝑐𝑐) +

+ [
(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] (−2𝐴3𝜔𝑘

2𝑒𝑖3𝜔𝑘𝑇0 − 2𝐴2�̅�𝜔𝑘
2𝑒𝑖𝜔𝑘𝑇0 + 𝑐𝑐)

]
 
 
 
 
 

= 0 
(77) 

 
 

2.1.4.a Elimination of secular terms 

 

In Equation (77) the so-called secular terms are identified because they include the factor 

𝑒𝑖𝜔𝑘𝑇0. These terms must be eliminated to avoid resonant terms in the solution. From 

Equation (75), the coefficient of the secular terms is written as follows 
 

−2𝑖𝜔𝑘𝐴´ −
(𝑘𝜋)6

2
(3𝐴2�̅�) + [

(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] (2𝐴2�̅�𝜔𝑘

2) = 0 (78) 

𝐴 =
1

2
𝑎𝑘𝑒

𝑗𝜑, 𝑎𝑘(𝑇1), 𝜑𝑘(𝑇1) ∈ ℝ (79) 

 

Note that the complex amplitude, A, of the zero order solution has been expressed in terms 

of a real amplitude and a real offset angle both depending on 𝑇1. Including these terms in 

Equation (78) one gets the following 



 

 

 
 

−2𝑖𝜔𝑘(
1

2
𝑎𝑘
′ 𝑒𝑗𝜑 + 1

2
𝑎𝑘𝑖𝜑𝑘

′ 𝑒𝑗𝜑𝑘) −
(𝑘𝜋)6

2
(3(1

2
𝑎𝑘𝑒

𝑗𝜑𝑘)
2
(1
2
𝑎𝑘𝑒

−𝑗𝜑𝑘)) +

+ [
(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] (2(1

2
𝑎𝑘𝑒

𝑗𝜑𝑘)
2
(1
2
𝑎𝑘𝑒

−𝑗𝜑𝑘)𝜔𝑘
2) = 0

 

 

(80) 

 

Equation (80) is further simplified as follows 
 

−𝑎𝑘
′ 𝑖𝜔𝑘 − 𝑖

2𝑎𝑘𝜑𝑘
′𝜔𝑘 −

(𝑘𝜋)6

2

3

8
𝑎𝑘
3 + [

(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] (
2

8
𝑎𝑘
3)𝜔𝑘

2 = 0 (81) 

 

Both the real and imaginary parts of the previous equation must be equal to zero, leading 

to the following relations 

−𝑎𝑘
′ 𝑖𝜔𝑘 = 0 ⇒ 𝑎𝑘 = 𝑎𝑘0 (82) 

𝑎𝑘𝜑𝑘
′𝜔𝑘 − 3

(𝑘𝜋)6

16
𝑎𝑘
3 +

1

4
[
(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] 𝑎𝑘

3𝜔𝑘
2 = 0 (83) 

 

Note that Equation (82) is fulfilled if 𝑎𝑘 is constant. On the other hand, Equation (83) 

leads to the following 
 

𝑎𝑘𝜑𝑘
′ − 3

(𝑘𝜋)6

16

𝑎𝑘
3

𝜔𝑘
+
1

4
[
(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] 𝑎𝑘

3𝜔𝑘 = 0 (84) 

 

 

Substituting 𝑎𝑘 = 𝑎𝑘0  and 𝜔𝑘 = (𝑘𝜋)
2 into Equation (84) and integrating in T1, the 

offset angle can be found as follows 
 

𝜑𝑘
′ = 3

(𝑘𝜋)6

16(𝑘𝜋)2
𝑎𝑘0
2 −

1

4
[
(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
]𝑎𝑘0

2 (𝑘𝜋)2 (85) 

 

that can be further simplified as 

𝜑𝑘
′ = 3

4

4

(𝑘𝜋)4

16
𝑎𝑘0
2 −

1

4

(𝑘𝜋)6

6
𝑎𝑘0
2 +

3

4

(𝑘𝜋)4

16
𝑎𝑘0
2  (86) 

𝜑𝑘
′ = [

15(𝑘𝜋)4

64
−
(𝑘𝜋)6

24
] 𝑎𝑘0

2  (87) 

 
which after integration provides the phase angle as a function of T1 as 
 

𝜑𝑘 = 𝜑𝑘0 + [
15(𝑘𝜋)4

64
−
(𝑘𝜋)6

24
]𝑎𝑘0

2 𝑇1 (88) 

 

 

2.1.4.b Solution of the first order of 𝜺 

Once the secular terms are eliminated, Equation (77) reads as follows 



 

 

 

[
 
 
 
 𝐷0

2𝑞1 +𝜔𝑘
2𝑞1 −

(𝑘𝜋)6

2
(𝐴3𝑒𝑖3𝜔𝑘𝑇0) +

+ [
(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] (2𝐴3𝜔𝑘

2𝑒𝑖3𝜔𝑘𝑇0) + 𝑐𝑐
]
 
 
 
 

= 0 (89) 

 

To solve the previous equation, the following harmonic test solution will be used  

 

𝑞1 = 𝐵(𝑇1)𝑒
𝑖3𝜔𝑘𝑇0 + 𝑐𝑐 (90) 

 

which has to be differentiated and substituted into Equation ¡Error! No se encuentra el 

origen de la referencia. leading to 

[
 
 
 
 −9𝜔𝑘

2𝐵(𝑇1)𝑒
𝑖3𝜔𝑘𝑇0 +𝜔𝑘

2𝐵(𝑇1)𝑒
𝑖3𝜔𝑘𝑇0 −

(𝑘𝜋)6

2
(𝐴3𝑒𝑖3𝜔𝑘𝑇0)

+ [
(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] (2𝐴3𝜔𝑘

2𝑒𝑖3𝜔𝑘𝑇0) + 𝑐𝑐
]
 
 
 
 

= 0 (91) 

 

Dividing by 𝜔𝑘
2𝑒𝑖3𝜔𝑘𝑇0 and substituting 𝜔𝑘 = (𝑘𝜋)

2 one finds 𝐵(𝑇1) as follows 

 
 
 

−8𝐵(𝑇1) = −
1

𝜔𝑘
2

(𝑘𝜋)6

2
(𝐴3) + [

(𝑘𝜋)4

6
−
3(𝑘𝜋)2

16
] (2𝐴3) + 𝑐𝑐 (92) 

 

that leads to 
 

𝐵(𝑇1) = [
1

8

1

(𝑘𝜋)4
(𝑘𝜋)6

2
−
2

8

(𝑘𝜋)4

6
+
2

8

3(𝑘𝜋)2

16
]𝐴3 + 𝑐𝑐 = 

= [
8

8

1

8

(𝑘𝜋)2

2
−
(𝑘𝜋)4

24
+
6

8

(𝑘𝜋)2

16
]𝐴3 + 𝑐𝑐 = 

= [
7(𝑘𝜋)2

64
−
(𝑘𝜋)4

24
]𝐴3 + 𝑐𝑐 

(93) 

 
 
Including 𝐵(𝑇1) in  

 

𝑞1 = 𝐵(𝑇1)𝑒
𝑖3𝜔𝑘𝑇0 + 𝑐𝑐 

𝐴 =
1

2
𝑎𝑒𝑗𝜑 

(94) 

one gets 𝑞1 as follows 

 

 



 

 

𝑞1 = [
7(𝑘𝜋)2

64
−
(𝑘𝜋)4

24
]𝐴3𝑒𝑖3𝜔𝑘𝑇0 + 𝑐𝑐 = 

= [
7(𝑘𝜋)2

64
−
(𝑘𝜋)4

24
]
1

8
𝑎𝑘
3𝑒3𝑗𝜑𝑒𝑖3𝜔𝑘𝑇0 + 𝑐𝑐 = 

= [
7(𝑘𝜋)2

256
−
(𝑘𝜋)4

96
]𝑎𝑘

3𝑒3𝑗𝜑𝑒𝑖3𝜔𝑘𝑇0 + 𝑐𝑐 = 

= [
7(𝑘𝜋)2

256
−
(𝑘𝜋)4

96
]𝑎𝑘

3 𝑐𝑜𝑠(3(𝜔𝑘𝜏 + 𝜑𝑘)) 

(95) 

 
Considering 휀 = 1 and substituting 𝑞0  from Equation (71),  𝑞1 from Equation (95), and 

𝜑𝑘 from Equation (88) in the general solution one obtains 

𝑞(𝜏, 휀) = 𝑞0 + 휀𝑞1 
  휀 = 1, 𝜏 = 𝑇0 = 𝑇1 

(96) 

 

Where 

𝑞0 = 𝑎𝑘𝑐𝑜𝑠 (𝜔𝑘𝜏 + 𝜑𝑘) (97) 

𝜑𝑘 = 𝜑𝑘0 + [
15(𝑘𝜋)4

64
−
(𝑘𝜋)6

24
]𝑎𝑘0

2 𝜏 (98) 

 

Thus, the mathematical expression of 𝑞𝑘(τ) reads as follows 
 

𝑞𝑘(𝜏) = 𝑎𝑘 𝑐𝑜𝑠(𝜔𝑘𝜏 + 𝜑𝑘) + [
7(𝑘𝜋)2

256
−
(𝑘𝜋)4

96
] 𝑎𝑘

3 𝑐𝑜𝑠(3(𝜔𝑘𝜏 + 𝜑𝑘)) (99) 

which can be further simplified, leading to 
 

𝑞𝑘(𝜏) = 𝑎𝑘 𝑐𝑜𝑠 (𝜔𝑘𝜏 + (𝜑𝑘0 + [
15(𝑘𝜋)4

64
−
(𝑘𝜋)6

24
] 𝑎𝑘0

2 𝜏)) + 

+[
7(𝑘𝜋)2

256
−
(𝑘𝜋)4

96
]𝑎𝑘

3 𝑐𝑜𝑠 (3(𝜔𝑘𝜏 + (𝜑𝑘0 + [
15(𝑘𝜋)4

64
−
(𝑘𝜋)6

24
]𝑎𝑘0

2 𝑇1))) 

 

(100) 

 
The nonlinear frequency of the system is identified within the argument of the cosine 

function as follows 
 

𝜔𝑘𝑁𝐿𝜏 = 𝜔𝑘𝜏 + [
15(𝑘𝜋)4

64
−
(𝑘𝜋)6

24
]𝑎𝑘0

2 𝜏 (101) 

Note that the mathematical expression of the nonlinear frequency will be different for 

different boundary conditions. Substituting in the general equation we have 
 

𝑞𝑘(𝜏) = 𝑎𝑘 𝑐𝑜𝑠(𝜔𝑘𝑁𝐿𝜏 + 𝜑𝑘0) + [
7(𝑘𝜋)2

256
−
(𝑘𝜋)4

96
]𝑎𝑘

3 𝑐𝑜𝑠(3(𝜔𝑘𝑁𝐿𝜏 + 𝜑𝑘0)) (102) 

 

Dividing Equation (97) by 𝜏 and 𝜔𝑘, one gets the relationship between linear and 

nonlinear frequency is obtained 

 



 

 

𝜔𝑘𝑁𝐿
𝜔𝑘

= 1 + [
15(𝑘𝜋)2

64
−
(𝑘𝜋)4

24
] 𝑎𝑘0

2  (103) 

 
where 𝑎𝑘 and 𝜑𝑘0 are constants that depend on the initial conditions for first order 

approximations to the amplitude and phase of the motion. 
 
In addition, substituting Equation (55) into Equation (43) for 𝑗 ≠ 𝑘 yields 
 

�̈�𝑗 +𝜔𝑗
2𝑞𝑗 + 𝑔1𝑗𝑘𝑞𝑘

3 + 𝑔2𝑗𝑘(𝑞𝑘�̇�𝑘
2 + 𝑞𝑘

2�̈�𝑘) +⋯ = 0

 𝑗 ≠ 𝑘
 (104) 

 

In order to solve (104) note that, if it is multiplied by 𝑞𝑘
2, one gets 𝑞𝑘

2�̈�𝑘 = −𝜔𝑘
2𝑞𝑘

3 +⋯. 

On the other hand, by definition of NNM, variables 𝑞𝑗, 𝑞�̇� (𝑗 ≠ 𝑘) must be functions of 

𝑞𝑘 and 𝑞�̇�. Thus, solutions of Equation (104) of the form 
 

𝑞𝑗 = 𝛤1𝑗𝑘𝑞𝑘
3 + 𝛤2𝑗𝑘𝑞𝑘�̇�𝑘

2 +⋯ , 𝑗 ≠ 𝑘 (105) 

 

are sought where 𝛤1𝑗𝑘 and 𝛤2𝑗𝑘 are constants ([7], [8]). Introducing Equation (105) in 

(104) yields 
 

{
 
 

 
 𝛤1𝑗𝑘 =

(7𝜔𝑘
2 −𝜔𝑗

2)𝑔1𝑗𝑘 − (5𝜔𝑘
2 −𝜔𝑗

2)𝜔𝑘
2𝑔2𝑗𝑘

(𝜔𝑘
2 −𝜔𝑗

2)(9𝜔𝑘
2 −𝜔𝑗

2)

𝛤2𝑗𝑘 =
6𝑔1𝑗𝑘 − (3𝜔𝑘

2 +𝜔𝑗
2)𝑔2𝑗𝑘

(𝜔𝑘
2 −𝜔𝑗

2)(9𝜔𝑘
2 −𝜔𝑗

2) }
 
 

 
 

  𝑗 ≠ 𝑘 (106) 

 
The expressions in Equation (106) suggests that this approach fails at one-to-one or three-

to-one internal resonances. Hence, it will be assumed that the values of 𝜔𝑗 are away from 

𝜔𝑘 and 3𝜔𝑘. Finally, the expression for the 𝑘-th NNM is reconstructed as follows 
 

𝑣(𝜉, 𝜏) = 𝜙𝑘(𝜉)𝑞𝑘(𝜏) +

∑𝜙𝑗(𝜉)𝛤1𝑗𝑘𝑞𝑘
3(𝜏)

𝑗≠𝑘

+∑𝜙𝑗(𝜉)𝛤2𝑗𝑘𝑞𝑘(𝜏)�̇�𝑘
2

𝑗≠𝑘

(𝜏) + ⋯ (107) 

 

2.1.5 Nonlinear frequency of a roller-roller simply supported beam 

Using a similar procedure, the nonlinear oscillations of the roller-roller simply supported 

beam can be analyzed. To do that, one has to modify accordingly the axial boundary 

conditions previously used in the pinned-roller case. This time the axial reaction force at 

both beam ends vanish 
 

𝐻(0, 𝑡) = 𝐻(𝐿, 𝑡) = 0 (108) 

 

Therefore, the axial displacement of the previously pinned beam end is released and, 

therefore, 𝑢(0, 𝑡) does not need to be zero. Following Equations (23) and (24),  the axial 

force 𝐻(𝑋, 𝑡) can be evaluated as follows 
 



 

 

𝐻 =

{
  
 

  
 

−𝜌𝐴∫∫(𝑣′�̈�′ + �̇�′2)𝑑𝑦

𝑧

0

𝑑𝑧

𝑋

𝐿

+

+𝜌𝐴
(𝑋 − 𝐿)

𝐿
∫∫(𝑣′�̈�′ + �̇�′2)𝑑𝑦

𝑧

0

𝑑𝑧

𝐿

0 }
  
 

  
 

 (109) 

 

Note the previous expression fulfills the boundary conditions of Equation (108). As a 

result of Equation (109), the nonlinear inertial term 𝑁𝐼 of Equation (33) is now written as 

follows 

𝑁𝐼 =

{
  
 

  
 

[𝑣′∫∫(𝑣′�̈�′ + �̇�′2)𝑑𝛾

𝜂

0

𝑑𝜂

𝜉

1

]

′

+

+[𝑣′(1 − 𝜉)]′∫∫(𝑣′�̈�′ + �̇�′2)𝑑𝛾

𝜂

0

𝑑𝜂

1

0 }
  
 

  
 

 (110) 

 
This results in the following expression for 𝑔2𝑗𝑘, see Equation (43), 

𝑔2𝑗𝑘 =

{
  
 

  
 

2 〈𝜙𝑗, [𝜙𝑘
′ ∫∫𝜙𝑘

′2𝑑𝛾

𝜂

0

𝑑𝜂

𝜉

1

]

′

〉

+2∫∫𝜙𝑘
′2𝑑𝛾

𝜂

0

𝑑𝜂

1

0

〈𝜙𝑗, [𝜙𝑘
′ (1 − 𝜉)]′〉

}
  
 

  
 

 (111) 

 
Following a procedure similar to the one described in Section 2.1.4 for the ordinary 

differential equations of the pinned-roller simply supported case, the following 

expression is found 

𝑞𝑘(𝜏) = 𝑎𝑘 𝑐𝑜𝑠(𝜔𝑘𝑁𝐿𝜏 + 𝜑𝑘0) + [
7(𝑘𝜋)2

256
−
(𝑘𝜋)4

384
]𝑎𝑘

3 𝑐𝑜𝑠(3(𝜔𝑘𝑁𝐿𝜏 + 𝜑𝑘0)) (112) 

 

Where the expression of the nonlinear frequency is identified as follows 
 

𝜔𝑘𝑁𝐿
𝜔𝑘

= 1 + [
15(𝑘𝜋)2

64
−
(𝑘𝜋)4

96
] 𝑎𝑘0

2  (113) 

 
 

2.1.6 Nonlinear frequency of a pinned-pinned beam 

The beam with constrained axial displacement at both ends (pinned-pinned) can be 

analysed following a methodology that is similar to the one used in the previous cases. 

Assuming that the distance between the pins is equal to the undeformed length of the 

beam, any deflection necessarily produces stretching of the middle line of the beam. Thus, 

the assumption of small axial strains restricts the amplitude of deflections  

 

|𝑠′ − 1| ≪ 1 ⇒ 𝑣′2 ≪ 1, |𝑢′| ≪ 1 (114) 



 

 

 

For clarity, it is emphasized that 𝑣′2 and |𝑢′| were allowed to be large in Sections 2.1.4 

and 2.1.5, compensating each other so that |𝑠′ − 1| remained small. This is not possible 

for the axially restrained beam, since 𝑢 is imposed to vanish at both ends and, therefore, 

the average contribution of 𝑢′ to the axial strain is zero. Already Mettler [14] obtained a 

nonlinear equation of motion for the two axially restrained simply supported beam. 

 

𝜌𝐴�̈� + 𝐸𝐼𝑣𝐼𝑉 −
𝐸𝐴

𝐿
𝑣′′∫

𝑣′2

2
𝑑𝑋

𝐿

0

= 0 (115) 

 

Expression (115) can be directly by neglecting all the small terms in the system of 

Equations (13)-(17) according to (114). The only nonlinear term, of geometric nature, is 

a hardening type one and accounts for the midline stretching necessarily associated to 

bending. Applying a procedure similar to the one used in the previous sections to Equation 

(115) with B.C, previously transformed to dimensionless form by means of (29), one 

obtains the frequency-amplitude equation for the different NNMs where 𝜆 is the 

slenderness ratio (117) 

 
𝜔𝑘𝑁𝐿
𝜔𝑘

= 1 +
3𝜆2

32
𝑎𝑘
2 +⋯ (116) 

 

with 

 

𝜆 =
𝐿

√𝐼 𝐴⁄
 (117) 

 

and, as in Equation ¡Error! No se encuentra el origen de la referencia., 𝑎𝑘 represents 

a first order approximation for the amplitude of oscillation of 𝑞𝑘(𝜏).  
 

It is convenient, for the following reasoning, to obtain the axial strain 휀 –averaged over 

the beam length– when the beam is vibrating along its 𝑘-th NNM: 

 

{
 

 
𝑣(𝜉, 𝜏) = 𝑞𝑘(𝜏) 𝑠𝑖𝑛(𝑘𝜋𝜉)

𝑠′ − 1̅̅ ̅̅ ̅̅ ̅̅ = 휀̅ = ∫
𝑣′2

2
𝑑𝜉

1

0 }
 

 
⇒ 휀(̅𝜏) = (

𝜋𝑘𝑞𝑘(𝜏)

2
)

2

 (118) 

 

It has been made use of the fact that, in this particular case, the nonlinear mode shapes 

coincide with the linear ones [7]. Some authors, while retaining the assumptions of 

Section 2 of the present paper, have proposed more complex expressions than (115), 

which include other nonlinearities, such as nonlinear curvature or longitudinal inertia 

[1,5]. However, it can be shown that these additional terms have the same order of 

magnitude as the axial strain. Thus, according to the small strains assumption, they would 

only produce a marginal improvement in the accuracy of the solution. 

Luongo et al. [6] derived a model for the axially restrained beam, including the effect 

of nonlinear curvature. They arrived at equation 

 
𝜔𝑘𝑁𝐿
𝜔𝑘

= 1 +
3𝜆2

32
𝑎𝑘
2 −

3(𝑘𝜋)2

16
𝑎𝑘
2 +⋯ (119) 



 

 

 

Using (118), one can rewrite the last term in (119) as 

 
3(𝑘𝜋)2

16
𝑎𝑘
2 =

3

4
휀0̅ (120) 

 

where 휀0̅ is a first order approximation for the amplitude of 휀(̅𝜏) during the oscillation. 

Hence, it is clear that, according to the small strains assumption, the last term in (119) 

can be neglected against unity, which would transform (119) into the expression given by 

Mettler [14], that is, Equation ¡Error! No se encuentra el origen de la referencia.. 

Lacarbonara [3] also derived a more complex expression than ¡Error! No se encuentra 

el origen de la referencia.) for the nonlinear frequencies of the beam, including 

additional nonlinear terms. In order to understand their results, the nonlinear term in 

Equation ¡Error! No se encuentra el origen de la referencia.) is expressed in terms of 

the axial strain, using Equation (118) as follows 

 

3𝜆2

32
𝑎𝑘
2 =

3

8
(
𝜆

𝜋𝑘
)
2

휀0̅ (121) 

 

Then, for this term to be significant against unity, the coefficient multiplying the axial 

strain should be considerably greater than one. In their work, Lacarbonara and Yabuno 

[3] show that their coefficient of nonlinearity Γ𝑘, defined as 

 
𝜔𝑘𝑁𝐿
𝜔𝑘

= 1 − 𝛤𝑘𝑎𝑘
2 +⋯, (122) 

 

becomes significantly different to that of Mettler [14] when 𝜆 (𝜋𝑘)⁄ ~1, while they are 

essentially the same for 𝜆 (𝜋𝑘)⁄ ≫ 1. It is interesting to note that, for 𝜆 (𝜋𝑘)⁄ ~1 –i.e. 

moderately slender beams and high modes–, the nonlinear correction given by Mettler’s 

theory in Equation ¡Error! No se encuentra el origen de la referencia. becomes 

negligible, according to Equation (121). In fact, there is a nonlinear correction which is, 

compared to unity, of the order of the axial strain. Therefore, according to the assumption 

of small strains, the nonlinear effect can be legitimately neglected. Then, for 𝜆 (𝜋𝑘)⁄ ~1, 

the nonlinear coefficient obtained in Ref. [3] differs slightly from that of Mettler since 

the nonlinear correction is very small in any case. 
 
 

 Numerical study. 

 

The numerical study carried out is divided into two parts. First, the numerical results are 

validated with the analytical results of the pinned-roller, roller-roller and pinned-pinned 

beam cases. Second, seven cases of a beam with different types of end supports are solved 

numerically (see Table 1). The analysis of the results of the cases studied improves the 

understanding of the influence of the beam support conditions on the nonlinear response 

of the beam. The numerical study is carried out using Abaqus CAE software. 

 

The beam studied has a length of 500 mm and cross-section of 50 x 50 mm. The 

mechanical properties of the material used in Abaqus CAE are as follows: Young’s 

modulus E = 210 GPa, Poisson’s ratio ν = 0.3 and density ρ = 7850 kg/m3. The beam 

geometry is modelled using ten B32 elements beam-type elements with quadratic 



 

 

geometric order uniformly distributed. The frequencies of each vibration mode in the 

linear models in Abaqus are calculated using the Lanczos method; this method is valid 

for small displacements. In the case of large oscillations, it is necessary to use beam 

modelling methods. To do this, an initial displacement is defined in Abaqus, and the 

displacements at the midpoint of the beam are calculated as the dynamic response to the 

initial displacements imposed. Additionally, to calculate the nonlinear oscillation 

frequency, the nonlinear mode “NLgeom” is activated, and Abaqus takes the geometric 

nonlinearities into account. Conversely, this parameter is deactivated to obtain the linear 

frequency. To configure the dynamic simulation, it is necessary to define the time 

increment and the total simulation time. These parameters vary depending on the 

oscillation frequency of the case studied and can vary between 400-1000 Hz for linear 

frequencies; however, nonlinear frequencies may be outside this range. In most cases 

simulated, satisfactory results are obtained with time increments of 10-5 s. The simulation 

time is selected such that at least 10 oscillation cycles are obtained. The response analysed 

is the displacement at the midpoint of the beam, which is processed with a Fourier 

transform, yielding the oscillation frequency as a result. 
 
For the numerical study of the influence of the type of end support, seven cases were 

defined according to the type of constraint at the beam ends (see Table 1). For these cases, 

it is necessary to know the deflection equation of the first linear mode of vibration and 

calculate the initial displacement of each node as a function of the studied amplitude. Eq. 

(123) represents the vertical displacement of each point along the beam as a function of 

coefficients A, B, C and D [15], which depend on the type of end support, the 

dimensionless axial coordinate ξ (x/L) and parameter 𝛽𝑖, which depends on the vibration 

mode studied. Table 1 shows the values of the coefficients for the first vibration mode. 

 
 

𝑦(𝜉) = 𝐴 𝑠𝑖𝑛(𝛽𝑖𝜉) + 𝐵 𝑐𝑜𝑠(𝛽𝑖𝜉) + 𝐶 𝑠𝑖𝑛ℎ(𝛽𝑖𝜉) + 𝐷 𝑐𝑜𝑠ℎ(𝛽𝑖𝜉) (123) 

 
 

 

Table. 1 Case study of beam with different types of support.. 

 

 

# case Case scheme 𝜷𝟏𝑳 A B C D 

FEM First 

linear 

frequency 

(Hz) 

1 (Roller-roller) 

 

3.14159 1 0 0 0 461.89 

2 (Pinned-roller) 

 

3.14159 1 0 0 0 461.89 

3 (Pinned-pinned) 

 

3.14159 1 0 0 0 461.89 



 

 

4 (Fixed-free) 

 

1.87510 1 -1.36222 -1 1.36222 165.81 

5 (Fixed-roller) 

 

3.92660 1 -0.999223 -1 0.999223 695.14 

6 (Fixed- pinned) 

 

3.92660 1 -0.999223 -1 0.999223 705.47 

7 (Fixed-fixed) 

 

4.73004 -1 1.01781 1 -1.01781 1002.00 

 
 

3. Results and discussion. 

 

This section presents the results for the nonlinear frequency as a function of the vibration 

amplitude. First, the analytical results are compared with those reported by other authors 

and with the numerical results. In addition, seven cases of beams with varying types of 

end supports, as shown in Table 1, are compared. 

 

 Comparison of the analytical solution with other authors. 

 
Fig. 2 shows the ratio between the nonlinear and linear frequency (𝜔1𝑁𝐿/𝜔1) of the first 

mode of vibration (nonlinear normal mode, NNM) as a function of the normalized 

vibration amplitude (𝑎𝑘). Fig. 2a and Fig. 2b show the pinned-roller case and the roller-

roller case, respectively. In Fig. 2a, the solid curve represents Eq. (101), while the blue 

circles correspond to the FEM results. The results obtained by Luongo [6], are also 

included for comparison and show strong agreement. Similarly, for the roller-roller case 

(Fig. 2b), a comparison of the analytical results, the FEM results and the results reported 

by Wodall 2 [4] is made, showing good agreement among the results. 

 

 



 

 

 
 
Fig. 2 Frequency ratio-amplitude oscillation for the first NNM pinned-roller (a) and the 

roller-roller case (b). 

 

 

 
 
 
 

 Numerical nonlinear frequency comparison for different supports types  

This section analyses the influence of the type of beam support on the nonlinear frequency 

and vibration amplitude. To do this, the seven cases shown in Table 1 are studied and 

analysed. Section 2.2 describes the methodology used for the numerical simulation. For 

each case studied, the oscillation amplitude is gradually increased between 1%-20% of 

the beam length. For each case studied, seven simulations are performed with 1, 2, 4, 6, 

10, 15 and 20% displacements. A total of 49 simulations are carried out in Abaqus, 

keeping the dimensions and mechanical characteristics of the beam constant. The linear 

frequency in the seven cases studied is calculated with NLgeom deactivated in Abaqus. 

In the simulations carried out, the transverse displacement of the central node is 

monitored at each time increment, which produces a signal whose frequency corresponds 

to the nonlinear vibration frequency. To accurately calculate the frequency, the Fourier 

a1  

  

ω1NL/ ω1L 

  

a1  

  

ω1NL/ ω1L 

  



 

 

transform is applied. The ratio between the nonlinear and linear frequency of each case is 

used as a variable for comparison among the seven cases. The frequency ratio in the seven 

cases plotted against the percent vibration amplitude (Fig, 3) is shown to compare the 

degree of nonlinearity obtained in the cases studied. 

 

 
 

Fig. 3. Numerical result of the frequency ratio-amplitude of vibration for 7 types of beam 

supports. 

 

The comparative study of the frequency ratio-vibration amplitude curves graphically and 

simply shows the effect of the support type on the frequency response of the beam when 

all the mechanical and geometric characteristics of the beam are kept constant. Linear 

behaviour occurs when the ratio between the nonlinear and linear frequency equals one 

(𝜔1𝑁𝐿/𝜔1 = 1). When the frequency ratio is greater than one (𝜔1𝑁𝐿/𝜔1 > 1), hardening 

occurs, namely, the stiffness of the beam increases due to nonlinearities; in contrast, if 

the ratio is less than one (𝜔1𝑁𝐿/𝜔1 < 1), beam softening occurs, that is, the stiffness of the 

beam decreases due to nonlinearities. The analysis of the cases studied shows that cases 

3, 6 and 7 have greater nonlinearities, which is mainly due to the axial displacement 

constraint at both supports. The case with greatest nonlinearity is the case with pinned-

pinned supports, where pivoting at the ends of the beam is not prevented (case 3). In 

addition, in this case as well as in other cases in which the axial displacements are 

constrained at both ends, the degree of stiffness or hardening depends on the slenderness 

of the beam (λ). This parameter depends on the length, area, and inertia of the beam, as 

seen in analytical solution Eq (118). The hardening and softening behaviour with the 

different support types can be fully understood from a detailed analysis of the analytical 

solutions developed for case 1 (roller-roller) without axial constraints, Eq. (111);  for case 

2 (pinned-roller) with an axial constraint, Eq. (101); and case 3 (pinned-pinned) with axial 

constraints at both supports, Eq. (114). In case 3, hardening is always present as 

slenderness increases since in equation Eq. (116) the nonlinear term is positive (λ) and 
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multiplies the amplitude. In cases 1 and 2, the first term in analytical equations (113) and 

(103) depends on (𝑘𝜋)2, which represents the geometric nonlinearity, producing a 

hardening effect. Additionally, the second term depends on the factor (𝑘𝜋)4 and 

represents the nonlinearity caused by axial inertia, producing a softening effect. These 

terms oppose each other due to their opposing signs, and the result defines the behaviour 

of the beam with the amplitude of vibration; a positive result indicates hardening (the 

oscillation frequency increases), and a negative result represents softening (the oscillation 

frequency decreases). As such, case 1 (roller-roller) leads to hardening behaviour and 

case 2 (pinned-roller) to softening behaviour. This behaviour is demonstrated in the 

numerical cases shown in Fig. 3. In cases 1 and 2, the ratio between the linear and 

nonlinear frequencies (𝜔1𝑁𝐿/𝜔1) does not depend on the mechanical properties of the 

beam; for this reason, only the amplitude term appears in the analytical solution. 

Moreover, to explain the behaviour of case 6 (fixed-pinned), it is observed that the 

difference between this case and case 3 is the rotational constraint of one of the supports, 

and this effect is taken into account in the deflection equation of the beam according to 

Eq. (123). In case 3, the deflection function is the sine function as show the Eq. (37), 

conversely in case 6, the deflection has hyperbolic sines and cosines function as shows 

Eq. (123).  The geometric nonlinearity is lower in case 6 and results in less hardening. 

The behaviour of case 7 (fixed-fixed) is similarly explained since the amount of angular 

deformation is lower and the hardening is therefore lower than those in cases 3 and 6. 

Furthermore, the softening behaviour in case 5 (fixed-roller) is similar to that in case 2; 

however, the amount of softening is slightly lower due to the difference in deflection in 

Eq. (123). Case 4 (fixed-free) shows practically linear behaviour; the increases in 

frequency with respect to the linear frequency do not exceed 1%; therefore, the nonlinear 

effects are practically negligible. 
 

To better understand the hardening and softening behaviour of the two cases with a 

roller support allowing for axial displacement (cases 1 and 2), a point (or concentrated) 

mass is added at the end where the roller support is located. The added mass enhances the 

effects of inertia, and a softening effect is expected due to a frequency decrease caused 

by the increase in mass. To carry out this study, a point mass whose value is 50% of the 

mass of the beam is included on each roller support in cases 1 and 2; this value is chosen 

to obtain results with orders of magnitude similar to those being studied. The procedure 

is similar to that carried out for the seven previous cases; the mass is included and a 

simulation for each vibration amplitude considered is performed. The initial displacement 

imposed is the same as that in the case without mass since the linear vibration mode is 

still a sine function. Fig. 4, similar to Fig. 3, shows the frequency ratio versus amplitude 

for cases 1 and 2 with and without a point mass on the roller supports. In case 2, it is 

observed that the effect of the mass on the end of the beam causes softening, namely, its 

oscillation frequency decreases approximately 10% with respect to the linear frequency. 

Regarding case 2, with two roller supports, the effect of the point mass at both ends also 

causes softening, and the oscillation frequency can be reduced to values lower than the 

linear frequency; in this case, there is a frequency reduction of up to 7% with respect to 

the linear frequency for a 20% deflection.   



 

 

 
 

Fig. 4. Numerical result of the frequency ratio-vibration amplitude without point mass, 

case (1) and (2), and with point mass in the roller support, (1m) and (2m). 

 

 

4. Conclusion 

 

The main conclusions from the analysis of the results of this study can be summarized as 

follows.  

A detailed analytical study was conducted to find the analytical solution of the nonlinear 

frequency of a beam with pinned-roller (case 2), roller-roller (case 1) and pinned-pinned 

(case 3) supports. The equation of motion of the beam section, discretization using NNMs 

and the multiscale perturbation method were applied to find the analytical solution for the 

nonlinear frequency. Furthermore, for the cases of the roller-roller beam (case 1) and the 

pinned-pinned beam (case 3), the same procedures were used, but the boundary 

conditions at the supports were changed. The analysis of the analytical solutions for case 

1 and 2 shows that there are two types of nonlinearities: geometric nonlinearities and 

nonlinearities due to axial inertia. The geometric term causes hardening by increasing the 

stiffness of the beam and therefore increasing the vibration frequency of the system. 

However, the axial inertia term causes softening and therefore decreases the stiffness and 

vibration frequency. In both cases, the analytical solution does not include the mechanical 

properties of the beam, and therefore, the solution is independent of these. In contrast, in 

case 3 (pinned-pinned), the analytical solution does depend on the mechanical properties 

through the slenderness parameter, which always causes hardening due to the positive 

sign associated with it, as seen in the analytical solution. The methodology followed is 

well-known in the literature; however, in this part of the study, an effort was made to 

show some intermediate results of the calculation to make the procedural steps easier to 

follow, enabling other studies to replicate those steps. Additionally, the final solution is 

expressed in such a manner that the geometry-dependent terms and those dependent on 
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axial inertia are clearly shown to facilitate understanding of the physical phenomena of 

hardening and softening.  

 

Moreover, the objective of the numerical study carried out was to analyse the influence 

of the types of the beam supports on the nonlinear vibration frequency as a function of 

vibration amplitude (1-20%). In addition, the analytical solution, the FEM and the 

solutions of other authors were compared for cases 1 and 2 with satisfactory results. In 

the numerical comparative study of the cases, the mechanical characteristics of the beam 

and the amplitude of the oscillations are kept constant to analyse the influence of the type 

of support. The results show that case 3 presents the extreme case of hardening (pinned-

pinned) with 220% for a 20% deflection, followed by cases 6 and 7, and all these cases 

have axial displacement constraints at both supports. Additionally, case 2 presents the 

extreme case of softening (pinned-roller) at 10%, where the nonlinearity of the axial 

inertia exceeds the geometric nonlinearity due to the motion of the roller support. Case 4 

is noteworthy since the results show that the behaviour is practically linear despite the 

large oscillations to which the beam is subjected. In addition, to enhance the influence of 

axial inertia on the geometric nonlinearity, cases 1 and 2 were modified by adding a 

concentrated mass on each movable support that allows axial displacement, which 

resulted in the expected softening and decreased frequency.            

 

Finally, this study may be useful for structural designers, since it provides a clear 

qualitative idea of the effects of the types of supports on the nonlinear frequencies and 

enables the modification of the frequency of the system acting on the supports, restricting 

or allowing movements depending on whether increasing or decreasing the nonlinear 

frequency is desired. 

 

Regarding future work, this study can be applied to plates and membranes, where 

vibrations may be important in other directions or in combinations of several directions. 

Furthermore, the study of plates and membranes can cover a wider field of applications. 
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