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Abstract

The Plasma Science and Fusion Technology group of the University of Sevilla is developing

a new fusion device, the tokamak SMART, designed to study the behaviour of magnetically

confined plasmas and train the next generation of plasma physicist and engineers. Plasma

resistivity is a critical factor in determining the equilibrium properties of plasma, as it affects

the plasma current density, magnetic field structure, and stability. This bachelor’s thesis intro-

duces a theoretical background on plasma dynamics, the tokamak SMART, and the numerical

methods for computing plasma simulations.

FIESTA, a code package implemented in MATLAB, is used to model the impact of res-

istivity on the plasma equilibrium in the tokamak SMART. Two methods of modelling plasma

resistivity will be examined, which include the Spitzer resistivity model alongside the neo-

classical resistivity model.
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1 Introduction

Over the last century, the standard of living has improved. Massive food production, operating

industrial facilities, enabling instant communication, providing public and private transportation

or supplying heating and electricity to households all come with the requirement of energy con-

sumption. Fossil fuel has been a sine qua non to energy production since the Industrial Revolution,

leading to climate change.

Humankind is now facing the consequences of unhindered greenhouse gas emission as the

environment undergoes negative impacts, such as frequent droughts, rising sea levels, and in-

creasing temperatures. If humanity does not deal with this issue in the near future, it may cause

the self-destruction of our modern civilization. Energy demand is expected to more than double

by 2050 [1], not only because of a better quality of life but also due to the steady growth of the

population around the globe. Furthermore, the International Energy Agency proposes a net zero

emissions by 2050 scenario, which maps out a way to achieve only an 1.5 °C increase in global

average temperature. Therefore a radical change in the status quo of energy generation is critical

in diving into this challenge. Only a clever portfolio of options that includes improvements in

energy efficiency and clean, renewable sources would suffice for what the International Energy

Agency advises [2].

The world’s energy ultimately comes from the sun. The fossil fuels we consume come from

trees that grew bathed in sunlight aeons ago. The energy from sun rays triggers evaporation,

leading to cloud formation, and precipitation from these clouds provides us with hydro-power.

Society is striving to reduce the need for burning coal, oil, or gas to generate electricity and is,

instead, turning towards harnessing the power from the sun through the development of solar

and wind power technologies. Despite their green and renewable origin, they may not be reliable

enough -as it is impossible to control the weather conditions- to supply humanity with the energy

demand the future awaits.

However, what if humanity created its own sun?
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1.1 Nuclear fusion

Inspired by the nuclear reaction that occurs in stars, nuclear fusion, scientists have dreamed of

recreating this phenomenon and benefiting from its dense energy-mass ratio. Firstly, a nucleus

is a conglomerate of Z protons and N neutrons, A nucleons in total, bind all together through

nuclear forces, at a very short range. The energy required to cluster all these particles into stability

is known as the binding energy. The non-relativistic A-nucleon Hamiltonian is extraordinarily

complex, in consequence, to do estimations on this energy, experimental data is required. From

Einstein’s mass-energy relation and the experimental masses of nuclei, it is possible to give a

satisfactory result for the binding energy [3]:

𝐵𝐸(AZX) = 𝑍𝑚𝑝𝑐
2 +𝑁𝑚𝑛𝑐2 −𝑀𝑁 (

A
ZX)𝑐

2 , (1.1)

where 𝑚𝑝 is proton mass, 𝑚𝑛 is the neutron mass, 𝑀𝑁 is the nucleus mass and c is the speed

of light. Figure 1 shows the binding energy per nucleon as a function of nuclear mass, revealing

that when two light nuclei are fused, the resulting nucleus has a larger binding energy. Recalling

equation 1.1, the product of the reaction will have a lower mass and, in consequence, energy will

be released. The equation to calculate this energy is simply:

𝑄 =
∑

𝑖
𝑀𝑖𝑐

2 −
∑

𝑓
𝑀𝑓 . (1.2)

When a deuterium nucleus fuses with a tritium nucleus, an 𝛼-particle is produced, and a neut-

ron is released. The difference in mass between the reactants and the products will result in 17.6

MeV release per reaction:

2
1H + 3

1H → 4
2He +

1
0n + 17.6 MeV . (1.3)

Doing a rough estimate, just 1kg of this fuel would release 108 kWh, sufficient to meet the

energy demands of a 1GW (electric) power station for a day[5].

Let us consider the three main advantages fusion power delivers as an energy source: fuel

reserves, environmental impact, and safety. In ocean water, there is one atom of deuterium for

every 6700 atoms of hydrogen. After extracting all the deuterium in the seven seas, it could be
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Figure 1: Nuclear binding energy per nucleon as a function of the nuclear mass number. Source:
[4].

generated enough energy to supply the earth’s demand for about two thousand million years [6].

Likewise, fusion reactions produce no 𝐶𝑂2, other greenhouse emissions or harmful chemicals

into the atmosphere. The radiated 𝛼-particles, once they de-ionize, are nothing more than inert

helium gas. The only environmental problem may arise from the high-energy neutrons. Thus,

they are captured in the fusion blanket, making them innocuous to the public. Finally, unlike its

counterpart nuclear reaction, fission, the possibility of radioactive meltdown is out of the table.

The fusion process does not involve a chain reaction or the production of long-lived radioactive

waste. Instead, fuel is constantly fed into the reactor allowing it to be consumed as needed. Given

the situation of critical failure, the reactants would cool down, stopping the fusion reaction safely.

So what is holding scientists and engineers back? Well, the almost limitless deuterium is con-

stricted by the short supply of tritium, which does not occur naturally on the earth. In order to

bypass this issue, the emitted neutrons breed an isotope of lithium, 6Li, found as a component

of the fusion blanket, producing the required tritium. The 6Li reserves cap the overall source for

deuterium-tritium fusion. Geological estimates predict approximately 20000 years of inexpensive
6Li available. It is expected that before 6Li is exhausted, other fusion reactions, such as deuterium-
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deuterium, could be performed. On the other hand, the inertia has to overcome the electric re-

pulsion of ions with like charges. Stars in the universe circumvent this problem thanks to their

extreme gravitational domain yielding tremendous pressures. In laboratories, the reactants ought

to be heated up to 10 keV [5], ten times hotter than the core of the sun. At these temperatures, the

reactants -deuterium and tritium- fully ionize and become plasma. When deuterium and tritium

particles reach these temperatures, by quantum mechanical tunnelling, the Coulomb barrier is

overcome. This is known as thermonuclear fusion. Not only that, the amount of power released

by the nuclear reaction must exceed the power supplied to the fusion reactor, in other words:

𝑄 =
𝑃𝑓𝑢𝑠𝑖𝑜𝑛
𝑃𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑

> 1 . (1.4)

To achieve this requires clever engineering. As plasma cools down, power is lost irremediably.

This power loss must be replenished by plasma heating. The amount of power lost is depicted by

an energy confinement time [5], given the plasma energy 𝑊 :

𝑃𝐿 = 𝑊
𝜏𝐸

, (1.5)

where 𝑃𝐿 is the power loss and 𝜏𝐸 the energy confinement time. The plasma energy can be calcu-

lated knowing that, if the average energy of plasma particles is 3
2
𝑘𝐵𝑇 -where 𝑘𝐵 is the Boltzmann’s

constant, n is the electron density and T is the electron temperature- and there is as many elec-

trons as ions, the plasma energy per unit volume is 3𝑛𝑘𝐵𝑇 . Therefore:

𝑊 = ∫ 3𝑛𝑘𝐵𝑇𝑑3𝑥 = 3𝑛𝑘𝐵𝑇𝑉 , (1.6)

In principle, to sustain the reaction, the power supplied must be equal to the power lost 𝑃𝑆 = 𝑃𝐿,

where 𝑃𝑆 is the supplied power. However, the 𝛼-particles released by the reaction should be taken

into account. Because of their charged nature, through Coulomb collisions, 𝛼 particles transfer

their energy to the plasma, giving rise to what is known as 𝛼-heating. Reconfiguring the equation

to, 𝑃𝐿 = 𝑃𝑆 +𝑃𝛼 , where 𝑃𝛼 is the power transferred by the 𝛼 particles. The 𝛼-particle heating per

unit volume is:

𝑝𝛼 =
1
4
𝑛2⟨𝜎𝑣⟩𝐸𝛼 , (1.7)
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giving a total 𝛼-particle heating of

𝑃𝛼 = ∫ 𝑝𝛼𝑑
3𝑥 = 1

4
𝑛2⟨𝜎𝑣⟩𝐸𝛼𝑉 , (1.8)

where 𝑛 is the particle density, ⟨𝜎𝑣⟩ is the average cross section of the reaction times the velocity

[5], 𝐸𝛼 the energy of the 𝛼-particle and 𝑉 the total volume. The final power balance is given by,

𝑃𝑆 + 1
4
𝑛2⟨𝜎𝑣⟩𝐸𝛼𝑉 =

3𝑛𝑘𝐵𝑇𝑉
𝜏𝐸

(1.9)

As the deuterium-tritium plasma is heated to thermonuclear conditions, 𝛼-particle heating be-

comes a progressively larger portion of the total heating. With the right confinement conditions,

a critical point is reached where the plasma temperature can be maintained by its internal heating

alone. This critical point, analogous to the combustion of fossil fuels, is referred to as ignition. It

is possible to deduce this condition thanks to equation 1.9:

𝑛𝜏𝐸 >
12𝑇

⟨𝜎𝑣⟩𝐸𝛼
. (1.10)

This is known as the Lawson criterion. Using some known results, this inequality becomes:

𝑛𝑘𝐵𝑇 𝜏𝐸 > 3 ⋅ 1021𝑚−3 𝑘𝑒𝑉 𝑠 (1.11)

This condition could be reached for example by 𝑛 = 1020𝑚−3, 𝑘𝐵𝑇 = 10𝑘𝑒𝑉 and 𝜏𝐸 = 3𝑠 [5].

1.2 Aim of the work

This bachelor’s thesis aims to delve into the intriguing realm of plasma physics and investigate the

impact of plasma resistivity in the equilibrium of the tokamak SMART. Tokamaks are advanced

devices designed for controlled nuclear fusion experiments. Understanding the dynamics within

these toroidal magnetic confinement devices is paramount to harnessing the power of nuclear

fusion. Plasma resistivity, a fundamental parameter in plasma physics, plays a pivotal role in

shaping the behaviour of a tokamak’s plasma. The research on the importance of plasma resistivity

will be made through the numerical solver, FIESTA.
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FIESTA is a code package that simulates plasma equilibria in the tokamak SMART. At first,

this computational tool used the Spitzer resistivity model when performing plasma simulations.

Thus, during this bachelor’s thesis, the neoclassical resistivity model will be implemented into the

code environment, hoping to give an interesting comparison between the two models and, con-

sequently, find insight into the impact of the plasma resistivity in the tokamak SMART equilibria.

The objectives for this project go as follows,

• Understand how plasma is confined through magnetic fields.

• Learn to use the FIESTA code in the Matlab environment.

• Create a new code that implements the neoclassical resistivity model in FIESTA.

• Compare simulations made with the different resistivity models, Spitzer and neoclassical.
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2 Theoretical background

2.1 Plasma confinement

As one can expect, such high temperatures impede ordinary means to confine the plasma. Two

primary approaches exist for containing plasma: magnetic confinement and inertial fusion. Given

that this bachelor’s thesis focuses on the tokamak SMART, the theoretical background necessary

to comprehend the magnetic confinement approach will covered throughout this chapter. First

and foremost, what is plasma?

Paraphrasing Francis. F. Chen[7], ’a plasma is a quasineutral gas of charged and neutral particles

which exhibits collective behavior’. Its components have many of the properties of an ordinary gas,

such as temperature, density or pressure. However, they exhibit two characteristic properties [5].

The enormous electric charge density of the two species leads to a vice-like restoring force at the

appearance of any substantial separation, and the outcome is ion and electron charge densities

being almost equal in plasma in equilibrium. On the other hand, plasma can conduct an elec-

tric current, which arises from the relative motion between ions and electrons. In a tokamak,

the plasma current is responsible for a substantial portion of the magnetic field. When this cur-

rent crosses the magnetic field, it creates a magnetic force which can balance the plasma internal

pressure, reaching the equilibrium.

What is collective behaviour? Plasmas present an enormous variety of collective dynamical

modes that arise due to the large number of charged particles that interact with each other through

electromagnetic forces. These interactions result in various phenomena, such as plasma oscilla-

tions, waves, instabilities, etc. In order to be dominant, electromagnetic interactions must have a

global effect on plasma dynamics. Ergo, one-to-one Coulomb interaction must play a minor role.

Recalling the similarities between plasma and an ordinary gas, let us consider the forces acting

on a molecule of air. Air molecules, thanks to their neutrality and low mass, experience negli-

gible electromagnetic and gravitational forces, allowing them to move free until they collide with

another molecule. These collisions are the primary factors governing the motion of gas particles.

When applying a macroscopic force to a neutral gas, like sound waves from a speaker, they trans-

mit to individual atoms through collisions. However, this situation is entirely different in plasma,

composed of charged particles.
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The movement of these charged particles can lead to accumulations of charge, creating electric

fields. Moreover, this motion gives rise to electric currents and, consequently, magnetic fields.

These electric and magnetic fields influence the trajectories of other charged particles, even those

found far away from the source of the original motion, resulting in complex and interconnected

behaviour within the plasma. Let us consider two slightly charged regions within a distance 𝑟.

The Coulomb force between the two regions, A and B, decreases as 1∕𝑟2. Nevertheless, for a

given solid angle (i.e. Δ𝑟∕𝑟=constant), the volume of plasma in B that can impact A increases as

𝑟3. Therefore, regions of plasma wield a force on one another even at large distances [7], giving

rise to a large repertoire of possible motions.

2.1.1 Debye shielding

As mentioned before, one of the properties correspond to the quasineutrality nature of a plasma

in equilibrium. To illustrate this, let us assume an initially neutral plasma, i.e., 𝑛𝑖 = 𝑛𝑒 = 𝑛0, where

a test charge is placed. Poisson’s equation yields:

∇2𝜙(𝑟) = −
𝜌(𝑟)
𝜖0

, (2.1)

where 𝜙 is the electric potential, 𝜌(𝑟) the charge density and 𝜖0 the vacuum permittivity. Thus,

applied to the system becomes:

∇2𝜙(𝑟) = − 1
𝜖0
[𝑞𝑡𝛿(𝑟) + (𝑛𝑖(𝑟) − 𝑛𝑒(𝑟))𝑒] , (2.2)

where 𝑞𝑡 is the test charge and 𝑛𝑖(𝑟), 𝑛𝑒(𝑟) the ion and electron charge densities, respectively. As

a first approximation, assuming that ions are so heavy -compared to the electrons-, they will not

budge in the presence of the test charge, behaving as a fixed background. On the other hand, the

electron density responds to the Maxwell-Boltzmann law in the pressence of a potential 𝑞𝜙[7]:

𝑓 (𝑢) = 𝐴𝑒𝑥𝑝
(

−
1∕2𝑚𝑢2 + 𝑞𝜙(𝑟)

𝑘𝐵𝑇

)

, (2.3)

where 𝑓 (𝑢) is the electron velocity distribution function, u is the electron velocity and A is a

normalization constant. Integrating 𝑓 (𝑢) over 𝑢, setting 𝑞 = −𝑒, and considering that
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𝑛𝑒(𝜙→ 0) = 𝑛0 [7], the electron distribution is given as:

𝑛𝑒 = 𝑛0 exp
(

𝑒𝜙(𝑟)
𝑘𝐵𝑇

)

. (2.4)

Applying equation 2.4 into the differential equation 2.2 gives:

∇2𝜙(𝑟) = − 1
𝜖0

[

𝑞𝑡𝛿(𝑟) + 𝑒𝑛0 − 𝑒𝑛0 exp
(

𝑒𝜙(𝑟)
𝑘𝐵𝑇

)]

. (2.5)

From now on, 𝑘𝐵𝑇 → 𝑇 1. Considering a small perturbation, 𝑒𝜙
𝑇

<< 1, it is possible to do first-

order Taylor expansion to solve the equation above:

− 1
𝜖0

[

𝑞𝑡𝛿(𝑟) + 𝑒𝑛0 − 𝑒𝑛0 exp
(

𝑒𝜙(𝑟)
𝑇

)]

≈ −
𝑞𝑡
𝜖0
𝛿(𝑟) +

𝑒2𝑛0
𝜖0𝑇

𝜙(𝑟), (2.6)

∇2𝜙(𝑟) − 1
𝜆2𝐷
𝜙 = −

𝑞𝑡
𝜖0
𝛿(𝑟) . (2.7)

Defining 𝜆𝐷 =

√

𝑇 𝜖0
𝑒2𝑛0

as the Debye length. The solution to this partial differential equation is:

𝜙(𝑟) =
𝑞𝑡

4𝜋𝜖0𝑟
exp

(

−𝑟
𝜆𝐷

)

(2.8)

Upon a closer examination of the solution, the plasma screens the electrostatic potential generated

by the test charge, showing that small perturbations to the charge density and potential in plasma

tend to fall off with distances superior to the Debye length. This is known as Debye shielding.

Systems with adequate scales will be broadly neutral, i.e., 𝐿3 >> 𝜆3𝐷, where 𝐿3 is the plasma

volume.

2.1.2 Plasma frequency

To depict the collective aspect of plasma, it should first be establish the plasma frequency and

collision frequency. Let us consider displaced layers of electrons as shown in figure 2. As stated
1 It is usual in plasma physics to redefine temperatures in energy units, absorbing the Boltzmann constant and sim-

plifying the notation.
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above, because of their larger mass, ions are fixed in the background. The positive charges in the

figure represent the depletion of electrons from the affected layers. The resulting electric field

appears below the illustration. Consequently, the negative charges will flow into the positively

charged regions. This motion would be cyclical, resulting in plasma oscillations.

Figure 2: a) Displaced layers of electrons creates a restoring force, followed by acceleration, b)
after half-cycle the charges change places; Source:[5]

The fluid motion equation for a cold plasma is [5]:

𝑚𝑒
𝜕𝑣
𝜕𝑡

= −𝑒𝐸⃗ , (2.9)

where 𝑚𝑒 is the electron mass, 𝑣 the fluid electron velocity and 𝐸⃗ the electric field. Assuming a

small density perturbation 𝑛′, Gauss’ law states:

∇ ⋅ 𝐸⃗ = −
𝑒𝑛′(𝑟)
𝜖0

. (2.10)

Taking divergence on 2.9 and using the result from 2.10 gives:

𝑚𝑒
𝜕
𝜕𝑡
∇ ⋅ 𝑣 = −

𝑒𝑛′(𝑟)
𝜖0

. (2.11)

On the other hand, the fluid continuity equation is [5]:

𝜕𝑛(𝑟)
𝜕𝑡

= −∇ ⋅ (𝑛(𝑟) 𝑣) . (2.12)
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It is possible to linearize2 this equation taking the original approximation of a small perturbation

𝑛′:

𝑛(𝑟) ≈ 𝑛0 + 𝑛′(𝑟) , (2.13)

thus, applied to the differential equation

𝜕𝑛′(𝑟)
𝜕𝑡

= −𝑛(𝑟) ∇ ⋅ 𝑣 . (2.14)

Then, applying the result form 2.14 into 2.11 gives the equation of plasma oscillations:

𝜕2𝑛′(𝑟)
𝜕𝑡2

= −𝜔2
𝑝𝑛

′(𝑟) , (2.15)

where 𝜔𝑝 =

√

𝑛𝑒2

𝜖0𝑚𝑒
is the electron plasma frequency.

Let us now do a rough estimate on Coulomb collisions. Consider an electron that undergoes a

major3 angular change from its trajectory when interacting with another electron which occurs

when the Coulomb interaction energy is comparable to the kinetic energy, i.e.:

𝐸𝐶
𝐸𝐾

∼ 𝑒2

4𝜋𝜖0𝑚𝑒𝑏𝑣2𝑡ℎ,𝑒
∼ 1 , (2.16)

where 𝑏 is the impact parameter and 𝑣𝑡ℎ,𝑒 is the average thermal electron velocity. It is possible

to identify a cross-section, 𝜎0 = 𝜋𝑏2, from the impact parameter and apply it to the following

approximate formula for the frequency of collisions [9]:

𝜈𝑐 = 𝑛𝑒𝑣𝑡ℎ,𝑒𝜎0 , (2.17)

Let us compare the plasma frequency and the frequency of collisions. Rewriting the plasma fre-

quency accordingly:

𝜔𝑝 =

√

𝑛𝑒2

𝜖0𝑇𝑒

√

𝑇𝑒
𝑚𝑒

=
𝑣𝑡ℎ,𝑒
𝜆𝐷

, (2.18)

2 ∇𝑛′(𝑟) ∝ ∇2𝐸⃗ + ∇ × (∇ × 𝐸⃗), being a second order term, thus can be approximated to zero.
3 For a further analysis, consult [8], section 1.8, ’Collisions’
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and using the results from 2.16 and the definition of the Debye length gives the following ratio:

𝜔𝑝
𝜈𝑐

= 16𝜋𝑁𝐷 >> 1 , (2.19)

showing that the collective effects overcome one-to-one interactions4. 𝑁𝐷 ∼ 𝑛𝑒𝜆3𝐷 which fulfills

2.19 in tokamak plasmas [9].

2.1.3 Motion of charged particles

Analyzing plasma dynamics can be complex due to the interplay of fluid-like behavior and col-

lective Coulomb interaction. Studying individual particle responses to electric and magnetic fields

is crucial for understanding plasma physics. The foundation for establishing the single-particle

model is Newton-Lorentz’s equation [10], which describes the motion of a particle with mass 𝑚

and charge 𝑞 in the presence of an electric field 𝐸⃗ and a magnetic field 𝐵⃗:

𝑚𝑑𝑣
𝑑𝑡

= 𝑞(𝐸⃗ + 𝑣 × 𝐵⃗) . (2.20)

A wise approach to solve this differential equation, given 𝐸⃗(𝑟, 𝑡) and 𝐵⃗(𝑟, 𝑡), would be from the

simplest case and gradually start generalising. The simplest case is the one with a uniform mag-

netic field, let us say in the z direction. A charged particle will obey 2.20:

𝑚𝑑𝑣
𝑑𝑡

= 𝑞𝑣 × 𝐵0 . (2.21)

This can be rewritten into a Cartesian explicit form:

𝑑𝑣𝑥
𝑑𝑡

= 𝜔𝑐𝑣𝑦 ,
𝑑𝑣𝑦
𝑑𝑡

= −𝜔𝑐𝑣𝑥 ,
𝑑𝑣𝑧
𝑑𝑡

= 0 , (2.22)

where 𝜔𝑐 =
𝑞𝐵0

𝑚
is the cyclotron frequency. Easily one can deduce that the velocity along the

magnetic field lines remains constant. On the other hand, integrating 2.22 gives the following

solutions:

𝑣𝑥 = 𝑣⟂𝑠𝑖𝑛(𝜔𝑐𝑡) , 𝑣𝑦 = 𝑣⟂𝑐𝑜𝑠(𝜔𝑐𝑡) (2.23)
4 In subsection 2.3.1, figure 8 depicts a collision between two charged particles with an impact parameter 𝑟
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where 𝑣⟂ is the module of the perpendicular component -with respect to the magnetic field- of

the particle velocity.

Then, the trajectory of the particle would be 5:

𝑥 = −𝜌𝐿𝑐𝑜𝑠(𝜔𝑐𝑡) , 𝑦 = 𝜌𝐿𝑠𝑖𝑛(𝜔𝑐𝑡) , 𝑧 = 𝑣𝑧𝑡 . (2.24)

where 𝜌𝐿 =
𝑚𝑣⟂
𝑞𝐵0

is the Larmor radius. From these equations an helical motion arises, traced

around the guiding centre -the axis of the helix-, as seen in figure 3. The direction of rotation de-

pends on the sign of the charge. Ions rotate anticlockwise, electrons do the opposite. In the end,

the current carried by the plasma is always in such a direction as to reduce the magnetic field, i.e.

plasma is a diamagnetic fluid.

Figure 3: Trajectory of a charged particle in an
uniform magnetic field; Source: [11].

The presence of an electric field or non-

uniform magnetic fields will add complex-

ity to the basic motion previously described.

Throughout this section, the nuances of these

added effects are described. In order to ease

the analysis of the new trajectories, the velo-

city of the particle is decomposed into paral-

lel and perpendicular with respect to the mag-

netic field:

𝑣 = 𝑣∥ + 𝑣⟂ , (2.25)

Acceleration due to 𝐸∥

A parallel electric field will, thanks to the Coulomb force, accelerate the particle along the

guiding centre, as shown in 2.26:

𝑚
𝑑𝑣∥
𝑑𝑡

= 𝑞𝐸∥ . (2.26)

5 Assuming 𝑟 = (0, 0, 0) as an initial condition
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𝐸⃗ × 𝐵⃗ drift

The presence of an electrical field perpendicular to the magnetic field, for example, 𝐸⃗ =

(0, 𝐸, 0) and 𝐵⃗ = (0, 0, 𝐵), exerts a drift perpendicular to both fields onto the particle, to see

this, Cartesian coordinates are applied:

𝑑𝑣𝑥
𝑑𝑡

= 𝜔𝑐𝑣𝑦 ,
𝑑𝑣𝑦
𝑑𝑡

=
𝑞
𝑚
𝐸 − 𝜔𝑐𝑣𝑥 ,

𝑑𝑣𝑧
𝑑𝑡

= 0 . (2.27)

The solution to these equations can be written as:

𝑣𝑥 = 𝑣⟂𝑠𝑖𝑛(𝜔𝑐𝑡) +
𝐸
𝐵
, 𝑣𝑦 = 𝑣⟂𝑐𝑜𝑠(𝜔𝑐𝑡) , 𝑣𝑧 = 𝑣∥ . (2.28)

This drift is independent of the charge, mass and energy of the particle, affecting all particles in

the plasma equally. The perpendicular electric field, is frame dependent, so it is possible to find a

gauge where the orbit would simply be helical [5]:

𝐸⃗ + 𝑣𝑓 × 𝐵⃗ . (2.29)

Crossing equation 2.29 with 𝐵⃗ leads to a definition for the drift velocity. This is the speed at which

the gyro centre drifts away:

𝑣𝑑 =
𝐸⃗ × 𝐵⃗
𝐵2

. (2.30)

This result can be extended to any external force applied to the particle just by substituting

𝑞𝐸⃗ in equations 2.27 by a general force 𝐹 , which results in:

𝑣𝑑 =
𝐹 × 𝐵⃗
𝑞𝐵

(2.31)

Accelartion due to ∇∥𝐵

In this example cylindrical coordinates are used, where r is the radial distance, 𝜙 is the azimuth

angle and z is the axial coordinate. Let us consider a more complex magnetic field, that varies

along space. Under the presence of a gradient parallel to 𝐵⃗, a force in the same direction of the

gyro-centre appears[7]. In this scenario, the magnetic field is primarily oriented in the z-direction

and varies in magnitude along the z-direction. This magnetic field is axisymmetric, meaning it
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has no component in the 𝜙-direction (𝐵𝜙 = 0) and no variation with respect to the 𝜙 angle

(𝜕𝐵⃗
𝜕𝜙

= 0). However, because the magnetic field lines converge and diverge, there must be a radial

component, 𝐵𝑟. Considering Newton-Lorentz’s law:

𝐹 = 𝑞(𝑣 × 𝐵⃗) , (2.32)

that, applying cylindrical coordinates, leaves us with:

𝐹𝑟 = 𝑞(𝑣𝜃𝐵𝑧 −�
��𝑣𝑧𝐵𝜙) ,

𝐹𝜙 = 𝑞(𝑣𝑧𝐵𝑟 − 𝑣𝑟𝐵𝑧) ,

𝐹𝑧 = 𝑞(���𝑣𝑟𝐵𝜙 − 𝑣𝜙𝐵𝑟) .

(2.33)

Equations 2.33 give rise to three different motions, the already studied Larmor orbits, an azimuthal

force that provokes a drift in the radial direction -making the guiding centre to follow the lines of

force [7]- and the ∇∥𝐵 acceleration.

It is possible to deduce 𝐵𝑟 from ∇ ⋅ 𝐵⃗ = 0:

1
𝑟
𝜕
𝜕𝑟

(𝑟𝐵𝑟) +
𝜕𝐵𝑧
𝜕𝑧

= 0; . (2.34)

Provided that
𝜕𝐵𝑧
𝜕𝑧

is approximately independent from 𝑟, it is possible to give an estimation for

𝐵𝑟, solving equation 2.34:

𝑟𝐵𝑟 = −∫

𝑟

0
𝑟
𝜕𝐵𝑧
𝜕𝑧

𝑑𝑟 ≈ −𝑟
2

2

[

𝜕𝐵𝑧
𝜕𝑧

]

𝑟=0

𝐵𝑟 = − 𝑟
2

[

𝜕𝐵𝑧
𝜕𝑧

]

𝑟=0

(2.35)

Therefore, the force that particles experiment under this circumstances is:

𝐹𝑧 =
𝑞𝑣𝜙𝑟
2

𝜕𝐵𝑧
𝜕𝑧

. (2.36)

Selecting a particle whose guiding centre lies on the axis of the frame of reference and given that

particles gyrates in opposites directions depending on the nature of the charges, the equation
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becomes:

−
𝑚𝑣2⟂
2𝐵

𝜕𝐵𝑧
𝜕𝑧

. (2.37)

It is possible generalize the result to:

𝐹∥ = −𝜇∇∥𝐵 , (2.38)

where 𝜇 =
𝑚𝑣2⟂
2𝐵

, defined as the magnetic moment of a charged particle.

∇𝐵 ⟂ 𝐵⃗ drift

It can be proven that in a magnetic field with a perpendicular gradient the particle Larmor

radius would be smaller where the magnetic field is stronger, leading to a drift perpendicular to

both, magnetic field and its gradient [5]. The drift velocity is:

𝑣∇𝐵 =
𝑚𝑣2⟂
2𝑞𝐵3

(𝐵⃗ × ∇𝐵) . (2.39)

For a more in depth explanation consult [5]. This drift is charge dependent, making ions and

electrons drift in opposite directions.

Curvature drift

Particles moving in a curved 𝐵⃗ tend to follow the field lines as motion across 𝐵⃗ is resisted

[9]. Let us make the assumption that the magnetic field lines are curved with a constant radius of

curvature,𝑅𝑐 , and the magnitude of the magnetic field,𝐵, remains constant. It’s important to note

that such a magnetic field configuration doesn’t conform to Maxwell’s equations in a vacuum. In

practical situations, the ∇𝐵 drift is typically added to this effect. A centrifugal force would be felt

by the particles trying to follow the magnetic lines:

𝐹𝑐 =
𝑚𝑣2∥
𝑅2
𝑐
𝑅𝑐 , (2.40)

in consequence, a drift will emerge

𝑣𝑐 =
𝑚𝑣2∥
𝑞𝐵2

𝑅𝑐 × 𝐵⃗
𝑅2
𝑐

. (2.41)
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It is important to add the contribution of the ∇𝐵 drift that comes with the decrease of 𝐵 with

the radius is taken into account. It can be proven that in this case the drift would have the same

direction and would take the following form:

𝑣∇𝐵 =
𝑚𝑣2⟂
2𝑞

𝑅𝑐 × 𝐵⃗
𝑅2
𝑐𝐵2

. (2.42)

For a more in depth explanation consult [7]. The total drift would be:

𝑣𝑐 + 𝑣∇𝐵 = 𝑚
𝑞
𝑅𝑐 × 𝐵⃗
𝑅2
𝑐𝐵2

(𝑣2∥ +
1
2
𝑣2⟂) . (2.43)

2.1.4 Torodial magnetic confinement

In the previous subsection, the dynamics of charged particles in plasma were explored, including

their various drift motions. This subsection focuses on the essential concept of toroidal mag-

netic confinement6. Shaping the magnetic field lines into a torus removes the end losses, trapping

particles more efficiently. These kinds of confinement schemes are known as tokamaks and stellar-

ators. However, everything comes with a price. Closing the magnetic lines brings inhomogeneity

and curvature to the magnetic field. This gives rise to drifts to the guiding centre of the helical

orbits. In a magnetic confinement device like a tokamak, the toroidal field is generated by field

coils with a greater winding density on the inner edge of the torus than the outer edge. Thus, the

magnetic field will be radially inhomogeneous. This field can be computed using Ampere’s law

[10]:

∮Γ
𝐵⃗𝑑𝑙 = 2𝜋𝜇0𝑟𝐵𝜙(𝑟)𝑟 = 𝑛𝐼 , (2.44)

where, 𝑛 is the number of windings, 𝐼 the current that goes through them and, Γ the integration

path which follows a field line of radius r which encloses the total current 𝑛𝐼 . This means that

the toroidal magnetic flux density decreases radially as:

𝐵𝜙 =
𝜇0𝑛𝐼
2𝜋𝑟

. (2.45)

6 From now on, this text will make use of cylindrical coordinates, applied on a torus, see appendix A.
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In a purely toroidal field two drifts are present, curvature drift and ∇𝐵 drift. As seen in equation

2.43, both contributions add in the same direction. Furthermore, this drift is charge dependent,

creating a region of depletion charges, leading to an electrical field which will produce another

drift, the 𝐸⃗ × 𝐵 drift, ejecting the plasma out of the torus, along the radial direction, as seen

in figure 4a. Clearly, a toroidal field will not confine plasma. In order to counter the outward

(a) An electric field appears due the separation
of the charges, making particles drift away from
the torus, Source: [10].

(b) Using and induced toroidal current a poloidal
field is created, twisting the magnetic field lines.
Only one yoke of the transformer is shown.
Source: [10].

Figure 4: Poloidal magnetic flux optimized equilibrium.

drift of plasma, the toroidal magnetic field lines are twisted. This twist causes field lines from the

outer edge to move inside after a few revolutions around the torus’ major axis. This rotational

transformation is achieved by adding a poloidal magnetic field, denoted as 𝐵𝜃 .7 In a tokamak, this

poloidal field is generated by inducing a toroidal current 𝐼𝜙, within the plasma ring. To achieve

this, a central solenoid creates a magnetic field that, following Maxwell-Faraday’s law, i.e.:

∇ × 𝐸⃗ = −𝜕𝐵⃗
𝜕𝑡

, (2.46)

will induce a toroidal electric field inside the plasma, thus inducing a current density. To maintain

this current, the magnetic field must have an adequate time dependence. This is achieved through

a changing solenoid current. Figure 4b illustrates this principle in a tokamak, showing how field

lines are twisted.
7 Check appendix A for a reference on toroidal coordinates
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2.1.5 SMART overview

Figure 5: This figure shows a 3D section of the vessel and coil geometry a) and a 2D graph, locating
the solenoid, PFC and Div coils more clearly. The vacuum vessel is depicted in grey, toroidal field
coils (TFC) in orange, poloidal field coils (PFC), and divertor coils (Div) in yellow, the solenoid
(Sol) in red, and support structures in blue and green. Source: [12].

The SMART is a spherical tokamak designed to achieve low aspect ratio plasma8. The device

consists of a 0.8 m radius by 1.6 m height stainless steel (AISI 316 L) vacuum vessel, enclosing a

volume of 3.1 𝑚3. The vacuum is achieved through two dry pumps, with a capacity of 80 𝑚3∕ℎ

each and two turbo-molecular pumps, with a flow capacity of 2000 l/s each. This setup enables

the system to achieve a vacuum pressure of 1.33 × 10−6 Pa (or 10−8 Torr)[13].

Over the last section, it has been established how to accomplish toroidal magnetic confine-

ment, creating two magnetic fields: a toroidal field and a poloidal field. In SMART, the toroidal

field is produced by a set of twelve Toroidal Field Coils (TFC), each composed of windings with a

square cross-section measuring 35 x 35 mm. These windings gradually decrease in size to a 21 x

21 mm cross-section as they extend towards the inboard limbs. On the other hand, the poloidal

field is generated by the plasma current, induced by the time-dependent magnetic field from the

central solenoid. The central solenoid is a copper coil that is 1.55 meters in height, with an inner
8 Description of plasma geometry is in the appendix B.
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radius of 0.12 meters and an outer radius of 0.15 meters. This solenoid is positioned around the

central Toroidal Field Coil (TFC) stack. It is constructed using 240 solid copper windings, each

having a square cross-section measuring 11 x 11 mm .

Controlling and shaping the plasma comes from two pairs of axially variable Poloidal Field

Coil (PFC) sets, incorporating 23, 11 x 11 mm, windings. The PF1 coils, as shown in figure 5, are

located outside the vessel to maximize the plasma volume. The system incorporates two pairs of

fixed Divertor (Div) coil sets, allowing for operation in either an upper or lower single-null or a

double-null configuration. In a double-null configuration, the plasma is symmetric concerning

the Z-axis. Knowing the set of coils comes in pairs, symmetry is achieved by coupling the current

in each pair of coils. In single-null configurations, this symmetry is lost, meaning the currents

become uncoupled to reach the desired shape. The Div1 set is constructed with a larger 35-winding

design, utilizing the same 11 x 11 mm winding cross-section. The Div2 coil set is built similarly

to the PFC, also serving as the vertical control feedback coil[13] .

The gas injected in a tokamak must be ionized to become plasma and commence the confine-

ment. This process is referred to as plasma breakdown. The tokamak SMART achieves ionization,

utilizing a classic inductive breakdown. The Lloyd criterion for magnetized plasma [14] describes

that the minimum electric field 𝐸𝑏𝑑 required for the breakdown of hydrogen or deuterium gas,

given a pressure p (Torr), can be approximated as:

𝐸𝑏𝑑 =
1.25 ⋅ 104𝑝
ln(510𝑝𝐿𝑐)

, (2.47)

where 𝐿𝑐 is defined as:

𝐿𝑐 = 0.25𝑎𝑒𝑓𝑓
𝐵𝜙
𝐵𝜃

, (2.48)

where 𝑎𝑒𝑓𝑓 is the effective plasma radius. 𝐵𝜙 and 𝐵𝜃 are the toroidal and the poloidal coordinates

of the vacuum magnetic field, also known as the null-field. Furthermore, one empiric equation is

commonly used as metrics to assess and ensure the reliable occurrence of breakdown[13]:

𝐸𝑏𝑑
𝐵𝜙
𝐵𝜃

≥ 1000 𝑉 𝑚−1 . (2.49)

From equations 2.47, 2.48 and 2.49 it can be proven, for an operational pressure range, that𝐸𝑏𝑑
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is optimized by minimizing the 𝐵𝜃 . A clever configuration of the PF and Div coils can decrease

the null-field prior to the solenoid ramp-down. The solenoid initiates the plasma breakdown and

the ohmic heating, apart from preserving the plasma current.

When performing experiments in the tokamak SMART, parasitical eddy currents emerge in the

vessel. Eddy currents are circulating electrical currents induced in a conductor when it is exposed

to a changing magnetic field. They can be explained by applying the already mentioned Maxwell-

Faraday’s law, 2.46. They create heat, oppose the inducing magnetic field, and depend on factors

like the conductor’s material and the frequency of the changing field. To reduce the formation of

eddy currents, the vessel utilizes a 4 mm thick inboard wall and an 8 mm thick outboard wall with

two more substantial upper and lower lids, each measuring 15 mm in thickness, securely bolted

to the vessel to facilitate maintenance access.

SMART will be developed through three stages, each representing a substantial enhancement

in terms of pulse duration, heating power, and the range of attainable plasma geometries. Phase 1

will mark the initiation of the first plasma, using hydrogen, and will function as a proof-of-concept

for device diagnostics and operational procedures. In Phase 2, coupled with an elevation in tor-

oidal field strength and plasma current, Neutral Beam Injection (NBI) heating will be introduced,

showcasing the ability to achieve highly shaped negative and positive triangularities within a low

aspect ratio hydrogen plasma. Phase 3 signifies a substantial escalation in toroidal field strength,

plasma current, and discharge timescale, positioning SMART alongside other cutting-edge current

generators [13].

2.2 Magnetohydrodynamics

A key aspect of toroidal magnetic confinement is plasma equilibrium. Multiple forces arise when

trying to confine plasma able to destabilize the system. The objective of a tokamak is to contain

plasma as long as possible to reach ignition, which requires precise control of all the variables

associated with equilibrium. Once the behaviour of charged particles in electromagnetic fields

has been explained, it is time to jump to the next level of abstraction and model plasma dynamics

considering the whole system. As established before, plasma consists of an ionized gas, i.e., ions

and electrons. It also shares characteristics with fluids, bringing to the table the possibility of

describing plasma as two interacting fluids of different charged natures. This description of plasma
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is known as the two-fluid model. The magnetohydrodynamics -MHD- seeks to elucidate plasma

analysis further, as it describes plasma as a single fluid followed by a set of differential equations.

In the context of magnetohydrodynamics, various characteristic scales are crucial. These

scales are:

Length scale 𝐿: Typically, 𝐿 is proportional to the plasma parameter 𝑎, which represents the

characteristic size or radius of the plasma. In the case of a tokamak, this is the minor radius of

the torus.

Time scale 𝜏: 𝜏 is associated with the collision time and is roughly proportional to 𝑎
𝑣𝑇 𝑖

, where

𝑣𝑇 𝑖 represents the ion thermal velocity. This scale reflects how long it takes for particles to collide

and change their trajectories.

Velocity scale 𝑣𝑇 𝑖: The characteristic velocity scale, 𝑢𝑖, is similar to 𝑣𝑇 𝑖. This is defined by the

thermal velocity of ions in the plasma.

In order to proceed in the analysis, it’s necessary to compare these to the scales that naturally

appear in the system. This comparison helps decide which terms should be retained and which

ones can be neglected in the MHD equations. The first simplification surges when comparing

the time scale in MHD with the typical electron frequency inside the tokamak plasma. In terms

of frequency, 𝜔 ∼ 1
𝜏
∼
𝑣𝑇 𝑖
𝑎

is surpassed in many orders of magnitude by the electron frequen-

cies, 𝜔 << 𝜔𝑐𝑒 ∼ 𝜔𝑝𝑒 [6], where 𝜔𝑐𝑒 is the electron cyclotron frequency and 𝜔𝑝𝑒 is the electron

plasma frequency, both defined in subsection 2.1.2. This suggest that the electron response is

quick enough to approximate its mass to zero, 𝑚𝑒 → 0.

The second simplification comes from the non-relativistic scale of the macroscopic plasma

flow. Any system consisting of charged particles obey Maxwell equations:

∇ ⋅ 𝐸⃗ =
𝑞
𝜖0
,

∇ ⋅ 𝐵⃗ = 0

∇ × 𝐸⃗ = −𝜕𝐵⃗
𝜕𝑡

,

∇ × 𝐵⃗ = 𝜇0

(

𝑗 − 𝜖0
𝜕𝐸⃗
𝜕𝑡

)

.

(2.50)

Since 𝑣𝑇 𝑖 << 𝑐, by enough orders of magnitudes, the displacement current in Maxwell equations
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can be ignored. The third simplification, also affecting Maxwell equations, rises from the length

scale comparison. Plasma in tokamaks satisfies the inequality 𝑎 >> 𝜆𝐷, leading to the quasineut-

rality relation: 𝑛𝑒 ≈ 𝑛𝑖. This hints that Gauss’s law can be neglected, implying that 𝜖∇ ⋅ 𝐸⃗ << 𝑒𝑛𝑒.

Applying these simplifications to the two-fluid model and also introducing the single-fluid

variables into its correspondent equations, it is possible to deduce the MHD model [6]. The single-

fluid variables are the mass density 𝜌, the macroscopic velocity 𝑣 and the pressure 𝑝. Their defin-

itions are as follows. The ions are more massive than electrons, thus the density is defined as:

𝜌 = 𝑚𝑖𝑛 , (2.51)

where 𝑛𝑒 = 𝑛𝑖 = 𝑛 because of quasineutrality. Also, since 𝑚𝑖 >> 𝑚𝑒, the momentum of the fluid

is carried by the ions [6]. Therefore, the macroscopic velocity is defined as:

𝑣 = 𝑢𝑖 . (2.52)

The electron fluid velocity is defined from the current density and the macroscopic velocity:

𝑗 = 𝑒𝑛(𝑢𝑖 − 𝑢𝑒) , 𝑢𝑒 = 𝑣 −
𝑗
𝑒𝑛
. (2.53)

Lastly, the pressure consists of the sum of the ion and electron individual contributions:

𝑝 = 𝑝𝑒 + 𝑝𝑖 . (2.54)

Gathering the simplifications and single-fluid variables, and introducing them into the two-fluid

model leads to the following set of equations [6]:

𝜕𝜌
𝜕𝑡

= ∇ ⋅ (𝜌𝑣) , [Continuity equation]

𝜌
[

𝜕𝑣
𝜕𝑡

+ (𝑣 ⋅ ∇)𝑣
]

= 𝑗 × 𝐵⃗ − ∇𝑝 , [Momentum conservation]

𝐸⃗ + 𝑣 × 𝐵⃗ = 𝜂𝑗 , [Ohm’s law]
𝜕(𝑝𝜌−𝛾)
𝜕𝑡

= −(𝑣 ⋅ ∇)(𝑝𝜌−𝛾) , [Energy conservation]

(2.55)
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with the simplified Maxwell equations:

∇ × 𝐸⃗ = −𝜕𝐵⃗
𝜕𝑡

, [Maxwell-Faraday equation]

∇ × 𝐵⃗ = 𝜇0𝑗 , [Ampere’s law]

∇ ⋅ 𝐵⃗ = 0 , [Gauss’s law of magnetism]

(2.56)

where 𝜂 is the resistivity and 𝛾 is the adiabatic index. This model comes with some limitations

[15], as it is unable to describe multiple phenomena in fusion plasmas, such as radiation, resonant

particle effects, micro instabilities, 𝛼 particle behavior, etc. However, it can accurately depict how

magnetic field geometry affects plasma macroscopic equilibrium and stability of fusion plasma.

Let us try to approach plasma equilibrium inside the tokamak with this new set of tools. For

(a) Nested toroidal magnetic surfaces.
Source: [5]

(b) The magnetic field and the current
density are contained in the same
surfaces. Source:[5]

Figure 6: Poloidal magnetic flux optimized equilibrium.

simplicity, axisymmetric static equilibrium will be considered. For axisymmetric equilibrium, i.e.,

independent from the toroidal angle 𝜙, the magnetic field lines distribute in nested toroidal mag-

netic surfaces9 as seen in figure 6a. The principal condition for static equilibrium is net zero
9 This can be proven through Poincaré’s theorem, see in [16]
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velocity, thus canceling the first term in the momentum conservation equation:

𝑗 × 𝐵⃗ = ∇𝑝 . (2.57)

This means that the magnetic force must balance the pressure the plasma exerts. From this equa-

tion, it is possible to extract some interesting results. Applying the vector product of 𝐵⃗ and both

terms of the equation 2.57, gives the following result, 𝐵⃗ ⋅ ∇𝑝 = 0. Thus, there is no pressure

gradient along the magnetic lines, i.e, the magnetic surfaces have a constant pressure.

Following the same logic as before, the following equation is deduced, 𝑗 ⋅ ∇𝑝. Meaning that

the current density lines are contained in the magnetic surfaces as shown in figure 6b.

By definition, a toroidal surface densely covered by a magnetic field is called a flux surface

[16]. It have been discussed how the magnetic field lines, current density and pressure behave

on these flux surfaces. In tokamak and stellarator physics is convenient to take advantage of this

symmetries and define new functions for the variables that the MHD model works with.

Let us introduce the poloidal magnetic flux function Ψ(𝑟) as:

Ψ(𝑟) = ∫𝑆𝑝(𝑟)
𝑑𝑆𝑛 ⋅ 𝐵⃗ (2.58)

where 𝑆𝑝 is a ribbon-like surface, stretched between the magnetic axis and a line of constant 𝜃 on

the flux surface, labelled by 𝑟, with 𝑛 = ∇𝜃
|∇𝜃|

as the normal to the surface. On the other hand the

toroidal magnetic flux Φ is defined as:

Φ(𝑟) = ∫𝑆𝑡(𝑟)
𝑑𝑆𝑛 ⋅ 𝐵⃗ (2.59)

where 𝑆𝑡(𝑟) is a disk whose rim joins the flux surface, labelled by r, with 𝑛 = ∇𝜙
|∇𝜙|

as the normal

to the surface. A depiction of this surfaces is shown in figure 7. The function of interest will

be Ψ(𝑟). This function is determined by the poloidal flux lying within each toroidal flux surface,

therefore must be a constant on that surface [5]. This implies that 𝐵⃗ ⋅ ∇Ψ(𝑟) = 0.

Taking Gauss’s law for magnetism and using the cylindrical coordinates applied to the toroidal
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Figure 7: Toroidal and poloidal differential surfaces. Source: [15]

symmetry, ∇ ⋅ 𝐵⃗ = 0 can be written as:

1
𝑅
𝜕
𝜕𝑅

(𝑅𝐵𝑅) +
𝜕𝐵𝑧
𝜕𝑧

= 0 . (2.60)

It is convenient to introduce a stream function 𝜓 = 𝑅𝐴𝜙, where 𝐴𝜙 is the toroidal component of

the vector potential. This function can be related to the poloidal flux function as Ψ(𝑟) = 2𝜋𝜓10.

This function relates to the poloidal field as:

𝐵𝑅 = − 1
𝑅
𝜕𝜓
𝜕𝑧

, 𝐵𝑧 =
1
𝑅
𝜕𝜓
𝜕𝑅

. (2.61)

The current density function 𝑗 also lies on the toroidal flux surfaces, meaning that a current flux

function also exists. The current flux function 𝑓 can be related to the poloidal current density as:

𝑗𝑅 = − 1
𝑅
𝜕𝑓
𝜕𝑧

, 𝑗𝑧 =
1
𝑅
𝜕𝑓
𝜕𝑅

. (2.62)

Interestingly, when comparing 2.62 with Ampere’s equation:

𝑗𝑅 = − 1
𝜇0

𝜕𝐵𝜙
𝜕𝑧

, 𝑗𝑧 =
1
𝜇0

1
𝑅
𝜕𝑓
𝜕𝑅

(𝑅𝐵𝜙) , (2.63)

10 For a more in depth analysis, consult [15].
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it is found that

𝑓 =
𝑅𝐵𝜙
𝜇0

. (2.64)

It can be proven that 𝑓 is a function of 𝜓 by taking the scalar product of equation 2.57 with 𝑗,

which results in 𝑗 ⋅ ∇𝑝 = 0. Using the result form equation 2.62 and introducing into the last

result gives:
𝜕𝑓
𝜕𝑅

𝜕𝑝
𝜕𝑧

−
𝜕𝑓
𝜕𝑧

𝜕𝑝
𝜕𝑅

= 0 . (2.65)

Consequently:

∇𝑓 × ∇𝑝 = 0 , (2.66)

meaning that 𝑓 is a function of 𝑝. Then, since the pressure is also a function of 𝜓11, f is also a

function of 𝜓 , 𝑓 = 𝑓 (𝜓).

2.2.1 Grad-Shafranov equation

In an axisymmetric system like a tokamak, the equilibrium equation can be expressed as a differ-

ential equation for the poloidal flux function per radian unit 𝜓12. Equation 2.57 con be rewritten

as:

𝑗𝑝 × 𝑖𝜙𝐵𝜙 + 𝑗𝜙𝑖𝜙 × 𝐵𝑝 = ∇𝑝 , (2.67)

where 𝑗𝑝 is the poloidal current density, 𝐵𝑝 is the poloidal magnetic field and 𝑖𝜙 is the unit vector

in the 𝜙 direction. The equations 2.61 and 2.62 that define the poloidal magnetic field and poloidal

density current can be compacted to:

𝐵𝑝 =
1
𝑅
(∇𝜓 × 𝑖𝜙) (2.68)

and

𝑗𝑝 =
1
𝑅
(∇𝑓 × 𝑖𝜙) . (2.69)

11 Magnetic surfaces are also pressure surfaces, as shown in figure 6b.
12 As established before, Ψ = 2𝜋𝜓 .
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Substituting equations 2.68 and 2.69 into the equation 2.67, and using the fact that 𝑖𝜙 ⋅ ∇𝜓 =

𝑖𝜙 ⋅ ∇𝑓 = 0 results in:

−
𝐵𝜙
𝑅

∇𝑓 +
𝑗𝜙
𝑅
∇𝜓 = ∇𝑝 . (2.70)

Calculating both gradients for 𝑓 and 𝜓 :

∇𝑓 (𝜓) =
𝑑𝑝
𝑑𝜓

∇𝜓 , ∇𝑝(𝜓) =
𝑑𝑝
𝑑𝜓

∇𝜓 , (2.71)

and introducing them into the equation 2.70 gives:

𝑗𝜙 = 𝑅
𝑑𝑝
𝑑𝜓

+ 𝐵𝜙
𝑑𝑓
𝑑𝜓

. (2.72)

Now, using equation 2.64 to substitute 𝐵𝜙 into equation 2.72 results in:

𝑗𝜙 = 𝑅𝑝′ +
𝜇0
𝑅
𝑓𝑓 ′ , (2.73)

where the derivative with respect to 𝜓 is written with an apostrophe. To express 𝑗𝜙 in terms of

𝜓 , Ampere’s law is applied:

𝜇0𝑗 = ∇ × 𝐵⃗ . (2.74)

Substituting equations 2.62 into the toroidal component of equation 2.74 gives:

−𝜇0𝑅𝑗𝜙 = 𝑅 𝜕
𝜕𝑅

1
𝑅
𝜕𝜓
𝜕𝑅

+
𝜕2𝜓
𝜕𝑧2

. (2.75)

Finally, using equation 2.75 to substitute for 𝑗𝜙 in equation 2.73 results in the desired differential

equation:

𝑅 𝜕
𝜕𝑅

1
𝑅
𝜕𝜓
𝜕𝑅

+
𝜕2𝜓
𝜕𝑧2

= −𝜇0𝑅2𝑝′(𝜓) − 𝜇2
0𝑓 (𝜓)𝑓

′(𝜓) . (2.76)

The resulting equation is known as Grad-Shafranov equation.

2.3 Plasma resistivity

In the face of an electrical field, electrons would accelerate indefinitely along the magnetic field

lines. However, collision events between electrons and ions will resist this motion, limiting the
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current that could be driven by the applied voltage, giving rise to electrical resistivity 𝜂. As a

first approach, resistivity may be expressed in terms of the electron-ion collision frequency. In

plasma, charged particle collisions come in two main types: collisions with other charged particles

and collisions with neutral atoms and molecules. Plasma physicists typically find collisions with

other charged particles more intriguing, as they prevail in high-temperature plasma with high-

ionization levels. This can be proven by doing a rough estimate on neutral and Coulomb colli-

sions. The cross section for scattering of an electron by a neutral atom may be approximated very

roughly as:

𝜎𝑛 ∼ 𝜋𝑎20 ∼ 10−20𝑚2 . (2.77)

where 𝑎0 is the distance which an electron would have a considerable chance of experiencing a

large-scale collision. Alternatively, as established in subsection 2.1.2, an electron will loose most

of its initial momentum, colliding with an ion, when its energy is comparable to the Coulomb

potential, i.e.:
𝑒2

4𝜋𝜖0𝑏
∼ 𝑚𝑣2

2
∼ 𝑇𝑒 , (2.78)

where b is the impact parameter and 𝑇𝑒 is the electron temperature, given in 𝑒𝑉 . The effective

Coulomb cross section of the ion would be:

𝜎𝑖 ∼ 𝜋𝑏2 ∼ 𝜋𝑒4

(4𝜋𝜖0)2𝑇 2
𝑒
∼ 10−17

𝑇 2
𝑒
𝑚2 . (2.79)

Later in this subsection, it will be explored the fact that, in reality, the effective Coulomb cross

section is almost two orders of magnitude larger due to the cumulative effect of small deflec-

tions. Comparing both collisional processes, using equations 2.78 and 2.79 and using the electron

temperature to estimate the degree of ionization, it can be proven that, Coulomb collisions will

dominate over collisions with neutrals in any plasma that is even just a few per cent ionized [17].

In a tokamak plasma, it is possible to consider that ionization is total, making Coulomb interaction

the dominant source of collisions.
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2.3.1 Spitzer resistivity

As shown in equation 2.26, the presence of an electric field exerts a force on electrons, acceler-

ating them in the parallel direction. This motion would be opposed by collisions with the non-

accelerated particles, specially ions. This is because ions, given their much greater mass, exhibit

relatively low responsiveness to the applied electric field. Therefore, the Coulomb force will be

balanced by the collisions with ions:

Figure 8: Scattering event between an ion and a electron. Source: [5]

𝐸𝑒 =
𝑚𝑒𝑣𝑑
𝜏𝑒

, (2.80)

where 𝑣𝑑 is the equilibrium velocity of the electrons and 𝜏𝑒 is the electron collision time. Calculat-

ing this collision time can be quite complex. Firstly, the concept of collision in a plasma is nuanced.

Secondly, these collisions are contingent on the relative velocities of the particles involved, and

the net outcome results from the collective impact of interactions between particles with varying

velocities. On the other hand, the electrical field is not as simple as previously described, it must

be decomposed into two main contributions. Let us analyze it from the perspective of a single

particle. The first is the uniform macroscopic external field, which accelerates the subject particle.

The second is the rapidly fluctuating microscopic electric field, which arises from the presence of

the particles that lie inside a Debye sphere surrounding the given particles, damping the other
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collisions from remote particles. To simplify the analysis, it will be only considered one to one

interactions, and only collisions inside this Debye sphere:

Following Rutherford’s scattering theory, the scattering angle 𝜒 for an impact parameter 𝑟

and an incident velocity 𝑣, depicted in figure 8, is given by:

𝑐𝑜𝑡(𝜒∕2) =
4𝜋𝜖0𝑚𝑒𝑣2𝑟

𝑒2
. (2.81)

Using equation 2.81, it is possible to deduce the impact parameter for 90◦ scatter:

𝑟0 =
𝑒2

4𝜋𝜖0𝑚𝑒𝑣2
. (2.82)

Thus, the cross section for a scattering of an angle > 90◦ is:

𝜎0 =
𝑒4

64𝜋𝜖0𝐸2
, (2.83)

where 𝐸 is the kinetic energy of the electron. Nonetheless, it must be taken into account the

cumulative effect of small deflections when considering the loss of momentum and energy of a

scattered a particle. Each collision with a single ion leads to the following parallel momentum

loss:

𝛿𝑝 = −
2𝑚𝑒𝑣

1 + (𝑟∕𝑟0)2
. (2.84)

Multiplying 2.84 with the rate of collisions per unit area, i.e. , 𝑛𝑣, where n is the ion density and 𝑣

the electron velocity and integrating over the impact parameter 𝑟 gives us the total rate of change

of momentum:

𝑑𝑝
𝑑𝑡

= −2𝑛𝑣𝑚𝑒𝑣2 ∫

𝜆𝐷

0

2𝜋𝑟
1 + (𝑟∕𝑟0)2

= −2𝑛𝑚𝑒𝑣2𝜎2
0𝑙𝑛(1 + (𝑟∕𝑟0))|

𝜆𝐷
0 , (2.85)

where it was used 𝜆𝐷 as the upper limit to neglect the shielded interactions with distant ions.

Since 𝜆𝐷 >> 𝑟0 [5], equation 2.85 transforms into:

𝑑𝑝
𝑑𝑡

= −4 lnΛ𝜎0𝑛𝑚𝑒𝑣2 , (2.86)
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where ln Λ = ln(𝜆𝐷∕𝑟0) is called the Coulomb logarithm13. As a result, proof of the importance of

the cumulative effect of small deflections with a greater effective Coulomb cross section 4 lnΛ𝜎0
is given.

Returning to equation 2.80, when compared to Ohm’s law:

𝐸 = 𝜂𝑗 , (2.87)

it is possible to find that

𝜂 =
𝑚𝑒

𝑛𝑒𝑒2𝜏𝑒
, (2.88)

for a current density 𝑗 = 𝑛𝑒𝑣𝑑 . To give an accurate vale for the plasma resistivity, it is necessary to

compute the electron collision time solving the collisional kinetic electron equation -the Fokker-

Planck equation- for the electron distribution function considering also the electron-electron col-

lisions. Spitzer and his co-workers computed the following result [5]:

𝜂𝑆 = 0.51
𝑚1∕2
𝑒 𝑒2 ln Λ

3𝜖20(2𝜋𝑇𝑒)3∕2
= 1.65 ⋅ 10−9 ln Λ

𝑇 3∕2
𝑒

Ω 𝑚 , (2.89)

where 𝑇𝑒 is given in keV. Equation 2.89 can be used in absence of a magnetic field or for the current

parallel to the magnetic field. In directions perpendicular to the magnetic field, the cyclotron mo-

tion of electrons tends to make the electron distribution more isotropic. As a result, the resulting

perpendicular resistivity is affected in the following way [5]:

𝜂⟂ = 1.97𝜂∥ . (2.90)

If the plasma is composed of several ion species, the effective ion charge 𝑍𝑒𝑓𝑓
14 must be taken

into account, which results in:

𝜂 = 𝑍𝑒𝑓𝑓𝜂𝑆 (2.91)

An interesting result from the Spitzer resistivity model is that the resistivity is reduced when the

plasma electron temperature increases.
13 Consult [5] for a method to compute this logarithm.
14 See [5] for a computing method.
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2.3.2 Neoclassical resistivity

Throughout the analysis of plasma resistivity, plasma has been treated as a homogeneous volume

of charged particles, ignoring its geometry inside a tokamak. As seen in subsection 2.1.3, the tor-

oidal geometry comes with different drifts, affecting particle trajectories and, consequently, im-

pacting the description of plasma resistivity. Neoclassical theory tries to depict this phenomenon,

including the plasma geometry configuration as a consideration. The transport is still governed

by Coulomb collisions.

Figure 9: Geometry of a trapped particle orbit
between the gradient of the toroidal magnetic
field. Source:[6].

Neoclassical effects can result in a nearly one

order of magnitude increase in plasma resistiv-

ity. This can be understood as follows. In a cyl-

indrical system, particles are confined within a

gyro radius of a flux surface. Consequently, the

step size associated with Coulomb collisions is

also roughly the size of a gyro radius. How-

ever, in a toroidal system, particles drift away

from the flux surface due to toroidally induced

∇𝐵 and curvature drifts. The radial excursions

caused by these drifts can be much larger than

a gyro radius, leading to an increase in the

collisional step size and, consequently, an in-

crease in the resistivity coefficient. Addition-

ally, the resistance resulting from the small number of trapped particles dominates over the one

from passing (untrapped) particles [6].

Trapped particles exist in a tokamak plasma because of the variation in magnetic field strength

within the torus. In a tokamak, the magnetic field is weaker on the outside of the torus and

more powerful on the inside, approximately following 𝐵 ∼ 𝐵𝜙 ∼ 𝐵0(𝑅0∕𝑅) where 𝑅0 is the

major radius, 𝑅 is the radial position, and 𝐵0 is the central magnetic field strength. Due to this

configuration, particles starting on the outside region of the torus with a small ratio of parallel

velocity 𝑣∥ to perpendicular velocity 𝑣⟂ experience mirror reflection. As mentioned in subsection
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2.1.3, particles experience a force proportional to a parallel gradient of the magnetic field, shown

in equation 2.38

As their parallel motion takes them toward the inside of the torus, where the magnetic field

is more intense, these particles become ”trapped” on the outer side of the torus. Trapped particle

transport dominates Coulomb transport for several reasons. One significant factor is that trapped

particles have relatively small parallel velocities. Consequently, it takes them longer to complete

one complete cycle of mirror motion compared to typical passing particles, which finalize one full

transit around the poloidal cross-section more rapidly. This lengthier mirror period for trapped

particles results in more time to drift away from flux surfaces due to ∇𝐵 and curvature drift,

resulting in larger step sizes during collisions. Also, collisions become more frequent for trapped

particles as they encounter more obstacles during their trapped orbits.

The overall effect is that the current is reduced by the presence of trapped particles, which are

unable to move freely along the magnetic field lines in response to the application of an electric

field. The number of trapped particles is directly related with the aspect ratio of the plasma.

One result that supports the neoclassical theory is the prediction of the bootstrap current[6].

The bootstrap current emerges, augmenting the toroidal current, as the plasma diffuses outward.

In a tokamak, the pressure gradient applies a radially outward force onto the particles. Recalling

the particle drift equation for a generalized force 2.31, the presence of the poloidal magnetic field

induced by the plasma current and the internal plasma pressure, produces a drift in the toroidal

direction. Figure 10 presents a graphical description of this effect.

It’s as if the tokamak is effectively raising itself ”by its own bootstraps.” [7] Both experimental

measurements and theoretical predictions regarding the neoclassical bootstrap current are in good

alignment, which is a positive outcome. This alignment is currently considered a critical element

in the pursuit of developing an economically viable tokamak reactor. However, it’s just one com-

ponent of the overall current in the plasma, and other sources of current, such as external heating

and current drive methods, are often necessary to achieve the conditions required for sustained

nuclear fusion.

Multiple neoclassical resistivity functions have been developed by the scientific community,

which consider the influence of trapped particles. As shown in this article [18], one approach to
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Figure 10: Bootstrap current originating from the particle drift due to the plasma pressure and the
poloidal magnetic field. Source: [7]

neoclassical resistivity goes as follows:

𝜂 = 𝜂𝑆
𝑍𝑒𝑓𝑓

(1 − 𝜙)(1 − 𝐶𝜙)
1 + 0.27(𝑍𝑒𝑓𝑓 − 1)
1 + 0.47(𝑍𝑒𝑓𝑓 − 1)

, (2.92)

where
𝜙 =

𝑓𝑇
1 + (0.58 + 0.20𝑍𝑒𝑓𝑓 )𝜈∗𝑒

,

𝐶 = 0.56

𝑍𝑒𝑓𝑓

3.0 −𝑍𝑒𝑓𝑓

3.0 +𝑍𝑒𝑓𝑓

,

𝜈∗𝑒 = 𝜖3∕2
𝑅𝑞
𝑣𝑇 𝑒𝜏𝑒

(2.93)

𝑅 is the major radius of the plasma, q is the safety factor, 𝜖−1 is the aspect ratio 𝑅∕𝑎, 𝑣𝑇 𝑒 =

(𝑇𝑒∕𝑚𝑒)1∕2 and 𝜂𝑆 is the Spitzer resistivity coefficient. 𝑓𝑇 is the fraction of electrons trapped that,

for 𝜈∗𝑒 → 0 is:

𝑓𝑇 = 1 −
(1 − 𝜖)2

(1 − 𝜖2)1∕2(1 + 1.46𝜖1∕2)
(2.94)

and

𝜏𝑒 = 3(2𝜋3∕2)
𝜖20𝑚

1∕2
𝑒 𝑇 3∕2

𝑒

𝑛𝑒𝑒4 ln Λ
(2.95)

is the electron collision time. 𝑍𝑒𝑓𝑓 is the effective ion charge.
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3 Methodology

During this bachelor’s thesis, the dynamics plasma equilibrium inside a tokamak device has been

explored. To investigate this kind of plasma confinement, it has been made use of FIESTA, a potent

numerical framework capable of solving the Grad-Shafranov differential equation and present a

solution for the equilibrium flux functions along with other results, such as the current wave-

forms of the solenoid and control coils, the eddy currents in the vessel or the stress the vessels

suffers because of the eddy currents. A key factor of this project was comprehending how FIESTA

performs these simulations and learning how to execute them. First, let us give an overview of

the numerical methods FIESTA implements.

3.1 FIESTA

Recalling equation 2.57, in an equilibrium state, plasma balances the inward current-induced force

𝑗 × 𝐵⃗ with the outward thermal pressure 𝑝. For a toroidal geometry, this equilibrium can be nu-

merically solved as a solution to the Grad-Shafranov (GS) equation, explored in subsection 2.2.1.

A solution for this equation would describe the toroidal plasma current and the toroidal magnetic

field. However, this is not the total magnetic field the plasma is subject to. The ultimate equi-

librium field results from a combination of factors, including the vacuum magnetic field, which

is influenced by the coil’s geometry and current configuration, the self-induced magnetic field

generated by the plasma, and supplementary fields that emerge from eddy currents within the

vessel structure. To create a dependable model of plasma equilibria, it’s crucial to understand the

geometric and magnetic structure and have access to the time-resolved data on coil currents and

plasma currents. Additionally, when addressing plasma breakdown, it’s essential to model the

eddy currents induced during solenoid and coil ramps before the discharge. These eddy currents

influence the null-field (i.e., vacuum) magnetic structure and the criteria for the breakdown [13].

FIESTA was designed to be a code environment with access to different numerical models

able to give insight into the plasma equilibria, vacuum field, breakdown and plasma current. To

initiate the simulations, the user is presented with a list of required input variables. These are: the

vessel geometry, the coil geometry, the coil waveforms (these include the solenoid, poloidal field

coils and divertor field coils), the discharge parameters (for these simulations, the specific Phase
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1 parameters are used) and the plasma shaping parameters.

The simulations are executed on a 2D rectilinear grid of 300 × 251 (𝑅 ×𝑍) cells, providing a

radial resolution of 5 mm per cell and an axial resolution of 2.6 mm per cell. The vessel walls, PF

and Div coils and the central solenoid are emulated as toroidal current wires. Table 1a displays the

discharge parameters used for Phase 1 simulations. Table 1b shows the plasma shaping parameters

which will determine the required poloidal and divertor currents. Once all of these variables are

declared, the first program called by FIESTA is TOPEOL.

FIESTA discharge parameters
Electron temperature 𝑇𝑒 120 eV
Ion temperature 𝑇𝑖 95 eV
Toroidal magnetic field 𝐵𝑡 0.1 T
Plasma current 𝐼𝑝 100 kA
Effective ion charge 𝑍𝑒𝑓𝑓 2⋅1.6 ⋅ 10−19 𝐶
Electron density 𝑛𝑒 1.08⋅1019 𝑚−3

(a)

Shaping parameters of the plasma
Radial centre position 𝑅𝑔𝑒𝑜
Aspect ratio 𝐴
Elongation 𝜅
Triangularity 𝛿
Axis centre position 𝑍𝑔𝑒𝑜

(b)

Table 1: 𝑇𝑒, 𝑇𝑖, 𝑛𝑒 are given by ASTRA [13]

TOPEOL, using a linear model, obtains a precomputed plasma density profile J(R) at a time 𝜏 ,

evaluated from the poloidal 𝛽𝜃 , defined as:

𝛽𝜃 = 3𝜇0𝑒𝑛𝑒𝜅
(𝑇𝑒 + 𝑇𝑖)
𝜇0𝐼𝑝∕2𝜋𝑎

(3.1)

where the parameters present in the equation are obtained from the user input. They are all

referred in tables 1a and 1b. To deduce the J(R), first p’ and ff’ are scaled relative to 𝛽𝜃 via equations

3.2 and 3.3 [12]:

𝑝′ =
𝛽𝜃(1 − 𝜓𝑛)
𝑅𝑔𝑒𝑜

, (3.2)

𝑓𝑓 ′ = 𝜇0𝑅𝑔𝑒𝑜(1 − 𝛽𝜃)(1 − 𝜓𝑛) , (3.3)

where 𝜓𝑛 is the normalised poloidal flux, defined as: 𝜓𝑛 =
𝜓 − 𝜓0

𝜓𝑏 − 𝜓0
. 𝜓0 is the poloidal flux on the

axis at 𝑅𝑔𝑒𝑜, and 𝜓𝑏 is the poloidal flux at the last closed surface boundary. Thus, the J(R) is com-

puted through this estimations. Then, the output is transferred to the EFIT program, which solves

the Grad-Shafranov equation and returns a first iteration of an optimised equilibrium 𝜓(𝑅,𝑍)

37



Figure 11: FIESTA flux diagram. Source: [13].

given the objective shaping parameters and the coil current boundary conditions. Next, EFIT

sends this simulation to the RZip code.

RZip computes the time-resolved vessel, coil and plasma current evolution, through the em-

ployment of the following matrix system[13]:

𝑑I
𝑑𝑡

+I = V , (3.4)

where  is a symmetric square matrix whose diagonals elements contain the self-inductance

of the coil and vessel filaments, and whose triangular elements contain the mutual coil-to-coil,

vessel-to-vessel and coil-to-vessel inductance,  is a diagonal matrix containing the resistance of

each filament and I and V are vectors of the dynamics currents and voltages of the filaments.

The simulated results are then sent back to EFIT, giving feedback to the first equilibrium found

and adjusting it to comply with the new total magnetic field. An overview of this process is

represented in figure 11.

When trying to compute FIESTA simulations is key to understand how the PF, Div coils and

eddy-currents affect the plasma equilibrium. During this research, it was found that the best
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way to predict how the simulation will evolve and achieve equilibria is to consider the plasma

as a current density that feels a force originating from the currents on the control coils. Let us

picture this idea using two linear current densities as a simplified model. As shown in figure

12, any current density will create a magnetic field, following Ampere’s law. This magnetic field

Figure 12: Two facing currents exerting a force to each other.

will apply a force on a neighbouring current. Consequently, this neighbouring current will also

exert, on the first current, a force relative to the current directions. It is possible to extend this

idea to plasma. Considering a section of the plasma current density, it can be described as an

array of linear density currents. If another linear density current is nearby, it will exert a force

-decreasing with distance- on the linear current densities that define the totality of the plasma.

In figure 13 a depiction of this idea is shown. This way, trying to give an intelligent guess on the

Figure 13: Plasma deformation because of the poloidal control currents.

initial conditions for the current waveform becomes easier, taking into account the target shape.
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4 Results

Firstly, when does FIESTA takes the plasma resistivity into account?

As described in last section, RZip is on charge of computing the plasma current waveform, so

it requires the plasma resistivity as a parameter. During the simulations, FIESTA calls a function

dedicated exclusively to compute the plasma resistivity as a function of the plasma discharge

parameters. Originally, this function was based on the Spitzer resistivity model, making use of

the equation 2.89. As part of this bachelor’s thesis a decision branch was implemented for the

user interface, that enables the option between the two resistivity models and a new function

that considers the neoclassical resistivity equations, presented in subsection 2.3.2. On one hand,

Figure 14: Comparison between the neoclassical resistivity model and the Spitzer model against
the plasma aspect ratio. The discharge parameters are constant and correspond to those appearing
in table 1a. Computed with Matlab using the functions implemented in FIESTA.

the Spitzer resistivity model only depends on the plasma discharge parameters, which troughout

the simulations are considered constant. On the other hand, the neoclassical resistivity model

depends on the number of trapped particles within the plasma, which depends directly on the

aspect ratio. Figure 14 shows how the resistivity evolves against the aspect ratio.

A first interesting result arising from the consideration of trapped particles is, that for an

aspect ratio < 2.5, the neoclassical resistivity is an order of magnitude greater than the Spitzer
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approach, already suggesting the importance of considering the plasma geometry.

When interpreting figure 14 it must be considered the fact that, the tokamak SMART, as its

name indicates, works in the range of A∈ (1.6, 2.0). Thus, in practicality, plasmas resistivity will

be always one order of magnitude grater than the Spitzer prediction.

The increase of the resistivity will impact mainly on the induced plasma current, required to

create the poloidal magnetic field that confines the tokamak plasma. Let us compare two plasma

simulations, with similar target shaping parameters but each with a different resistivity model.

4.1 FIESTA simulations. Spitzer vs. Neoclassical

Every simulation performed in the FIESTA code environment comes with numerical data and

graphical representations of relevant aspects of the SMART plasma dynamics along the duration

of the pulse discharge. It was found that, from all this data, the most significant results about the

change in the plasma resistivity were the equilibrium poloidal flux functions, the eddy currents,

the coil current waveform and the plasma current.

In the tables 2a and 2b, the target shape parameters and optimized output given by FIESTA are

registered. Even though the discharge and the objective shape parameters are equal for both sim-

ulations, FIESTA finds different equilibrium solutions. Besides, the iterated geometry parameters

differ somewhat from the desired plasma shape. This is expected, given that the final equilibrium

is influenced by the initial guess for the PF and Div coil currents, the emerging eddy currents and,

consequently, the plasma resistivity.

Spitzer resistivity
Rgeo 0.46 Rgeo𝑒𝑓𝑖𝑡 0.45997
A 1.85 A𝑒𝑓𝑖𝑡 1.8850
𝜅 1.6 𝜅𝑒𝑓𝑖𝑡 1.6491
𝛿 0.4 𝛿𝑒𝑓𝑖𝑡 0.39489
Zgeo 0.0 Zgeo𝑒𝑓𝑖𝑡 0.0000

(a)

Neoclassical resistivity
Rgeo 0.46 Rgeo𝑒𝑓𝑖𝑡 0.45980
A 1.85 A𝑒𝑓𝑖𝑡 1.9111
𝜅 1.6 𝜅𝑒𝑓𝑖𝑡 1.5867
𝛿 0.4 𝛿𝑒𝑓𝑖𝑡 0.4604
Zgeo 0.0 Zgeo𝑒𝑓𝑖𝑡 0.0000

(b)

Table 2: Target shaping parameters and the optimised values by EFIT for each resistivity model

Looking at the figures 15a and 15b, at first glance, the overall geometry of the plasma is con-

sistent for different resistivity models. Nevertheless, the poloidal magnetic flux for the neoclas-

sical approach is one order of magnitude greater than the Spitzer model. Recalling equation 2.59,
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(a) Spitzer resistivity (b) Neoclassical resistivity.

Figure 15: Poloidal magnetic flux optimized equilibrium.

the poloidal magnetic flux 𝜓(𝑅,𝑍) is a function of the poloidal magnetic field. Therefore, this

variation must originate from the sources of poloidal magnetic field in the tokamak SMART.

The toroidal magnetic confinement relies on the self-induced plasma poloidal field generated

by the plasma current. Given that both simulations achieve a plasma current of 100 kA, the dif-

ference in poloidal fluxes rises from other phenomena. The already mentioned plasma current

is induced by varying central solenoid current, which generates a time-dependent magnetic field

that, as Maxwell-Faraday’s law indicates,

∇ × 𝐸⃗ = −𝜕𝐵⃗
𝜕𝑡

, (4.1)

induces an electrical field inside the tokamak plasma. Following Ohm’s law:

𝐸 = 𝜂𝑗 , (4.2)

the required electric field to achieve the desired plasma current is directly proportional to the
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resistivity. Combining equations 4.1 and 4.2, indicates that a greater resistivity implies a greater

solenoid magnetic field, and consequently a more intense current. This will be reflected in the

solenoid current waveform.

(a) Spitzer resistivity (b) Neoclassical resistivity.

Figure 16: Eddy currents resulting from the presence of magnetic fields.

Next, the influence of the eddy currents as one of the reasons for differing magnetic poloidal

fluxes is explored. On one hand, figure 16a reveals that, for the Spitzer resistivity model, the

eddy-currents are approximately evenly distributed along the SMART vessel, and appear mainly

because of the PF coils and the solenoid 15. On the other hand, figure 16b shows that, for the

neoclassical resistivity model, the eddy currents, although present along the whole vessel, are

severely intense on the inner wall where the solenoid is located. Again, this reveals the impact

the solenoid current suffers when considering the trapped particles inside the tokamak plasma.

Apart from the inhomogeneous distribution of eddy currents, these are one order of magnitude

greater in the newly implemented model. In subsection 3.1, a qualitative description of how the

control coil currents deformed the tokamak plasma was given. The eddy currents act on plasma
15 See figure 5 for a reference on coils’ names

43



dynamics analogously. Usually, parasitical eddy current currents must be counteracted with the

PF and Div coils, which translates into the requirement of stronger coil currents -compared with

the ideal case of nonexistent eddy currents-. As one can expect, the eddy currents contribute in

the more intense poloidal flux function.

It has been already mentioned a couple of times the impact the resistivity model has on the

solenoid current, thus the next topic will be the numerical results of the solenoid current given by

the FIESTA simulations. There are four significant time periods considered in the SMART plasma

computations.

⋅Null-field period (from -20 ms to 0 ms): Determines the null-field decay timescale.

⋅Breakdown Ramp period (from 0 ms to 4 ms): Determines the maximum loop voltage.

⋅PF & Div Ramp period (from 4ms to 15 ms): Determines maximum PF & Div current ramp.

⋅Pulse period (from 15 ms to 115ms): Determines the flat-top timescale.

For theses timescales, the user declares adequate solenoid current ramps, which enable the

target plasma current. Unlike the solenoid current, which is exclusively modified by the user,

the control coil currents are optimised by FIESTA. The user inputs solely an initial guess for the

equilibrium coil currents. Figures 17 and 18 depict the current waveforms along all the previously

mentioned time stamps. Clearly, the most significant impact that the neoclassical resistivity model

has in the tokamak SMART plasma equilibrium is on the solenoid current waveform. For the

neoclassical model, the solenoid current encompasses values starting from 85.5 kA to -85.5 kA,

unlike the Spitzer model predictions with a more moderate intensity, with a maximum of 6.5

kA and a minimum of -6.5 kA. The control coils also suffer an increase in intensity, rising from

the previously mentioned stronger eddy currents. Precisely, the PF and Div coils are meant to

modify the poloidal magnetic field in order to shape and stabilize the plasma, influencing the

poloidal flux function. This control coil’s current increment becomes another contributor to the

intensified poloidal flux in the neoclassical model.

Solenoid waveform
Time period 𝜏 (ms) (-20, 0) (0, 4) (4, 15) (15, 115)
𝐼𝑠𝑜𝑙 (kA) (6.5, 6.5) (6.5, 4.0) (4.0, 3.0) (3.0, -6.5)
𝑑𝐼∕𝑑𝑡 (kA/ms) 0 0.625 0.0667 9.5

Table 3: Input solenoid current, using the Spitzer model.
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Figure 17: Control coils and solenoid current waveforms for the Spitzer resistivity model. The red
area indicates the null-field period, the blue area indicates the breakdown ramp period, the green
area indicates the PF & Div ramp period, and the orange area indicates the pulse period.

Figure 18: Control coils and solenoid current waveforms for the neoclassical resistivity model.
The red area indicates the null-field period, the blue area indicates the breakdown ramp period,
the green area indicates the PF & Div ramp period, and the orange area indicates the pulse period.

Solenoid waveform
Time period 𝜏 (ms) (-20, 0) (0, 4) (4, 15) (15, 115)
𝐼𝑠𝑜𝑙 (kA) (85.5, 85.5) (85.5, 76.5) (76.5, 60.5) (60.5, -85.5)
𝑑𝐼∕𝑑𝑡 (kA/ms) 0 2.25 1.067 146

Table 4: Input solenoid current, using the neoclassical model.
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Figure 19: Spitzer resistivity

Figure 20: Neoclassical resistivity.

Figures 19 and 20 depict the simulated plasma currents for each model. In both cases the

desired 100 kA are achieved and plasma breakdown occurs.
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5 Conclusions

Including the neoclassical resistivity model in FIESTA has allowed valuable comparisons to be

made with the results previously established by the Spitzer resistivity model. On the one hand, it

has been shown that, for the working region targeted by the SMART tokamak experiments con-

cerning the plasma aspect ratio, the neoclassical model predicts an increase in resistivity by one

order of magnitude, which implies the need for a stronger central solenoid current. On the other

hand, the new resistive model predicts an increase in magnetic poloidal flux and an augmented

eddy current in the device vessel, resulting in higher currents in the control coils to stabilise the

plasma. The generalised increase in SMART currents, predicted by recent FIESTA simulations,

will lead to higher energy costs in future experiments on the device. However, although FIESTA

is a robust tool, it still requires the implementation of other plasma phenomena.

Apart from the enriched resistivity from trapped particles, the neoclassical model gives other

predictions, such as the bootstrap current. The bootstrap current’s existence lessens the need for

external current input, increasing the efficiency and economic viability of the fusion process. One

possible future for FIESTA developers could aim to model this current inside the tokamak SMART.

Furthermore, all simulations have been performed considering a constant temperature during

plasma breakdown, which does not reflect reality. Plasma breakdown is a convoluted process

where plasma temperature evolves. It is expected that, once these dynamics are implemented in

FIESTA simulations, the difference between the solenoid current in both models will decrease.

The results conclude with the requirement of further development of FIESTA to obtain more

realistic plasma equilibria simulations.
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A Toroidal geometry. Description of a torus.

Figure 21: Toroidal coordinates. Source: [19]

In mathematics, a toroid is a surface created by revolving a curve or shape around an axis

such that it forms a ring or donut-like structure with a hole in the middle. The axis of revolution

passes through the central hole and does not intersect the surface of the toroid. In figure 21 the

coordinates, commonly used in plasma, are depicted. These are a modification of the cylindrical

coordinates, where 𝑅 is the distance form the axis to the described point, 𝑅0 is the major radius

of the torus, 𝑟 is the minor radius of the torus, 𝜃 is the poloidal angle, 𝜙 is the toroidal angle and

𝑍 is the axis of revolution.
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B Plasma geometry

• Plasma center

𝑅𝑔𝑒𝑜 is defined as the radial position of the

plasma center.

• Plasma radius

𝑟𝑔𝑒𝑜 = 𝑎.

• Aspect ratio

A=
𝑅𝑔𝑒𝑜

𝑟𝑔𝑒𝑜
.

• Geometric height

𝑍𝑔𝑒𝑜 is defined as the position of the plasma

center in the Z-axis.

• Elongation

𝜅 =
𝑍𝑚𝑎𝑥 −𝑍𝑚𝑖𝑛

2𝑟𝑔𝑒𝑜
.

• Triangularity

𝛿 =
𝑍𝑚𝑎𝑥 −𝑍𝑔𝑒𝑜

𝑟𝑔𝑒𝑜
. This parameter can be

positive or negative, depending on where

the plasma is facing, the inner or the outer

wall of the vessel.
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