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Abstract 

The computational burden needed to perform a fragility analysis of structures can be excessive 

and beyond the capability of regular computing systems. In this work, a Neural Network (NN) 

implementation is presented to make fragility analyses attainable. Neural Networks allow 

finding solutions to complex problems at a fraction of the computational time required by 

conventional analyses. The fragility assessment has been developed for low- and mid-rise 3D 

buildings located in southern Spain, a moderate earthquake prone area. Nonlinear static 

analyses are carried out to determine the capacity curves of reinforced concrete buildings, 

avoiding their specific modelling. The curves are predicted with minimal error, requiring only 

basic geometric and material parameters of the structures to be specified. Four levels of 

performance-based seismic design have been considered to assess the seismic performance. 

Fragility curves have been developed for the structural models with different types of structural 

configurations and heights. Finally, it should be noted that fragility curves have not been 

obtained to date for the reinforced concrete buildings of the area.   
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1 INTRODUCTION 

The seismic hazard of the Mediterranean area is considerable, resulting in cities enduring 

earthquakes of catastrophic consequences. Such is the case of the 2011 Lorca (Spain) (Mw=4.6) 

[1], the 2009 L’Aquila (Italy) (Mw=5.8) [2] and the 2012 Emilia (Italy) (Mw=6.1) [3] 

earthquakes, among others. Despite the progressive development of standards and building 

codes, it is well known that most of the European building stock predates modern seismic 

regulations, resulting in a highly potential seismic risk [4]. Hence, there is a strong will, among 

European countries of this area, to develop new intervention and prevention strategies.  

Given this, the use of a method to assess the seismic response of these buildings in a 

reasonable time and with a good level of accuracy is important [5]. Especially because of the 

economic cost and time consuming related to the detailed seismic assessment of numerous 

buildings. Among possible methods to rapidly perform large-scale seismic analyses, Machine 

Learning techniques such as Neural Networks (NN) stand out. NN allow finding solutions to 

complex problems at a fraction of the computational time required by conventional analyses. 

They have been used for solving a wide variety of issues [6], including earthquake engineering 

related problems. Concerning the seismic analysis, NN have been used to simulate both the 

linear or nonlinear behaviour of buildings subjected to seismic excitation for the latter damage 

assessment [7–9]. Also, they have been employed to predict earthquakes series in different 

countries [10,11]. 

Large-scale seismic studies are based on determining the average seismic behaviour 

representative of a given structural typology. This is later considered for the estimation of the 

seismic vulnerability and damage. However, by considering an average value, a substantial 

dispersion of the values is entailed. Hence, this can lead to over- or under-estimating the real 

seismic performance of the building considered. By implementing NN, it is possible to bear in 

mind all the structural configurations of the buildings and to provide the specific behaviour of 

the structure under study.  

To obtain the seismic behaviour of buildings, it is possible to perform either nonlinear static 

or dynamic analyses. In the case of nonlinear static analyses, the capacity curve is obtained. In 

dynamic analyses, other engineering demand parameters are considered such as the floor 

acceleration or the inter-storey drift [12]. Despite being more accurate, dynamic analyses entail 

a higher computational burden as well as extensive time consuming for the latter damage 

assessment. Contrariwise, nonlinear static analyses are conceived as an accurate and robust 

method for the seismic analysis of low-rise buildings. For the damage assessment, the fragility 

method is useful and generally accepted among earthquake-experts [13]. Moreover, the 

computational burden needed to perform a fragility analysis of a large set can be excessive and 

beyond the capability of regular computing systems. Hence, by implementing the NN for the 

fragility assessment of buildings, time can be considerably reduced. Neural networks have been 

employed to estimate fragility directly in [14]. The difference with the current approach, is that 

by predicting the capacity curves there is a wider scope of application. Apart from deriving 

fragility curves, which is the specific use-case presented in this paper, other seismic analysis 

may be facilitated in future work. 

Given the above premises, in this work, a NN implementation is presented to make fragility 

analyses attainable. The fragility assessment has been developed for low- and mid-rise 3D 

buildings located in southern Spain. This is a moderate earthquake prone area, mainly due to 

the contact between the Eurasian and African tectonics plates. Among all the building 

typologies, this work has focused on reinforced concrete (RC) buildings. Many of them were 

built mainly in the 1970s, before the applications of building and seismic codes. Therefore, they 

are potentially susceptible to seismic damage as reported in [15–17].  
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Nonlinear static analyses have been carried out to determine the capacity curves, avoiding 

their specific modelling. The curves have been predicted with minimal error, requiring only 

basic geometric and material parameters of the structures to be specified. Four levels of 

performance-based seismic design have been considered to assess the seismic performance. 

Fragility curves have been developed for the structural models with different heights and 

structural configurations. The main novelty of this work is that a novel ‘en masse’ method is 

presented for the seismic vulnerability and fragility assessment of urban areas with the accuracy 

of mechanical methods. Furthermore, according to the authors’ knowledge, these results have 

not been obtained for the RC buildings of the region.   

2 METHOD 

The method proposed in this paper comprises three main steps. First, a relatively large dataset 

of building structures (7k samples) is synthetically generated and calculated in SAP2000. The 

generation of structures is parameterized upon basic geometric variables such as span lengths, 

beam sizes etc., as shown in Table 1. In a second phase, this dataset is used to extract a training 

and validation data that will be consumed by a neural network model. After training, the model 

is capable of predicting the capacity curve of any building within the parameter scope defined 

in the aforementioned table. Finally, as a third step, fragility curves corresponding to four 

different damage states are derived from the predicted capacity curves of a broad set of building 

structures. These structures are divided into 6 groups according their number of stories (two or 

three), and the relative proportions of their X, Y, Z dimensions. This works represents a step 

ahead of the contribution originally presented in [18] by the authors.  

2.1 Dataset generation (Network Input) 

From the parameters listed in Table 1, more than 7k random structures are generated and 

their corresponding capacity curves are calculated in SAP2000 [19]. 

 
Parameter Minimum Value Maximum Value Value Step 

Number of spans in X 1 9 1 

Number of spans in Y 1 9 1 

Number of spans in Z 1 3 1 

Dimensions of all spans in X 4 m 8 m 0.166 m 

Dimensions of all spans in Y 3 m 6 m 0.125 m 

Dimensions of all spans in Z 3 m (a) 3.4 m 0.040 m 

Height of suspended ground floor 0.6 m 0.8 m 0.025 m 

Load-bearing beams: width 30 cm 60 cm (b) - (c) 

Load-bearing beams: height 30 cm 60 cm - (c) 

Non-load-bearing beams: width 30 cm 30 cm - (c) 

Non-load-bearing beams: height 25 cm 30 cm - (c) 

Supports: width in X 30 cm 30 cm - (c) 

Supports: width in Y 30 cm 30 cm - (c) 

Slab thickness 25 cm 30 cm - (c) 

Table 1: Parameters for random generation of structures. Note: (a) Ground floor height is always 3.4 m. (b) Wide 

load-bearing beams are randomly considered when the span length is shorter than 6 m. (c) Frames dimensions 

are first calculated according to their span, then, the most restrictive section for each type (load-bearing, non-

load-bearing, supports, slabs) is used for the whole structure. 

Within the parameter scope defined in the above schema, the total (T) number of possible 

samples can be expressed by the following formula: 

 

𝑇 = 𝑛𝑥 · 𝑛𝑦 · 𝑛𝑧 · (𝑠𝑥)𝑛𝑥 · (𝑠𝑦)𝑛𝑦 · (𝑠𝑧)𝑛𝑧 (1)  
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Where nx, ny, nz = the number of spans in X, Y and Z, and sx, sy, sz = the number of steps in X, 

Y and Z. By Applying the values used for the generation of the dataset, then T = 9 × 9 × 3 × 

249 × 249 × 103 and therefore, T > 1018. This accounts for the vast variety of samples that fall 

under the parameter scope and justifies the random sampling used to create the dataset. A 

selection of the resulting capacity curves calculated is presented in Figure 1. 

 

Figure 1: Capacity curves created from 7k buildings randomly selected. 

2.2 Nonlinear static analyses (Network output) 

Different models of 3D RC structures have been developed considering the input parameters 

and limits. The concentrated plasticity approach has been used for the nonlinear modelling of 

the RC frames. The typical model of a plastic hinge for each structural component is used 

following the prescriptions presented in [20]. The rigid diaphragm effect has been also borne 

in mind. The loads considered in the analysis have been: self-weight of all the elements; 

additional dead loads (slabs, roofs and ceilings); and, a permanent live load. They have been 

combined in different hypotheses as presented in [18]. All the models have been fixed-based. 

The horizontal load pattern has been calculated proportional to the masses and to the height of 

each of the models.  

2.3 Artificial Neural Network 

The main aspects of a neural network model are: (i) the input and output layers, (ii) the 

number and structure of the hidden layers, (iii) the activation functions of each layer and (iv) 

the optimization process and associated parameters. 

As expected, the input layer coincides roughly with the parameter set used for the generation 

of the dataset. There is a total of 30 parameters, 9 for each possible span in X and another 9 for 

Y, 5 in Z (including the service floor), plus 2 dimensions for bearing beams, 2 for non-bearing 

beams; and another 2 for supports and 1 for the slab height. 

For the output layer, the objective is to arrive at a layer size that, on the one hand, is large 

enough to provide a detailed representation of the capacity curves and, on the other hand, that 

it is not too large that it compromises the accuracy of the model. The best results in this regard 

were achieved with an output layer size of 100 and the same results were obtained with 135 

neurons (Table 2). For simplicity, an output size of 100 neurons has been selected, which has 

enough resolution to convey a detailed account of the capacity curves. 
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Network Architecture  

Layer scheme and size MAE loss 

X h1 h2 Y Validation error Training error 

30 65 65 65 0.0127  

30 65 65 82 0.0127 0.0105 

30 65 65 100 0.0126 0.0106 

30 65 65 135 0.0130  

30 65 100 135 0.0126 0.0107 

Table 2: Testing different output layer sizes. 

With regards to the hidden layers, the model was quickly able to achieve a mean absolute 

error (MAE) of 0.0126 with only two hidden layers (h1, h2). Adding a third layer produced less 

optimal results with clear overfitting. The same goes for a single hidden layer, except without 

overfitting. After testing a number of hidden layer numbers and sizes (Table 3), the final 

architecture selected was X-h1-h2-Y = 30-65-65-100. 

 
Network Architecture  

Layer scheme and size MAE loss 

X h1 Y Validation error Training error 

30 30 100 0.0153  

30 65 100 0.0135  

30 100 100 0.0132  

30 135 100 0.0131 0.0115 

30 170 100 0.0132  

30 205 100 0.0133  

X h1 h2 Y Validation error Training error 

30 30 30 100 0.0133  

30 30 65 100 0.0137  

30 30 100 100 0.0137  

30 55 80 100 0.0128  

30 65 65 100 0.0126 0.0106 

30 65 100 100 0.0131  

30 100 100 100 0.0134  

X h1 h2 h3 Y Validation error Training error 

30 30 30 30 100 0.0137  

30 30 30 65 100 0.0133 0.0107 

30 30 65 65 100 0.0138  

30 65 65 65 100 0.1407  

Table 3: Final architecture selected. 

Activation functions considered in this model were narrowed down to ReLU (Rectified 

Linear Unit), sigmoid and tanh (hyperbolic tangent), after preliminary testing. Sigmoid 

activation is typically used for the output layer as it maps values from 0 to 1. For the hidden 

layers, ReLU is a common choice in deep learning [21], while tanh has been previously used 

to address similar prediction problems [22]. Further testing determined the choice of tanh over 

ReLu, in hidden layers. Finally, Table 4 presents the main parameters tested for the error 

optimization process and their results. 

 
Parameter Variation MAE Loss (1200 epochs) 

 Validation error Training error 

Initial conditions (no variation) 0.0126 0.0103 

Adadelta (instead of SGD) 0.0136 0.0114 

SGD without Nesterov (M = 0.9) 0.0128 0.0107 

Lr (Learning rate) = 0.25 0.0128 0.0110 
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Lr (Learning rate) = 0.45 0.0127 0.0106 

Decay = Lr/(6·ep) 0.0127 0.0108 

Decay = Lr/(10·ep) 0.0128 0.0106 

Sigmoid activation in hidden layers 0.0147 0.0130 

Relu activation in hidden layers 0.1406 0.1358 

Batch size = 1 (minimum) 0.0131 0.0102 

Batch size = 6 0.0129 0.0102 

Batch size = 24 0.0124 0.0103 

Batch size = 36 0.0131 0.0114 

Table 4: Main parameters tested for the error optimization process and their results. 

Once all the aspects that lead up to the complete definition of the network have been settled, 

the model is ready for training. In Table 5, a summary of the complete configuration of the 

network model is provided. 

 
Network Architecture  

Layers X h1 h2 Y 

Layer size 30 65 65 100 

Network Parameters     

Layers X h1 h2 Y 

Activation - tanh tanh sigmoid 

Weight initialization - Random (0, 0.1) Random (0, 0.1) Random (0, 0.1) 

Bias initialization - Random (0, 1) Random (0, 1) Random (0, 1) 

Training Parameters    

Lr (Learning rate) 0.35   

Decay Lr/(8.ep)   

M (Momentum) Nesterov   

Epochs 1200   

Batch size 24   

Shuffle samples at each epoch Yes   

Table 5: Configuration of the network model. 

2.4 Fragility analysis 

The method proposed considers the assessment of fragility functions using a building-based 

damage assessment methodology. A fragility function determines the probability of an 

engineering parameter not exceeding a certain threshold [23]. In this work, this parameter is the 

total roof displacement and its thresholds will be derived from a damage assessment method 

[24]. In statistical terms, a fragility curve is the cumulative distribution function (CDF) of a 

random variable (x):  

𝐹𝑋(𝑥) =  𝑃(𝑋 ≤ 𝑥) (1)  

 

A CDF is built from the probability density function (PDF) of that random variable. The 

CDF is calculated as the area covered by the PDF in between two values (a, b) of the distribution 

variable. In generic terms, given any PDF, the CDF can be obtained as: 

𝐹𝑋(𝑥) =  ∫ 𝑓𝑋(𝑡)𝑑𝑡

𝑏

𝑎

 (2)  

This integral is not always solvable mathematically due to potential intractability of the PDF. 

For this reason, and also because of simplicity, many areas aside from seismic engineering work 

with data that fits a well-known distribution (if possible, a normal distribution). In seismic 
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studies, the probability density function is often elaborated upon an incremental dynamic 

analysis of a single building [25]. In some cases, this single building is used as a prototype to 

assess the fragility of multiple buildings that share very common characteristics and thus, 

similar demand values are expected [26]. The distribution obtained tracks either the inter-storey 

drift or the peak ground acceleration, and the experimental samples typically do not follow a 

normal distribution but a lognormal one (which is slightly harder to integrate but has extensive 

literature available on the same). In the present method, however, there are important 

differences. On the one hand the engineering demand parameter is set as the total roof 

displacement. Then, on the other hand, and most importantly, the random variable (total roof 

displacement) is not generated by multiple experiments over a same building but by a large 

number of them. The implications of this setup are (i) distributions might neither follow a 

normal nor a lognormal pattern, as in the aforementioned studies. This translates in the 

impossibility of providing an analytical solution for the CDF and a computational estimation 

will be provided instead. And (ii) linear regressions over the distribution, as carried out in 

[26,27], may display very large variance and/or extreme slope angles, which would in turn yield 

these methods inapplicable. 

 In summary, the CDF in this study is computationally approximated as the area of a 

probability density curve calculated upon the distribution of the roof displacements of multiple 

buildings. For the calculation of the curve points, the kernel density estimation method of the 

Python library SciKit-Learn [28] has been employed. Regarding the roof displacements, four 

different discretized damage states (DS) are considered at global building level: the immediate 

occupancy (DS1), damage control (DS2), life safety (DS3) and collapse prevention (DS4). The 

equations (Eq. (3)) provided in [29] have been considered to define each DS. As pointed out in 

this work, the threshold of each damage state for the global behaviour of a building is defined 

at the step when the first structural computed (wall or column) attains a certain damage state.  

𝑆𝑑𝑠1 =  𝑆𝑑𝑦 

𝑆𝑑𝑠2 =  1.5𝑆𝑑𝑦 

𝑆𝑑𝑠3 =  0.5(𝑆𝑑𝑦 + 𝑆𝑑𝑢) 

𝑆𝑑𝑠4 =  𝑆𝑑𝑢 

(3)  

 

The values (𝑆𝑑𝑦, 𝑆𝑑𝑢) are obtained from the capacity curves predicted by the neural network 

model following the N2-method established in the Eurocode-8 part-1 (EC8-1) [30]. This 

procedure provides the calculation of the idealized bilinear capacity curve, which requires the 

mapping of multi-degree-of-freedom (MDOF) curves to those of their equivalent single-degree-

of-freedom (SDOF) system. This has been carried out through the transformation factor (Γ). 

This factor has been computed by considering the modal shapes as normalized triangular 

patterns. These have been computed according to the masses of each of the control nodes of the 

floors. After this procedure, the yielding (dy) and the ultimate (du) displacements have been 

obtained for each RC structure. In this case, the du has been computed as the 80% decay of the 

peak strength of the capacity curve, as suggested in the Eurocode-8 part-3 [31]. And dy as the 

‘elbow’ point of the idealized bilinear capacity curve following the N2-method. 

2.5 Data exploration 

Once the four damage states are obtained for each SDOF-equivalent capacity curve, a point-

cloud of these values can be generated for all buildings, as presented in Figure 2(a). One of the 

first aspects that stands out from this chart, is that the trends of the distributions for the different 

damage states are manifestly vertical (except perhaps for DS4 which presents a much wider 
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variance of displacements). Regression estimations on each damage state result in regression 

lines at almost 90º (+/- 2%). Indeed, due to the broad range of building sizes being considered, 

there is in turn, a wide range of shear capacity present among them. In Figure 2(b), a graph of 

shear capacity to building mass is presented, showing a direct correlation between them. 

However, it is interesting that the displacements are in general, not critically affected by the 

structural mass.  

 

 
                             (a)                                                                                   (b) 

Figure 2: (a) Shear-displacement plot representing all damage states for all buildings. (b) Shear-mass correlation 

for all buildings. 

Another important aspect that may be observed in Figure 2(a) is that the points 

corresponding to DS1 and DS2 overlap substantially. The main reason is that both two- and 

three-storey buildings are considered simultaneously. Since roof displacement is the variable 

being monitored, wide variations are expected when aggregating data from buildings with a 

very important relative difference in the number of floors. When looking at the same data plot 

but grouping buildings by their number of storeys, a cleaner segregation of samples is obtained 

for DS1 and DS2 as shown in Figure 3(a) and (b). 

 

 
                                             (a)                                                                                          (b) 

Figure 3: Shear-displacement plot representing all damage states for (a) two- and (b) three-storey buildings. 

Despite having achieved a cleaner cut between DS1 and DS2 by separating the buildings in 

groups according to their number of storeys, some strong overlaps are still noticeable especially 

in the group of two-storey buildings. It is quite visible in Figure 3(a), that for the aforementioned 

damage states, there are two distinct vertical clusters, a dense one (to the left) and another one 

slightly coarser to the right. The primary driver behind this polarization, resulting in two 

different clusters, is explained, above all, by the differences in the structural typology of the 

samples. In particular, the less dense clusters, (sliding to the right – featuring greater 
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displacements) for both DS1 and DS2 are mostly characterised by buildings with wide beams 

instead of deep beams and slightly thinner slabs (25 cm vs. 30 cm). To illustrate the impact of 

wide vs. deep beams on the total roof displacement for each damage state, Figure 4 and Figure 

5 present a graphic account of these values according to their beam type. 

  
                      (a)                                           (b)                                      (c)                                         (d) 

Figure 4: DS1 (a), DS2 (b), DS3 (c) and DS4 (d) of two-storey structures with wide and deep beams. 

 
                      (a)                                          (b)                                      (c)                                         (d) 

Figure 5: DS1 (a), DS2 (b), DS3 (c) and DS4 (d) of three-storey structures with wide and deep beams. 

According to the insights acquired through the exploration of the data presented, the initial 

dataset of buildings will be divided into the following four groups for the purpose of fragility 

analysis: 

- [2_storey_deep_beam] Two-storey buildings with deep beams and 30 cm slabs. 

- [2_storey_wide_beam] Two-storey buildings with wide beams and 25 cm slabs. 

- [3_storey_deep_beam] Three-storey buildings with deep beams and 30 cm slabs. 

- [3_storey_wide_beam] Three-storey buildings with wide beams and 25 cm slabs. 

 

3 RESULTS 

After training the neural network model described in the Method section, the average validation 

mean absolute error (MAE) over 60 random trials and 1200 epochs was 0.0124 (1.24%). The 

MAE distribution is graphed in Figure 6(a), and a visual comparison of a predicted vs. 

validation capacity curve corresponding to a sample with an absolute error equal to the mean, 

is graphed in Figure 6(b). The root mean square error (RMSE) was also calculated yielding a 

value of 0.0134 and following a very similar distribution to the MAE, while the overfitting ratio 

remained contained at 0.904.  
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                                                     (a)                                     (b) 

Figure 6: (a) Distribution of the mean absolute error (MAE) and (b) Predicted curve vs. validation curve for a 

sample corresponding approximately to the mean absolute error in the distribution (0.0124). 

With regards to the fragility analysis, the methodology laid out above is applied to the four 

groups defined in the data exploration section. Consequently, probability density and fragility 

curves (cumulative distribution curves) are obtained for each group. These are presented in 

Figure 7, Figure 8, Figure 9 and Figure 10. 

 

(a)                                                                                       (b) 

Figure 7: probability density (a) and cumulative distribution (b) functions of deep beams two-storeys structures. 

 

(a)                                                                                       (b) 

Figure 8: probability density (a) and cumulative distribution (b) functions of deep beams three-storeys structures. 
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(a)                                                                                       (b) 

Figure 9: probability density (a) and cumulative distribution (b) functions of wide beams two-storeys structures. 

 

(a)                                                                                      (b) 

Figure 10: probability density (a) and cumulative distribution (b) functions of wide beams three-storeys 

structures. 

4 DISCUSSION 

Although this research is centered on its applicability to a very broad range of structures, the 

results achieved by the neural network model still compare quite well to other similar works 

[32,33]. Overall, these results have been possible mainly because of the relatively large size of 

the training set. In early experiments (not mentioned in this paper) the training set was limited 

to 2k samples and the model failed to predict the curves with sufficient accuracy. In this sense, 

enlarging the dataset to 7k samples has been by far the driver of the greatest impact among all 

other parameters and design decisions made around the model. Despite the success of the 

predictions, it must be noted that the results must be cross-checked with actual buildings, to 

assess among other things, the suitability of the modeling assumptions put forth in this work, 

e.g.: absence of infills or uncertainties pertaining to the nature of the building materials. 

The fragility analysis, implemented upon the capacity curves predicted by the neural network 

model, provides insights for the buildings selected that allow a better understanding in terms of 

their seismic performance. The buildings selected yield close-to-normal distributions for all the 

damage states. The major exception has been the group of two-storey structures with wide 

beams. In this group, a double ‘camel-hump’ is easily observed. This might be due to the 

variable width of the beams, as this ranges from 30 cm to 60 cm. More analysis should be 

carried out to pin-point the exact cause. Three-storey buildings present considerably higher 

probability of collapse for lower displacements, increasing up to 30%. For DS1, DS2 and DS3 

the results are rather similar. Structures with wide beams present a higher probability of 

damage. As it can be observed, for DS1 and DS2, the displacement ranges from 0 to 5 cm. 

However, for wide beams buildings, these levels range from 0 to 25 cm. This is even more 
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severe for buildings with two storeys instead of three. For two-storey buildings in DS3, the 50% 

probability of exceedance corresponds to a 10 cm displacement in the case of wide beams, while 

with deep beams it is reduced to 8 cm. These differences are even higher for DS4, where 

displacement ranges from 12.5 to 22.5 cm in wide beams, compared to 10-20 cm for deep 

beams. However, three-storey buildings do not present substantial differences between wide 

and deep beam buildings for either DS3 or DS4. 

5 CONCLUSIONS  

This paper presented the implementation of a NN-based fragility analysis of low-rise 3D RC 

buildings located in southern Spain. The main conclusions of this work are enumerated below:  

- This study provided an ‘en masse’ method for the seismic vulnerability and fragility 

assessment of large-scale analysis with the accuracy of mechanical methods.  

- The fragility curves showed that taller buildings tend to present a higher probability of 

damage compared to lower buildings. Damage can be increased up to 30% if only one 

storey is added to the structure. 

- Structures with wide beams present a higher probability of damage. 

This work represented the first attempt in massively assessing the seismic fragility of low-

rise RC buildings of the region under study. In future work the scope of buildings should be 

extended by: (i) increasing the number of storeys in the neural network model; (ii) including 

irregularities such as balconies, patios, and infills; and, (iii) performing the analyses carried out 

in this work in a dynamic nonlinear fashion such as incremental dynamic analysis. 
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