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A B S T R A C T   

Bottom-up energy system models are often based on hourly time steps due to limited computational tractability 
or data availability. However, in order to properly assess the rentability and reliability of energy systems by 
accounting for the intermittent nature of renewable energy sources, a higher level of detail is necessary. This 
study reviews different methods for increasing the temporal resolutions of time series data for global horizontal 
and direct normal irradiance for solar energy, and wind speed for wind energy. The review shows that stochastic 
methods utilizing random sampling and non-dimensional approaches are the most frequently employed for solar 
irradiance data downscaling. The non-dimensional approach is particularly simple, with global applicability and 
a robust methodology with good validation scores. The temporal increment of wind speed, however, is chal
lenging due to its spatiotemporal complexity and variance, especially for accurate wind distribution profiles. 
Recently, researchers have mostly considered methods that draw on the combination of meteorological rean
alysis and stochastic fluctuations, which are more accurate than the simple and conventional interpolation 
methods. This review provides a road map of how to approach solar and wind speed temporal downscaling 
methods and quantify their effectiveness. Furthermore, potential future research areas in solar and wind data 
downscaling are also highlighted.   

1. Introduction 

Mitigating climate change is part of the Paris Agreement to limit the 
global temperature increment to 1.5 − 2oC with respect to the pre- 
industrial levels [1]. Many countries, therefore, aim to reduce their 
carbon footprint, with some prominent examples shown in Fig. 1. The 
power sector, which accounted for 39.3% of total CO2 emissions in 2022 
[2], can only achieve this feat by increasing the share of renewable 
sources in the energy mix. As an increasing share of intermittent 
renewable energy and an intensifying interconnection amongst energy 
sectors has led to a significantly more complex interplay of different 
technologies, energy system modeling is increasingly employed to sup
port a proper understanding of system rentability and reliability. 

Energy system models (ESMs) are used to plan, design, and operate 
energy systems and explore possible future developments, as well as to 

assess energy policy options. These models are used to simulate and 
analyze energy systems’ security, rentability, environmental impacts, 
and different policy options [9]. The history of ESMs dates back to the 
1950s, when the first models were designed to help energy planners and 
policymakers understand the interactions between the different com
ponents of energy systems, such as energy production, conversion, and 
use, with simple assumption-based scenarios [10]. Over the following 
decades, ESMs evolved as a result of the need for energy security, 
progress in the computational structures that handle complex problems, 
and the integration of intermittent renewable energy sources (IRES) 
[11]. Many ESMs, such as Balmorel, MARKAL, TIMES, EFOM, LEAP, 
PRIMES, Pypsa, REMix, OSEMOSYS [11,12], and ETHOS.FINE [13] 
have been designed to optimize energy systems and evaluate the eco
nomic, environmental, and social consequences of different energy 
policies and scenarios. However, ESMs require further development to 
incorporate more complex structures and methods, with most models 
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using hourly temporal resolutions. 

1.1. Data-driven motivation for sub-hourly time series 

Several ESMs, as well as many of the frameworks mentioned above, 
use hourly time steps to account for the dynamic operation of systems 
with high shares of IRES [12]. However, higher temporal resolutions 
have been widely neglected due to two major factors, namely: data un
availability and computational limitations. Although weather data is 
globally available at hourly resolutions via reanalysis databases such as 
MERRA2 or ERA5 [14], other databases focus on small scopes at high 
resolutions (e.g., the measured ENTSO-e [15] at 15 min intervals for 
some European countries or weather station data at specific locations). 
Table 3 in the Appendix displays different open-access wind and solar 
generation time series databases and their temporal resolutions. 

Furthermore, sub-hourly modeling of the energy system increases the 
size and computational complexity of a model. However, coarser data, 
such as hourly time steps, tends to either underestimate or overestimate 
ESMs, resulting in unreliable system designs and operating schedules 
[16,17]. 

This is because the utilization of hourly-resolved profiles does not 
necessarily represent the actual stochasticity of real renewable time 
series appropriately (Fig. 2). For example, Fig. 2 (a) shows that the solar 
irradiance has a distinct diurnal characteristic, displaying a repetitive 
curve pattern for both days studied and large intra-hour variability on 
them. In contrast, the wind speed depicted in Fig. 2 (b) features a less 
periodic pattern (which will be discussed in section 3.2). 

1.2. Relevance of sub-hourly data for energy system models 

Studies hitherto have repeatedly attempted to quantify the impact of 
different temporal resolutions of input time series on ESM results. For 
this, they have compared the impact of hourly and various sub-hourly 
resolutions on the dispatch and design of cost-optimal energy systems 
under the same boundary conditions and assumptions. Gangammanavar 
et al. [19] incorporated sub-hourly economic dispatch in a stochastic 
optimization model, in which two different methods for the generation 
scheduling of the practice were studied at hourly and sub-hourly reso
lutions of ten, 20, and 30 min. They found that coarse resolutions un
derestimate the operating costs, comprising the generation costs. In light 
of substantial penetrations of wind energy, Troy et al. [20] examined 
whether hourly resolution modeling is adequate or if intra-hourly 
variability justifies sub-hourly modeling, with 15 min time resolution 
of unit commitment and economic dispatch. The authors discovered that 
sub-hourly modeling reveals significantly higher levels of generator 
cycling, as well as utilization of flexible generation and storage units. 
Another study found that hourly analyses of energy models underesti
mate the levels of conventional plant cycling [21]. Energy storage could 
reduce cycling and improve the efficiency of the system with significant 
operational cost savings. In an hourly-resolved model, however, the 
amount of storage plant cycling necessary to reduce system costs is 
largely underestimated [21]. 

Pfenninger [16] used downsampling-, clustering-, and 
heuristics-based approaches to reduce the temporal resolution for a 
model with high shares of solar photovoltaics (PV) and wind generation 

List of abbreviations 

ESMs Energy system models 
IRES Intermittent renewable energy sources 
PV Photovoltaics 
GHI Global horizontal irradiance 
DNI Direct normal irradiance 
KNN K-nearest neighbour 
ND Non-dimensional 
ML Machine learning 
ANN Artificial neural network 
GAN Generative adversarial network 
PSD Power spectral density 
MSE Mean squared error 
NMSE Normalized mean square error 
RMSE Root mean square error 
NRMSE Normalized root mean square error 
MBD Mean biased deviation 
KSI Kolmogorov–Smirnov integral 
KLD Kullback–Leibler Divergence 
OVC Overlapping coefficient  

Fig. 1. Carbon emission reduction targets of the European Union, United States of America, Australia, China, and India. The European Union established a target that 
calls for a greenhouse gas emission reduction of 55% in the economy by 2030 and complete climate neutrality by 2050 [3], with Germany aiming for greenhouse gas 
neutrality by 2045 [4]. The USA set 2035 as a target for 100% clean electricity, with carbon neutrality no later than 2050 [5]. China, which is the largest 
CO2-emitting country in the world, intends to reach peak CO2 emissions by 2030 and a carbon-free economy before 2060 [6]. The Australian government has also set 
the target of reducing the country’s emissions, with the goal to attain 26–28% below 2005 levels by 2030, and to achieve net zero emissions by 2050 [7]. India also 
has the goal of reducing its economy’s carbon emissions by 33–35% below the 2005 level in 2030 and having net zero carbon emissions by 2070 [8]. 
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and concluded that a coarser temporal resolution is unreliable, as the 
resulting total cost and installed capacities of the energy systems are 
underestimated. Furthermore, Lopez et al. [22] found an underestima
tion in the ramping required to maintain the supply/demand balance at 
an hourly resolution compared to a sub-hourly one. Not only is this the 
case for energy system optimizations used to determine cost-efficient 
designs but even more so for the optimization of control systems, 
where a high temporal resolution is indispensable. For example, the 
control system of a concentrated solar power plant was analyzed by 
Meybodi et al. [23], as well as the underestimation of the inverter 
clipping when high irradiance values are not considered and the per
formance ratio is overestimated [24–26]. The clipping loss is the lost 
energy accruing in a PV system due to the inverter moderating its output 
to meet either its maximum power rating or the maximum allowance 
power at the grid connection. Clipping is a situation in which the 
alternating current power output of an inverter is limited due to its peak 
rating. 

Salom et al. [27] investigated the effect of using high-resolution data 
at one, five, and 12 min intervals versus an hourly resolution in the grid 
integration analysis of a building with an onsite generation system. The 
result showed that the difference in peak values computed with hourly 
and sub-hourly data can be quite significant. Deane et al. [28] present a 
one-year modeling of the Irish power system with five, 15, 30, and 60 
min resolutions using unit commitment and economic dispatch models. 
Although a more realistic estimation of the total generation cost 
(approximately 1% higher with 5 min compared to 60) was obtained 
with resolutions between five and 30 min, the difference was insignifi
cant and the authors concluded that a 30 or 60 min resolution would be 
sufficient if the system costs alone were of interest. However, when the 
system’s flexibility in terms of ramping and the evaluation of flexible 
resources such as pumped storage is important, a higher resolution 
optimization should be selected. Furthermore, Deane et al. [28] and 
Bistline [29] found out that sub-hourly generation data are necessary for 
studies with high wind power penetration in the power system in order 
to accurately capture the ramping effects, start-ups, and load 
fluctuations. 

Kërçi et al. [30] discuss the impact of a sub-hourly unit commitment 
problem on power system dynamics considering different sub-hourly 
security-constrained unit commitment resolutions (i.e., five and 15 
min) and different wind penetration levels (i.e., 25 and 50%). The re
sults indicate that the higher the wind power volatility, the higher the 
expected cost due to greater ramping of generating units. Kazemi et al. 
[31] investigated the effects of different temporal resolutions, such as of 
five, ten, 15, 30, and 60 min, on generation costs, reserves, and 

intermittent generators and concluded that for a system with a large 
degree of renewable penetration, a high temporal resolution is needed 
for its unit commitment and economic dispatch. This leads to a greater 
level of system reliability, having captured the intra-hour occurrences of 
renewable generation. The coarse time steps overestimated the annual 
generation of a PV plant, thereby reducing the levelized cost of elec
tricity, which is the ratio of the net cost of the system to its expected 
lifetime energy output by up to 3% [25,32]. 

Due to computational limits, minutely-resolved datasets are often 
inappropriate for computationally-demanding applications like multi- 
objective energy system optimizations [25]. However, complexity 
reduction techniques like temporal aggregation methods can be used in 
this case to ensure the computational feasibility of ESMs [11,33,34]. 

The impact on ESMs combined with the generally poor data avail
ability of sub-hourly profiles of renewables motivates our review. We 
systematically reviewed the synthesizing of sub-hourly resolutions from 
hourly ones for the most relevant IRES, i.e., wind and solar energy. As 
shown in the studies above, most of the modeling and optimization 
focused on systems with large(r) penetrations of solar and wind energy. 
The remainder of this review focuses on reducing the temporal resolu
tion of global horizontal irradiance (GHI), direct normal irradiance 
(DNI), and wind speed, as well as validations and recommendations. 

2. Methodology of the literature search 

This review summarizes some methodologies used for the temporal 
downscaling of IRES with a focus on solar and wind time series. GHI, 
DNI, and wind speed are all paramount for energy system modeling, as 
they are converted into capacity factor time series data that act as the 
input parameters of ESMs. 

In order to identify relevant articles as shown in Fig. 3, we conducted 
a systematic hybrid literature research that utilized a keyword-driven 
search and subsequent citation-driven one. The keyword-based search 
was carried out in the literature databases Scopus and Web of Science 
using the following research string: 

TITLE-ABS-KEY(("downscale" OR "downscaling" OR "increase tem
poral resolution") AND ("irradiance" OR "irradiation" OR "wind speed") 
AND ("data" OR "time series")) 

We included articles, conference papers, doctoral theses, and tech
nical reports that deal with methods of downscaling solar irradiance and 
wind speed. Several were excluded based on title and abstract, as only a 
few of the identified articles covered the spatial downscaling of solar 
irradiance or wind speed. Others, which only quantified the impact of 
the sub-hourly data on energy system modeling, as shown in section 1.2, 

Fig. 2. (a) Plot of Global Horizontal Irradiance (GHI) against time at 1 h and a 1 min resolution at a location in Milan, Italy (lat.: 45.5028249, long.: 9.1561092), for 
two consecutive days. The profile is based on the data from the solar tech lab. [18]; (b) plot of the wind speed against time at 1 h and 1 min resolutions at a location in 
the North Sea (lat.: 51.67, long.: 2.8) for two consecutive days. The profile is based on synthetic data from the CorRES simulation tool (explained in section 3.2). 
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were not considered relevant. We also excluded articles that downscale 
other meteorological data, dynamic downscaling, and articles that are 
based on predictions instead of downscaling. Overall, 48 articles from 
our literature search met the requirements for inclusion, as shown in the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) [35] workflow in Fig. 3. An additional 16 publications were 
identified in manual searches through other methods such as web 
searches, e.g., with Google Scholar and citation tracking. The summary 
of the articles related to solar energy has been presented in Table 2. 

3. Methods for increasing time series resolution 

The methods discussed in this review focus on the input time series 
data of solar and wind for energy system optimization. An overview of 
the downscaling methods used is shown in Fig. 4, in which the meth
odology is segmented into solar (GHI, DNI) and wind energy (wind 

speed). In order to be able to downscale the time series of meteorological 
data, the condition of the atmosphere must be understood. The clearness 
index or clear sky index is an important parameter used for downscaling 
approaches to normalize solar irradiance based on sky parameters. The 
clear sky condition is used to determine the irradiance reaching the 
earth’s surface without taking cloud cover into account. This clearness 
index is classified into different classes in order to categorize irradiance 
based on the condition of the sky. Subsequently, Markov, deterministic, 
stochastic, non-dimensional, or machine learning approaches were used 
for downscaling to increase the temporal resolution (see section 3.1). 
The wind speed was downscaled using stochastic approaches or power 
spectral density (PSD) (see section 3.2). The resolved data was then 
compared with real measured data from weather stations for validation. 
Several approaches for error measurements between the synthetic and 
measured data are discussed in section 4. 

3.1. Solar energy 

With respect to solar energy, several methods have been analyzed 
and reviewed in Refs. [36–38], which estimate the clear sky model of 
different resolutions based on various parameters including relative 
humidity, zenith angle, aerosol concentration, temperature, air pres
sure, and Rayleigh scattering. The clearness index, kt, is used to model 
the variability of the sky irradiance based on the cloudiness of the sky at 
a certain time t. It is an important index on which many temporal 
downscaling approaches depend. The clearness index is the ratio of the 
energy incident on a collector with the atmospheric effect to the energy 
incident on a collector without the atmospheric effect. The index kt is 
then the ratio of the measured irradiance H to the clear sky irradiance 
He, and is location-dependent Eq. (1): 

kt =
H
He

1 

The clear sky index is the bedrock on which many approaches are 
built. The following subsections analyze the methods for downscaling 
solar irradiance. 

3.1.1. Markov chain approach 
The Markov approach is based on the Markov property, that the 

Fig. 3. Flow diagram of the systematic literature review based on the PRISMA scheme.  

Fig. 4. Overview of methods for downscaling time series data identified in the 
review and the connections to obtain highly resolved data. The methods for 
downscaling solar irradiance include Markov, deterministic, stochastic, non- 
dimensional (ND), and machine learning (ML) approaches. The methods for 
wind speed include stochastic approaches and power spectral density (PSD). 
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probability distribution of the future state of a process is conditionally- 
independent of the past of the process other than the present (a detailed 
explanation of the Markov model is described in Appendix C). In the 
downscaling process that uses the Markov approach, the clearness index 
of the higher temporal scale to be downscaled to is calculated. It is then 
classified into different states based on the irradiance values repre
senting the cloudiness of the atmosphere. The probability of different 
hours in each of the states is calculated, leading to the construction of 
the Markov transition matrix. The kt of the irradiance to be downscaled 
is computed and fitted based on the weighted probability of the Markov 
transition matrix. The downscaled kt is then converted into the irradi
ance using Eq. (1), above. 

In the following, Markov chain approaches for the temporal down
scaling of solar irradiance are presented. The methodological concept of 
Markov chains can be found in Appendix C. Ngoko et al. [39] grouped 
days based on their cloudiness by determining the daily clearness index, 
kd, and created a Markov transition matrix for each of the groups of kd. 
The order of the Markov time series synthesis model to be used can also 
be seen by the partial autocorrelation function of the time series. The 
order of the Markov chain refers to the number of previous states 
considered when predicting the future one. Ngoko et al. [39] employed a 
simple Markov time series synthesis model to downscale the GHI by 
removing its dependence on the zenith angle and transforming it into a 
normalized clearness index. A Markov transition matrix was created for 
three different conditions (cloudless, broken clouds, and overcast) [40]. 
A clearness index of 0.01 intervals and discrete-time Markov chains was 
then applied to downscale the GHI from 1 h to 1 min. The seasonality, as 
well as the diurnal and pressure influences on the cloud cover, were 
taken into account by Bright et al. [41] and on the basis of this, further 
used to synthesize a 1 min global irradiance from hourly weather data 
such as pressure, wind speed, and cloud amount to estimate the amount 
of cloud cover and the cloud height [42,43]. The authors later extended 
the method to the spatial dimension, resulting in a spatially-decorrelated 
solar irradiance generator [44]. Bright [45] evaluated several GHI 
training datasets to generate a more accurate systematic Markov tran
sition matrix and an arbitrary number of states for the Markov transition 
matrix on clear-sky index data [46]. Martins et al. [47] downscaled GHI 
from 1 h to 1 min using the Markov approach clearness index based on 
cloudy, partly cloudy, and clear sky conditions. Munkhammar and 
Widén [48,49] used their approach in Ref. [46] to model the 1 min 
beam, diffuse, and global clear sky solar irradiance from hourly global 
irradiance. In turn, Shi et al. [50] considered that the irradiance of a 
highly polluted area can be reduced as a result of airborne pollutants 
that form a layer of cloud in the form of particles that block, absorb, and 
scatter irradiance. They extended the clear sky model used by Bright 
et al. [41] to accommodate irradiance in highly polluted regions using 
aerosol optical depth and the quality of the air index. 

Frimane et al. [51] proposed a method for downscaling a feature- 
and satellite-based database measured in a 10–20 min irradiance time 
series to 1 min. For the clearness index, they used an automatic classifier 
clustering method based on a non-parametric Bayesian approach. This 
captured more variability with a lower error compared to others [41, 
42]. Inacio et al. [52] adopted the dependence of the clearness index on 
the predominance of clouds over a certain time interval using an auto
matic cloud classification procedure with satellite images to downscale 
GHI and DNI from 1 h to 1 min. 

3.1.2. Deterministic approach 
Deterministic approaches comprise linear and cubic methods for 

interpolating data. Linear interpolations work as follows: suppose that 
two points on a graph, (x0, y0) and (x1, y1) are given and values need to 
be estimated between these two. If the points are not equally spaced, 
there is a gap between them. In this case, we wish to estimate a value, 
say, y, of a point x. The value of y is obtained by finding a linear com
bination of x0 and x1 that results in x, as seen in Refs. [45,53–56]. The 
interpolation methods are used for the deterministic approach before 

introducing fluctuations or randomness to better capture the variability 
of the intra-hourly time series. Linear interpolation is the simplest 
method used, whereas cubic interpolation can provide smoother edges 
and more accurate interpolation results. The linear interpolation 
method is used by Buster et al. [57] to downscale the National Solar 
Radiation Database (a collection of serially-complete meteorological 
and solar irradiance datasets) [58] from 30 min to 5 min and 1 min. The 
spatial resolution of the coarse data was first increased, following the 
method of the National Solar Radiation Database [58]. Then, a temporal 
linear interpolation was employed. Furthermore, McDowell and Kum
mert [54] and McDowell et al. [55] applied an improved linear inter
polation algorithm to different building performance programs 
(EnergyPlus, TRNSYS17, and TRNSYS18) for creating sub-hourly 
resolved time series. The algorithm was developed with a reliance on 
the result of the previous period to calculate the next phase. A linear 
interpolation approach was later developed by Zhang et al. [56,59], who 
classified irradiance into clear and non-clear days and linearly interpo
lated the former. A detailed explanation of this method is presented in 
section 3.1.3. Pereira et al. [60] also employed a bi-linear interpolation 
to downscale an hourly European center for medium-range weather 
forecast data to 30 min. 

Cubic interpolation uses a cubic polynomial instead of a linear 
polynomial. The cubic interpolation has the general form of y = a0 +

a1x+ a2x2 + a3x3, where a0, a1, a2, and a3 are known coefficients. In 
cubic interpolation, the equation is solved for these coefficients and then 
y is estimated to obtain a smooth curve with which intermediate values 
can be imputed. The cubic interpolation technique was applied in 
several studies [61–63] to derive patterns or profiles that are superposed 
by stochastic fluctuations. Ruiz-Arias [64] considered a cubic interpo
lation that preserves the mean of the datasets. They used the second 
order cubic polynomial to reduce the variations in the synthetic data. 
Another method of piecewise cubic interpolation was used by Balog 
et al. [65] to downscale irradiance from 1 h to 1 min. The authors re
ported that the cubic interpolation was only suitable for clear days and 
that non-clear ones were not suitably captured. The method was then 
further developed to use sinusoidal interpolation, as proposed by the 
authors to achieve a higher degree of accuracy than ordinary cubic 
interpolation. 

3.1.3. Stochastic approach 
Some articles add stochasticity to the deterministic results presented 

above, such as that of Polo et al. [63], which added randomness to the 
cubic interpolation. They fitted the sky conditions in the form of the 
clearness index to a beta distribution to downscale both the GHI and DNI 
from 1 h to 10 min. Moreover, randomness was added to the deter
ministic result from the cubic interpolation by fitting the sky conditions 
in the form of the clearness index to a beta distribution in order to 
downscale both the GHI and DNI from 1 h to 10 min. The method was 
further developed in Refs. [61,62], using and normalizing an improved 
model by Skartveit and Olseth [66] for the clearness index. The method 
also covers hazy days by using perturbations. 

Grantham et al. [67] extended the work by Polo et al. [63] by using 
and categorizing a clear sky ratio between sunrise and sunset instead of 
the normalized clearness index. A bootstrap method to generate 
five-minutely synthetic DNI data from hourly datasets was used instead 
of fitting clearness to a beta distribution, as was undertaken by Polo 
et al. [63]. In a later publication, Grantham et al. [68] employed the 
same bootstrapping technique to also downscale hourly GHI data to 5 
min. Wey et al. [69], in turn, created a set of daily profiles using the 
measured ground-based data of a location of interest. They then 
generated a solar irradiance time series at a resolution of 10 min via 
fusion by searching for the closest day possible through the Euclidean 
distance between each hourly data point to be downscaled and the 
stored profiles. Frimane et al. [70] utilized the Dirichlet distribution to 
model the distribution of minute-level irradiance through the clearness 
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index, displaying a similar variability as the high-resolution data. They 
covered the Köppen–Geiger weather classification, making it globally 
applicable. Keeratimahat et al. [71] accounted for the spatial smooth
ening effect by combining data following the clear sky index and scaled 
the distribution of the measured variability in accordance with the ratio 
of reference and simulated photovoltaic plant capacities. A scaled dis
tribution of the equivalent clear sky condition was then adopted to 
create a time series of 4 s PV outputs by random sampling. The spatial 
variability of the hourly time series, which was gridded around the 
location of interest, was used by Perry and Troccoli [72] to downscale 
the solar GHI data to 1 min. Each hour was classified into six groups 
based on the standard deviation and distance-weighted average. Two 
methods were then applied to downscale to 1 min time series data, low 
and mean variability classes, or a high variability one. The classes with 
high variability were modeled as transitions between the varying de
grees of the opacity of the cloud and the states of clear skies. The mean or 
low classes (classes 1–4) were modeled using an autoregressive time 
series synthesis model. The autoregressive time series synthesis model 
was also adopted with a clearness index in Beyer et al. [73] to downscale 
DNI time series data from 1 h to 1 min. The autoregressive time series 
synthesis model is a mathematical one that has been used in many 
forecasting scenarios, including meteorology, to forecast weather. In 
this approach, a future value is predicted based on past values. The 
previous value is termed ‘lag’. In order to determine the lags that will 
have a high impact on the future value, the autocorrelation and partial 
autocorrelation of the time series were determined. The autoregressive 
time series synthesis model was then used to predict the intra-hour 
clearness index of solar irradiance. 

Zhang et al. [59] classified the GHI into clear days and non-clear ones 
with the assumption that there is a similarity in the variability of the 
clear day GHI and the actual GHI, instead of using a complex algorithm 
to determine the clear hours of the day. The distinction was adopted by 
linearly interpolating the National Solar Radiation Database data and 
identifying the first difference between the interpolated hourly data and 
the clear sky data. The maximum, y, of the difference between the two, 
was tested over a tolerance. If y < 0.1, it meant a clear day and if y >
0.1, it meant a non-clear one. The clear day was linearly interpolated, 
which yielded a better result than the stochastic approach in this regard. 
The non-clear day was modeled with errors between the measured and 
the interpolated data, which were both log-additive non-gaussian mix
tures. Zhang et al. [56] further developed the method presented in 
Ref. [59] to capture excursions in irradiance, which is the period at 
which the irradiance shoots above the theoretical clear sky as a result of 
scattering events. In three consecutive publications, Zhang et al. [56,59, 
74] developed methods updated in the third [74], adopting the methods 
of [56,59] to create an automatic temporal downscaling classifier using 
a log-additive model. The model comprises an error function that helps 
to model variability and a Bernoulli random variable that can detect 
whether or not the sky is clear. 

Widén and Munkhammar [75] used the Gaussian copula, which is 
based on the assumption that variables are jointly normally distributed 
and can be dependently represented by a correlation matrix to tempo
rally- and spatially-downscale an hourly solar irradiance to 15 s. The 
Gaussian copula is also applied by Huang et al. [76], whereby the hourly 
clearness index is downscaled with the retainment of the original 
spectral density. Matthew and Andrew [77] incorporated the sub-hourly 
solar variability from Hummon et al. [78] to downscale the National 
Solar Radiation Database data for up to 1 min. The method is based on 
spatial patches between measured sites that represent the sky 
conditions. 

3.1.4. Non-dimensionalization of solar irradiance approach 
The non-dimensional approach uses the scaling of irradiance data by 

converting it into a non-dimensional parameter measured against time. 
In this respect, the daily irradiance of a location is divided by its clear 
sky condition to create a scale of irradiance between 0 and 1. The scaling 

process is also performed for the universal time between sunrise and 
sunset. The ratio of the elapsed universal time to the day length nor
malizes the time to values between 0 and 1. A database exists that stores 
the daily plot of the non-dimensional irradiance against the non- 
dimensional time, as is shown in Fig. 5. A minimum of one year of 
daily profiles for non-dimensional irradiance over non-dimensional time 
is required in the database for the location of interest. The hourly/daily 
data to be downscaled is then compared to the hourly/daily data of the 
database and the most similar data, i.e., the closest data possible in terms 
of the distances between the measured data to be downscaled and that in 
the database, is selected. 

To the best of the author’s knowledge, the non-dimensional 
approach of modeling daily irradiance curves was first introduced by 
Peruchena et al. [79], who modeled the clear sky conditions with a curve 
fitting. Then, the sub-hourly model was fitted into the daily curve of the 
location by calculating the closest Euclidean distance to the curve 
possible. 

The non-dimensional approach is based on the stance of the sea
sonality of the solar irradiance and the assumption that the measured 
annual data of the location can dynamically produce multiple years of 
irradiance of the same resolution as the measured data [53,80–82]. The 
methodology was applied in a desert location [80], as well as in different 
climatic zones [53], and also directly in Fernández-Peruchena et al. [83] 
and Poole and Dinter [84] to downscale the DNI. 

Larrañeta et al. [61,85] considered the non-dimensionalization of 
the irradiance by creating daily curves of non-dimensional DNI and 
non-dimensional time. The authors developed the method by Peruchena 
et al. [79] to improve its global applicability by adopting the database to 
accommodate the five major Köppen–Geiger weather classifications. 
They also employed more parameters to accommodate the variability 
index (the ratio of the length of the measured irradiance to that of the 
clear sky irradiance), distribution and energy in the database and clas
sified it using the K-nearest neighbour (KNN) machine learning method 
to find the closest distance. Drawing on the work of Larrañeta et al. [61, 
85,86], Larrañeta et al. [87] developed an ND tool [88] that downscales 
hourly DNI and GHI time series data to 1 min. This tool was applied by 
Jiménez-Valero et al. [89] as the last step in a method for synthetically 
generating the plausible meteorological years of 1 min GHI and DNI data 
from hourly datasets. The authors utilized non-parametric bootstrapping 
and an autoregressive model to synthesize the daily time series. A large 
database of multiple years was used, which was based on the DNI 
characterization by Moreno-Tejera et al. [90] for retrieving the distri
bution, variability, and energy. 

Although the method by Peruchena et al. [53,80–82] is 
location-specific or location-dependent based on the historical data of 
the location and is computationally-intensive, the method of Larrañeta 
et al. [61,85–87,89] does not require historical data. 

3.1.5. Machine learning approach 
Machine learning algorithms are mostly applied to the prediction of 

future irradiance, with only a few being applied to downscaling solar 
irradiance. Some machine learning algorithms have also been used in 
the classification of the clearness index, as well as in Larrañeta et al. 
[61], where the KNN algorithm was used to classify 1 min irradiance in 
the database to similar days. Two methods used in the literature on the 
basis of artificial neural networks (ANNs) and generative adversarial 
networks (GANs) are presented in this section. 

An ANN is a data model that is inspired by biological neural net
works, such as the human brain [91]. A huge number of 
intricately-linked processing units (neurons) make up ANNs, which 
collaborate to solve certain problems. These networks are adaptable, 
which means that they can modify their structure in response to infor
mation passing through the network, both internally and externally, 
while it is in use. Examples of the applications of ANNs include character 
recognition, face recognition, speech recognition, and 
automated-driving cars [92]. 
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ANNs can be used for the classification process of solar irradiance sky 
conditions, as shown in Fig. 6. The cloud-related properties defining the 
clearness index or satellite-based cloud parameters can be classified 
using neural networks. Based on this, a random sample is generated that 
is compared to highly-resolved data in a database. 

The ANN method was used by Schreck et al. [93] to classify the 
variability amongst satellite imagery by feeding the measured data and 
cloud parameters as the inputs of a feedforward multilayer neural 
network, which was then normalized. Every 15 min, a satellite image 
was obtained from which the cloud parameters were produced. A 
database created by Schroedter-Homscheidt et al. [94], which consists 
of minutely-resolved measured irradiance parameters representing 
some specific hours in different locations, was used. The hourly time 
series to be downscaled is matched with the 1 min time series from the 
database, which produces synthetic irradiance in minute resolution 
when multiplied by the clear sky irradiance. Rodríguez et al. [95] also 
applied a deep neural network, which is a neural network with more 
hidden layers than ANN [96] to estimate the DNI at 1 min in any loca
tion. The authors used 1-min data for the same location class, as defined 
by the Köppen-Geiger. 

A new type of network called GAN has been proposed for data 

synthesis. GANs were first developed in 2014 [97], and consist of two 
separate networks competing against each other: a generator and a 
discriminator [98], as shown in Fig. 7. The goal of GANs is to generate 
new and realistic samples from a target distribution if the original 
training data is not available [97]. A random noise z is sent to the 
generator to create synthetic data that tends to fool the discriminator. 
The discriminator detects the synthetic data and compares it with the 
high-resolution data from the measured values. GANs can be used to 
solve any tasks that can be posed as a generative modeling problem, 
such as image generation, style transfer, audio generation, and natural 

Fig. 5. (a) Measured 1 min DNI with its enveloping curve; (b) non-dimensional DNI curve reprinted from M. Larrañeta, C. Fernandez-Peruchena, M. A. Silva-Pérez, 
and I. Lillo-Bravo, "Methodology to synthetically downscale DNI time series from 1-h to 1-min temporal resolution with geographic flexibility," Solar Energy, vol. 
162, pp. 573–584, 2018 [61]. Copyright (2018), with permission from Elsevier. 

Fig. 6. Machine learning downscaling approach.  

Fig. 7. Structure of generative adversarial network.  
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language generation [99]. However, to the best of the authors’ knowl
edge, their application to weather time series generation has not yet 
been thoroughly investigated. In the field of time series generation, 
GANs have been extensively used in the data imputation of missing 
meteorological data [100–103]. However, the concept of GAN was 
applied by Tang et al. [104] to the downscaling of PV power data from 
30 min and 1 h to 5 min. To the best of our knowledge, this is the first 
application of GAN to the downscaling of time series. In the method, 
measured (fine-resolution irradiance) data was compared to the 
low-resolution (hourly or 30 min irradiance) data in the generator. In 
place of the random noise that serves as an input in the generator, a 
low-resolution irradiance was used that was compared with the 
measured irradiance in the generator. 

Renewable energy forecasting plays a vital role in shaping the future 
of clean and sustainable energy, energy management, and efficient grid 
operation [105]. The machine learning method is essential for fore
casting different time resolutions. As the future ESM relies more accu
rately on sub-hourly data [27], several authors have applied the 
machine learning approach to future prediction or forecast. For instance, 
Kreuwel et al. [106] forecasted 1 min day ahead solar irradiance from 
the coarse hourly data using the probability density function of irradi
ance. Karasu and Altan [107] also predicted solar irradiance using 
different meteorological parameters (i.e., solar radiation, temperature, 
humidity, barometric pressure, wind speed, wind direction, and sunri
se/sunset) in machine learning using a random forest to deal with 
nonlinear dynamics in the data. Several other forecasting methods have 
been detailed by Benti et al. [105] and Assaf et al. [108]. 

3.2. Wind energy 

The wind speed does not follow a specific daily profile as in the case 
of solar DNI and GHI, which exhibit a strong periodic diurnal pattern 
(see Fig. 2 (b)). As there is much less literature on wind speed down
scaling, in this section we present all existing methods without high
lighting individual approaches in the subsections. 

Even though few methods deal with the wind speed downscaling 
process, a plethora of research addresses the spatiotemporal reanalysis 
of wind speed by using high-quality observations and numerical weather 
prediction models. To address the limitations of reanalysis data and 
improve the accuracy of wind speed estimates, researchers have devel
oped dynamic downscaling methods that take into account local sub- 
diurnal meteorological effects [109]. These dynamic downscaling 
methods utilize high-resolution regional simulations for dynamically 
extending the impacts of global climate models to regions [110]. How
ever, despite their effectiveness, dynamic downscaling methods have 
certain limitations. One limitation of dynamic downscaling methods is 
their increased data requirements [111]. Another is the need for 
extensive computational resources to handle the substantial amount of 
data entailed by dynamic downscaling [111]. To overcome these limi
tations, some researchers have focused on developing statistical tem
poral downscaling methods for wind speed characteristics [111]. 

Several studies have considered the probability density function of 
wind speed, both onshore and offshore, to fit in wind speed distribu
tions. A review of the probability density function was conducted by 
Carta et al. [112], in which different wind speed probability density 
functions were fitted into statistical distributions such as gamma, Ray
leigh, Weibull, normal, inverse gaussian, and beta distributions with 
varied distribution parameters. The authors concluded that the 
two-parameter Weibull distribution is acceptable and the most widely 
used distribution based on an analysis of the goodness of fit of the cu
mulative density function of the wind data. However, it was stated that 
the Weibull distribution does not suitably model a null wind speed 
because it is defined for positive values only. Furthermore, the Weibull 
distribution is not well suited to modeling bimodal wind speed distri
butions, in which the wind speed has two distinct peaks as a result of the 
complex interactions between meteorological and topographical factors. 

After the review of Carta et al. [112], Jung and Schindler [113] also 
reviewed the wind speed distribution for papers between 2010 and 
2018, confirming the conclusion of Carta et al. [112]. In their work, they 
focused on studies with more than one fitted parametric distribution. 
The non-parametric distribution articles were not considered because of 
the similarities to the Weibull distribution. In particular, the 
two-parameter (scale and shape) Weibull distribution is widely used. 
The wakeby (five-parameter) and kappa (four-parameter) distributions 
were indicated as better distribution functions based on the goodness of 
fit, parameter estimation, and distribution. However, it is difficult to 
obtain a single distribution that can universally represent the wind 
speed distribution [113]. 

The concept of wind speed distribution was adopted by Shin et al. 
[111] to downscale the daily statistics of wind speed to 1 h and 10 min 
Weibull distributions. Carapellucci and Giordano [114] also used the 
statistical distribution of the wind speed to downscale monthly average 
wind speeds to hourly ones. The authors increased the resolution by 
creating a deterministic pattern generated using an autoregressive 
model of the first order. Deterministic and stochastic components of the 
time series were then added to fit into a Weibull distribution. Even 
though Carapellucci and Giordano [114] used statistics to model wind 
speed, Olauson et al. [115] claimed that it is inaccurate to measure wind 
speed using solely a statistical model. Some of the problems inherent to a 
purely statistical model include the complexity of wind speed, which is 
influenced by several factors including terrain, vegetation, and atmo
spheric conditions. Other problems include the non-stationarity and 
non-linearity of wind speed, its spatial variability, and dependence on a 
complex physical process. Therefore, it is advisable to not downscale 
wind speed using a purely statistical model, as it is a complex physical 
process that requires a combination of statistical, physical, and numer
ical models. Following this, Olauson et al. [115] concluded that a 
physical downscaling approach should be used that combines informa
tion from meteorological models and observational data, which can 
provide more accurate results. 

Olauson et al. [115] used the hourly data from a meteorological 
model with fluctuations from stochastic simulations. The authors 
employed the PSD of the periods to study the fluctuations. A cubic 
interpolated value from the hourly meteorological observation was 
subtracted from the ground-based values to capture the fluctuations, 
which were then adjusted to stationarity. A fast Fourier transformation 
was used to convert the result into the frequency domain on which 
appropriate magnitude and phase angle adjustments were made. The 
adjusted value was subsequently transformed using the inverse fast 
Fourier transformation. The high-resolution value is the sum of the 
interpolated value and the fluctuation. Although the method by Olauson 
et al. [115] modeled the variability, the authors assumed that the sta
tionarity approach used for the location observed would apply to every 
other location. 

The CorRES tool [116], which is a flexible simulation tool that uses 
correlation-based methods to model renewable energy systems, was 
employed by Koivisto et al. [117]. They combined meteorological data 
from reanalyses and stochastic fluctuations, as in Olauson et al. [115], to 
downscale wind speed from hourly to 15 min resolution in Koivisto et al. 
[117], or up to 5 min in Murcia Leon et al. [118]. A simple diagrammatic 
representation of the process is shown in Fig. 8. The major development 
was to capture the threshold frequency at which the reanalysis data 
captures the variability. The simulated fluctuations from the stochastic 
model were then added to the reanalysis data on the high frequencies 
(considering the threshold frequency above which the variability of the 
reanalysis data is inadequate). 

The effect of turbulence was critically considered by Schillebeeckx 
and Leroy [119]. They extended the mesoscale spectrum with a spectral 
correction of the smoothening effect, leading to an underestimation of 
the hourly variability in the weather research and forecast hourly data. 
A correction frequency was also determined, as in the case of Koivisto 
et al. [117], beyond which a correction was applied to the weather data 
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(e.g., from reanalysis datasets), in the frequency domain. A full-scale 
spectral model with turbulence at an arbitrary rate was produced in a 
microscale model. The combination of the corrected mesoscale and the 
full-spectral microscale models yields a temporally-downscaled wind 
speed time series. Kumar et al. [121] utilized a neural network with 
global climate model outputs and meteorological observations to 
downscale monthly meteorological variables (wind speed, radiations, 
pressure, humidity, precipitations, and temperature) to six-hourly data. 
However, the concept of machine learning has mostly been applied to 
wind speed for predictions [122–124]. 

4. Data validation 

Different methods for downscaling the time series of solar irradiance 
and wind speed were introduced in subsections 3.1 and 3.2. The accu
racy of the downscaled data is typically validated by comparing it with 
the real data of a location for which measured data is available. 

The most frequently used methods to compare synthetic and 
measured data in the literature are the mean squared error (MSE), 
normalized mean square error (NMSE), root mean square error (RMSE), 
normalized root mean square error (NRMSE), and the Kolmogor
ov–Smirnov integral (KSI) test. 

The MSE is a statistical measure of the accuracy of a dataset [125]. It 
can be thought of as the average amount by which the square of each 
synthetic data point differs from the measured value. The NMSE is the 
MSE that is normalized between the maximum and minimum values of 
the measured data. The MSE and NMSE can be represented mathemat
ically by Eqs. (2) and (3), respectively: 

MSE=
1
n
∑n

i=1
(yi − ŷi)2 2  

NMSE=

1
n

∑n

i=1
(yi − ŷi)2

ymax − ymin
3  

yi is the observed data, ŷi the synthetic data, ymin and ymax are the 
minimum and maximum values of the observed data, respectively, and n 
is the number of data points. 

The RMSE is a variant of the MSE, providing the root of the squared 
errors between the measured and synthetic data [126]. The RMSE is 
mathematically-related to the standard deviation of the dataset. The 
RMSE is most commonly used in the context of statistical regression, in 
which it is used to measure the accuracy of a statistical model. The 
NRMSE is the RMSE, which is normalized between the maximum and 
the minimum values of the measured data. The RMSE and NRMSE can be 

mathematically represented by Eqs. (4) and (5), respectively: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
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(yi − ŷi)2

√

4  

NRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − ŷi)2

√

ymax − ymin
5 

The NMSE and NRMSE above are normalized over the range, and can 
also be normalized over the mean and standard deviation [127]. 

The KSI is used to test for the difference in the shape of two sample 
distributions. It tests for the overall shape of the distribution or the cu
mulative distribution function and is not only related to the measure of 
tendency, a measure of dispersion, although the measures also affect the 
overall shape of the distribution. The KSI can be represented by Eq. (6) 
and encompasses taking the integral of the maximum absolute differ
ence between the two cumulative distribution functions (the measured 
time series data and the synthetic time series data) over the extreme 
values of the independent variable: 

KSI=
∫ xmax

xmin
|F(x) − G(x)| dx 6 

The F(x) is the observed data, G(x) the synthetic data, and xmin and 
xmax are the minimum and maximum values of the observed data, 
respectively, whereas the KSI can be converted into a percentage, as 
used by Fernandez-Peruchena et al. [53] and Larrañeta et al. [61], and is 
represented by Eqs. (7)–(9). 

KSI=
∫ xmax
xmin

|F(x) − G(x)|dx
acritical

7  

acritical =Vc(xmax − xmin) 8  

Vc =
1.63

̅̅̅
n

√ ; n ≥ 35 9  

Vc is referred to as the critical value, as it is sample size-dependent and n 
is the number of data points. The Vc is calculated with a 49% level of 
confidence [61]. The RMSE and mean-biased deviation (MBD) as a 
measure of dispersion and the KSI as a measure of distribution combined 
provide a good indicator of the validation [53], which makes them more 
frequently used. 

Some other validation methods include Kullback–Leibler Divergence 
(KLD), which is a mathematical method used to measure the difference 
between two probability distributions. The KLD measures the amount of 
information lost when approximating one probability distribution with 
another. The KLD has applications in the validation of synthetic irradi
ance time series [128]. Another method of time series validation is the 
overlapping coefficient (OVC), which measures the degree of overlap 
between two or more time series. It can be used to assess the correlation 
of two variables to compare the similarity of two time series. An OVC of 
one indicates that the two series are completely correlated, whereas an 
OVC of 0 indicates no correlation [128]. When comparing two distri
butions, the OVC accounts for the number of events shared by the two 
distributions under comparison, whereas the KLD assesses the number of 
events that are shared by both distributions, and both can be employed. 
The KLD and OVC are represented by Eqs. (10) and (11), respectively, as 
highlighted by Frimane and Bright [128]: 

KLD (f‖g)=
∫

F(x) log
(
F(x)
G(x)

)

dx 10  

OVC (f , g)=
∫

min [F(x),G(x)] dx 11 

The autocorrelation function can be used to study the accuracy of the 
synthetic data by examining whether there is a correlation between data 

Fig. 8. Generic flow diagram of the wind speed downscaling process as used by 
Refs. [117–119]. The power spectral density for an individual location will 
show the distribution of the wind speed to the frequency components, with the 
coherence function being calculated based on the distance between the loca
tions (more information about the coherence functions can be found in 
Sørensen et al. [120]). 
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points at different time intervals. These varying time intervals plotted 
from both the synthetic and measured data can be compared for tem
poral dependence. Furthermore, the PSD of the measured and synthetic 
data can be plotted for an accuracy comparison. The MSE or RMSE can 
then be further applied. Another metric for the PSD is the area covered 
by the logarithm of the PSDs of the synthetic and measured data [115]. 
Some other validation tests that can be used include the mean, standard 
deviation, skewness, kurtosis, R2, MBD, ramp rate, Nash–Sutcliffe effi
ciency, the Willmott index of agreement, and Legates coefficient of ef
ficiency. Several researchers have used different validation methods for 
their analyses and the most common methods used are the RMSE and 
KSI. The analysis of the validation methods is shown in the table of 
literature, Table 2. The table also displays the site dependency of each of 
the studies evaluated, which is taken as viable if the ground data of the 
location to be downscaled is required for the method. 

5. Discussion 

Sub-hourly data use in energy system models is gaining importance, 
as it helps improve forecasting and planning, as well as enabling better 
grid integration of renewable energy sources [27]. Sub-hourly data can 
be used to assess the impact of wind and solar energy production on the 
grid, including the risk of imbalances between energy supply and de
mand [21]. This information can help in the development of strategies 
for integrating renewable energy into the grid more effectively and 
support the deployment of ancillary services, such as demand response 
or energy storage to maintain grid stability [21]. Different methods have 
emerged to increase the temporal resolution of IRES, with methods for 
solar and wind time series being the two most relevant for renewable 
ESMs. The solar irradiance, DNI, and GHI have strong seasonal and 
diurnal characteristics, hence the reason why a minimum of one year of 
data is needed for the downscaling process [61]. Even though both solar 
and wind have seasonal attributes, wind speed does not have a simple 
diurnal characteristic and statistical distribution. 

Several researchers have worked on methods to increase the tem
poral resolution of IRES , a research area constantly gaining momentum, 
with a positive trend in the methods analyzed in Fig. 9(a). The stochastic 
method analyzed in the trend encompasses the Markov chain approach 
and the stochastic processes described in section 3.1.3 other than the 
Markov chain. The deterministic approach was not considered in the 
trend, because it is mostly used alongside the stochastic approach to 
create a pattern for the stochastic fluctuations. The deterministic 
approach (linear and cubic interpolations) is an easy yet ineffective 

means of downscaling. Although linear interpolation uses a linear 
relationship to fit several datasets between two irradiance data points, 
the fitted values can only lie between the two values used for the 
interpolation. Therefore, the extreme points in the data that have been 
averaged out are not captured by linear interpolation. The cubic inter
polation partially avoids this downside by using a cubic relationship that 
can yield synthesized extreme values being larger or smaller than those 
used for the fitting. Depending on the method used, the stochastic 
approach is computationally-intensive and introduces inherent un
certainties that emanate from the risks of using randomness, which may 
produce different outcomes across multiple simulations. The Markov 
approach has a good validation score for downscaling (as is shown in 
Table 2), and the results can be further improved if the irradiance 
classification incorporates more than the clearness index, as well as the 
variability index [45], so as to better represent the variability of the 
distribution (especially the low variability periods). Moreover, the 
Markov approach introduces model complexity due to the higher-order 
dependencies in the data, which yield more accurate results but require 
greater computational effort. Several models that use the Markov 
approach considered the first-order Markov model for reducing the 
approach’s complexity [40–45,52]. Even though the interrelated de
pendencies of the irradiance data can be better captured through a 
higher-order Markov model (a higher-order Markov model is described 
in Appendix C). Most authors who have used the Markov model also 
omit the seasonality and cloud effects on solar irradiance, which makes 
it non-stationary [129]. Applying a Markov model without properly 
handling the non-stationarity of the data can lead to inaccurate pre
dictions and unreliable results. As a novel method, the non-dimensional 
approach employed by Peruchena et al. [79] and further developed by 
Larrañeta et al. [61] proved promising as a result of its simplicity, 
applicability, and versatility. Larrañeta et al. [61] compared to the 
stochastic adaptation of the method by Polo et al. [63] and the 
non-dimensional approach. The authors conclude that even though the 
non-dimensional approach offers a better performance in terms of the 
distribution of the synthetic data, it is less effective with respect to 
autocorrelation and the NRMSE compared to the stochastic adaptation. 
The Köppen–Geiger weather classification database of the 
non-dimensional approach made it globally applicable. Even though it 
has a lower number of occurrences in the literature than the stochastic 
approach, the non-dimensional one is a single method, whereas the 
stochastic approach is a combination of different methods using some 
special stochastic processes. The machine learning algorithm is 
emerging and still being developed, even though several other models 

Fig. 9. (a) Trends in the literature on solar downscaling approaches comprising non-dimensional (ND), stochastic, and machine learning (ML) approaches; (b) trends 
in the sub-hourly resolution or high frequency wind speed time series literature from Scopus (https://www.scopus.com). The lines represent the number of pub
lications per year and the dotted lines are the trends of the methods. 
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have used machine learning in classifying the clearness index. Larrañeta 
et al. [61] in the non-dimensional model used KNN-supervised learning 
to classify the database for matching with the data to be downscaled. 
Machine learning was also utilized by Frimane et al. [51] for clustering 
purposes; that is, machine learning may not always be distinctly sepa
rated from other approaches. Unsupervised learning in the direction of 
neural networks is promising, as it was applied by Schreck et al. [93] and 
Tang et al. [104] with a relatively good NRMSE compared to the other 
methods analyzed (as is shown in Table 2). In addition to the machine 
learning approach described, the use of data imputation approaches for 
missing data values may also prove promising [130,131]. To further 
understand the strengths and weaknesses of the methods, the qualitative 
measures of each of the methods is shown in Table 1. The 
non-dimensional approach outperforms other approaches in terms of 
simplicity, comprehension, modular error, usage of real irradiance 
values in the synthetic data and computational expenses. 

Different methods are presented in Table 2. The data table lists the 
solar methods used in the literature, their temporal resolutions, site- 
dependence (this constitutes a yes if the ground data of the location to 
be downscaled is required for the method), and validation shows the 
different error measurements between the synthetic and measured data, 
as discussed in section 4, with their unique approaches and error mea
surements capturing solar variability. One key development in the 
future could be a better way of capturing the variability as seen in Ruiz- 
Arias and Gueymard [132], and Larrañeta et al. [61], where variability, 
distribution, energy, and dynamic threshold are used as part of the 
classification process. The non-dimensional model could also increase its 
database beyond the five major Köppen–Geiger weather classifications, 
accommodate more explanatory variables, and use a better classfication 
method in aggregating the database for improvements in the method
ology of the approach for a better synthesis. Although increasing the 
database will lead to a more computational runtime in the approach, a 
good compromise should be obtained. The non-dimensional approach 
has been shown to provide a good result in the validation metrics rela
tive to other approaches (as shown in Table 2). 

The curves in Fig. 9(b) show the plot and trend of the sub-hourly 
resolution and high-frequency wind speed time series data from the 
Scopus literature database. This suggests that even though few methods 
deal with the wind speed downscaling process, especially at the sub- 
hourly level, the concept of sub-hourly data on wind speed is gaining 
importance. Although wind data shows small intra-hour variability, in 
contrast to solar data (see Fig. 2), it requires a more complex distribution 
for an appropriate representation. The diurnal data can be represented 
by a two-factor Weibull distribution. The wind speed cannot be perfectly 
modeled by pure statistics, which is why different methods have 
therefore modeled wind speed as the combination of meteorological 
reanalysis and stochastic simulations (see section 3.2). Even though the 
PSD has been shown to give good accuracy in modeling or downscaling 
wind time series, intense work is still needed to capture wind fluctua
tion, which is turbulent at an arbitrary height. 

6. Conclusions 

The methods for increasing the temporal resolution of solar and wind 
data presented in this paper demonstrate the growing effort to simulate 

finely resolved data in the field of energy system modeling to improve 
both the accuracy and reliability of the model results. Even though a 
plethora of methods have been developed in recent years, a systematic 
literature review was, up until now, lacking. We sought to close this 
research gap by systematically assessing the methods found in the 
literature and categorizing them into Markov, non-dimensional, deter
ministic, stochastic, and machine learning approaches for solar irradi
ance. Then, conventional methods for interpolations and statistics were 
employed, as well as simulations based on power spectral density in 
wind speed time series. These methods exhibit plausible results with 
respect to their capability of mimicking and predicting the statistical 
features of the real observable time series of renewable energy sources. 
Thus, they have the potential to accurately simulate or even reproduce 
the intra-hour variability of solar irradiance and wind speed data. Such 
data can be used in future research to also make energy system models at 
the sub-hourly scale reliable and therefore close the gap between 
modeling and real system dynamics. However, it is important to note 
that each of the methods has its strengths and limitations, and further 
research is needed to fully understand the best approach for increasing 
the temporal resolution of solar irradiance and wind speed time series 
data. All things considered, the non-dimensional approach for irradiance 
is uncomplicated with global applicability, and yet a robust methodol
ogy yielded good validation scores in root mean square error and Kol
mogorov–Smirnov integral tests. Similarly, the method of combining the 
meteorological reanalysis and stochastic fluctuations for wind speed 
outperformed the conventional methods of interpolations and statistics. 

In light of these findings, the following recommendations could be 
helpful for future researchers with respect to the existing methods:  

I. As the downscaling of solar irradiance greatly depends on the 
clearness index of the irradiance, a better approach to classifying 
the clearness index and better capturing the variability could be 
employed in the models. In addition to the clearness, the vari
ability index could also be further investigated.  

II. Potential future research in the machine learning approach could 
explore options for capturing the variability through different 
indices for better reproducibility of the synthetic data. Moreover, 
the concept of data imputation using neural networks could be 
explored to fill in the assumed data gaps in the coarse time series 
data.  

III. The non-dimensional approach could be improved by using other 
classification methods. Thus far, the non-dimensional models 
have used the K-nearest neighbour algorithm to classify the 
irradiance, as in the latest work by Larrañeta et al. [61].  

IV. The power spectral density of the wind speed could also be 
further enhanced by improving the capturing of wind speed for 
different heights considering turbulence. 

More highly resolved data bases and meteorological reanalyses in the 
future will be able to capture some coarse sub-hourly data, as seen in the 
National Solar Radiation Database, Table 3, which captures data up to 
10 min intervals for some locations. This input could further improve the 
accuracy of future approaches as: 

Table 1 
Qualitative comparison of the solar downscaling approaches based on simplicity, comprehension, modular error, the use of real irradiance values in the synthetic data, 
and computational expenses.   

Simple Comprehensive Modular error Real data Computational expenses 

Deterministic Yes ☑ No ☒ No ☑ No ☒ Low ☑ 
Stochastic No ☒ Yes ☑ Yes ☒ No ☒ High ☒ 
Markov No ☒ Yes ☑ Yes ☒ No ☒ High ☒ 
Non-dimensional Yes ☑ Yes ☑ No ☑ Yes ☑ Low ☑ 
Machine learning No ☒ Yes ☑ Yes ☒ No ☒ High ☒  
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I. High-resolution data enhances the accuracy of the reviewed methods 
by capturing fine-scale variability.  

II. Meteorological models continue to advance and achieve higher 
levels of maturity and resolution, and may reach a point at which 
they completely replace the reviewed methods. This is due to the 
holistic approach they follow, which considers the spatiotemporal 
scenarios, which are underpinned by a fundamental thermodynamic 
model. 

Future research should be able to address the question of which ac
curacy indicators in the input data space (the solar and wind data) are 
relevant for energy system models, e.g., do we really need perfectly valid 
reanalyzed climate data, or is it more about the spotting of potentially 
extreme situations at the sub-hourly scale that are relevant for a robust 
system design? Therefore, the approaches can be tested in an energy 
system model for accuracy indications to observe the impact on the 
overall objective functions, parameters, and capacities. 
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Appendix A  

Table 2 
Solar methods used in the literature, their temporal resolutions, site dependence (this constitutes a ‘yes’ if the ground data of the location to be downscaled is required 
for the method), and validation shows the different error measurements between the synthetic and measured data, as discussed in section 4 (the rows with a “c” in the 
validation show the confidence limits, e.g., ‘KSI = 99%c’).  

Year Authors Renewable Temporal resolution Methods Site dependence Validation 

2010 Beyer et al. [73] DNI 1 h – 1 min Stochastic model No – 
2011 Polo et al. [63] GHI & DNI 1 h – 10 min Stochastic model No RMSE: <5% 
2013 Grantham et al. [67] DNI 1 h – 5 min Stochastic model No NRMSE: 16.3% 

MBD: 0.4% 
2013 Wey et al. [69] GHI & DNI 1 h – 10 min Stochastic model Yes RMSE: 18.6% 

KSI: <71% 
2014 Hofmann et al. [40] GHI 1 h – 1 min Markov model No RMSE: <25% 
2014 Ngoko et al. [39] GHI 1 h – 1 min Markov model No SD 

Mean 
2014 Fernandez- 

Peruchena et al. [79] 
DNI 1 h – 1 min ND model Yes KSI: ~20% 

2015 Fernandez- 
Peruchena et al. [53] 

DNI 1 h – 1 min ND model Yes NRMSE: <22% 
KSI: <23% 

2015 Fernandez- 
Peruchena et al. [80] 

DNI 1 h – 1 min ND model Yes RMSE: <22% 
KSI: <22.9% 

2015 Larra ñ eta et al. [62] GHI & DNI 1 h – 10 min Stochastic model No RMSE: 8% 
2015 Bright et al. [41] GHI 1 h – 1 min Markov model No RMSE: 1.5% 

KSI: ~99%c 
2015 Bright et al. [42] GHI 1 h – 1 min Stochastic model No KSI: ~99%c 
2016 Fernandez- 

Peruchena et al. [81] 
GHI 1 h – 1 min ND model Yes RMSE: 11.6% 

KSI: <8% 
2016 McDowell and Kummert [54] GHI 1 h – 5 min Deterministic model No RMSE: <11.4% 
2016 Perry and Troccoli [72] GHI 1 h – 1 min Stochastic model No KSI: <3.9% 
2016 Pereira et al. [60] GHI 1 h – 30min Deterministic model No - 
2016 Poole and Dinter [84] DNI 1 h – 1 min ND model Yes KSI: ~3% 
2017 Bright et al. [44] GHI & DNI 1 h – 1 min Markov model No RMSE: 1% 

KSI: 99%c 
2017 Bright J.M. [43] GHI & DNI 1 h – 1 min Markov model No RMSE: 1% 

KSI: 99%c 
2017 Grantham et al.[68] GHI & DNI 1 h – 5 min Stochastic model No NRMSE: ~2% 
2017 Fernandez- 

Peruchena et al. [83] 
DNI 3 h – 1 min ND model Yes KSI: 6% 

2018 Larra ñ eta M. [85] DNI 1 h – 1 min Stochastic and ND models No NRMSE: 3.4% 
NRMSE: 0.9% 

2018 Fernandez- Peruchena et al. [82] GHI & DNI 1 h – 1 min ND model Yes KSI: ~70% 
2018 McDowell et al. [55] GHI & DNI 1 h – 1 min Deterministic model No RMSE: <25% 
2018 Inacio and Borges [52] GHI & DNI 1 h – 1 min Markov model No KSI: 1% 
2018 Larra ñ eta et al. [61] DNI 1 h – 1 min Stochastic and ND models No NRMSE: 3.4% 

NRMSE: 0.9% 
2018 Shi et al. [50] GHI 1 h – 1 min Markov model No KSI: ~95%c 
2018 Zhang et al. [59] GHI 30 min – 1 min Stochastic model No MSE 
2019 Zhang et al. [56] GHI 30 min – 1 min Stochastic model No – 

(continued on next page) 
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Table 2 (continued ) 

Year Authors Renewable Temporal resolution Methods Site dependence Validation 

2019 Bright J.M. [45] GHI 1 h – 1 min Markov model No RMSE: <7% 
KSI: 95%c 

2019 Widén and Munkhammar [75] GHI 1 h – 15 s Stochastic model No – 
2019 Frimane et al. [51] GHI 10 min – 1 min Markov model No NRMSE: <4% 
2019 Larra ñ eta et al. [86] GHI & DNI 1 h – 1 min ND model No RMSE 

KSI: 5.8% 
2020 Schreck et al. [93] GHI & DNI 1 h – 1 min Machine learning No – 
2020 Keeratimahat et al. [71] GHI & DNI 1 h – 4 s Stochastic model No KSI: <80% 
2020 Frimane et al. [70] GHI 1 h – 1 min Stochastic model No KLD 

OVC 
2021 Tang et al. [104] PV/load power 30 min or 1 hr – 5 min Machine learning No NRMSE: 0.3% 
2021 Martins et al. [47] GHI 1 h – 1 min Markov model No MSE: 1.5% 
2021 Buster et al. [57] GHI & DNI 30 min – 1 min & 5 min Deterministic model No RMSE: <31.6% 
2021 Zhang et al. [74] GHI 30 min – 1 min Stochastic model No Autocorrelation: 95% 
2022 Larra ñ eta et al. [87] GHI & DNI 1 h – 1 min ND model No KSI 
2022 Jim é nez-Valero et al. [89] GHI & DNI 1 h – 1 min ND model No KSI 
2022 Huang et al. [76] GHI 1 h – 1 min Stochastic model No – 
2022 Ruiz-Arias J.A. [64] GHI 1 h – 1 min Deterministic model No – 
2022 Munkhammar and Widén [48,49] GHI 1 h – 1 min Markov model Yes KSI 
2023 Kreuwel et al. [106] GHI 1 h – 1 min Machine learning No – 
2023 Balog et al. [65] GHI 1 h – 1 min Deterministic model No MBD: 0.4% 

RMSE: 31.8%  

Appendix B  

Table 3 
Different open access meteorological databases, their temporal resolutions, and regions.  

Name Database License Temporal 
resolution 

Years Renewables Developers Regions 

Renewable ninja 
[133,134] 

NASA MERRA-2 
reanalysis CM- 
SAF’s 
SARAH dataset 

CC BY-NC 4.0 1 h 2000–2018 Solar and 
Wind 

ETH Zurich and the Imperial 
College of London 

Global 

EMHIRES [135] MERRA-1 European commission 
reuse 

1 h 1986–2015 Solar and 
Wind 

European union EU-28 

Open power system 
data [136] 

ENTSO-E Creative Commons 
Attribution 4.0 
International 

15 min 2015–2020 Solar and 
Wind 

Neon Neue 
Energiëokonomik TU Berlin 
ETH Zürich 
DIW Berlin 

Europe 

ERA5 
Reanalysis [137] 

ERA5 Creative Commons 
Attribution 4.0 

1 h 1950–2020 Solar and 
Wind 

University of Reading NCAS Europe 

MERRA2 
Derived [138] 

MERRA-2 Creative Commons 
Attribution 4.0 
International 

1 h 1980–2018 Solar and 
Wind 

University of Reading Europe 

C3S [139] ECMWF 
ERA5 

ECMWF Copernicus 
License 1.0 

1 h 1979–2022 Solar and 
Wind 

– Europe 

NREL NSRDB [58] NREL’s PSM 
NOAA’s GOES 
NIC’s IMS 
NASA’s MODIS 
MERRA-2 

Creative Commons 
Attribution 3.0 United 
States License 

5 min to 1 h 
(region 
dependent) 

1998–2021 
(region 
dependent) 

Solar and 
Wind 

NREL Global 

PECD (2021 
update) for 
ENTSO-E [140] 

ERA5 and Global 
Wind Atlas 
version 2 

CC BY 4.0 1 h 1982–2019 Solar and 
Wind 

Technical University of 
Denmark, Department of Wind 
and Energy Systems 

Europe +
neighboring 
regions  

Appendix C. Markov Chain 

A Markov chain is a mathematical method that can be used to produce a probabilistic model for a stochastic process. The Markov property is 
exhibited if the probability distribution of the future states of a process is conditionally-independent of the past of the process, other than the present 
[141]. The Markov property is also known as the memoryless property of a stochastic process. In the equation below, a process X with 
(Xt+1, t= 0, 1,2, ...) will be in state j at time t if Xt+1 = j. Mathematically: 

Pij =P(Xt+1 = j|X1 = x1,X2 = x2, ...,Xt = x0) Eq. C. 1  

Pij =P(Xt+1 = j|Xt = i) Eq. C. 2  

where Pij is the transition probability of the process from i to j with the assumption of the immediate future state depending on the present one. In other 
words, the present event depends only on the immediate past event. Eq. (C. 3) represents the first-order Markov process. In a condition in which the 
present event depends on the immediate past event and the one before, it is referred to as the second order Markov process, and so on. 
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Pij =P(Xt = j|Xt− 1 = i) Eq. C. 3 

Eq. (C. 4) shows the probability of a process at state k depending only on the event of t-1, at state i, and t-2 at state j. Depending on the probability of 
an event linking i, j, and k, a Markov transition matrix or transition probability matrix is constructed that is an n × n dimensional matrix with n 
representing the number of states. The Markov transition matrix linking the states of m (1, 2, …,n) can be represented according to Ref. [39]: 

Pijk =P(Xt = k|Xt− 1 = i,Xt− 2 = j) Eq. C. 4 

The matrix above is in the first-order Markov process. The higher order Markov process for reaching state i from j is obtained by Eq. (C. 5): 

Pijk(n)=Anij Eq. C. 5 

This means that the higher order is obtained by taking the power of the Markov transition matrix in that order. It is possible to move from state i to j 
with an intermediate stop at k after r steps by using the Chapman–Kolmogorov theorem, which is possible through the exploitation of Markov’s 
property. 

The hidden Markov model is a type of machine learning algorithm that can be used to predict the future behavior of a sequence of events. It is a 
probabilistic model that can be used to model a variety of sequential events including text processing, speech recognition, and vision recognition. A 
hidden Markov model uses probabilistic distributions to model different states of a system at each step in a sequence. These states are known as hidden 
states, the probability of each determining whether the system is in a particular state at a given time. The system transitions from one state to another 
based on the state probabilities and the current state, whereas the probabilities are represented by the Markov transition matrix. To generate the 
prediction of a hidden Markov model, the identification of the probability distribution of the hidden states of the system over time is needed. For this, a 
hidden Markov model must be fitted to the data that represents the sequence of observations of the system over a period of time. If there are sets of 
hidden variables X1,X2,…,Xn and observed variables Y1,Y2,…,Yn, we can obtain the probability of X given Y: 

P=P(X1,X2,…,Xn|Y1,Y2,…,Yn) Eq. C. 6 

This can then be converted using Baye’s theorem: 

P=
P(Y|X)
P(X)P(Y)

Eq. C. 7  
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[90] Moreno-Tejera S, Silva-Pérez MA, Ramírez-Santigosa L, Lillo-Bravo I. 
Classification of days according to DNI profiles using clustering techniques. Sol 
Energy 2017;146:319–33. https://doi.org/10.1016/j.solener.2017.02.031. 

[91] Zou J, Han Y, So S-S. Overview of artificial neural networks. Artif Neural 
Networks 2008:14–22. https://doi.org/10.1007/978-1-60327-101-1_2. 

[92] Dastres R, Soori M. Artificial neural network systems. Int J Imag Robot 2021;21: 
13–25 [Online]. Available: https://hal.science/hal-03349542. 

[93] Schreck S, Schroedter-Homscheidt M, Klein M, Cao K-K. Satellite image-based 
generation of high frequency solar radiation time series for the assessment of 
solar energy systems. Meteorol Z 2020. https://doi.org/10.1127/metz/2020/ 
1008. 

[94] Schroedter-Homscheidt M, Kosmale M, Jung S, Kleissl J. Classifying ground- 
measured 1 minute temporal variability within hourly intervals for direct normal 
irradiances. Meteorol Z 2018;27:161–79. https://doi.org/10.1127/metz/2018/ 
0875. 

[95] Rodríguez E, Cornejo-Ponce L, Cardemil JM, Starke AR, Droguett EL. Estimation 
of one-minute direct normal irradiance using a deep neural network for five 
climate zones. Renew Sustain Energy Rev 2023;183:113486. https://doi.org/ 
10.1016/j.rser.2023.113486. 

[96] Mostafa BM, El-Attar N, Abd-Elhafeez S, Awad W. Machine and deep learning 
approaches in genome: review article. Alfarama J Basic & Appl Sci 2021;2(1): 
105–13. https://doi.org/10.21608/ajbas.2020.34160.1023. 

[97] Goodfellow I, et al. Generative adversarial networks. Commun ACM 2020;63: 
139–44. https://doi.org/10.1145/3422622. 

[98] Lu Y, Chen D, Olaniyi E, Huang Y. Generative adversarial networks (GANs) for 
image augmentation in agriculture: a systematic review. Comput Electron Agric 
2022;200:107208. https://doi.org/10.1016/j.compag.2022.107208. 

[99] Alqahtani H, Kavakli-Thorne M, Kumar G. Applications of generative adversarial 
networks (gans): an updated review. Arch Comput Methods Eng 2021;28:525–52. 
https://doi.org/10.1007/s11831-019-09388-y. 

[100] Brophy E, Wang Z, She Q, Ward T. Generative adversarial networks in time series: 
a survey and taxonomy. arXiv preprint arXiv:2107.11098, https://doi.org/10.4855 
0/arXiv.2107.11098; 2021. 

[101] Chen Y, Li P, Zhang B. Bayesian renewables scenario generation via deep 
generative networks. In: 2018 52nd annual conference on information sciences 
and systems (CISS); 2018. p. 1–6. https://doi.org/10.1109/CISS.2018.8362314. 

[102] Chen Y, Wang Y, Kirschen D, Zhang B. Model-free renewable scenario generation 
using generative adversarial networks. IEEE Trans Power Syst 2018;33:3265–75. 
https://doi.org/10.1109/TPWRS.2018.2794541. 

[103] Fan H, Zhang X, Mei S. "Wind power time series missing data imputation based on 
generative adversarial network,". In: 2021 IEEE 4th international electrical and 
energy conference (CIEEC); 2021. p. 1–6. https://doi.org/10.1109/ 
CIEEC50170.2021.9510923. 

[104] Tang R, Dore J, Ma J, Leong PHW. Interpolating high granularity solar generation 
and load consumption data using super resolution generative adversarial 
network. Appl Energy 2021;299:117297. https://doi.org/10.1016/j. 
apenergy.2021.117297. 

[105] Benti NE, Chaka MD, Semie AG. Forecasting renewable energy generation with 
machine learning and deep learning: current advances and future prospects. 
Sustainability 2023;15(9):7087. https://doi.org/10.3390/su15097087. 

[106] Kreuwel FP, Knap W, Schmeits M, de Arellano JV-G, van Heerwaarden CC. 
Forecasting day-ahead 1-minute irradiance variability from numerical weather 

predictions. Sol Energy 2023;258:57–71. https://doi.org/10.1016/j. 
solener.2023.04.050. 

[107] Karasu S, Altan A. Recognition model for solar radiation time series based on 
random forest with feature selection approach. In: 2019 11th international 
conference on electrical and electronics engineering (ELECO). IEEE; 2019. 
p. 8–11. https://doi.org/10.23919/ELECO47770.2019.8990664. 

[108] Assaf AM, Haron H, Abdull Hamed HN, Ghaleb FA, Qasem SN, Albarrak AM. 
A review on neural network based models for short term solar irradiance 
forecasting. Appl Sci 2023;13(14):8332. https://doi.org/10.3390/app13148332. 
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