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Abstract
In this paper we introduce the concept of infinite pointwise dense lineability (spaceability),
and provide a criterion to obtain density from mere lineability. As an application, we study
the linear and topological structures within the set of infinite differentiable and integrable
functions, for any order p ≥ 1, on R

N which are unbounded in a pre-fixed set.

Keywords Lineability · Spaceability · Pointwise lineability · Differentiable · Unbounded ·
Integrable
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1 Introduction

Lineability, introduced by Gurariy [11], studies the existence of linear structures within
sets with nonlinear properties. Formally, a subset M of a vector space X is α-lineable if
M ∪{0} contains an α-dimensional subspaceW of X , where α denotes any cardinal number.
If additionally X is endowed with a topology and W is dense in X (respectively, closed) we
say that M is α-dense lineable (respectively, α-spaceable) in X .

In the last years many examples about the existence of such structures have been provided
(see [1, 6]).

Calderón-Moreno and Prado-Bassas have been partially supported by the Plan Andaluz de Investigación de
la Junta de Andalucía FQM-127 and by FEDER grant US-1380969.

B J. A. Prado-Bassas
bassas@us.es

M. C. Calderón-Moreno
mccm@us.es

P. J. Gerlach-Mena
gerlach@us.es

1 Departamento de Análisis Matemático and Instituto de Matemáticas IMUS, Facultad de
Matemáticas, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

2 Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de
Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13398-023-01525-4&domain=pdf
http://orcid.org/0000-0002-5670-5400


   25 Page 2 of 13 M. C. Calderón-Moreno et al.

In fact, the search was initially for the existence of linear structures in specific cases
of known spaces such as, for example, continuous nowhere differentiable functions [13],
everywhere surjective functions [2] or p-integrable functions that are not q-integrable for
any q ≤ p [5].

Recently, there has been a shift towards searching for more general results related to new
linear behaviors, such as vector spaces containing any pre-fixed vector or algebraic structures
of higher dimension than a given one. Furthermore, these results often comewith applications
to specific cases. Some of the results obtained in this regard can be found in [8, 10, 16, 17].

To bemore concrete, Pellegrino andRaposo [18] introduced a pointwise type of lineability
as follows:

A subset M of a (topological) vector space X is called pointwise α-(dense) lineable if for
each x ∈ M , there is a (dense) α-dimensional subspace Wx such that

x ∈ Wx ⊂ M ∪ {0}.
If Wx is a closed α-dimensional subspace, we say that M is pointwise α-spaceable. If α =
dim(X), we say that M is maximal pointwise (dense) lineable (spaceable). It is clear that
these pointwise notions imply the respective first ones, and that both concepts of (pointwise)
dense lineability and spaceability are (strictly) stronger than mere lineability. Moreover there
are only a few results which provide some (sufficient) additional conditions to “jump” to
density or spaceability from lineability.

In this paper we introduce the concept of infinite pointwise (dense) lineability (spaceabil-
ity), which relates to the existence of infinitely many vector spaces of infinite dimension with
the above definitions. Within these, we provide criteria that allow us to obtain denseness of
the corresponding vector spaces from mere lineability, which will be a helpful tool to obtain
existence of large linear structures within certain families of functions.

As an application, we consider the family of infinitely differentiable, integrable functions
on R

N which are unbounded on a pre-fixed set, and we show its maximal infinite pointwise
(dense) lineability, as well as its spaceability.With this we continue and complete a number of
previous and recent results about the set of continuous, unbounded and integrable functions
on [0,+∞) (see [7, 9]).

2 Infinite pointwise lineability: main definitions and general criteria

Inspired by [14, 15], and the notion of pointwise α-lineability we introduce the following
definition.

Definition 2.1 Let X be a vector space, α an infinite cardinal number and M ⊂ X .

1. We say that M is infinitely pointwise α-lineable if, for every x ∈ M , there exists a family
M = {Wk}k∈N of vector subspaces such that for each k ∈ N:

(i) dim(Wk) = α,
(ii) x ∈ Wk ⊂ M ∪ {0}, and
(iii) Wk ∩ Wl = span{x} for any l ∈ N with l 	= k.

2. If additionally X is endowed with a topology and each vector space Wk ∈ M (k ∈ N) is
dense in X , we say that M is infinitely pointwise α-dense lineable in X .

It is not difficult to get infinite vector subspaces from a vector space of infinite dimension.
Indeed, we have only to divide it in an adequate way. So α-lineability implies “infinite"
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α-lineability. The same property happens to be true for the pointwise case. Let us include, in
order to be self-contained, the proof of this.

Proposition 2.1 Let X be a vector space, α ≥ ℵ0, and M ⊂ X. Then M is pointwise
α-lineable if, and only if, it is infinitely pointwise α-lineable.

Proof The only if part is obvious since, in general, infinitely pointwise notions imply ordinary
pointwise notions. So let us proof the if part.

SinceM ⊂ X is pointwiseα-lineable, for each x ∈ M there is a vector spaceW ⊂ M∪{0}
such that dim(W ) = α and x ∈ W . So, there exists a set I with card(I ) = α and {ωi : i ∈ I }
such that x and ωi ’s are linearly independent andW = span({ωi : i ∈ I }∪ {x}). Now, since
α ≥ ℵ0, we can split I into infinitely many pairwise disjoint subsets Ik (k ∈ N), each one
with cardinality α. Thus, by considering the vector spaces Wk given by

Wk := span ({ωi : i ∈ Ik} ∪ {x}) ,

we have that Wk ⊂ M ∪ {0}, dim(Wk) = α for every k ∈ N and, because of the linear
independence of x and ω′

i s, Wk ∩ Wl = span{x} for all k 	= l, and so the infinite pointwise
α-lineability of M is proved. �
Remark 2.2 Observe that from the above proof we have that if a set M is infinitely pointwise
α-lineable then for any x ∈ M there exists a family M = {Wk}k∈N of vector spaces satis-
fying conditions (i), (ii) and (iii) of Definition 2.1(a), and additionally the following fourth
condition:

Wk + Wl ⊂ M ∪ {0} for any k, l ∈ N.

The case of dense-lineability is not so clear, since denseness may not be inherited by the
infinitely many vector spaces constructed. Recall that (see [3, Definition 2.1] or [4, Theorem
2.1]) if M and N are subsets of some vector space X , then M is said to be stronger than N
if M + N ⊂ M .

Theorem 2.3 Let X be a metrizable separable topological vector space, and α be an infinite
cardinal number, and M be a nonempty subset of X for which there is a nonempty subset N
of X such that

(i) M is stronger than N;
(ii) M ∩ N = ∅;
(iii) N is dense-lineable.

If M is pointwise α-lineable, then M is infinite pointwise α-dense lineable (and therefore
pointwise α-dense lineable).

Proof Since X is separable there exists a sequence (xn)n ⊂ X such that the set {xn : n ∈ N}
is dense in X , where we can assume without loss of generality that x1 = 0.

Now, since M is pointwise α-lineable, by Proposition 2.1 it is infinitely pointwise α-
lineable. Hence, for every x ∈ M , there exists a familyM = {Wk}k∈N of vector spaces such
that x ∈ Wk ⊂ M ∪ {0} with dim(Wk) = α for every k ∈ N, and Wk ∩ Wl = span{x} for
every k 	= l. By Remark 2.2, we assume that Wk + Wl ⊂ M ∪ {0} for any k, l ∈ N.

Since each Wk is a vector space, for each k ∈ N there exists a linearly independent set
{ω(k)

i : i ∈ I } with card(I ) = α and 1 ∈ I such that

Wk = span{ω(k)
i : i ∈ I },
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where we can assume without loss of generality that ω(k)
1 = x for every k ∈ N.

Due to the fact that α is an infinite cardinal, we can split I into infinitely many pairwise
disjoint nonempty sets In (n ∈ N), where 1 ∈ I1.

Now, fix k, n ∈ N and i ∈ In . Since multiplication by scalars is a continuous operation in
a topological vector space, there exists ε

(k)
i > 0 such that

d(ε
(k)
i ω

(k)
i , 0) <

1

n
,

where d denotes a fixed translation invariant metric on X .
On the other hand, N is dense lineable in X , so there exists a vector subspace V ⊂ N ∪{0}

with V dense in X . Now, for each n ∈ N, the denseness of V guarantees the existence of
vn ∈ V such that

d(vn, xn) <
1

n
,

where we can choose v1 := 0 (recall that x1 = 0).
Now, define the elements x (k)

n,i as follows:

x (k)
n,i := vn + ε

(k)
i ω

(k)
i , k, n ∈ N, i ∈ In,

so that we consider the vector space W (k) generated by them, that is:

W (k) := span{x (k)
n,i : n ∈ N, i ∈ In}.

We will show that for every k ∈ N, x ∈ W (k), W (k) is dense in X , W (k) ⊂ M ∪ {0},
dim(W (k)) = α and W (k) ∩ W (l) = span{x} for any l ∈ N with l 	= k.

From now on, let k ∈ N fixed.

(1) Since 1 ∈ I1 we have that:

v1 + ε
(k)
1 ω

(k)
1 = ε

(k)
1 ω

(k)
1 = ε

(k)
1 x ∈ W (k).

Thus,

x = ω
(k)
1 = 1

ε
(k)
1

(v1 + ε
(k)
1 ω

(k)
1 ) ∈ W (k).

(2) Now, in order to prove the density of W (k) in X , let us fix n ∈ N and take some in ∈ In .
By considering u(k)

n := x (k)
n,in

, we have that

d(u(k)
n , xn) ≤ d(u(k)

n , vn) + d(vn, xn)

= d(vn + ε
(k)
in

ω
(k)
in

, vn) + d(vn, xn)

= d(ε
(k)
in

ω
(k)
in

, 0) + d(vn, xn)

<
1

n
+ 1

n
= 2

n
→ 0 (n → ∞).

Since (xn)n is dense in X , we get that (u(k)
n )n is also dense in X , and the same holds true

for W (k).
(3) Fix ω ∈ W (k) \ {0}. There are scalars c1, c2, . . . , cs with cs 	= 0, as well as indices

ir ∈ Ir (r = 1, 2, . . . , s), such that

ω = c1x
(k)
1,i1

+ c2x
(k)
2,i2

+ · · · + cs x
(k)
s,is

.
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But by the definition of (x (k)
n,i )n,i we have that

ω = y0 + z(k)0 ,

where

y0 := c1v1 + c2v2 + · · · + csvs,

z(k)0 := c1ε
(k)
i1

ω
(k)
i1

+ c2ε
(k)
i2

ω
(k)
i2

+ · · · + csε
(k)
is

ω
(k)
is

.

Recall that v1, v2, . . . , vs ∈ V , which is a vector space, so y0 ∈ V ⊂ N ∪ {0}. Anal-
ogously, ω

(k)
i1

, ω
(k)
i2

, . . . , ω
(k)
is

∈ Wk , they are linearly independent, and csε
(k)
is

	= 0,

so z(k)0 ∈ Wk\{0} ⊂ M . If y0 = 0, then ω = z(k)0 ∈ M . If y0 	= 0, then

ω = y0 + z(k)0 ∈ N + (Wk\{0}) ⊂ N + M ⊂ M because M is stronger than N ,
and we have W (k) ⊂ M ∪ {0}.

(4) Let us show now that dim(W (k)) = α. For this, it is clear that

card
({(n, i) : n ∈ N, i ∈ In}

) = card

( ∞⋃

n=1

In

)

= card(I ) = α.

So, if we prove that the vectors of {x (k)
n,i : n ∈ N, i ∈ In} are linearly independent we are

done. Indeed, assumebyway of contradiction that c1x
(k)
1,i1

+c2x
(k)
2,i2

+· · ·+cs x
(k)
s,is

= 0with

cs 	= 0. As done before (and following the same notation), we have that y0 + z(k)0 = 0,

where y0 ∈ V and z(k)0 ∈ Wk \ {0}. But then, y0 = −z(k)0 ∈ Wk\{0}, sinceWk is a vector
space. Hence, we have that

y0 ∈ (
Wk \ {0}) ∩ V ⊂ M ∩ N = ∅,

which is a contradiction.
(5) It only remains to prove that W (k) ∩ W (l) = span{x} for every l 	= k. With this aim, let

ω ∈ W (k) ∩ W (l). Since ω is in each of the vector spaces, we can write it as:

ω = α · x (k)
1,1 +

p∑

s=1

αs x
(k)
ns ,is

= α · ε1 +
p∑

s=1

αsvns +
p∑

s=1

αsε
(k)
is

ω
(k)
is

,

ω = β · x (l)
1,1 +

q∑

r=1

βr x
(l)
nr , jr

= β · ε1 +
q∑

r=1

βrvnr +
q∑

r=1

βrε
(l)
jr

ω
(l)
jr

,

where (ns, is) 	= (1, 1) 	= (nr , jr ) for any s, r . Hence
p∑

s=1

αsvns −
q∑

r=1

βrvnr = (β − α)ε1x +
q∑

r=1

βrε
(l)
jr

ω
(l)
jr

−
p∑

s=1

αsε
(k)
is

ω
(k)
is

.

Observe that the left hand side is in V ⊂ N ∪{0}, and the right hand side is inWk +Wl ⊂
M ∪ {0}, and since M ∩ N = ∅, each term of the above equality must be zero. So,

αε1x +
p∑

s=1

αsε
(k)
is

ω
(k)
is

= βε1x +
q∑

r=1

βrε
(l)
jr

ω
(l)
jr

=: γ · x,

because the left hand side is inWk , the right hand is inWl andWk ∩Wl = span{x}.Now,
ε’s are nonnull and the linear independence of the x , ω(k)

i ’s and of the x , ω(l)
j ’s, gives us

α = β = γ
ε1
, and αs = 0 = βr . Thus, c = γ · x ∈ span{x}, as required. �
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Remark 2.4 Observe that, under the hypotheses of the above theorem, (pointwise) α-dense
lineability implies infinite (pointwise) α-dense lineability. In fact, although there exist many
examples of dense-lineable sets M , for many of them there exists a set N enjoying conditions
(i), (ii) and (iii) of Theorem 2.3 (see [1, §7.3]).

Up to now, we do not know if this fact remains true for a general dense-lineable set M in
a general topological vector space X . So, we propose the following question.

Open Problem 1 Let X be a topological vector space and M ⊂ X be a (pointwise) α-dense
lineable set. Is M always infinite (pointwise) α-dense lineable?

3 Linear and topological structures of the set of continuous,
unbounded and integrable functions on R

N

Let N ∈ N. Throughout this section, we use the following notation:

(1) C∞(RN ) represents the set of all real functions on R
N that are infinitely many times

differentiable on R
N . This becames a Fréchet space when endowed with the topology of

uniform convergence on compacta for all partial derivatives of all orders, see [12].
(2) L p(RN ) (p ∈ [1,+∞)) denotes the vector space of all (classes of) functions R

N → R

that are p-integrable Lebesgue on R
N . This becomes a Banach space under the p-norm

|| f ||L p :=
(∫

RN
| f |p dx1 · · · dxN

)1/p

.

(3) For each multi-index α = (α1, . . . , αN ) ∈ (N ∪ {0})N , we set |α| := α1 + · · · + αN .
(4) For each x ∈ R

N , ||x || will stand for the classical euclidean norm on R
N .

From now on we consider the space of functions X given by

X := C∞(RN ) ∩
⋂

p≥1

L p(RN ).

Observe that the formula

|| f ||m = max|α|≤m
sup

||x ||≤m
|Dα f (x)| ( f ∈ C∞(RN ), m = 1, 2, . . . )

defines an increasing sequence of seminorms generating the natural Fréchet topology of
C∞(RN ). Here Dα denotes the partial differential operator of order α. With this and the fact
that L p(RN ) ∩ Lq(RN ) ⊂ Lr (RN ) whenever 1 ≤ p ≤ r ≤ q < +∞, we can consider a
natural translation invariant metric dX in X given by:

dX ( f , g) :=
∞∑

m=1

1

2m
· || f − g||m
1 + || f − g||m +

∞∑

p=1

1

2p
· || f − g||L p

1 + || f − g||L p
.

We have that (X , dX ) is a Fréchet space and convergence in dX is equivalent to uniform
convergence on compacta for all partial derivatives of all orders and convergence in p-norm
for every p ∈ [1,+∞).

In this space of functions X we shall search for unbounded functions in a pre-fixed not
relatively compact subset A ⊂ R

N . Let us show first that we can always find such a function.
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Example 3.1 Let A ⊂ R
N be a not relatively compact set inR

N . Then there exists a sequence
(an)n ⊂ A such that ‖an‖ strictly increases to +∞ (n → ∞), and ‖an+1 − an‖ > 1.
Therefore, the closed balls B(an,

1
2n ) are pairwise disjoint for every n ∈ N. Now, by the

Smooth Urysohn’s Lemma [19, Corollary 1.7.1], there exist bump functions �n : R
N → R

such that for each n ∈ N:

(a) �n ∈ C∞(RN ),
(b) �n(x) ∈ [0, 1] for all x ∈ R

N ,
(c) �n(x) = 0 for all x /∈ B(an,

1
2n ), and

(d) �n(x) = 1 for all x ∈ B(an,
1

2n+1 ).

In particular, since each�n is bounded and has compact support, we have that�n ∈ L p(RN )

for every p ≥ 1, and so �n ∈ X for each n ∈ N. Now, consider the function

w(x) :=
∞∑

n=1

n�n(x), x ∈ R
N .

Since the supports of the �n’s are pairwise disjoint, the expression of w does not actually
represent an infinite series, but rather each one of the bump functions, that is:

w(x) =
{
n�n(x) if x ∈ B(an,

1
2n ), n ∈ N,

0 otherwise.

Thus, w ∈ C∞(RN ). Moreover,

‖w‖p
L p =

∞∑

n=1

n‖�n‖p
L p ≤

∞∑

n=1

n
1

2nN
< +∞,

so w ∈ L p(RN ) for all p ≥ 1. Thus w ∈ X . Finally, w is unbounded on A. Indeed,

|w(an)| =
∣∣∣∣∣

∞∑

m=1

m�m(an)

∣∣∣∣∣
= n�n(an) = n → +∞ (n → ∞).

From now on, given a not relatively compact subset A in R
N , we denote:

nBC∞ I (A) := { f ∈ X : f is unbounded in A}.
The main result of this section shows that this set is not only nonempty but even maximal
pointwise spaceable. Recall that dim(X) = c. We will explicitly construct the closed vector
space.

Theorem 3.2 Let A be not relatively compact in R
N . Then the set nBC∞ I (A) is pointwise

c-spaceable in (X , dX ).

Proof Let f ∈ nBC∞ I (A) be fixed. There exists a sequence (an)n ⊂ A such that f (an) →
∞ as n → ∞. Without loss of generality we can assume that (‖an‖)n is strictly increasing
to infinity, ‖an+1 − an‖ ≥ 1 and | f (an)| > 1 for all n ∈ N.

For each n ∈ N, by considering the closed balls,

B1,n := B

(
an,

1

| f (an)|1/N2n+1

)
,

B2,n := B

(
an,

1

| f (an)|1/N2n+2

)
,

the Smooth Urysohn’s Lemma provides a bump function �n ∈ C∞(RN ) such that:
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(a) �n(x) ∈ [0, 1] for all x ∈ R
N ,

(b) �n(x) = 0 for all x /∈ B1,n , and
(c) �n(x) = 1 for all x ∈ B2,n .

In particular,

‖�n‖p
L p ≤ 2N

(
1

| f (an)|1/N2n+1

)N

= 1

| f (an)| · 2nN < 1,

and �n ∈ L p(RN ) for every p ≥ 1. Then the �n’s are in X and the supports are pairwise
disjoint.

Now, we consider a partition of N into infinitely many pairwise disjoint subsequences:

N = { j(n) : n ∈ N} ∪
∞⋃

k=1

{i(n, k) : n ∈ N},

where the sequences ( j(n))n and (i(n, k))n,k are strictly increasing in n and k.
For each k ∈ N, we define the functions fk : R

N → R by

fk(x) :=
∞∑

n=1

f (ai(n,k))�i(n,k)(x).

Observe that, as the supports of �i(n,k)’s are pairwise disjoint, for each x ∈ R
N , there exists

a neighbourhood U of x , and n0, k0 ∈ N such that:

fk(x) = f (ai(n0,k0))�i(n0,k0)(x), x ∈ U .

So, fk ∈ C∞(RN ) for all k ∈ N, and if we compute its L p-norm, we obtain that

‖ fk‖p
L p =

∞∑

n=1

| f (ai(n,k))|‖�i(n,k)‖p
L p

≤
∞∑

n=1

| f (ai(n,k))|
(

1

| f (ai(n,k))|1/N2i(n,k)

)N

=
∞∑

n=1

1

2i(n,k)N
≤

∞∑

n=1

1

2nN
≤ 1.

Hence, fk ∈ L p(RN ) for each p ≥ 1, and fk ∈ X (k ∈ N). Furthermore, for each k ∈ N,

| fk(ai(n,k))| = | f (ai(n,k))| → +∞ (n → ∞).

Thus, the sequence of functions ( fk)k ⊂ nBC∞ I (A).
Let �1 be the Banach space of all 1-summable real sequences. Now, we can define the

operator T : �1 → nBC∞ I (A) ∪ {0} given by

T ((αk)
∞
k=0) := α0 f +

∞∑

k=1

αk fk .

Indeed, since the supports of the fk’s are pairwise disjoint, given x0 ∈ R
N , there exists

k0 ∈ N, and a neighbourhood of x0 where

T ((αk)k)(x) = α0 f (x) + αk0 fk0(x),
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so T ((αk)k) ∈ C∞(RN ). On the other hand,

‖T ((αk)k)‖L p ≤ |α0| · ‖ f ‖L p +
∞∑

k=1

|αk | · ‖ fk‖L p

≤ |α0| · || f ||L p +
∞∑

k=1

|αk | < ∞.

It is clear that T ((0, 0, . . . )) = 0, If (αk)k is not the null sequence, then T ((αk)k) is not
bounded in A because either α0 	= 0, and then

|T ((αk))(a j(n))| = |α0|| f (a j(n))| + 0 → +∞ (n → ∞);
or α0 = 0, and then there exists k0 ∈ N such that αk0 	= 0 and

|T ((αk)k)(ai(n,k0))| = |αk0 || f (ai(n,k0))| → +∞ (n → ∞).

Thus the operator T is well defined and injective. Then, for the vector subspace

W f := T (�1)

we have

f = T ((1, 0, 0, . . .)) and dim(W f ) = c.

Observe that this shows that nBC∞ I (A) is pointwise c-lineable.
Now, to get the pointwise c-spaceability it is enough to show that the closure W f of W f

in (X , dX ) satisfies that

W f \{0} = T (�1)\{0} ⊂ nBC∞ I (A).

For this, consider h ∈ T (�1)\{0}. Then, there exists (Hl)l ⊂ W f \{0} such that Hl → h as
l → ∞ in (X , dX ). So, for each l ∈ N we can write:

Hl = αl
0 f +

∞∑

k=1

αl
k fk .

Since (Hl)l converges to h on (X , dX ), we have convergence on compacta in R
N . Therefore,

for each n ∈ N, by considering the singleton (actually compact set) {a j(n)} we have that:
Hl(a j(n)) = αl

0 f (a j(n)) → h(a j(n)) (l → ∞),

and

αl
0 → h(a j(n))

f (a j(n))
=: α0 (l → ∞).

Hence,

h(a j(n)) = lim
l→∞ Hl(a j(n)) = α0 f (a j(n)).

Now, we arrive at two possible situations depending on α0:

(i) If α0 	= 0 we are done, since |h(a j(n))| → ∞ as n → ∞, and then h ∈ nBC∞ I (A).
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(ii) If α0 = 0, let us fix k0 ∈ N. For each n ∈ N, consider the compact set Kn given by

Kn := B1,i(n,k0) = B

(
ai(n,k0),

1

| f (ai(n,k0))|1/N2i(n,k0)+1

)
.

For every x ∈ Kn we have:

Hl(x) = αl
0 f (x) +

∞∑

k=1

αl
k fk(x) = αl

0 f (x) + αl
k0 fk0(x) → h(x) (l → ∞).

Hence, by taking x = ai(n,k0), and recalling that α0 = 0, we have that

αl
k0 fk0(ai(n,k0)

) = αl
k0 fk0(ai(n,k0)) + αl

0 f (ai(n,k0)) → h(ai(n,k0)) (l → ∞).

Thus, we have

αl
k0 → h(ai(n,k0))

f (ai(n,k0))
=: αk0 (l → ∞).

Observe that we can assume that we fixed a k0 for which αk0 	= 0. Otherwise, we have
that αk0 = 0 for any k0 ∈ N and, as α0 = 0, Hl → 0 (l → ∞) pointwise in R

N . This
is a contradiction because Hl → h 	= 0 (l → ∞) in (X , dX ).
We can then evaluate h at these points, obtaining:

|h(ai(n,k0))| = |αk0 | · | f (ai(n,k0))| → +∞ (n → ∞).

Thus h ∈ nBC∞ I (A), and so W f \{0} ⊂ nBC∞ I (A) as desired.

�
As a direct consequence of this result, we have shown the following:

Corollary 3.3 The family nBC∞ I (A) is maximal pointwise lineable in X.

Now, by Proposition 2.1:

Corollary 3.4 The family nBC∞ I (A) is infinitely pointwise c-lineable in X.

If we take the topological structure of the space X into account, the characterization
provided in Theorem 2.3 let us get density also.

Theorem 3.5 The family nBC∞ I (A) is infinitely pointwise c-dense lineable in (X , dX ).

Proof Recall that the set N := C∞
c (RN ) of smooth functions with compact support in R

N

is a dense vector space in (X , dX ). If we take M := nBC∞ I (A) it is clear that M + N ⊂ M
and M ∩ N = ∅ because both are subsets of X , the functions in M are unbounded, and the
ones in N are bounded. By Corollary 3.4, M is infinite pointwise c-lineable in X . Thus, an
application of Theorem 2.3 completes the proof. �

4 Final remarks

(1) From the proof of Theorem 3.2 we can deduce the following result:
For any pre-fixed not relatively compact subset A of R

N , the set

nBC∞(A) := { f ∈ C∞(RN ) : f is unbounded in A}

123



Infinite pointwise lineability: general criteria... Page 11 of 13    25 

is maximal pointwise spaceable in C∞(RN ).
In fact, for every f ∈ nBC∞(A), there exists a c-dimensional subspace V f such that

span( f ) ⊕ V f ⊂ nBC∞(A) and V f ⊂
⋂

p≥1

L p(RN ).

(2) From Corollary 3.4, it is trivial that the set nBC∞ I (A) is infinitely pointwise c-lineable
in C∞(RN ). As the set C∞

c (RN ) is dense in C∞(RN ) (endowed with the topology of
uniform convergence on compacta for all derivatives of all orders), we have:
The set nBC∞ I (A) is infinitely pointwise c-dense lineable in C∞(RN ).

(3) Let α : [0,+∞) → [1,+∞) be a continuous increasing function.We say that a function
f ∈ C(RN ) has growth α through the set A whenever

lim sup
||x ||→∞
x∈A

| f (x)|
α(||x ||) = +∞.

If in Example 3.1 we modify the definition of the function w(x) as follows:

w(x) :=
∞∑

n=1

n · α(||an ||) · �n(x) (x ∈ R
N ),

(where in the pre-fixed sequence (an)n ⊂ A we also assume that ||an || > 1 for any
n ∈ N) we obtain a function in the vector space X that has growth α through the set A.
Now, if we consider any fixed function f as above, and we choose a sequence (an)n ⊂ A
such that | f (an)|

α(||an ||) → +∞ as n → ∞, we can follow all the same steps as in the proof of
Theorem 3.2 to obtain the next result:

Theorem 4.1 Let A be not relatively compact in R
N and let α : [0,+∞) → [1,+∞) be a

continuous increasing function. Then the set

{ f ∈ X : f has growth α through the set A}
is pointwise c-spaceable and infinitely pointwise c-dense lineable in (X , dX ).

(4) Let 	 be an open subset of R
N . We consider

X	 := C∞(	) ∩
⋂

p≥1

L p(	),

which is a Fréchet topological vector space under the metric dX ,	 defined as

dX ,	( f , g) :=
∞∑

m=1

1

2m
· || f − g||Km

1 + || f − g||Km

+
∞∑

p=1

1

2p
· || f − g||L p(	)

1 + || f − g||L p(	)

.

where (Km)m is an exhaustive sequence of compact subsets in 	 (Km ⊂ K ◦
m+1 and

	 = ∪∞
m=1Km) and

|| f ||Km = max|α|≤m
sup
x∈Km

|Dα f (x)| ( f ∈ C∞(	), m = 1, 2, . . . ).

Then the results of Sect. 3 hold for the set

nBC∞ I (A,	) := { f ∈ X	 : f is unbounded in A},
where A is a not relatively compact subset in 	. Indeed, for fixed f ∈ nBC∞ I (A,	)

there exist two sequences (an)n ⊂ A and (rn)n ⊂ (0, 1) such that:
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(a) (rn)n is strictly decreasing to zero,
(b) B(an, rn/2) is contained in 	, for each n ∈ N,
(c) (an)n tends to the boundary of 	 (n → ∞),
(d) ||an+1 − an || > rn for each n ∈ N, and
(e) | f (an)| > 1 for each n ∈ N.

For any n ∈ N we consider the closed balls:

B1,n; = B

(
an,

rn
| f (an)|1/N · 2n+1

)
,

B2,n; = B

(
an,

rn
| f (an)|1/N · 2n+2

)
.

All these balls are contained in 	 and are pairwise disjoint. Now we can follow the
same steps as in the proof of Theorem 3.2 to get maximal pointwise spaceability of
nBC∞ I (A,	).

(5) Finally, we can apply our Theorem 2.3 to establish the infinite pointwise dense-lineability
of any set for which its pointwise lineability is already known and for which we can find
a suitable set N . For instance:

• In [18] it is proved the pointwise c-lineability of �p(X) \ ⋃
q<p �q(X) (where X is any

Banach space); taking N := c00(X), we get its infinite pointwise c-dense lineability in
�p(X).

• In [9] it is proved that the set A0 of sequences of continuous unbounded and integrable
functions in [0,+∞) that goes to zero both in L1-norm and uniformly in compacta of
[0,+∞) is pointwise c-lineable. Taking as N the set c00(B) of Lemma 3.1 in [7], we
also get the infinite pointwise c-dense lineability of A0 in c0(L1[0,+∞) ∩ C[0,+∞)).
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